
Development of an Unstructured Mesh Gyrokinetic Particle-in-cell

Code for Exascale Fusion Plasma Simulations on GPUs

Chonglin Zhanga,∗, Gerrett Diamonda, Cameron W. Smitha, Mark S. Shepharda

aScientific Computation Research Center, Rensselaer Polytechnic Institute
110 8th St, Troy, NY 12180

Abstract

This paper presents XGCm, a new unstructured mesh gyrokinetic Particle-in-Cell (PIC) code for

modeling fusion plasma. The physical models and aspects of the numerical methods employed

are the same as those used in the X-point gyrokinetic code, XGC. The core difference is that

XGCm builds on an unstructured mesh-centric infrastructure that supports a distributed mesh,

making it scalable in both the number of mesh elements and number of particles. A second

advantage of an unstructured mesh infrastructure is its performance is not degraded when generally

graded or anisotropic meshes are used. The switch from a particle-centric data infrastructure to a

distributed mesh-centric infrastructure required the introduction of new methods to execute core

PIC operations and substantial modifications to a number of key algorithms from those used in

XGC. First, we present the methods and algorithms used in the development of XGCm, which

performs all key computing steps on the GPU accelerators. GPU accelerators are providing the

main computational power of current generation U.S. Department of Energy supercomputers.

Secondly, we perform code validation and test using the circular geometry cyclone base case

(case 5 of Burckel et al., Journal of Physics: Conference Series 260, 2010, 012006) and realistic

DIII-D geometry case, respectively. The turbulence growth rate shows excellent agreement with

existing XGC result in the first case, while ion temperature gradient turbulence growth is further

demonstrated in the second case. Finally, we present weak scaling results, using up to full system

(27,648 GPUs) of the Oak Ridge National Laboratory’s Summit supercomputer.

Keywords: particle method, particle-in-cell method, unstructured mesh, fusion plasma physics,

GPU

∗Corresponding author
Email addresses: zhangc20@rpi.edu (Chonglin Zhang), diamog320@gmail.com (Gerrett Diamond),

smithc11@rpi.edu (Cameron W. Smith), shephard@rpi.edu (Mark S. Shephard)

Preprint submitted to Computer Physics Communications May 11, 2023

1. Introduction

To meet the aggressive plan to bring a prototype fusion power plant online by 2040 [1], fusion

plasma modeling codes that provide the needed levels of simulation fidelity, while fully accounting

for the geometric complexity of the reactor system, must be applied as part of the design and

system evaluation processes. A number of codes with the potential to provide the required levels5

of physical modeling fidelity are based on the particle-in-cell (PIC) method. Ongoing advances in

the development of exascale computing systems, modeling technologies, and numerical methods,

hold the promise of supporting the PIC simulation workflows needed to carry out the desired high

fidelity simulations.

Computational methods that execute on uniform grids are carried out most efficiently on10

GPU accelerated exascale computing systems. However uniform grid methods are not well suited

to address many of the reactor design and operation questions in which the grid must directly

account for complex geometric components (eg., divertor cassette assemblies, probe ports, etc.)

and/or localized behaviors (e.g., pellet injection and ablation). On the other hand, unstructured

mesh generators have evolved to the point that strongly graded, anisotropic meshes can be easily15

generated that can take full account of the geometric details and/or localized behaviors of interest.

An increasing number of PIC codes for the modeling of plasma physics in fusion reactors, [2, 3,

4, 5, 6] are currently using or are planning to use unstructured mesh methods. To support the

development of unstructured mesh PIC simulation codes that scale and are performant on GPU

based exascale computers, a distributed mesh unstructured mesh for PIC infrastructure, PUMIPic20

[7], that is scalable both with respect to the numbers of particles and mesh elements, has been

developed.

In this paper, we report the development of XGCm, a new distributed unstructured mesh

gyrokinetic PIC code, short for x-point included gyrokinetic code, mesh-based. The code runs

fully on current GPU hardware, and is aimed at exascale fusion plasma simulations. It adopts25

the physical algorithms from the well-established XGC code [2, 8]. The corresponding numerical

algorithms within XGCm are presented, which are suitable for distributed unstructured mesh and

achieve performance and scalability on GPU devices. XGCm heavily depends on the open-source

Omega [9, 10] and PUMIPic [7] libraries for mesh and particle management, respectively. Both of

these libraries use the Kokkos [11] programming model to achieve code portability.30

Section 2 overviews the major operations of the gyrokinetic PIC method used in both XGC

and XGCm. These include four major components: the gyroaveraging charge scatter process

depositing particle charge onto the mesh vertices; the solution of the gyrokinetic Poisson equation

on the mesh and associated mesh field operations; field gather operation to obtain electric and

2

magnetic field information at particle location from the background mesh field; the ion and electron35

particle push operations. Section 3 overviews the PUMIPic unstructured mesh PIC infrastructure

that XGCm builds upon. The four components of the gyrokinetic PIC method operate on different

particle and mesh interaction levels, including particle-to-mesh operation, mesh field operation,

mesh-to-particle operation, and particle operation, respectively. Building on Omega and PUMIPic,

Section 4 discusses the algorithms used in XGCm to handle different operations in the gyrokinetic40

PIC method. Section 5 first presents a code validation study using the circular geometry cyclone

base case [12, 13], where ion temperature gradient (ITG) turbulence growth is compared with

the result of XGC. It then tests XGCm using ITG turbulence simulation with realistic DIII-D

geometry. Section 6 provides weak scaling and computational performance results of XGCm.

Section 7 summarizes the current work and provides directions for future work.45

2. Gyrokinetic Particle-in-cell Method

The PIC method is usually used to study the micro turbulence, turbulence transport, and

plasma instabilities in the tokamak devices, within the context of magnetic confinement fusion

plasma modeling. Due to the strong magnetic field in the tokamak device, it is sufficient to

track the guiding center motion of charged particle, while modeling the particle’s gyration motion50

perpendicular to the magnetic field. This is called the gyrokinetic PIC method [14, 15, 16, 17, 18,

19, 20, 21]. In this method, the motion of charged particles are treated as a combination of particle

guiding center motion and gyration motion surrounding the guiding center and perpendicular to

the magnetic field. This allows the use of larger simulation time steps, significantly reducing the

simulation cost.55

A further simplification in the gyrokinetic PIC method is the delta-f treatment of the particle

velocity distribution function (VDF) f(t,x,v) [15, 22, 19]. This takes advantage of the fact that

the particle VDF is close to equilibrium Maxwellian-Boltzmann distribution in the core region of

the tokamak device. It is thus sufficient to only simulate the perturbative part of the particle VDF,

hence the name delta-f method. The delta-f gyrokinetic PIC method maintains a low statistical60

error while using relatively small numbers of simulation particles, further reducing the overall

simulation time cost.

2.1. Delta-f treatment of particle VDF

The particle VDF, f(t,x,v), describes particles’ collective behavior in the six-dimensional

phase space (x,v), where x and v are the spatial and velocity vectors. It is the probability65

density of finding a particle with specific velocity v at specific location x. It is governed by the

3

Boltzmann equation [23]. Under the gyrokinetic assumption, the particle property is described

by the five-dimensional variable, (X, µ, v∥), where X is particle guiding center position, µ is the

magnetic moment, and v∥ is the component of particle velocity parallel to the magnetic field vector

B. Magnetic moment is µ =
mv2⊥
2B

, where m is the particle mass, v⊥ is the component of particle70

velocity perpendicular to the magnetic field B, and B is the magnitude of B.

Under the gyrokinetic assumption, we solve the five-dimensional gyrokinetic Boltzmann equa-

tion [24, 25, 26]:
df

dt
= S(f), (1)

where S(f) describe the change in particle VDF, f(X, µ, v∥), due to particle collisions and external

source or sink [23, 26]. For collisionless plasma in the core region of the tokamak device, we can

ignore this and assume:

S(f) = 0. (2)

In the delta-f gyrokinetic PIC method, the particle VDF, f = f(X, µ, v∥), can be described

using two separate contributions:

f = f0 + δf. (3)

where f0 is the equilibrium Maxwellian-Boltzmann distribution function[19], while δf is the per-

turbative contribution to f . In the gyrokinetic PIC method, δf is described by the simulation

particles (also called marker particles) and is denoted as fp, to represent that it is from the contri-

bution of simulation particles. Each simulation particle has its own properties, including spatial75

position X, magnetic moment µ, and parallel velocity v∥. By sampling all particles’ information

at a specific location X, the particle VDF fp is known.

2.2. Particle guiding center equations of motion

In the gyrokinetic PIC method, the property of a simulation particle is described by (X, µ, v∥),

its guiding center position, magnetic moment, and parallel velocity. The motion of each simulation

particle is determined by the evolution of its guiding center position and parallel velocity. They

are governed by the Lagrangian equations of motion [17, 26, 25],

Ẋ =
dX

dt
=

1

D

[
v∥b+

v2∥∇B × b

B
+

B× (µ∇B − E)

B2

]
, (4)

v̇∥ =
dv∥
dt

= − 1

D
(B+ v∥∇B × b) · (µ∇B − E), (5)

where B is the equilibrium magnetic field, B = |B|, E is the electric field vector, b is the unit

vector along the magnetic field direction (along B direction), and,

D = 1 +
v∥
B
b · (∇× b). (6)

4

Equations 4 and 5 fully determine the particle trajectory and velocity. In the gyrokinetic PIC

simulation, these first order ordinary differential equations are numerically discretized to determine80

the simulation particle properties at different time.

2.3. Gyrokinetic Poisson Equation

The gyrokinetic Poisson equation determines the electrostatic potential field given the charge

field, which is generated by charged particles moving in the physical domain. In long wavelength

limit, the electrostatic Gyrokinetic Poisson equation [14, 15, 27, 17, 18, 19, 20, 21, 28] is,

−∇⊥ · n0m

qB2
∇⊥ϕ = n̄i − ne, (7)

where ϕ is the electrostatic potential, n0 is the background charge density, n̄i is the ion guiding

center charge density, ne is the electron charge density, ∇⊥ is the gradient operator, ρi is the

thermal ion gyroradius, and q is the particle charge. n̄i(x) at any position x is obtained from the

gyroaverage charge scatter process and is defined as [17, 28, 29],

n̄i =
1

2π

∫
fi(X, µ, v∥)δ(X+ ρ⃗i − x)dXdµdv∥dα, (8)

where X is the ion guiding center position vector, ρ⃗i is the ion gyroradius vector pointing from X

to x, α is the gyrophase angle of ρ⃗i relative to a reference vector, δ(X+ ρ⃗i − x) is the Dirac delta

function. The numerical calculation of the ion guiding center charge density n̄i in the gyrokinetic85

PIC method is usually done using multi-point average. This process is shown in Figure 1, where

an eight-point average is used. In XGCm, 32-point average is usually used for increased numerical

accuracy.

Figure 1: Schematics of the multi-point average process to perform the gyroaverage charge scatter.

Following Equation 3, the delta-f treatment of VDF, the electrostatic potential Φ, ion guiding

center charge density n̄i, and electron charge density ne can be similarly expressed as two sepa-

rate components: the equilibrium component and the perturbative (turbulent) component. For

5

instance, the electrostatic potential ϕ can be written as,

ϕ = ϕ0 + δϕ, (9)

where ϕ0 is the equilibrium component, while δϕ is the turbulent component. Equation 7 can then

be solved by separating it into two components: the axisymmetric or equilibrium component with90

toroidal mode number n = 0; and the non-axisymmetric or turbulent component with toroidal

mode number n ̸= 0 [17, 18, 30].

2.4. Major steps of the PIC method

The four major steps of the PIC method are:

• Charge Scatter: The “charge” information associated with the particles is related to the95

domain definition such that the forcing function driving the field evolution, and, potentially,

the domain properties can be updated. In the gyrokinetic PIC method, the charge of the

simulation particle is projected onto the background mesh field [29].

• Field Solve: The domain physics equation (the gyrokinetic Poisson equation in section 2.3)

governing the electrostatic potential field is updated based on the updated forcing function,100

the domain properties are updated when changed, and the associated discrete system is

constructed and solved.

• Field Gather: The values of the fields that drive the particles are associated with each

particle through an appropriate interpolation procedure.

• Particle Push: The particles are moved to a new location as a function of the fields and105

time step.

The manner in which the domain fields are defined over the spatial domain of a PIC calculation

has a substantial influence on the design of the code data structures and domain related operations.

In the case of the XGC gyrokinetic code [28, 2, 8] and XGCm code, the spatial discretization

consists of a poloidal plane mesh that is repeated on a number of poloidal planes in the toroidal110

direction, which is typically 32 to 128. Within the poloidal plane, the ion and electron charge

density, electrostatic potential, and electromagnetic potential fields are defined as C0 continuous

polynomials (currently defined as linear polynomials) over triangular finite elements. For a location

within two adjacent poloidal planes, a linear interpolation over a nearly field-following coordinate

is used.115

To effectively model the fact that the particles move much more quickly in the toroidal direction

than in the poloidal plane, the unstructured poloidal plane mesh is defined to be quasi field

6

following [31] where the primary mesh vertices are placed on magnetic flux curves with a spacing

that follows the motion of a particle on the flux curve as it moves between poloidal planes. The

mesh in the core region uses a one element deep construction of elements between flux curves.120

Outside the core region around the X-Point, in open flux curves, and between flux curves and

the wall, a set of ah-hoc meshing operators and general unstructured mesh methods are applied,

which introduce additional mesh vertices between flux curves, and between flux curves and the

wall, to produce meshes with the desired element shape quality. An example unstructured mesh

on one poloidal is shown in Figure 2.125

Figure 2: An example of a coarse mesh generated using the XGC meshing procedure. Meshes for physics studies

have at least one to two orders of magnitude more elements.

