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AUTOMATIC MESHING OF CURVED
" THREE—DIMENSIONAL DOMAINS: CURVING FINITE
ELEMENTS AND CURVATURE-BASED MESH CONTROL

MARK S. SHEPHARD*, SAIKAT DEY* , AND MARCEL K. GEORGES*

Abstract. Specific issues associated with the automatic generation of finite element

meshes for curved geometric domains are considered. A review of the definition of when

a triangulation is a valid mesh, a geometric triangulation, for curved geometric domains

is given. Consideration is then given to the additional operations necessary to maintain

3 the validity of a mesh when curved finite elements are employed. A procedure to control
the mesh gradations based on the curvature of the geometric 'model faces is also given.

Nomenclature.
G Refers to the geometric model, or, when used as a left subscript, to
indicate one or more entities associated with the geometric model

M Refers to the mesh, or, when used as a left subscript, to indicate
one or more mesh entities

4T Set of all topological entities associated with model v,v = G or M

45 The shape information associated with the model v,y = G or M

. T Topological entity i from model v of dimension d,d = 0 is a vertex
E which represents a point in space, d = 1 is an edge which represents

a 1-D locus of points, d = 2 is a face which represents a 2-D locus

of points, d = 3 is a region which represents a 3-D locus of points

(note - no right subscript indicates the set of all topological entities
of dimension d)

0(yTf) Boundary of topological entity T y=Gor M

+T# Closure of topological entity defined as (TEUB(,TH), v=Gor
M

' gA™ n-dimensional geometric triangulation of the geometric model G
s d-dimensional element ¢ in gA”
C Classification symbol used to indicate the association of one or

more entities from one model, typically M or D with a higher
model, typically D or G

M* Parametric intersection operator used to signify the application of
an Intersection operation of two gﬁal C Qﬁw

... 1. Introduction. The ability to develop reliable procedures that can
automatically discretize arbitrary curved three-dimensional domains into
- valid finite element discretizations is hampered by the lack of knowledge of
- fundamental properties upon which to base the discretization procedure.

————

* Scientific Computation Research Center Rensselaer Polytechnic Institute Troy, NY
12180-3590.
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Much of the current emphasis is correctly focused on the determination of
the basic properties associated with the triangulation of polygonal domaing,
On the other hand, the demand to be able to automatically generate meshes
for curved domains, as defined in solid modeling systems, pushes one o
consider what can be developed to deal with these cases, even though there
is some level of uncertainty of properties of the procedures. This paper
discusses some specific aspects of our work on automatic three-dimensionaj
mesh generation for curved domains.

The importance of the reliability of an automatic mesh generator to
the reliability of a finite element analysis process becomes evident from g
consideration of the definition of an automatic mesh generator:

Definition: Automatic mesh generator — An algorithmic procedure
which can create, under program control and without user input or in-
tervention, a valid mesh, a Geometric Triangulation, gA™, for geometric
models, G, of arbitrary complexity.

If an automatic mesh generator is not reliable, invalid meshes can be gen-
erated. Invalid meshes lead an automated analysis process to solve the
wrong problem, thus eliminating the reliability of the entire process. To
address the issue of what constitutes a valid finite element mesh for curved
three-dimensional domains, the next section provides a definition of a ge-
ometric triangulation which represents such a valid mesh. This definition,
reviewed in section 2, has been used as the basis for procedures to mesh
curved domains with straight-edge; planar-faced finite elements {12,15].

The application of higher order finite element methods to curved ge-
ometries requires consideration of finite elements which are also curved.
Typically the curved finite elements are limited to those which have edges
and faces on the curved boundaries of the model. The geometric shape of
the curved finite elements range from simple quadratics through points on
the model geometry, to that of the surface geometry itself. To maintain the
computational efficiency of the meshing process, meshes including those to
possess curved finite elements, are often generated by first generating the
straight-sided finite elements and then curving those edges on the model
faces. In many cases meshes that are valid with respect to the straight-
edged geometric approximation become either invalid due to the overlap
of finite elements, or unacceptable because the variations of the Jacobian
within the element are too large. The third section of this paper discusses a
set of local mesh modification procedures to correct such situations yielding
valid and acceptable curved finite element meshes.