3. Parallel Unstructured Mesh Infrastructure for PIC Calculations

The typical approach to the development of an unstructured mesh PIC code is for the particle

data structure to be the core data structure, where the data structure of the particles contain

a pointer to the mesh element in which the particles are contained. The mesh is stored in an

independent data structure that is typically copied into the memory of each process. Although130

the mesh data is substantially smaller than the particle data, maintaining a copy of the mesh in

each memory space does limit the scalability with respect to mesh size. PIC codes using particle-

centric data structures also include a spatial-based structure, either a uniform grid or a tree-based

7

structure, to support the process of determining which unstructured mesh element a particle is in

after a push operation.135

The unstructured mesh infrastructure used in XGCm, PUMIPic [7], takes an alternative ap-

proach in which the core data structure is a distributed mesh, where the particles are tied to the

mesh elements in which they currently reside. This approach provides an effective opportunity

to distribute the mesh over the nodes of the compute system, thus supporting scalability with

respect to the mesh, while maintaining ready access to the mesh fields of mesh elements where140

the particles will move to during the next push step. The mesh data structure used in PUMIPic,

Omega [10, 9] stores a complete mesh topology and has been designed to support the effective

execution of unstructured mesh operations on distributed meshes on massively parallel computers

employing GPU accelerators. The mesh-based functions supported range from adjacency-based

point location operations using the mesh adjacency and geometry information, the integration of145

physical field parameters over the mesh, and the implementation of effective linear system matrix

assembly and solution operations.

To store particles based on mesh elements, an additional structure is maintained that groups

particles in memory based on the mesh element they are in. PUMIPic provides Sell-C-σ [32, 33]

and Cabana AoSoA particle data structure [34] that supports the irregular memory storage of150

the mesh element to particles relationship. Sell-C-σ is derived from the work of Kreutzer et

al. [32]. The detailed implementations within PUMIPic are further discussed in the work of

Diamond et al. [7], to support key particle operations such as particle push, particle migration,

and the association of particle with the mesh element. An AoSoA, array-of-structures-of-arrays,

is the principle particle data structure used in Cabana to provide performance portoability across155

hardware [34]. Cabana AoSoA is extended in PUMIPic to support grouping of structure-of-arrays,

which contains particle data and is associated with mesh element. The advantage of Sell-C-σ or

Cabana AoSoA particle data structure may depend on the details of the particle operations being

performed, and could be case-specific. As such, this needs to be discussed separately.

To maintain the particle structure as particles move through the domain, three operations are160

required. After every particle push, we need to determine whether each particle has moved to a

new mesh element and if so which element it has moved to. To achieve this, an adjacency-based

search is executed on each particle using ray tracing and barycentric coordinates methods. After

the new mesh element of each particle is determined, the particle structure must be updated to

reflect these changes. Since the unstructured mesh is distributed, we need to check that if each165

particle needs to be migrated to a new process based on its new mesh element. Once all the

particles are migrated to the correct processes, the particle structure is rebuilt in order to add or

8

remove particles, and reorder particles based on their new mesh elements and processes.

A key component of PUMIPic is the manner in which the mesh is distributed, as a set of so-

called PICparts, to the MPI processes employed on today’s parallel computers. A PICpart is an170

overlapping domain decomposition with halo cells that support local computations on the particles

in a manner that reduces interprocess communications. As discussed in the work of Diamond et

al. [7], the definition of the PICpart begins by partitioning the mesh into a non-overlapping set

of parts. Each of those parts defines the core of a PICpart, or simply called PICpart core. The

remainder of the PICpart, called PICpart buffer, is the set of other parts either bound the PICpart175

core or have elements within a given number of buffer elements of the PICpart core. In PUMIPic,

there is sufficient buffer such that any particle that is in an element in the PICpart core at the

start of a push operation, will end up in an element on that PICpart. Figure 3a shows a 2D

tokamak cross section with a very coarse mesh partitioned into 15 non-overlapping mesh parts.

Figure 3b shows the PICpart defined for mesh part labeled A. Mesh part labeled A is the PICpart180

core, all other mesh parts including mesh part labeled B are the PICpart buffer.

(a) (b)

Figure 3: (a) Two-dimensional unstructured mesh partitioned using multi-level graph partitioner. (b) PICpart

generated for mesh part A.

Since the particle-based gather and scatter operations in a PIC calculation will require commu-

nications in each time step, PUMIPic deems it is satisfactory to move particles between PICparts

during these steps. With the PICpart defined in PUMIPic, all required information is local to the

9

PICpart and no communications are required during the particle push step. Care is required in185

the definition of the PICpart buffer, to ensure it does not produce large increases in memory usage

or effort required to maintain the mesh distribution information. The size of the PICpart buffer

is determined by the fact that, particles contained in the mesh elements of a PICpart core do not

move outside of the PICpart buffer in a single push operation. After a particle push operation,

particles can enter the buffer and be close enough to the boundary of the PICpart that they may190

move off the PICpart in the next particle push. As such, it becomes necessary to do the commu-

nication to move the particle onto a PICpart for which that element is sufficiently far from that

PICpart’s boundary. The communications required to move those particles can be coordinated

and carried out in the charge deposition step which always requires communications.

With the current PICpart definition, a substantial percentage of the particles that move to195

elements in the PICpart buffer are far enough from the PICpart boundary. In general, they would

not exit the current PICpart on the next push. In these cases particles are only migrated for the

purpose of improving load balance for the next push operation. As particles move through the

domain during the simulation, the regular application of dynamic load balancing [7], another core

operation, is needed.200

4. Particle-in-cell Methods and Numerical Algorithms Suitable for GPU

Section 2 overviewed the delta-f gyrokinetic PIC method and the major operations in both

XGC and XGCm. These include four major components:

1. the charge scatter process depositing particle charge onto vertices of the background mesh;

2. solving the gyrokinetic Poisson equation and calculation of the electric field, both of which205

is performed on the mesh;

3. field gather operation to obtain the electric field information at particle location from the

background mesh field;

4. and the ion and electron particle push operations.

Taking a mesh-centric approach, we categorize the four major components of the delta-f gy-210

rokinetic PIC method according to the level of interactions between the mesh and the particle.

This categorization allows us to better analyze each component and improve their computational

performance in future work. Corresponding to the four major components of the gyrokinetic PIC

method, there are four types of particle and mesh interactions, including:

• particle-to-mesh operation, corresponding to charge scatter;215

10

• mesh field operation, corresponding to solving the Poisson equation and calculation of the

electric field;

• mesh-to-particle operation, corresponding to electric field gather;

• particle operation, corresponding to ion and electron particle push.

In general, each type of interaction corresponds to either an Eulerian or a Lagrangian representa-220

tion, or an interaction between the Eulerian and Lagrangian representation. Building on Omega

[9, 10], PUMIPic [7], and PETSc [35, 36, 37] libraries, this section discusses the numerical algo-

rithms used in XGCm to handle each of these interactions. In XGCm, all four components of the

gyrokinetic PIC method are executed on the GPU.

4.1. Flux surface aligned and field-following mesh225

In XGCm, we use a cylindrical coordinate system (r̂, φ̂, ẑ) as shown in Figure 4 to describe the

tokamak geometry. O is the origin of the coordinate system, while r̂, φ̂, and ẑ are the three basis

vectors. The coordinate of any point P is (r, φ, z), where r represents the distance from point P

to the center ẑ axis, while z is the distance from point P to the origin O along the ẑ axis. Unit

vectors r̂, ẑ correspond to the (r, z) coordinates and form a plane called the poloidal plane. Unit230

vector φ̂ corresponds to the φ coordinate or the toroidal direction. φ represents the rotation angle

of point P relative to a reference poloidal plane with respect to the ẑ rotation axis. A poloidal

plane corresponds to points with constant φ angle.

"̂

#$

%̂&

(%, $, ")

Figure 4: Cylindrical coordinate system used in XGCm.

Under this coordinate system, the equilibrium magnetic field in the tokamak, B, is represented

as summation of the poloidal and toroidal components,

B = Bp +Bφ, (10)

11

where B is axisymmetric. Bp is the poloidal component and is represented as,

Bp = Br +Bz = Brr̂+Bzẑ = ∇Ψ×∇φ, (11)

where Ψ = Ψ(r, z) is called the flux function and a function of (r, z). Specifically,

Br = −1

r

∂Ψ

∂z
r̂, (12)

Bz = −1

r

∂Ψ

∂r
ẑ. (13)

Bφ is the toroidal component and is a function of (r, z), Bφ = Bφ(r, z)φ̂. It can also be written

as,

Bφ = g(r, z)∇φ, (14)

where g(r, z) is defined as g(r, z) ≡ rBφ(r, z). Functions Ψ(r, z), g(r, z), and the equilibrium

magnetic field B are known a prior for each simulation condition. They are represented using235

piecewise cubic spline interpolation in both XGC and XGCm. B can thus be determined at any

point in the simulation domain.

In XGC and XGCm, the three dimensional simulation domain is discretized into a number of

uniformly spaced two dimensional poloidal planes along the toroidal direction. The angle between

two neighboring poloidal planes is ∆φ = 2π/Nφ, where Nφ is the number of poloidal planes.240

Each poloidal plane is then discretized using unstructured triangular meshes as shown in Fig 2.

A unique feature of XGC and XGCm mesh is that, the equilibrium magnetic field information is

built into the mesh [17, 31], achieving high numerical accuracy.

In a Tokamak, points with constant value of Ψ(r, z) form the magnetic flux surface. Its pro-

jection on each poloidal plane is the magnetic flux curve. Each poloidal plane is discretized using245

flux surface aligned unstructured triangular meshes in XGC and XGCm. In the closed flux curve

region [38], mesh vertices are arranged such that they are on a flux curve. Flux surface aligned

mesh allows us to resolve perturbations with low parallel wavenumber and high toroidal mode

number, while using relatively low toroidal resolution Nφ [26].

The meshes used in XGC and XGCm also exhibit the field-following feature. We pick a mesh250

vertex, Pi = (ri, φj, zi), in the closed flux surface region on a poloidal plane j with toroidal

angle φj = ∆φ, where poloidal plane is indexed as j = 0, 1, 2, ..., (Nφ − 1). Staring from Pi

and traveling along the magnetic field line B in the same direction as φ̂), the magnetic field line

crosses another point Pk = (rk, φj+1, zk) in the neighboring poloidal plane (j + 1) with toroidal

angle φj+1 = (j + 1)∆φ. Pk lies on the same flux surface as Pi, and in general is also a mesh255

vertex or very close to a mesh vertex in poloidal plane (j +1). Traveling in the opposite direction

12

along the magnetic field line B, we have another intersection point Pl in the neighboring poloidal

plane (j − 1) with toroidal angle φj−1 = (j − 1)∆φ. In general, Pl also corresponds to a mesh

vertex or is very close to a mesh vertex on the same flux surface. This is discussed further in the

work of Zhang et al. [31].260

Taking advantage of the field-following feature of the unstructured mesh used in XGC and

XGCm, major operations in the gyrokinetic PIC method are performed along the magnetic field

line, rather than along the toroidal direction. For example, the deposition of a particle’s charge to

two neighboring poloidal planes in the charge scatter operation, is carried out along the magnetic

field line direction [39].265

4.2. XGCm mesh partitions

In XGCm, we have three levels of mesh partitions: the first level partition is the toroidal

partition, which divides the simulation domain into Nφ sub-domains along the toroidal direction,

where each sub-domain is bounded by two neighboring poloidal planes; the second level partition

is the poloidal partition, which divides the poloidal plane mesh into multiple radial mesh regions270

or PICparts according to the flux curves, each of which is generally bounded by two flux curves;

the third level partition is the group partition, where each radial mesh region or PICpart can

correspond to one or multiple processes.

In our mesh-centric approach, particles are associated with triangular mesh elements. The

toroidal partition allows simulation particles to be grouped into sub-domains along the toroidal275

direction, resulting in better data locality. In addition, mesh fields are distributed to multiple

processes along the toroidal direction, achieving better memory usage.

The poloidal partition is justified by the fact that the motion of the particles with respect to

their projection onto the poloidal plane mesh is such that they tend to move slowly in the radial

direction. This is used in the specification of radial mesh regions or PICparts to distribute the280

mesh across processes. Figure 5 shows a coarse mesh in which two PICparts are highlighted. In

this example, the core of the PIC part is the mesh between two flux curves and the remainder of

the PICpart is the mesh between three sets of flux curves on each side of the core part. Similarly,

the poloidal partition allows for better memory usage and data locality, achieving better computing

performance.285

In the group partition, a group of processes is assigned to each PICpart, where particles asso-

ciated with the same PICpart are distributed between multiple processes. This allows for a large

number of simulation particles to be associated with each mesh element and each PICpart. A

large number of simulation particles is usually needed to achieve low numerical simulation noise.

13

Figure 5: Example of PICpart mesh partition used in XGCm. Here two PICparts on a coarse mesh are shown,

where a PICpart includes a core region with triangular elements between a pair of flux curves buffered by triangular

elements between three pairs of flux curves on each side. Regions with blue color are the PICpart core and regions

with yellow color are the PICpart buffer.