Another aspect of finite element mesh generation for curved geometric
domains is control of the element gradations. One a priori mesh control
device many users like is the ability to make the mesh finer in areas where
the model is highly curved. The fourth section discusses a curvature-based
mesh control procedure which meets this need.
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2. Review of requirements of a valid mesh. Efforts on the de-
velopment of automatic three-dimensional mesh generators have been un-
derway for at least a decade. The developers of these procedures-have
often been frustrated by the inability to ensure the reliability of the proce-
dures and to qualify exactly the conditions which would cause failure of the
procedure. This section reviews a general definition of what constitutes a
valid mesh and indicates how its application leads to a general algorithm
to convert a triangulation of a domain into a geometric triangulation which
represents a valid finite element mesh {13,10,11,14].

Background

Since mesh generation is concerned with the decomposition of a geo-
metric domain into a union of simple, non-overlapping geometric entities,
the definition of a valid mesh must be in terms of the definition of the
geometric domain. The definition of a geometric domain can be considered
to consist of two sets of information

(2.1) G =1{¢S, ¢T}

where .S represents the geometric information defining the shape of the en-
tities which define the domain and 7 represents the topological types and
associativities of the entities. Since individual finite elements are assumed
to be a simple region bounded by simply connected faces, the topological
entities associated with the 0 to n dimensional geometric entities are of

_interest. For the three-dimensional case (n = 3)

(2.2) eT ={cT°, oT*, ¢T? &T°}

where T¢ |, d = 0,1,2,3 are respectively the set of vertices, edges, faces

and regions defining the primary topological elements of the geometric
domain.

Critical to the definition of a valid finite element mesh are the concepts
of mesh classification and mesh compatibility {10,11,13].

Definition: Classification — The unigue association of a topological
mesh entity of dimension d;, T, to a topological model entity of dimen-
sion dj, Qﬁ.&ﬁ where d; < d;, is termed classification and is denoted

(23) MTE T 6T

where the classification symbol, [, indicates that the left hand m.:,s.&\ or
set is classified on the right hand entity.

Multiple Eﬁ,& can be classified on a Qﬁ& .

Definition: Topological Compatibility — Given a non-self-intersecting
mesh with all vertices in the vertex set T classified, and the remain-
g sets of mesh entities ;7% 1 < d < n with boundary entity sets
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F1G. 2.1. Topologically compatible mesh

d(mT?), consider a model entity Qﬁ.g with boundary entities 8(gT¢. If
each O(mT¥) © 6T} is used by two yT¢ © GT¥, and each mhiu@v C
mﬁmﬁav is used by one yTE Qﬁ.ﬁ then the mesh is topologically oo:wvm?
M‘Ew with the topological entity Qﬁn. A mesh is topologically compatible if
1t is compatible with all topological entities. )
.O.o.bmaﬁu Figures 2.1 through 2.3 for a clarification of topological com-
patibility. Figure 2.1 shows a Qm% covered by a compatible set of Eﬁw C
Qﬁ.m. In this case all the »T} C Qﬁ.w are used by two yTZ C T?
and all mTy C O(cT}) are used by one T2 © T2 Figure 2.2 oom-
tains a topological hole characterized by the fact that Swm three Bmmm edges
(T, MTE, MTH C GT} are used by only one 77 © T?. Figure
2.3 depicts a topological redundancy which is characterized vuw the four
mesh edges (T}, mT4, mTs, MTH) & gT? each being used by three
M C 6T} ’
Geometric triangulation

Starting with these definitions

/ , & definition of a valid finite element
mesh can be given.

. Definition: Q.moEmn:.o Triangulation — Given a set P of M unique
points, m.m%.&mmﬁmm& with respect to the geometry G, an n-dimensional
geometric triangulation, gA™ Is a set of N nondegenerate elements 5%

k3

. no_ dy d2 _d
(2.4) cA Iﬁm%ummﬁmuui.;m@z

with 0 < d; < n, satisfying the following properties:

—
[

[10] employs the

3. Each 5¢

- . iv. gA" is geometrically similar to G
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Fia. 2.2. Topological hole

i. All vertices of each mw_ e P
ii. For each i # j, interior ,Tw“% N interior A&.:W =0
iii. gA™ is topologically compatible with G

. The simplest explanation of a geometrically similar mesh is one that in
. the limit of refinement will exactly match the geometry of the domain. This
“ ‘simple definition is not a workable one for the development of algorithms to
. evaluate and correct mesh validity. In all but complex geometric cases, this
" requirement is satisfied if topological compatibility is satisfied. However,
~since there is no a priori method to ensure that topological compatibility
alone will also ensure geometric similarity, it must be explicitly considered.

One method of ensuring geometric similarity Eﬁ,omcomm by Schroeder

concept of parametric intersection. Any application of

this approach requires that each of the geometric entities in the geometric
““model be uniquely mappable. S

Definition: Uniquely Mappable [10] — A geometric entity of dimension
, d, 5%, is uniquely mappable if for each point p € 54, there exist a function
- f:8% — HY that satisfies the following conditions: .

1. For each neighborhood V of f(p), there exist a neighborhood U of
p such that f(U)CV

2. For each p # p, f(p) # f(P)

is mappable to the hyperplane H&
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F1G. 2.3. Topological redundancy

4. Each S? is of finite extent

The property of unique mappability allows the introduction of a pa-
rameterization of the individual geometric entities. The development of a
practical algorithm does not require the parameterization to be explicitly
defined over the entire entity. Instead it can be defined in Jocal neighbor-

hoods large enough to perform parametric intersections of the mesh entities
under consideration.

Definition: Parametric Intersection [10] — Given two mesh entities
of order d, p»T¢ and Eﬁ.ﬁ classified on a topological model entity of di-

. & . . .
Em:%cs&hﬁigmwmmemw:oE@mSmQBbow Eﬁu mnm iﬁm N.msﬁ,im:
as:

(2.5) MTEO" 4T

a.\ﬁn.v ﬁ.rm concept of a parametric intersection the conditions of geo-
metric similarity can be given.

bmmE.%.o.:.. Geometric Similarity [10] — A set of mesh entities of or-
@mw &m& T4, is geometrically similar to a topological model entity of order
d,¢ Ty, when prT? consist of N mesh entities of order d

N
(2.6) T = ) uTf
i=1
where each mesh entity iﬂmN is classified on the topological model entity
Qﬁm as: . :
(2.7) MIfC ¢TE ,Vi=1,... N
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a) violating geometric
similarity similarity

b) satisfying geometric
F1G. 2.4. Geometric similarity on a model edge

and the parametric intersection of any two yT2 € pT? is:
d d
(2.8) MTy V" T =0

Figure 2.4 demonstrates the concept of geometric similarity for a Qﬂm.
The mesh entities in 2.4a do not satisfy the geometric similarity conditions
because the mesh edge a7 overlaps mesh edges »74 and y74 in the
parametric space of the model edge. The set of mesh edges in Figure 2.4b
do satisfy the geometric similarity requirements. In the case of model edges
the determination of satisfaction of geometric similarity is straight forward.
However, the algorithms required for the determination of geometric simi-
larity for model faces are more complex [10].

Assurance algorithm

The outline of a general assurance algorithm that can operate from a
triangulation of a set of properly classified points which encompasses the
convex hull of the domain being meshed is [10]:

1. Initial classification based on necessary conditions. The necessary
conditions used to classify a mesh entity are based on the classifi-
cation of its boundary entities. Given a model entity of dimension
n, ¢, the set of mesh entities mI7 C ¢TI0, m < ninitially
classified on the model entity, H, is given by

(2.9) He={ yTHMouTM C ¢TI}
Initial classification must be done in increasing topological order
from mesh edges. Animportant property of the initial classification
process is that all mesh entities which can be classified on an entity
are identified as classified on that entity or its boundary. Therefore,
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later steps in the assurance algorithm will not need to look for

additional candidates. N

2. Edge compatibility assurance by traversal. Employing the ides
of an edge parameter, the mesh vertices classified on the model
edge can be sorted in order from the start to the end. The mesh
is compatible and geometrically similar if there is a single mesh
edge connecting each pair of mesh vertices on the mesh edge and
these edges do not intersect themselves. Mesh edges that connect
to other than consecutive mesh vertices are redundant and are
corrected through reclassification. If two consecutive mesh vertices
are not connected by a mesh edge, a hole exist. Holes are corrected
by either the creation of the correct connection or the insertion of
additional points along the model edge between the mesh vertices
bounding the hole followed by local re-triangulation.