4.3. Particle charge scatter290

4.3.1. Numerical algorithm

The charge of a simulation particle is scattered onto mesh vertices of two neighboring poloidal

planes bounding that particle [17, 28]. This consists of three steps for ion species and two steps

for electron species. Supposing we have a simulation particle Pi with coordinate (ri, φi, zi), it is

bounded by two neighboring poloidal planes indexed as j and (j + 1) with toroidal angles φj and295

φj+1, φj ≤ φi < φj+1. The poloidal plane in the middle of the two poloidal planes j and (j + 1)

is indexed as (j + 1
2
), where its toroidal angle is φj+ 1

2
= (j + 1

2
)∆φ.

The first step of charge scatter is to perform the field-following projection. In this step, particle

Pi is projected to a point P ′
i in the poloidal plane (j + 1

2
) along the magnetic field line direction.

The end result of this step is a charge field defined on each mesh vertex in the poloidal plane300

(j + 1
2
). Point P ′

i lies in a triangular element indexed as t with three vertices ordered as P t1
i , P t2

i ,

and P t3
i . Charge of particle Pi is correspondingly deposited to the three mesh vertices P t1

i , P t2
i ,

and P t3
i through linear interpolation of value at point P ′

i . Linear weights are used in the charge

deposition and depends on the barycentric coordinate of P ′
i in triangular element t. Supposing

the barycentric coordinate of P ′
i is (η1, η2, η3), the linear weights are η1, η2, and η3.305

14

Essentially, the field-following operation discussed above projects a point, x1 = (r1, φ1, z1),

to a point, x2 = (r2, φ2, z2), on a poloidal plane with toroidal angle φ2. Point x1 represents the

simulation particle at position (r1, φ1, z1). The operation projects point x1 to point x2 along the

magnetic field line direction, and is denoted as Pff(r1, z1;φ1 7→ φ2),

Pff(r1, z1;φ1 7→ φ2) =

∫ (r2,φ2,z2)

(r1,φ1,z1),Ψ(r,z)=constant

Bp(r, φ, z)

Bφ

φ̂ · d−→s

=

∫ φ2

φ1,Ψ(r,z)=constant

Bp(r, φ, z)

Bφ

rdφ

, (15)

where Bp(r, z) is the poloidal component of the magnetic field vector at point (r, z), while Bφ =

Bφ(r, z) = |B0,φ(r, z)| is the magnitude of the toroidal component of the magnetic field vector at

point (r, φ, z) and Ψ(r, z) is the flux function. We have,

(r2, z2) = (r1, z1) + Pff(r1, z1;φ1 7→ φ2). (16)

The second step of charge scatter is to perform the gyroaverage operation for the ion species as

outlined in Equation 8, and is ignored for the electron species. This step operates on mesh vertices

in the poloidal plane (j + 1
2
). The end result is a charge field defined on each mesh vertex in the

poloidal plane (j + 1
2
). The numerical implementation of gyroaverage in a gyrokinetic PIC code

is usually done using multi-point average as shown in Figure 1. In general, an ng-point average

is used where ng is the number of discrete gyro points representing the ion gyration orbit. In

XGCm, usually ng = 32 is used. Denoting the perpendicular velocity of an ion as v⊥, its magnetic

moment as µ, and the magnitude of magnetic vector at its guiding center position as B = |B|, the
ion gyroradius, ρ, is calculated as,

ρ =
mv⊥
qB

=

√
2mµ

q2B
. (17)

We assume there is an imaginary ion particle located on vertex P tk
i of triangular element t,

where k is indexed as k = 1, 2, 3. The imaginary ion particles has same properties as ion particle

Pi except charge, which is linearly weighted from particle Pi to vertex P tk
i in the first step. The

gyroradius of the imaginary ion particle is ρtki =
√

2mµi

q2B
tk
i

, where µi is the magnetic moment of Pi

and Btk
i is the magnitude of the magnetic vector at vertex position P tk

i . The gyration orbit of310

the imaginary ion particle is a circle centered on vertex P tk
i with radius ρtki . The gyration orbit

is represented by ng uniformly spaced points, P tk,1
i , P k1,2

i , ..., P
tk,ng

i on the circle. We consider an

arbitrary point P tk,l
i and assume that it is inside a triangular element tlk with three mesh vertices

tl,1k , tl,2k , and tl,3k , where l is indexed as l = 1, 2, 3, ..., ng. Charge of the imaginary ion particle

located on vertex P tk
i is linearly deposited to the three vertices tl,1k , tl,2k , and tl,3k . Similar to step315

15

one, the linear weights depend on the barycentric coordinate of P tk,l
i in triangular element tlk. This

process can be repeated for an imaginary ion particle located on any one of the three vertcies in

triangular element t.

The ion gyroaverage process discussed above depends on the physical properties of each ion

particle including its position, and the numerical calculation is unique to each ion particle. This320

poses challenges in the numerical implementation due to the complexity and time cost of the

gyroaverage process. Specifically, we need to perform multiple search operations to determine the

triangular elements in which each point P tk,l
i on the gyration orbit lies. The number of search

operations to be performed is 9ng for each ion particle. To reduce the time cost associated with

the gyroaverage process, we introduce a gyroaverage mapping Pga and apply this mapping to each325

imaginary ion particle located on vertex P tk
i directly. In essence, Pga is a four dimensional mapping

between mesh vertices in the poloidal plane mesh.

We briefly describe the calculation of the gyroaverage mapping Pga here. For a mesh vertex

p located on poloidal plane j + 1
2
, we create (ngr + 1) circles surrounding it, where ngr is chosen

as a constant in each simulation. All the circles are centered on vertex p with uniformly spaced

radius Rq = q R0

ngr
, where q is indexed as q = 0, 1, 2, 3, ..., ngr. With the chosen radius, the first

circle is a point. R0 is chosen as a value larger than the maximum gyroradius in the simulation.

ng equally spaced points are placed on each circle q, and are denoted as P 1
q , P

2
q , ..., P

ng
q . These

points discretely represent an ion gyration orbit with radius Rq. With properly chosen ngr and

R0, we can resolve all possible gyration orbits of ion particles in a simulation. We assume point

P s
q is inside a triangular element tsq, with three mesh vertices indexed as ts,1q , ts,2q , and ts,3q , where

s is indexed as s = 1, 2, 3, ..., ng. The barycentric coordinates of the three mesh vertices ts,1q , ts,2q ,

and ts,3q are denoted as χs,1q , χs,2q , and χs,3q , respectively. Supposing the charge on vertex p is qp, it

is interpolated to a mesh vertex ts,kq as
qpχ

s,k
q

ngngr
, where k = 1, 2, 3. Since vertex ts,kq is a mesh vertex

located on the same poloidal plane j+ 1
2
, we denote its index as p′. We thus obtain the (p, q, s, p′)

component of the gyroaverage mapping Pga,

Pga(p, q, s, p
′) =

qpχ
s,k
q

ngngr
. (18)

The dimensions of the gyroaverage mapping Pga is (Nv, (ngr + 1), ng, Nv), where Nv is the num-

ber of mesh vertices in a poloidal plane mesh. Pga is completely determined through geometric

relationships between mesh vertices and triangular elements. As a result, it can be computed330

once at the beginning of the simulation, stored, and then used later as needed. Moreover, many

components of Pga(p, q, s, p
′) will be 0. It can therefore be stored in a data structure similar to

those used for a sparse matrix to reduce memory usage.

16

Using the gyroaverage mapping, Pga, we can significantly simplify the ion gyroaverage operation,

which is step two of the ion charge scatter process. For an imaginary ion particle located on a

mesh vertex indexed as tk with gyroradius ρtk , we assume the following relationship holds:

Ru−1 ≤ ρtk < Ru, (19)

where integer index u ≥ 1 and u ≤ ngr. The charge deposited from this imaginary ion particle

with charge qtk to any vertex indexed as v is denoted as qtk,v. With linear interpolation, it is

determined that,

qtk,v =
qtk

ng

ng∑
s=1

[w1Pga(tk, u− 1, s, v) + w2Pga(tk, u, s, v)]. (20)

The linear weights are defined as,

w2 =
ngrρtk
R0

− ⌊ngrρtk
R0

⌋, (21)

and,

w1 = 1− w2. (22)

Here ⌊·⌋ is the floor function. With Equation 20, the gyroaverage operation now only involves

multiplication and summation operations and does not require the expensive search operation.335

This process is thus greatly simplified numerically, and is also suitable for GPU calculations where

the gyroaverage operation can be performed simultaneously for different ion particles.

The third step of ion charge scatter (or the second step of electron charge scatter) is the

interpolation of charge at any mesh vertex p in poloidal plane (j + 1
2
) to mesh vertices in the two

neighboring poloidal planes j and (j + 1). The end result of this step is a charge field defined on340

each mesh vertex in each poloidal plane j. First, a field-following projection is performed from

mesh vertex p to two points p1 and p2 in the neighboring poloidal planes j and (j + 1) along the

magnetic field line. The same field-following projection as discussed in the first step of charge

scatter is used. Linear interpolation is used in XGCm, where the interpolation weight depends

on the arc distance between vertex p and the projected points p1 and p2 along the magnetic field345

line. The charge is then interpolated from points p1 and p2 to mesh vertices of the triangular

element in which each of the two points lies. Linear weights are used in the interpolation and are

depending on the barycentric coordinate of p1 and p2 in the two triangular element. Finally, the

contributions of all particles belonging to different toroidal sections are summed to the appropriate

poloidal planes.350

When discussing the charge scatter operation in the above three steps, we only consider the

deposition of charge and ignored the discussion of charge density calculation for simplicity. The

17

calculation of charge density enters the calculations at both step two and three for ion charge

scatter or step two for electron charge scatter. Simply speaking, to calculate the charge density

defined on each mesh vertex, the charge defined on the same mesh vertex is divided by the volume355

surrounding that vertex.

4.3.2. Implementation on the GPU

As seen from the discussions in Section 4.3.1, the charge scatter operation for each simulation

particle can be done independently. This allows us to perform the charge scatter process on

the GPU efficiently, where different hardware threads of the GPU can perform the calculations360

simultaneously for different mesh elements and particles in that mesh element. In XGCm, particles

are stored in the PUMIPic particle structure. The particle structure contains the information of all

particles including the mesh element each particle belongs to, and is stored on the GPU memory.

The building block for performing charge scatter on the GPU is a Kokkos “parallel for” loop

operation, which is analogous to the “for” loop on the CPU. The “parallel for” loop is performed365

on different hardware threads simultaneously for mesh elements and particles with different index,

while the “for” loop is performed sequentially on the same CPU thread for each index in the loop.

Listing 1 provides a simplified code, describing how the charge scatter operation is performed on

the GPU. “ps” stands for the PUMIPic particle structure object, while “parallel for” is performed

on the GPU and is the equivalent of “for” operation on the CPU. “ptcls” is the variable name of370

particle structure object, containing all particle information. “scatter to vertices” is the name of

a user defined C++ language Lambda expression and corresponds to the first step of the charge

scatter operation. With “parallel for”, calculations can be performed simultaneously for different

particles belongs to different triangular elements, where each GPU hardware thread operates on

one particle at a time. In Listing 1, “e” is the triangular element index, “pid” is the particle375

index, “mask” is an integer denoting whether the current memory location of “ptcls” object has

an actual particle. “x c” object stores the (r, φ, z) coordinates of all simulation particles, while

“x p” store the coordinates of a single particle with index “pid”. For simplicity, the actual code

segment corresponding to the first step of the charge scatter operation is not shown here. The

code segment first performs the field-following projection of a particle with index “pid”, then380

performs the charge deposition where the charge is deposited to the three mesh vertices bounding

the projection point.

1 auto x_c = ptcls ->get <PTCL_COORDS >();

2 auto scatter_to_vertices = PS_LAMBDA(const int& e, const int& pid , const int

& mask) {385

3 if (mask) {

18

4 // particle position

5 x_p[0] = x_c(pid , 0);

6 x_p[1] = x_c(pid , 1);

7 x_p[2] = x_c(pid , 2);390

8

9 // perform charge scatter operation for this particle

10

11 // code segment deposit charge from particle to mesh vertices

12395

13 }

14 };

15 ps:: parallel_for(ptcls , scatter_to_vertices , "scatterToVertices");

Listing 1: Simplified code showing how the first step of the charge scatter operation is performed on the GPU.

4.4. Solving the gyrokinetic Poisson equation

Due to the two dimensional nature, the gyrokinetic Poisson equation can be solved on each400

poloidal plane separately. Currently, the gyrokinetic Poisson equation, Equation 7, can be solved

either on the CPU or the GPU using the PETSc library [37, 35, 36, 40]. In solving this equation,

the electrostatic potential is defined on each mesh vertex, and its value is assumed as 0 on the

domain boundary.

4.4.1. Linear equations and mesh partition405

Equation 7 is linearized and separated into two equations corresponding to two components:

the axisymmetric or equilibrium component, and the non-axisymmetric or turbulent component.

The axisymmetric component equation being solved in XGCm is [17, 18, 30],

−∇⊥ · n0m

eB2
∇⊥ϕ0 +

n0

Te,0
ϕ0 = (n̄i − ne,NA) +

n0

Te,0
⟨ϕ0⟩, (23)

where ϕ0 is the axisymmetric electrostatic potential, e is the elementary charge, n0 and Te,0 are the

background number density and electron temperature, n̄i is the ion guiding center charge density,

ne,NA is the non-adiabatic electron charge density, ⟨·⟩ is the flux-surface average operation, and410

· · · is the toroidal average operation.

The non-axisymmetric component equation being solved in XGCm is,

−∇⊥ · n0m

eB2
∇⊥δϕ+

n0

Te,0
δϕ = δn̄i − δne,NA, (24)

where δϕ is the turbulent electrostatic potential.

19

Equations 23 and 24 are discretized with linear finite elements and are solved iteratively. Since

the two equations have the same linear matrix, they are solved by supplying different right-hand-

side vector in the PETSc iterative solver. On each poloidal plane, multiple MPI ranks can be used415

to solve the two linear equations using the PETSc library.

A general solver partition can be created to solve the linear equation, for example the mesh

partition shown in Figure 3a. Another type of mesh partition is created according to the poloidal

partition discussed in Section 4.2 and is shown in Figure 6, which is a special case of the PICpart

partition shown in Figure 3a. In Figure 6, only 4 mesh partitions are created on the poloidal plane420

mesh for better visualization. As a first step in solving Equations 23 and 24 using a distributed

mesh, we use the flux-surface aligned poloidal partition as shown in Figure 6 to divide the poloidal

mesh domain. Usually, at least 10 to 20 poloidal partitions are created in a realistic simulation.

Figure 6: Example of a flux-surface aligned poloidal mesh partition used to solve the gyrokinetic Poisson equation.

Here the mesh has four poloidal partitions.

4.4.2. Gyrokinetic Poisson equation solver work flow and numerical implementation

The linear equations, Eq.23 and Eq.24 are solved using the Krylov subspace (KSP) method425

[35, 37] in the PETSc linear system solver library. Due to the positive-definite nature of the linear

matrix, the conjugate gradient (CG) method and the geometric algebraic multigrid (GAMG) pre-

conditioner are used. The DMPlex object in PETSc is used to handle the unstructured distributed

mesh.

Key aspects of the solution process are:430

20

• In Eq.23 and Eq.24, the background density and magnetic field are constants throughout

the simulation, hence the left had side linear matrices do not change during the simulation;

• Eq.23 and Eq.24 are solved independently, using CG method with GAMG preconditioner;

• The solutions of Eq.23 and Eq.24 are the equilibrium and turbulent components of the

electrostatic potential, ϕ0 and δϕ, respectively;435

• On each poloidal plane, N/Nφ MPI ranks are used to solve the gyrokinetic Poisson equation,

where N is the total number of MPI ranks in the simulation and Nφ is the number of poloidal

planes used in the simulation;

• Values of ϕ0 and δϕ on the boundary of each poloidal plane are set to zero.

The linear equations can be solved either on the CPU or the GPU [37, 40]. In solving the linear440

equation on the GPU, the left-hand-side linear matrix, the solution vector, and the right-hand-side

vector are all stored on the GPU memory. At the beginning of the solution process, the charge

density field or the right-hand-side vector is stored on the GPU memory according to Omega mesh

data structure. Similarly, at the end of the solution process, the electrostatic potential field or the

solution vector is obtained and stored on the GPU memory according to the PETSc library. This445

is then directly copied to Omega mesh field on the GPU.

4.5. Electric field calculation on unstructured mesh

4.5.1. Numerical algorithm

The electric field vector E is needed at the particle position in particle push operation, and

is defined on each mesh vertex. To calculate its value on each mesh vertex, the input is the

electrostatic potential field defined on all mesh vertices in all poloidal planes. E is divided into

two components, the poloidal component E⊥, and the parallel component E∥ which is parallel to

the equilibrium magnetic field B,

E = E⊥ + E∥. (25)

The parallel component of the electric field, E∥, is calculated through finite difference of elec-

trostatic potential between neighboring poloidal planes. The calculation is performed along the450

direction of the equilibrium magnetic field, and the field-following operation discussed in Section

4.3.1 is also performed in the calculation. To ensure the accurate calculation of the poloidal com-

ponent of the electric field, E⊥, on an unstructured mesh, the “curvilinear gradient” method [41]

is used. The details of the numerical algorithm are discussed in Appendix A.

21

4.5.2. Implementation on the GPU455

The electric field calculations discussed in Section 4.5.1 are performed on the GPU. The numer-

ical implementation is based on the Omega “parallel for” loop structure. The numerical operations

can be performed on different mesh vertices simultaneously and independently. This operation

only interacts with the mesh field.

Listing 2 gives a demonstrative code, describing how the electric field calculation is performed460

on the GPU. Other mesh field operations are performed similarly on the GPU using the Omega

“parallel for” loop structure. In the code segment, “o” stands for the Omega object, “parallel for”

is performed on the GPU and is the equivalent of the “for” loop operation on the CPU, and “mesh”

is an Omega variable containing the mesh information and its topology including mesh vertices,

triangular elements, and their adjacency relationships. “compute efield” is the name of a user465

defined C++ language Lambda expression, and “ivert”, “ivert1”, and “ivert2” are the indices of

three mesh vertices. With “parallel for”, the operations on different mesh vertices are performed

simultaneously, where each hardware thread of the GPU corresponds to the operations on a single

mesh vertex. “efield” stores a single component of the electric field on all mesh vertices, “pot”

stores the electrostatic potential on all mesh vertices, and “nverts” is the total number of mesh470

vertices in a poloidal plane.

1 o::Write <o::Real > efield(mesh ->nverts (), 0.0);

2 auto compute_efield = OMEGA_H_LAMBDA(const o::LO ivert) {

3 o::LO ivert1 = ivert + 1;

4 o::LO ivert2 = ivert - 1;475

5 efield[ivert] = (pot[ivert2] - pot[ivert1]) / 2;

6 };

7 o:: parallel_for(nverts , compute_efield , "compute_efield");

Listing 2: Demonstrative code showing how the electric field calculation is performed on the GPU.

In Listing 2, the electric field on a mesh vertex with index “ivert”, “efield[ivert]”, depends only

on the electrostatic potential values “pot” on two adjacent mesh vertices with index “ivert1” and480

“ivert2”. This is not representative of the actual numerical algorithms discussed in Section 4.5.1

and in Appendix A, and is shown here as a simple demonstration.

4.6. Field gather

In the particle push operation, we need the electric field vector E at the simulation particle

position. Electric field E is defined on each mesh vertex in each poloidal plane. Specific to ions, the485

electric field is gyroaveraged to account for its gyrokinetic nature. We denote its (i, q, j) component

as Ei,q,j. This is defined on a mesh vertex i in a poloidal plane with index j and toroidal angle

22

φj = j∆φ, and q is the index of a gyration orbit with radius Rq. Rq follows the same definition as

in Section 4.3.1. i is index as i = 1, 2, 3, ..., Nv, q is indexed as q = 0, 1, 2, ..., ngr, and j is indexed

as j = 0, 1, 2, 3, ..., (Nφ−1). The electric field vector E is stored as a four dimensional array, where490

the fourth dimension corresponds to its three vector components.

Supposing we have a simulation particle Pk located at position (rk, φk, zk) with gyroradius

ρk, it is bounded by two neighboring poloidal planes indexed as j1 and j2, with toroidal angle

φj1 = j1∆φ, φj2 = j2∆φ, and,

φj1 ≤ φk < φj2 , (26)

where j2 = j1 + 1. The gyroradius of particle i satisfies the following condition,

Rq1 ≤ ρi < Rq2 , (27)

where q1 is indexed as q1 = 0, 1, 2, ..., ngr and q2 = q1+1. Following Equations 15 and 16, we denote

the field-following projection of particle Pk onto poloidal planes j1 and j2 as points P
1
k and P 2

k . The

coordinates of points P 1
k and P 2

k are (r1k, φ
1
k, z

1
k) and (r2k, φ

2
k, z

2
k), respectively. Points P

1
k and P 2

k are

located in triangular elements t1k and t2k, where the indices of the three vertices of each triangular

element are (t1k,1, t
1
k,2, t

1
k,3) and (t2k,1, t

2
k,2, t

2
k,3), and their barycentric coordinates are (χ1

k,1, χ
1
k,2, χ

1
k,3)

and (χ2
k,1, χ

2
k,2, χ

2
k,3), respectively. The electric field at the location of the simulation particle Pk is

denoted as Ek, and is linearly interpolated from the electric field defined on the poloidal plane j1

and j2,

Ek = wφ,1(χ
1
k,1Et1k,1,q1,j1

+ χ1
k,2Et1k,2,q1,j1

+ χ1
k,3Et1k,3,q1,j1

+

χ1
k,1Et1k,1,q2,j1

+ χ1
k,2Et1k,2,q2,j1

+ χ1
k,3Et1k,3,q2,j1

)+

wφ,2(χ
2
k,1Et2k,1,q1,j2

+ χ2
k,2Et2k,2,q1,j2

+ χ2
k,3Et2k,3,q1,j2

+

χ2
k,1Et2k,1,q2,j2

+ χ2
k,2Et2k,2,q2,j2

+ χ2
k,3Et2k,3,q2,j2

).

(28)

In the above equation, the weights wφ,1 and wφ,2 are defined as,

wφ,1 =
φj2 − φk

∆φ
, (29)

and,

wφ,2 = 1− wφ,1. (30)

In case of electrons, we do not need to perform the gyroaverage operation for the electric field.

The second dimension in the electric field vector Ei,q,j is ignored. It is denoted as Ei,j, representing

its value on a mesh vertex i on a poloidal plane with index j. The electric field at the location

of the simulation particle Pk is denoted as Ek, and is linearly interpolated from the electric field

23

defined on the poloidal plane j1 and j2,

Ek = wφ,1(χ
1
k,1Et1k,1,j1

+ χ1
k,2Et1k,2,j1

+ χ1
k,3Et1k,3,j1

+

χ1
k,1Et1k,1,j1

+ χ1
k,2Et1k,2,j1

+ χ1
k,3Et1k,3,j1

)+

wφ,2(χ
2
k,1Et2k,1,j2

+ χ2
k,2Et2k,2,j2

+ χ2
k,3Et2k,3,j2

+

χ2
k,1Et2k,1,j2

+ χ2
k,2Et2k,2,j2

+ χ2
k,3Et2k,3,j2

).

(31)

4.7. Particle push

4.7.1. Numerical algorithm

In XGCm, the ion push operation is performed combining the two-step Runge-Kutta (RK2)

and the fourth-order Runge-Kutta (RK4) methods. In each time step, two ion charge scatter495

operations are performed, corresponding to the two steps of the RK2 method. At the end of each

ion charge scatter operation, the gyrokinetic Poisson equation is solved to obtain the updated

electrostatic potential. The electric field is then calculated and used to update the particle property

corresponding to each step of the RK2 method.

We denote the ion property as Y,

Y = (X, v∥) = (r, φ, z, v∥), (32)

and its time derivative as,
dY

dt
=
dY

dt
(t,Y) = (

dX

dt
,
dv∥
dt

). (33)

Its value at time step tn is denoted as Yn = Y(tn), where tn = n∆t, n is the time step index,

and ∆t is the simulation time step size. Its value at time step tn+1 = tn + ∆t is denoted as

Yn+1 = Y(tn+1), and is calculated using the following equation,

Yn+1 = Y
(2)
n+1. (34)

Y
(j)
n+1 corresponds to the updated particle property at step j of the RK2 method, where j is500

indexed as j = 1, 2.

The RK4 method is embedded in each step of the RK2 method. In step j of the RK2 method,

the ion property is calculated according to the following RK4 method,

Y
(j)
n+1 = Yn +

∆t(j)

6
(k

(j)
1 + 2k

(j)
2 + 2k

(j)
3 + k

(j)
4), (35)

where,

k
(j)
1 =

dY(j−1)

dt
(tn,Yn), (36)

24

k
(j)
2 =

dY(j−1)

dt
(tn +

∆t(j)

2
,Yn +∆t(j)

k
(j)
1

2
), (37)

k
(j)
3 =

dY(j−1)

dt
(tn +

∆t(j)

2
,Yn +∆t(j)

k
(j)
2

2
), (38)

k
(j)
4 =

dY(j−1)

dt
(tn +∆t(j),Yn +∆t(j)k3), (39)

and,

∆t(j) =
j

2
∆t. (40)

In Equations 36, 37, 38, 39, dY(1)

dt
(t,Y) corresponds to a time derivative calculated using

the electric field information after step one of the RK2 method, while dY(0)

dt
(t,Y) = dY

dt
(t,Y)

corresponds to a time derivative calculated using the electric field at the beginning of each time

step.505

Similarly, the electron push operation is performed combining the RK2 and RK4 methods.

Due to the smaller mass and faster movement of electrons compared to ions, electron subcycling

[17, 18, 19, 42] is used to ensure the accuracy of the electron push calculations. In each step of the

RK2 method, n electron subcycling steps are performed. Each electron subcycling step corresponds

to a full cycle of the RK4 method. The subcycling time step size, ∆t
(j)
sub, is determined according

to the ratio of the ion and electron mass. We have,

∆t
(j)
sub =

j

2n
∆t, (41)

where j is indexed as j = 1, 2 and corresponds to each step of the RK2 method. n is determined

according to the following equation,

n = ⌊
√
mi

me

⌋, (42)

where mi,me are the ion and electron mass, respectively, ⌊·⌋ is the floor function, and n is rounded

as an integer.

4.7.2. Implementation on the GPU

Listing 3 provides a simplified code for the implementation of the particle push operation,

describing how one step of the RK2 method is performed on the GPU. “ps” stands for the PUMIPic510

particle structure object [7], while “parallel for” is performed on the GPU and is the equivalent

of the “for” operation on the CPU. “ptcls” is the variable name of the particle structure object,

containing all particle information. “push lambda” is the name of a user defined C++ language

Lambda expression and executes one step of the particle push operation. “e” is the triangular

element index, “pid” is the particle index, and “mask” is an integer denoting whether the current515

25

memory location of “ptcls” object has an actual particle. “part one” stores the information of a

single particle, “magnetic field” object stores the equilibrium magnetic field, and “electric field”

stores the electric field needed for particle push. “particle push()” function updates the particle

property of a single particle with index “pid”. With “parallel for”, the push operations of different

particles can be performed on different GPU hardware threads simultaneously.520

1 // particle property for all particles

2 auto x_c = ptcls ->get <xgcm:: PTCL_COORDS >();

3 auto ph_c = ptcls ->get <xgcm::PTCL_PH >();

4 auto ct = ptcls ->get <xgcm::PTCL_CT >();

5 auto push_lambda = PS_LAMBDA(const int& e, const int& pid ,525

6 const int& mask) {

7 if (mask) {

8

9 // particle property for a particle with index "pid";

10 // particle with "pid" is located in triangular element "e".530

11 Vector9d part_one = {x_c(pid ,0), x_c(pid ,1), x_c(pid ,2),

12 ph_c(pid ,0), ph_c(pid ,1), ph_c(pid ,2),

13 ct(pid ,0), ct(pid ,1), ct(pid ,2)};

14 // particle push operation for a single particle with index "pid".

15 particle_push(magnetic_field , ..., electric_field , ..., part_one);535

16 }

17 };

18 ps:: parallel_for(ptcls , push_lambda , "ion_push_op");

Listing 3: Simplified code showing how the particle push operation is performed on the GPU.

A key operation performed as part of the particle push step is to determine the element in

which each particle is after the push, or if the particle has hit the boundary of the simulation540

domain. Since in a push step, particles only move a small distance with respect to the mesh size,

the fact that Omega maintains a complete mesh topology supports the effective implementation

of adjacency-based search [43] to determine the element in which the particles are contained after

a push operation. In addition, Omega maintains classification of the mesh entities with respect

to geometric model [44]. This classification information includes knowledge of which element545

bounding entities represent portions of plasma facing components and domain boundary, and

thus supports effective determination of when and where particles hit a plasma facing component

or domain boundary. As the simulation proceeds, particles will need to be migrated between

PICparts due either to the fact that they are too close to the PICpart boundary, or to regain load

balance.550

26

5. XGCm Code Validation and Test

To validate and test the XGCm code, a series of unit tests were created during the code

development process. These unit tests serve as the building blocks to ensure the correctness and

accuracy of different numerical algorithms and their implementations in XGCm.

5.1. Validation of the XGCm code555

To further validate the code, the circular geometry cyclone base case is performed to study

the ion temperature gradient (ITG) turbulence [13], which corresponds to case 5 of Burckel et al.

[12]. In this case, the cross-section of the Tokamak device is a circle, representing the closed-flux

surface region of a realistic device. With a circular cross-section, the complexity associated with

realistic geometrical boundary can be ignored.560

5.1.1. Initial and boundary conditions

In this case, a deuterium plasma is considered with an adiabatic electron assumption. Same

temperature profile is used for both ion and electron. The initial ion number density is perturbed,

corresponding to a single toroidal mode number of 24 with Guassian shape in both the radial and

polodial directions within each poloidal plane [13].565

The equilibrium ion number density profile is given in Figure 7a and the equilibrium ion

temperature profile is given in Figure 7b. They are defined according to the following function

[13],

f(ρvol(ψ)) = f0

[
cosh(ρvol−ρ0+δf

∆f
)

cosh(ρvol−ρ0−δf
∆f

)

]−κf ϵ∆f/2

, (43)

where function f denotes either number density n or temperature T . cosh(·) is the hyperbolic

cosine function. ρvol is the radial coordinate with ρvol(ψ) =
√
V (ψ)/VLCFS, where V (ψ) is the

volume enclosed by a given flux surface ψ and VLCFS is the volume of the last closed flux surface.

At a given flux surface ψ or radial coordinate ρvol(ψ), both number density and temperature are

constant. f0 is the reference value of either temperature or number density at radial coordinate570

ρvol(ψ) = ρ0 = 0.5. The minor and major radius of the system are a = 0.59 meter and R0 = 1.68

meter, respectively. The system aspect ratio is ϵ = a/R0 = 0.35. Magnetic field on the magnetic

axis is B0 = 2.09 T. κn and κT are the maximum value of logarithmic gradient of number density

and temperature, respectively, with κn = 2.22 and κT = 6.91. The characteristic profile widths,

δ and ∆, are chosen as 0.075 and 0.02, respectively. Further details of initial conditions can be575

found in the work of Merlo et al. [13].

27

0.0 0.2 0.4 0.6 0.8 1.0
vol

4.4

4.5

4.6

4.7

4.8

4.9

Nu
m

be
r d

en
sit

y
(1

/m
3)

1e19

(a) Number density

0.0 0.2 0.4 0.6 0.8 1.0
vol

2000

2200

2400

2600

Te
m

pe
ra

tu
re

 (e
V)

(b) Temperature

Figure 7: Background number density and temperature profiles. Here, ρvol is the radial coordinate and ρvol = 1

corresponds to the last closed flux surface.

5.1.2. Simulation setup

The simulation mesh is the same at different poloidal planes. Eight poloidal planes are used

along the toroidal direction. A coarse poloidal plane mesh is given in Figure 8 for visualization

purpose. A mesh convergence study is performed to ensure that the solution does not depend on580

the mesh size. For results reported here, a final fine mesh with 590,143 triangular elements and

296,046 mesh vertices in each poloidal plane is used. A total of 160 million ion particles are used

in the simulation. This ensures that a sufficient number of particles are used and the simulation

results are converged with respect to the number of simulation particles. A simulation time step

size of 3.91× 10−7 second is used and the simulation is run for a total of 200 time steps.585

Figure 8: Simulation mesh in each poloidal plane. Coarse mesh is shown here for visualization purpose.

28

5.1.3. Simulation results and validation

The contour plot of the turbulent electrostatic potential on a poloidal plane cross-section is

shown in Figure 9 for the final time step of 200. The mean-squared average of the turbulent

electrostatic potential, ϕ̄(t), is obtained as,

ϕ̄(t) =
1

NvNϕ

Nφ−1∑
j=0

√√√√ Nv∑
i=1

ϕ2(xi, ϕj, t), (44)

where ϕ(xi, ϕj, t) is the electrostatic potential on vertex xi at time t for a specific poloidal plane

indexed as j with toroidal angle ϕj, Nv is the number of mesh vertices in each poloidal plane, and

Nϕ = 8 is the number of poloidal planes used in the simulation.

Figure 9: The contour plot of the turbulent electrostatic potential on one poloidal plane cross-section at time step

200.

The turbulence growth rate, γ(t), is calculated as

γ(t) =
d

dt
ln(ϕ̄(t)), (45)

where ln(·) is the natural logarithm function. The turbulence growth rate from XGCm simulation590

is compared with that of XGC in Figure 10. Overall, excellent agreement is observed and the

average relative difference of turbulence growth rate is less than 0.7% in the linear growth stage.

5.2. ITG Simulation with DIII-D Geometry

As a further test of the XGCm code, realistic DIII-D geometry is used to perform the ITG

turbulence simulation. A deuterium plasma is considered with an adiabatic electron assumption.595

Same temperature profile is used for both ion and electron. The equilibrium ion number density

profile is given in Figure 11a and the equilibrium ion temperature profile is given in Figure

29

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Time (ms)

0

10

20

30

40

50

60

 (k
Hz

)

Turbulence growth rate

XGCm
XGC1

Figure 10: Comparison of the growth rate of the turbulent electrostatic potential between XGCm and XGC over

time.

11b. In Figure 11a and 11b, ψn = ψ
ψLCFS

is the normalized flux surface, where ψ corresponds to

a flux surface and ψLCFS corresponds to the last closed flux surface. Both number density and

temperature are constant at a given flux surface ψ or ψn.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
n

1

2

3

4

5

6

Nu
m

be
r d

en
sit

y
(1

/m
3)

1e19

(a) Number density

0.0 0.2 0.4 0.6 0.8 1.0 1.2
n

0

1000

2000

3000

4000

Te
m

pe
ra

tu
re

 (e
V)

(b) Temperature

Figure 11: Background number density and temperature profile. Here, ψn is the normalized poloidal magnetic flux.

ψn = 1 corresponds to the last closed flux curve.

600

In this case, 32 poloidal planes are used along the toroidal direction. The cross-section is the

same as the DIII-D Tokamak as shown in Figure 2. In the simulation, a poloidal plane mesh with

102,359 triangular elements and 51,373 mesh vertices is used. A total of 1.6 billion ion particles

are used in the simulation. This ensures that a sufficient number of particles are used and the

simulation results are converged with respect to the number of simulation particles. A simulation605

time step size of 1.5×10−7 second is used, and the simulation is run for a total of 4400 time steps.

Three contour plots of the turbulent electrostatic potential on one poloidal plane cross-section

are shown in Figure 12 for time step 100, 1000, and 4400, respectively. From the contour plots,

30

it can be ssen that turbulence driven by the temperature gradient grows as time proceeds. The

turbulent electrostatic potential first develops close to region with ψn = 0.9, where the background610

temperature has the largest gradient. The turbulence is then transported towards the core region

with smaller ψn. This agrees with the physical picture of the ITG turbulence transport in the

Tokamak [45].

(a) t=100 (b) t=1000 (c) t=4400

Figure 12: The contour plots of the turbulent electrostatic potential on one poloidal plane cross-section at different

time steps.

6. Performance and Scaling

Using the Kokkos programming model, XGCm works fully on current GPU architectures. This615

includes the Summit supercomputer at the Oak Ridge National Laboratory [46], the Artificial In-

telligence Multiprocessing Optimized System (AiMOS) supercomputer at Rensselaer Polytechnic

Institute, and the Perlmutter supercomputer at the National Energy Research Scientific Comput-

ing Center (NERSC).

XGCm weak scaling study is performed on Summit supercomputer using the same cyclone ITG620

case as discussed in Section 5.1. In the weak scaling study, a poloidal plane mesh with 590,143

triangular elements and 296,046 mesh vertices is used. 25 million ion particles per GPU are used

with an adiabatic electron assumption. The Sell-C-Sigma particle structure is used in PUMIPic

to store the simulation particles. 64 poloidal planes are used along the toroidal direction. In each

poloidal plane, 24 mesh partitions are used. The number of MPI ranks in each group partition is625

31

increased from 1 to 18 in different simulation cases. This results in larger amount of ion particles

being simulated when more MPI ranks are used in a group partition. Each simulation is run for

5 time steps.

A group partition with 1 MPI rank is used in the simulation case with smallest number of

computing nodes, while a group partition with 18 MPI ranks is used in the simulation case with630

largest number of computing nodes. Overall, 256 to 4,608 Summit computing nodes are used in the

weak scaling study, equivalent to 1,536 to 27,648 GPUs, where 4,608 computing nodes correspond

to full Summit system.

The weak scaling result is shown in Figure 13 where the time cost of major components of

the gyrokinetic PIC method are shown. The result presented here is the averaged value, where635

the time cost of each component is first summed over all the MPI ranks and then averaged by

the number of MPI ranks used in a simulation. The time value is then normalized by that of the

simulation case with smallest number of computing nodes. Overall, each component in XGCm

scales well with the increase in the number of computing nodes or number of MPI ranks. This

shows that XGCm demonstrates good weak scaling.

Figure 13: XGCm weak scaling result on Summit supercomputer using the cyclone ITG case.

640

We performed another study varying the number of particles used in each GPU without reach-

ing the memory limit. In this study, the same cyclone ITG case is used, with 590,143 triangular

elements per poloidal plane. Eight poloidal planes and a total of eight GPU devices are used in

different simulation cases, corresponding to one GPU per poloidal plane. The motivation behind

this study is to find the optimal workload for each GPU or the optimal number of particles per645

GPU. The result is shown in Figure 14, where the time cost per particle is plotted for different

32

particle operations in XGCm. To ensure optimal GPU usage, the time cost per particle needs to

be small. According to Figure 14, it is clear that a large number of particles are needed for each

GPU in the current simulation case. This number also needs to be balanced by the GPU memory

limit. On Summit, the optimal number of particles per GPU is in the range of 20 to 30 million for650

the current simulation case. Similar values are obtained for other simulation cases not discussed

here.

0 5 10 15 20 25 30
Number of particles per GPU (million)

101

102

Ti
m

e
co

st
 p

er
 p

ar
tic

le
 (n

s)
Particle migration
Particle search
Particle structure rebuild
Ion push physics
Ion charge scatter

590,143 mesh elements, 8 poloidal planes, 8 GPUs

Figure 14: XGCm time cost results on Summit supercomputer using the Cyclong ITG test case. In this study,

the number of particles used in each GPU is changed, while the total number of GPUs used is kept constant in

different simulation cases.

At this point, the XGCm code development has focused on implementation of the capabilities

needed for plasma simulations using delta-f gyrokinetic PIC method. Code profiling and perfor-

mance improvements are not yet completed. Given that, an initial comparison indicates that the655

XGCm code exhibits good performance comparable with that of the XGC code. Using the same

DIII-D simulation case as discussed in Section 5.2, we compared the simulation time cost of the

two codes. We performed two comparisons on NERSC’s Perlmutter supercomputer. In one case,

we only used ions with an adiabatic electron assumption, while in another case, we used both ion

and electron species. In both cases, 16 poloidal planes are used. In each poloidal plane, there are660

102,359 triangular elements and 51,373 mesh vertices. 16 MPI ranks are used, corresponding to

one MPI rank per poloidal plane or one GPU per poloidal plane. 64 million ions per GPU are used

in the first case, while 40 million ions and 40 million electrons per GPU are used in the second

case. In both cases, the Cabana particle structure [34] is used in PUMIPic [7]. The simulations

are run for 20 time steps and the time cost is calculated by averaging the result over the number665

of time steps. The results are shown in Table 1. In both cases, the time cost of the XGCm code

is smaller compared to that of the XGC code.

33

Table 1: Time cost comparison between the XGC and XGCm code (unit in seconds).

XGC code XGCm code

Adiabatic electron case 9.75 3.08

Kinetic electron case 30.35 24.01

7. Conclusions and Future Work

In this paper, we present XGCm, a validated gyrokinetic Particle-in-Cell (PIC) code that

works fully on GPU accelerators. XGCm uses the open-source Omega mesh library and PUMIPic670

particle library for mesh and particle management, respectively. It achieves good scalability on

Nvidia GPU devices and has good code portability using the Kokkos programming model. The

gyrokinetic Poisson equation was discretized using the finite element method, and the solution of

the resulting linear equation was obtained through the open source PETSc library. We validated

the code using the circular geometry cyclone base case, comparing the turbulence growth rate of675

the electrostatic potential with results from the XGC code, which showed excellent agreement. We

also demonstrated good weak scaling of the XGCm code using up to full system (27,648 GPUs)

on Oak Ridge National Laboratory’s Summit supercomputer.

Future work will focus on detailed performance analysis of the XGCm code and potential

improvement under the current mesh and particle management framework. This paper is only the680

first step in a mesh-centric approach to the PIC method. As another important aspect, the data

access to and the numerical computations on the mesh field should be consistent with those of the

particle operations. Mesh-based operations should allow for better memory coalescence, suitable

for GPU accelerators. In addition to having particle-to-mesh operation centered on each mesh

element, mesh-to-particle and mesh-to-mesh operations should only rely on the local mesh field685

information. Future work will explore methods to achieve this objective, further improving the

performance of current mesh-centric PIC method.

Acknowledgment

This research was supported by the U.S. Department of Energy, Office of Science, under awards

DE-SC0021285 (FASTMath SciDAC Institute) and DE-SC0018275 (Unstructured Mesh Technolo-690

gies for Fusion Simulation Codes). Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the author(s) and do not necessarily reflect the views of

the U.S. Department of Energy. The authors would like to thank Dr. Eisung Yoon from Ulsan

National Institute of Science and Technology for his work developing an earlier version of XGCm

34

code working on the CPU. The authors would also like to thank researchers from the XGC team,695

including Drs. Choong-Seok Chang, Seung-Hoe Ku, Robert Hager, and Julien Dominski at the

Princeton Plasma Physics Laboratory, and Dr. Aaron Scheinberg at Jubilee Development. Ad-

ditionally, the authors would like to thank Usman Riaz at Rensselaer Polytechnic Institute for

help with simulation mesh generations. The authors would like to acknowledge the work of Un-

dergraduate Research Program students at Rensselaer Polytechnic Institute, including Matthew700

Christoff, Lucas Davis, Steven Spreizer, and Qing Zhu, in the development of PUMIPic library

and the integration of Omega library with PETSc library,

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak

Ridge National Laboratory and National Energy Research Scientific Computing Center, both of

which are supported by the Office of Science of the U.S. Department of Energy. This research also705

used resources of the Center for Computational Innovations at Rensselaer Polytechnic Institute,

particularly the Artificial Intelligence Multiprocessing Optimized System (AiMOS).

Appendix A. Gradient Calculation on Unstructured Mesh

Here, we describe the curvilinear gradient method [41] used in XGCm to calculate the gradient

of the electrostatic potential on an unstructured mesh. The electrostatic potential at a position710

(r, z) on a poloidal mesh is ϕ(r, z) in the (r̂, ẑ) coordinate system, where r̂ and ẑ are the two basis

vectors as in the cylindrical coordinate system. Poloidal components of the electric field vector E⊥

are calculated as E⊥ = −∇⊥ϕ(r, z). E⊥ = (Er, Ez), where Er and Ez are the r̂ and ẑ component

of the electric field, respectively.

Denote ϕi as the electrostatic potential on mesh vertex i with coordinate (ri, zi), and denote715

Er,i and Ez,i as the r̂ and ẑ components of the electric field on mesh vertex i. i is indexed as

i = 1, 2, 3, ..., Nv, where Nv is the number of mesh vertices in the poloidal mesh.

Appendix A.1. Gradient calculation on a triangular element

We first calculate the gradient of the electrostatic potential on any triangular element in the

poloidal mesh. For a triangular element t in the poloidal mesh, assuming its three vertices are t1,

t2, t3 in counter clockwise direction. t is indexed as t = 1, 2, 3, ...,M , where M is the number of

triangular elements in the poloidal plane mesh. In the (r̂, ẑ) coordinate system, the coordinates of

the three vertices are (r1, z1), (r2, z2), (r3, z3). From the three vertices, we can form 2 vectors
−→
l1 ,

−→
l2 with,

−→
l1 = (r2 − r1, z2 − z1), (A.1)

−→
l2 = (r3 − r1, z3 − z1). (A.2)

35

We can form a curvilinear coordinate system using two basis vectors ξ̂, η̂ with origin located

on vertex t1. We have the freedom to choose the two basis vectors. Here we choose the two vectors
−→
l1 ,

−→
l2 as the basis vectors. In the curvilinear coordinate system (ξ̂, η̂), the coordinates of vertices

t1, t2, and t3 are (0, 0), (ξa, ηa), and (ξb, ηb), respectively. We have,

ξa = 1, (A.3)

ηa = 0, (A.4)

ξb = 0, (A.5)

ηb = 1. (A.6)

In the (r̂, ẑ) coordinate system, the gradient of the electrostatic potential, ∇⊥ϕ, can be written

as,

∇⊥ϕ = r̂
∂ϕ

∂r
+ ẑ

∂ϕ

∂z
. (A.7)

Similarly, in the curvilinear coordinate system (ξ̂, η̂), it can be written as

∇⊥ϕ = ξ̂
∂ϕ

∂ξ
+ η̂

∂ϕ

∂η
. (A.8)

In calculating the gradient of the electrostatic potential numerically, we assume that it is

piecewise constant on each triangular element. We denote the electrostatic potential values on

three vertices of the triangular elment t as ϕ1, ϕ2, and ϕ3, respectively. When the curvilinear

coordinate system (ξ̂, η̂) is transferred to a Cartesian coordinate system with orthogonal bases, we

can easily calculate the gradient components on the triangular element t according to Equation

A.8,
∂ϕ

∂ξ
=
ϕ2 − ϕ1

ξa
= ϕ2 − ϕ1, (A.9)

∂ϕ

∂η
=
ϕ3 − ϕ1

ηb
= ϕ3 − ϕ1. (A.10)

Using the chain rule, we can also obtain the r̂ and ẑ components of ∇⊥ϕ in the (r̂, ẑ) coordinate

system,
∂ϕ

∂r
=
∂ϕ

∂ξ

∂ξ

∂r
+
∂ϕ

∂η

∂η

∂r
, (A.11)

∂ϕ

∂z
=
∂ϕ

∂ξ

∂ξ

∂z
+
∂ϕ

∂η

∂η

∂z
. (A.12)

In matrix format, Equations A.11 and A.12 can be written as:
∂ϕ
∂r

∂ϕ
∂z

 =


∂ξ
∂r

∂η
∂r

∂ξ
∂z

∂η
∂z



∂ϕ
∂ξ

∂ϕ
∂η

 = (J−1)T


∂ϕ
∂ξ

∂ϕ
∂η

 . (A.13)

36

In Equation A.13, J is the Jacobian transformation matrix from (r̂, ẑ) coordinate system to (ξ̂, η̂)

coordinate system,

J =


∂r
∂ξ

∂r
∂η

∂z
∂ξ

∂z
∂η

 . (A.14)

Using geometric relations between the two coordinate systems on triangular element t, we can

determine all elements of the Jacobian transformation matrix,

∂r

∂ξ
=
r2 − r1
ξa

= r2 − r1, (A.15)

∂r

∂η
=
r3 − r1
ηb

= r3 − r1, (A.16)

∂z

∂ξ
=
z2 − z1
ξa

= z2 − z1, (A.17)

∂z

∂η
=
z3 − z1
ηb

= z3 − z1. (A.18)

Substituting Equations A.14, A.15, A.16, A.17, and A.18 into Equation A.13, the electrostatic

potential gradient ∇⊥ϕ on triangular element t is calculated in the (r̂, ẑ) coordinate system,


∂ϕ
∂r

∂ϕ
∂z

 =
1

det(J)


(z2 − z3) (z3 − z1) (z1 − z2)

(r3 − r2) (r1 − r3) (r2 − r1)




ϕ1

ϕ2

ϕ3


. (A.19)

Here det(J) is the determinant of the Jacobian transformation matrix J.

Appendix A.2. Area-weighted gradient calculation on a mesh vertex720

To obtain the gradient of electrostatic potential on each mesh vertex in the poloidal mesh, we

use area-weighted average of the triangular element gradient. All triangular elements surrounding

a mesh vertex are included in the average process. We denote the gradient of the electrostatic

potential on a mesh vertex i as ∇⊥ϕ|i = (∂ϕ
∂r
|i, ∂ϕ∂z |i), and similarly denote the gradient of the

electrostatic potential on a triangular element t as ∇⊥ϕ|t = (∂ϕ
∂r
|t, ∂ϕ

∂z
|t). ∇⊥ϕ|t is calculated in725

Appendix A.1.

We denote the number of triangular elements surrounding vertex i as ni. For a triangular

element t, its area is at, where t is indexed as k = 1, 2, 3, ..., ni. The r̂ and ẑ components of ∇⊥ϕ|i
are calculated using the area weighted average,

∂ϕ

∂r
|i =

ni∑
t=1

wi,t
∂ϕ

∂r
|t, (A.20)

37

∂ϕ

∂z
|i =

ni∑
t=1

wi,t
∂ϕ

∂z
|t. (A.21)

In the above equations, wi,t is the area weight and wi,t = at/
∑ni

t=1 at.

Appendix A.3. Gradient calculation suitable for numerical simulation

In this section, we rewrite the gradient calculation discussed in Appendix A.1 and Appendix

A.2 using matrix-vector operations, so that it is suitable for numerical simulation. Written as730

matrix-vector products, the gradient calculation can be performed for each mesh vertex by looping

through all mesh vertices on the CPU. Alternatively, it can be performed on multiple hardware

threads of the GPU simultaneously. Here, we discuss the numerical algorithms suitable for the

GPU.

We introduce the electrostatic potential vector Φ, which stores the values of electrostatic po-

tential on all mesh vertices,

Φ =



ϕ1

ϕ2

...

ϕj

...

ϕNv


. (A.22)

The length of vector Φ is Nv, which is the number of mesh vertices in each poloidal plane mesh.

We also define a row vector Rt
i corresponding to a pair of vertex and triangular element, with

index i and t, respectively,

Rt
i =

[
gi,1 gi,2 gi,3 ... gi,Nv

]
. (A.23)

In vector Rt
i, i is vertex index and is indexed as i = 1, 2, 3, ..., Nv, while t is triangular element735

index and is indexed as t = 1, 2, 3,M .

The r̂ component gradient term defined on a triangular element t is ∂ϕ
∂r
|t. It can be written as

a product of Rt
i and Φ according to Equation A.19,

∂ϕ

∂r
|t = Rt

iΦ. (A.24)

In reference to Equation A.19, only 3 elements of vector Rt
i are non-zero. The 3 non-zero elements

of vector Rt
i correspond to the three vertices t1, t2, and t3 of the triangular element t. They are

gi,t1 , gi,t2 , and gi,t3 , with,

gi,t1 =
1

det(Jt)
(z2 − z3), (A.25)

38

gi,t2 =
1

det(Jt)
(z3 − z1), (A.26)

gi,t3 =
1

det(Jt)
(z1 − z2). (A.27)

All other elements of Rt
i are 0. Here det(Jt) is the determinant of the Jacobian transformation

matrix Jt corresponding to triangular element t.

The r̂ component gradient term defined on a mesh vertex i is ∂ϕ
∂r
|i. It can be similarly written

as product of Rt
i and Φ, by substituting Equation A.24 into Equation A.20,

∂ϕ

∂r
|i =

ni∑
t=1

wi,tR
t
iΦ = RiΦ. (A.28)

Here, the row vector Ri is defined as,

Ri =

ni∑
t=1

wi,tR
t
i. (A.29)

As defined above, Ri is calculated as the area weighted average of row vectors Rt
i. The non-zero

elements of row vector Ri correspond to all the mesh vertices of triangular elements surrounding740

mesh vertex i. We denote the maximum number of non-zero elements as qi. qi is the number of

unique mesh vertices sharing a triangular element with vertex i. In general, qi is less than 3ni,

and is much smaller than the total number of mesh vertices Nv. Each non-zero element of Ri is

determined through a combination of Equations A.25, A.26, A.27, and A.29. Ri is determined by

the geometric relations between mesh vertices and triangular elements in the poloidal mesh.745

Similar to Φ, we introduce the r̂ component electric field vector Er, which stores the values of

electric field on all discrete mesh vertices,

Er =



Er,1

Er,2

...

Er,j

...

Er,Nv


, (A.30)

39

We further define the r̂ component gradient operator matrix R,

R =



R1

R2

...

Ri

...

RNv


. (A.31)

In the above equation, each row of matrix R is the row vector Ri. The size of matrix R is

Nv ×Nv. Matrix R is a sparse matrix with a maximum of qi non-zero elements in row i. Similar

to row vectors Ri, matrix R is determined by the geometric relations between mesh vertices and

triangular elements in the poloidal plane mesh. It can be precomputed once at the beginning of

the simulation, stored, and used later when needed.750

In reference to Equations A.28, A.30, and A.31, we can compute the r̂ component electric field

on all discrete mesh vertices, by applying the gradient operator matrix R to electrostatic potential

vector Φ,

Er = −RΦ. (A.32)

We can similarly define the ẑ component gradient operator matrix Z,

Z =



Z1

Z2

...

Zi

...

ZNv


. (A.33)

Here row vector Zi is defined as,

Zi =

ni∑
t=1

wi,tZ
t
i , (A.34)

and row vector Zt
i is defined as,

Zt
i =

[
hi,1 hi,2 hi,3 ... hi,Nv

]
. (A.35)

The three non-zero elements in row vector Zt
i are defined as,

hi,t1 =
1

det(Jt)
(r3 − r2), (A.36)

40

hi,t2 =
1

det(Jt)
(r1 − r3), (A.37)

hi,t3 =
1

det(Jt)
(r2 − r1). (A.38)

Similarly introducing the ẑ component electric field vector Ez,

Ez =



Ez,1

Ez,2

...

Ez,j

...

Ez,Nv


. (A.39)

we can compute Ez by applying the gradient operator matrix Z to electrostatic potential vector

Φ,

Ez = −ZΦ. (A.40)

In calculating the r̂ and ẑ components of the electric field Er and Ez numerically, we can take

advantage of the factor that gradient operator matrices R and Z are sparse matrices. By doing

so, we can significantly reduce the numerical operations needed from O(Nv ×Nv) to O(
∑Nv

i=1 qi).

References

[1] Committee on the Key Goals and Innovation Needed for a U.S. Fusion Pilot Plant, Bringing755

fusion to the U.S. grid (2021), Tech. rep., The National Academies of Sciences, Engineering

and Medicine (2021). doi:https://doi.org/10.17226/25991.

[2] E. DÁzevedo, S. Abbott, T. Koskela, P. Worley, S. Ku, S. Ethier, E. Yoon, M. Shephard,

R. Hager, J. Lang, J. Choi, N. Podhorszki, S. Klasky, M. Parashar, C. S. Chang, The fu-

sion code XGC: Enabling kinetic study of multi-scale edge turbulent transport in ITER, in:760

T. Straatsma, K. Antypas, T. Williams (Eds.), Exascale Scientific Applications: Scalability

and Performance Portability, CRC Press, Taylor & Francis Group, 2017, pp. 529–551.

[3] R. Khaziev, D. Curreli, hPIC: A scalable electrostatic Particle-in-Cell for Plasma-Material

Interactions, Computer Physics Communications (2018).

[4] K. Madduri, K. Z. Ibrahim, S. Williams, E. Im, S. Ethier, J. Shalf, L. Oliker, Gyrokinetic765

toroidal simulations on leading multi- and manycore HPC systems, in: SC’11: Proceedings

of 2011 International Conference for High Performance Computing, Networking, Storage and

Analysis, 2011, pp. 1–12. doi:10.1145/2063384.2063415.

41

https://doi.org/https://doi.org/10.17226/25991
https://doi.org/10.1145/2063384.2063415

[5] B. Wang, S. Ethier, W. Tang, K. Z. Ibrahim, K. Madduri, S. Williams, L. Oliker, Mod-

ern gyrokinetic particle-in-cell simulation of fusion plasmas on top supercomputers, The In-770

ternational Journal of High Performance Computing Applications 33 (1) (2019) 169–188.

doi:10.1177/1094342017712059.

URL https://doi.org/10.1177/1094342017712059

[6] W. Tang, Z. Lin, Global Gyrokinetic Particle-in-Cell Simulation, in: T. Straatsma, K. Anty-

pas, T. Williams (Eds.), Exascale Scientific Applications: Scalability and Performance Porta-775

bility, CRC Press, Taylor & Francis Group, 2017, pp. 507–528.

[7] G. Diamond, C. W. Smith, C. Zhang, E. Yoon, M. S. Shephard, PUMIPic: A mesh-based

approach to unstructured mesh Particle-In-Cell on GPUs, Journal of Parallel and Distributed

Computing 157 (2021) 1–12. doi:https://doi.org/10.1016/j.jpdc.2021.06.004.

URL https://www.sciencedirect.com/science/article/pii/S0743731521001337780

[8] S. Ku, C. S. Chang, M. Adams, J. Cummings, F. Hinton, D. Keyes, S. Klasky, W. Lee,

Z. Lin, S. Parker, et al., Gyrokinetic particle simulation of neoclassical transport in the

pedestal/scrape-off region of a tokamak plasma, in: Journal of Physics: Conference Series,

Vol. 46, IOP Publishing, 2006, p. 87.

[9] D. A. Ibanez, Conformal mesh adaptation on heterogeneous supercomputers, Ph.D. thesis,785

Rensselaer Polytechnic Inst., Troy, NY (2016).

[10] D. Ibanez, Omega h GitHub repository (2016).

URL https://github.com/SNLComputation/omega_h

[11] H. Carter Edwards, C. R. Trott, D. Sunderland, Kokkos: Enabling manycore performance

portability through polymorphic memory access patterns, Journal of Parallel and Distributed790

Computing 74 (12) (2014) 3202–3216. doi:https://doi.org/10.1016/j.jpdc.2014.07.

003.

URL https://www.sciencedirect.com/science/article/pii/S0743731514001257

[12] A. Burckel, O. Sauter, C. Angioni, J. Candy, E. Fable, X. Lapillonne, On the effects of

the equilibrium model in gyrokinetic simulations: from s-α to diverted MHD equilibrium,795

Journal of Physics: Conference Series 260 (1) (2010) 012006. doi:10.1088/1742-6596/260/

1/012006.

URL https://dx.doi.org/10.1088/1742-6596/260/1/012006

42

https://doi.org/10.1177/1094342017712059
https://doi.org/10.1177/1094342017712059
https://doi.org/10.1177/1094342017712059
https://doi.org/10.1177/1094342017712059
https://doi.org/10.1177/1094342017712059
https://www.sciencedirect.com/science/article/pii/S0743731521001337
https://www.sciencedirect.com/science/article/pii/S0743731521001337
https://www.sciencedirect.com/science/article/pii/S0743731521001337
https://doi.org/https://doi.org/10.1016/j.jpdc.2021.06.004
https://www.sciencedirect.com/science/article/pii/S0743731521001337
https://github.com/SNLComputation/omega_h
https://github.com/SNLComputation/omega_h
https://www.sciencedirect.com/science/article/pii/S0743731514001257
https://www.sciencedirect.com/science/article/pii/S0743731514001257
https://www.sciencedirect.com/science/article/pii/S0743731514001257
https://doi.org/https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/https://doi.org/10.1016/j.jpdc.2014.07.003
https://www.sciencedirect.com/science/article/pii/S0743731514001257
https://dx.doi.org/10.1088/1742-6596/260/1/012006
https://dx.doi.org/10.1088/1742-6596/260/1/012006
https://dx.doi.org/10.1088/1742-6596/260/1/012006
https://doi.org/10.1088/1742-6596/260/1/012006
https://doi.org/10.1088/1742-6596/260/1/012006
https://doi.org/10.1088/1742-6596/260/1/012006
https://dx.doi.org/10.1088/1742-6596/260/1/012006

[13] G. Merlo, J. Dominski, A. Bhattacharjee, C. S. Chang, F. Jenko, S. Ku, E. Lanti, S. Parker,

Cross-verification of the global gyrokinetic codes GENE and XGC, Physics of Plasmas 25 (6)800

(2018) 062308. doi:10.1063/1.5036563.

URL https://doi.org/10.1063/1.5036563

[14] W. W. Lee, Gyrokinetic approach in particle simulation, Physics of Fluids 26 (1983) 556–562.

doi:10.1063/1.864140.

[15] W. W. Lee, Gyrokinetic particle simulation model, Journal of Computational Physics 72805

(1987) 243–269. doi:10.1016/0021-9991(87)90080-5.

[16] I. Manuilskiy, W. W. Lee, The split-weight particle simulation scheme for plasmas, Physics

of Plasmas 7 (2000). doi:doi:10.1063/1.873955.

[17] S. Ku, C. S. Chang, P. H. Diamond, Full-f gyrokinetic particle simulation of centrally heated

global ITG turbulence from magnetic axis to edge pedestal top in a realistic tokamak geom-810

etry, Nuclear Fusion 49 (11) (2009) 115021. doi:10.1088/0029-5515/49/11/115021.

URL https://doi.org/10.1088/0029-5515/49/11/115021

[18] C. S. Chang, S. Ku, P. H. Diamond, Z. Lin, S. Parker, T. S. Hahm, N. Samatova, Compressed

ion temperature gradient turbulence in diverted tokamak edge, Physics of Plasmas 16 (5)

(2009) 056108. doi:10.1063/1.3099329.815

URL https://doi.org/10.1063/1.3099329

[19] S. Ku, C. S. Chang, R. Hager, R. M. Churchill, G. R. Tynan, I. Cziegler, M. Greenwald,

J. Hughes, S. E. Parker, M. F. Adams, E. D’Azevedo, P. Worley, A fast low-to-high confine-

ment mode bifurcation dynamics in the boundary-plasma gyrokinetic code XGC1, Physics of

Plasmas 25 (5) (2018) 056107. doi:10.1063/1.5020792.820

URL https://doi.org/10.1063/1.5020792

[20] Y. Idomura, S. Tokuda, Y. Kishimoto, Gyrokinetic Simulations of Tokamak Micro-Turbulence

Including Kinetic Electron Effects, Journal of Plasma Fusion Research SERIES 6 (2004) 17–

22.

[21] Y. Nishimura, Z. Lin, J. Lewandowski, S. Ethier, A finite element Poisson solver for gyroki-825

netic particle simulations in a global field aligned mesh, Journal of Computational Physics

214 (2) (2006) 657–671. doi:https://doi.org/10.1016/j.jcp.2005.10.011.

URL https://www.sciencedirect.com/science/article/pii/S0021999105004675

43

https://doi.org/10.1063/1.5036563
https://doi.org/10.1063/1.5036563
https://doi.org/10.1063/1.5036563
https://doi.org/10.1063/1.864140
https://doi.org/10.1016/0021-9991(87)90080-5
https://doi.org/doi: 10.1063/1.873955
https://doi.org/10.1088/0029-5515/49/11/115021
https://doi.org/10.1088/0029-5515/49/11/115021
https://doi.org/10.1088/0029-5515/49/11/115021
https://doi.org/10.1088/0029-5515/49/11/115021
https://doi.org/10.1088/0029-5515/49/11/115021
https://doi.org/10.1088/0029-5515/49/11/115021
https://doi.org/10.1088/0029-5515/49/11/115021
https://doi.org/10.1063/1.3099329
https://doi.org/10.1063/1.3099329
https://doi.org/10.1063/1.3099329
https://doi.org/10.1063/1.3099329
https://doi.org/10.1063/1.3099329
https://doi.org/10.1063/1.5020792
https://doi.org/10.1063/1.5020792
https://doi.org/10.1063/1.5020792
https://doi.org/10.1063/1.5020792
https://doi.org/10.1063/1.5020792
https://www.sciencedirect.com/science/article/pii/S0021999105004675
https://www.sciencedirect.com/science/article/pii/S0021999105004675
https://www.sciencedirect.com/science/article/pii/S0021999105004675
https://doi.org/https://doi.org/10.1016/j.jcp.2005.10.011
https://www.sciencedirect.com/science/article/pii/S0021999105004675

[22] S. E. Parker, W. W. Lee, A fully nonlinear characteristic method for gyrokinetic simulation,

Physics of Fluids B: Plasma Physics 5 (1) (1993) 77–86. doi:10.1063/1.860870.830

URL https://doi.org/10.1063/1.860870

[23] G. Colonna, Boltzmann and Vlasov equations in plasma physics, in: Plasma Mod-

eling: Methods and Applications, IOP Publishing, 2016, pp. 1–23. doi:10.1088/

978-0-7503-1200-4ch1.

URL https://dx.doi.org/10.1088/978-0-7503-1200-4ch1835

[24] A. J. Brizard, T. S. Hahm, Foundations of nonlinear gyrokinetic theory, Rev. Mod. Phys. 79

(2007) 421–468. doi:10.1103/RevModPhys.79.421.

URL https://link.aps.org/doi/10.1103/RevModPhys.79.421

[25] R. Kleiber, R. Hatzky, A. Könies, A. Mishchenko, E. Sonnendrücker, An explicit large

time step particle-in-cell scheme for nonlinear gyrokinetic simulations in the electromagnetic840

regime, Physics of Plasmas 23 (3) (2016) 032501. doi:10.1063/1.4942788.

URL https://doi.org/10.1063/1.4942788

[26] R. Hager, S. Ku, A. Y. Sharma, C. S. Chang, R. M. Churchill, A. Scheinberg, Electromagnetic

total-f algorithm for gyrokinetic particle-in-cell simulations of boundary plasma in XGC,

Physics of Plasmas 29 (11) (2022) 112308. doi:10.1063/5.0097855.845

URL https://doi.org/10.1063/5.0097855

[27] T. S. Hahm, Nonlinear gyrokinetic equations for tokamak microturbulence, The Physics of

Fluids 31 (9) (1988) 2670–2673. doi:10.1063/1.866544.

URL https://aip.scitation.org/doi/abs/10.1063/1.866544

[28] M. F. Adams, S. Ku, P. Worley, E. D’Azevedo, J. C. Cummings, C. S. Chang, Scaling to 150K850

cores: Recent algorithm and performance engineering developments enabling XGC1 to run

at scale, Journal of Physics: Conference Series 180 (2009) 012036. doi:10.1088/1742-6596/

180/1/012036.

[29] J. Dominski, S. Ku, C. S. Chang, Gyroaveraging operations using adaptive matrix operators,

Physics of Plasmas 25 (5) (2018) 052304. doi:10.1063/1.5026767.855

URL https://doi.org/10.1063/1.5026767

[30] Z. X. Lu, P. Lauber, T. Hayward-Schneider, A. Bottino, M. Hoelzl, Development and testing

of an unstructured mesh method for whole plasma gyrokinetic simulations in realistic tokamak

44

https://doi.org/10.1063/1.860870
https://doi.org/10.1063/1.860870
https://doi.org/10.1063/1.860870
https://dx.doi.org/10.1088/978-0-7503-1200-4ch1
https://doi.org/10.1088/978-0-7503-1200-4ch1
https://doi.org/10.1088/978-0-7503-1200-4ch1
https://doi.org/10.1088/978-0-7503-1200-4ch1
https://dx.doi.org/10.1088/978-0-7503-1200-4ch1
https://link.aps.org/doi/10.1103/RevModPhys.79.421
https://doi.org/10.1103/RevModPhys.79.421
https://link.aps.org/doi/10.1103/RevModPhys.79.421
https://doi.org/10.1063/1.4942788
https://doi.org/10.1063/1.4942788
https://doi.org/10.1063/1.4942788
https://doi.org/10.1063/1.4942788
https://doi.org/10.1063/1.4942788
https://doi.org/10.1063/1.4942788
https://doi.org/10.1063/1.4942788
https://doi.org/10.1063/5.0097855
https://doi.org/10.1063/5.0097855
https://doi.org/10.1063/5.0097855
https://doi.org/10.1063/5.0097855
https://doi.org/10.1063/5.0097855
https://aip.scitation.org/doi/abs/10.1063/1.866544
https://doi.org/10.1063/1.866544
https://aip.scitation.org/doi/abs/10.1063/1.866544
https://doi.org/10.1088/1742-6596/180/1/012036
https://doi.org/10.1088/1742-6596/180/1/012036
https://doi.org/10.1088/1742-6596/180/1/012036
https://doi.org/10.1063/1.5026767
https://doi.org/10.1063/1.5026767
https://doi.org/10.1063/1.5026767
https://doi.org/10.1063/1.5124376
https://doi.org/10.1063/1.5124376
https://doi.org/10.1063/1.5124376
https://doi.org/10.1063/1.5124376
https://doi.org/10.1063/1.5124376

geometry, Physics of Plasmas 26 (12) (2019) 122503. doi:10.1063/1.5124376.

URL https://doi.org/10.1063/1.5124376860

[31] F. Zhang, R. Hager, S. Ku, C. S. Chang, S. C. Jardin, N. M. Ferraro, E. S. Seol, E. Yoon,

M. S. Shephard, Mesh generation for confined fusion plasma simulation, Engineering with

Computers 32 (2) (2016) 285–293.

[32] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, A. Bishop, A Unified Sparse Matrix Data

Format for Efficient General Sparse Matrix-Vector Multiplication on Modern Processors with865

Wide SIMD Units, SIAM Journal on Scientific Computing 36 (5) (2014) C401–C423. doi:

10.1137/130930352.

[33] M. Besta, F. Marending, E. Solomonik, T. Hoefler, SlimSell: A Vectorized Graph Represen-

tation for Breadth-First Search, in: Proceedings of the 31st IEEE International Parallel &

Distributed Processing Symposium (IPDPS’17), IEEE, 2017, pp. 32–41.870

[34] S. Slattery, S. T. Reeve, C. Junghans, D. Lebrun-Grandié, R. Bird, G. Chen, S. Fogerty,

Y. Qiu, S. Schulz, A. Scheinberg, A. Isner, K. Chong, S. Moore, T. Germann, J. Belak,

S. Mniszewski, Cabana: A Performance Portable Library for Particle-Based Simulations,

Journal of Open Source Software 7 (72) (2022) 4115. doi:10.21105/joss.04115.

URL https://doi.org/10.21105/joss.04115875

[35] S. Balay, S. Abhyankar, M. F. Adams, S. Benson, J. Brown, P. Brune, K. Buschelman,

E. Constantinescu, L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, V. Hapla, T. Isaac,

P. Jolivet, D. Karpeev, D. Kaushik, M. G. Knepley, F. Kong, S. Kruger, D. A. May, L. C.

McInnes, R. T. Mills, L. Mitchell, T. Munson, J. E. Roman, K. Rupp, P. Sanan, J. Sarich,

B. F. Smith, S. Zampini, H. Zhang, H. Zhang, J. Zhang, PETSc/TAO Users Manual, Tech.880

Rep. ANL-21/39 - Revision 3.17, Argonne National Laboratory (2022).

[36] S. Balay, W. D. Gropp, L. C. McInnes, B. F. Smith, Efficient Management of Parallelism in

Object Oriented Numerical Software Libraries, in: E. Arge, A. M. Bruaset, H. P. Langtangen

(Eds.), Modern Software Tools in Scientific Computing, Birkhäuser Press, 1997, pp. 163–202.

[37] S. Balay, S. Abhyankar, M. F. Adams, S. Benson, J. Brown, P. Brune, K. Buschelman, E. M.885

Constantinescu, L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, V. Hapla, T. Isaac, P. Jolivet,

D. Karpeev, D. Kaushik, M. G. Knepley, F. Kong, S. Kruger, D. A. May, L. C. McInnes,

R. T. Mills, L. Mitchell, T. Munson, J. E. Roman, K. Rupp, P. Sanan, J. Sarich, B. F. Smith,

45

https://doi.org/10.1063/1.5124376
https://doi.org/10.1063/1.5124376
https://doi.org/10.1063/1.5124376
https://doi.org/10.1063/1.5124376
https://doi.org/10.1137/130930352
https://doi.org/10.1137/130930352
https://doi.org/10.1137/130930352
https://doi.org/10.21105/joss.04115
https://doi.org/10.21105/joss.04115
https://doi.org/10.21105/joss.04115

S. Zampini, H. Zhang, H. Zhang, J. Zhang, PETSc Web page, https://petsc.org/ (2022).

URL https://petsc.org/890

[38] J. Wesson, Tokamaks, 4th Edition, Oxford University Press, Oxford, UK, 2011.

[39] T. Moritaka, R. Hager, M. Cole, S. Lazerson, C. S. Chang, S. Ku, S. Matsuoka, S. Satake,

S. Ishiguro, Development of a Gyrokinetic Particle-in-Cell Code for Whole-Volume Modeling

of Stellarators, Plasma 2 (2) (2019) 179–200. doi:10.3390/plasma2020014.

URL https://www.mdpi.com/2571-6182/2/2/14895

[40] R. T. Mills, M. F. Adams, S. Balay, J. Brown, A. Dener, M. Knepley, S. E. Kruger, H. Morgan,

T. Munson, K. Rupp, B. F. Smith, S. Zampini, H. Zhang, J. Zhang, Toward performance-

portable PETSc for GPU-based exascale systems, Parallel Computing 108 (2021) 102831.

doi:https://doi.org/10.1016/j.parco.2021.102831.

URL https://www.sciencedirect.com/science/article/pii/S016781912100079X900

[41] E. Sozer, C. Brehm, C. C. Kiris, Gradient Calculation Methods on Arbitrary Polyhedral

Unstructured Meshes for Cell-Centered CFD Solvers, 52nd Aerospace Sciences Meeting, AIAA

2014-1440. doi:10.2514/6.2014-1440.

URL https://arc.aiaa.org/doi/abs/10.2514/6.2014-1440

[42] J. Adam, A. Gourdin Serveniere, A. Langdon, Electron sub-cycling in particle simulation of905

plasma, Journal of Computational Physics 47 (2) (1982) 229–244. doi:https://doi.org/

10.1016/0021-9991(82)90076-6.

URL https://www.sciencedirect.com/science/article/pii/0021999182900766

[43] W. Celes, G. H. Paulino, R. Espinha, A compact adjacency-based topological data struc-

ture for finite element mesh representation, International journal for numerical methods in910

engineering 64 (11) (2005) 1529–1556.

[44] M. W. Beall, M. S. Shephard, A general topology-based mesh data structure, International

Journal for Numerical Methods in Engineering 40 (9) (1997) 1573–1596.

[45] J. Candy, R. E. Waltz, Anomalous Transport Scaling in the DIII-D Tokamak Matched by

Supercomputer Simulation, Phys. Rev. Lett. 91 (2003) 045001. doi:10.1103/PhysRevLett.915

91.045001.

URL https://link.aps.org/doi/10.1103/PhysRevLett.91.045001

46

https://petsc.org/
https://petsc.org/
https://petsc.org/
https://www.mdpi.com/2571-6182/2/2/14
https://www.mdpi.com/2571-6182/2/2/14
https://www.mdpi.com/2571-6182/2/2/14
https://doi.org/10.3390/plasma2020014
https://www.mdpi.com/2571-6182/2/2/14
https://www.sciencedirect.com/science/article/pii/S016781912100079X
https://www.sciencedirect.com/science/article/pii/S016781912100079X
https://www.sciencedirect.com/science/article/pii/S016781912100079X
https://doi.org/https://doi.org/10.1016/j.parco.2021.102831
https://www.sciencedirect.com/science/article/pii/S016781912100079X
https://arc.aiaa.org/doi/abs/10.2514/6.2014-1440
https://arc.aiaa.org/doi/abs/10.2514/6.2014-1440
https://arc.aiaa.org/doi/abs/10.2514/6.2014-1440
https://arc.aiaa.org/doi/abs/10.2514/6.2014-1440
https://arc.aiaa.org/doi/abs/10.2514/6.2014-1440
https://doi.org/10.2514/6.2014-1440
https://arc.aiaa.org/doi/abs/10.2514/6.2014-1440
https://www.sciencedirect.com/science/article/pii/0021999182900766
https://www.sciencedirect.com/science/article/pii/0021999182900766
https://www.sciencedirect.com/science/article/pii/0021999182900766
https://doi.org/https://doi.org/10.1016/0021-9991(82)90076-6
https://doi.org/https://doi.org/10.1016/0021-9991(82)90076-6
https://doi.org/https://doi.org/10.1016/0021-9991(82)90076-6
https://www.sciencedirect.com/science/article/pii/0021999182900766
https://link.aps.org/doi/10.1103/PhysRevLett.91.045001
https://link.aps.org/doi/10.1103/PhysRevLett.91.045001
https://link.aps.org/doi/10.1103/PhysRevLett.91.045001
https://doi.org/10.1103/PhysRevLett.91.045001
https://doi.org/10.1103/PhysRevLett.91.045001
https://doi.org/10.1103/PhysRevLett.91.045001
https://link.aps.org/doi/10.1103/PhysRevLett.91.045001

[46] S. S. Vazhkudai, B. R. de Supinski, A. S. Bland, A. Geist, J. Sexton, J. Kahle, C. J. Zimmer,

S. Atchley, S. Oral, D. E. Maxwell, V. G. V. Larrea, A. Bertsch, R. Goldstone, W. Joubert,

C. Chambreau, D. Appelhans, R. Blackmore, B. Casses, G. Chochia, G. Davison, M. A.920

Ezell, T. Gooding, E. Gonsiorowski, L. Grinberg, B. Hanson, B. Hartner, I. Karlin, M. L.

Leininger, D. Leverman, C. Marroquin, A. Moody, M. Ohmacht, R. Pankajakshan, F. Piz-

zano, J. H. Rogers, B. Rosenburg, D. Schmidt, M. Shankar, F. Wang, P. Watson, B. Walkup,

L. D. Weems, J. Yin, The Design, Deployment, and Evaluation of the CORAL Pre-Exascale

Systems, in: SC18: International Conference for High Performance Computing, Networking,925

Storage and Analysis, 2018, pp. 661–672. doi:10.1109/SC.2018.00055.

47

https://doi.org/10.1109/SC.2018.00055

	Introduction
	Gyrokinetic Particle-in-cell Method
	Delta-f treatment of particle VDF
	Particle guiding center equations of motion
	Gyrokinetic Poisson Equation
	Major steps of the PIC method

	Parallel Unstructured Mesh Infrastructure for PIC Calculations
	Particle-in-cell Methods and Numerical Algorithms Suitable for GPU
	Flux surface aligned and field-following mesh
	XGCm mesh partitions
	Particle charge scatter
	Numerical algorithm
	Implementation on the GPU

	Solving the gyrokinetic Poisson equation
	Linear equations and mesh partition
	Gyrokinetic Poisson equation solver work flow and numerical implementation

	Electric field calculation on unstructured mesh
	Numerical algorithm
	Implementation on the GPU

	Field gather
	Particle push
	Numerical algorithm
	Implementation on the GPU

	XGCm Code Validation and Test
	Validation of the XGCm code
	Initial and boundary conditions
	Simulation setup
	Simulation results and validation

	ITG Simulation with DIII-D Geometry

	Performance and Scaling
	Conclusions and Future Work
	Gradient Calculation on Unstructured Mesh
	Gradient calculation on a triangular element
	Area-weighted gradient calculation on a mesh vertex
	Gradient calculation suitable for numerical simulation