3. Face compatibility by recursive boundary classification. Given the
loop(s) of mesh edges bounding a model face mesh, take a mesh
face that uses one or more of the bounding mesh edges once and
mark it as compatible with the face. For the mesh face under con-
sideration, remove the Eﬂm T 9(¢T?) from the loop and insert
the iﬂm . 9(cT?) into the updated boundary. Continue this pro-
cess until there are no edges remaining in the loop. If the process
terminates before all edges are removed from the loop an incompat-
ibility, in terms of either a redundancy or hole exist. Redundancies
are removed by the proper reclassification. Holes are corrected by
either the creation of the correct connections or the insertion of
points on the face in the area of the hole and local re-triangulation
[10,13]. Geometric similarity can be checked during this process
through local surface parameterizations.

4. Region compatibility by inheritance. Once the mesh is compatible
with the model faces all model regions will be completely bounded
by valid sets of mesh faces. Starting with a single mesh region in
a region, all its unclassified boundary entities inherit that region
classification as does any neighboring region sharing a mesh face
not classified on the boundary of the model region.

The interested reader is referred to [10,13,14] for more detail.

3. Curved finite element generation. It is common In a variety

. of applications to employ higher order shape functions over the individual
elements to describe the behavior of the primary unknowns. The intro-
duction of hierarchic p-version finite elements [17] have made the use of
high order polynomials practical. Since higher order elements provide in-
creased approximation power over individual elements, coarser meshes are
required. Therefore, the geometric approximation introduced by the use of
straight-edged finite elements can become a major contributor to the total

ST L 2 i
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solution error. The geometric approximation error can be mmomzv\ reduced
or even eliminated by increasing the order of the geometric shape fune-
tions from the lines associated with the straight-edged &mgmmﬁm to mrw.@m
functions which can either exactly represent the curved mmogmn.io domain,
or provide a better approximation to it. The commenly wmm& isoparamet-
ric finite element concept {18] uses the same shape ?boﬁ.o.am Hao.a both ﬁ:w
behavior functions and geometry of the element. In addition, integration
to the exact or highly accurate approximate geometry has been supported
through the use of blending functions [17]. .

A problem that can arise when finite element entities &@mm:mma.Ob
curved model entities are curved to that boundary is that the require-
ments of a geometric triangulation can be violated and/or the shape of ﬁg.m
element becomes so poor that numerical stiffening due to large %%.:57
nants of the Jacobian variations within the element will result. In either
case the elements are deemed unacceptable and corrective actions must be
carried out. Assuming that leaving the edges of the problem finite &mwbmbﬁm
straight is not acceptable, corrective measures which modify the finite .&-
ement mesh are required. The key to determining the type of corrective
action required is the determination of the cause of the unacceptability of
the element.

The effect of curving mesh edges is often not limited to one element
since it is typically shared by other elements in the bommwvogoom. HrSm
an unacceptable element cannot always be corrected without looking into

- the neighboring mesh entities which are affected due to the curving. As

one or more of the edges and/or faces of an element is curved, it can
cause two situations leading to the element becoming unacceptable. m,:.m?
unacceptably curved elements created as a result of other mesh m:ﬁ?om
coming in proximity of the curved entities of the element are depicted
in Figures 3.1a through 3.1d. Second, unacceptably curved &mgmim. can
arise when entities are too far from their linear approximation as depicted
in Figures 3.1e and 3.1f. For the 2D case depicted in Figure w..Hm nE.S.sm
of edge prT} makes element 2r77 unacceptable. The problem is not S;w
the curved edge »T%, but with the fact that it intersects the edges prT3
and iﬂw at points other than at the common vertices. .Hs oﬁrww words, the
curved entities of element T{ penetrate into the neighboring elements
making it unacceptable. In 3D, bounding mesh edges, as well as faces, of
an element will curve. If as a result of these curvings the edges or faces
intersect other mesh entities then the element will become unacceptable.
Figure 3.1b shows a case where a curved face 7% intersects edge mTE at
points other than their common boundary implying that ﬂww curved face
mT? will penetrate one or more neighboring elements which share edge
uTt. -
In the cases where mesh entities intersect or are in close proximity
to the curved finite element entities the goal of any mesh modification
operation is to properly modify or eliminate the entity that intersects or
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is too close to the curved entity. This point is clear in the case where the
curved finite element entities exactly match the curved geometry of the
model. Unless the entity that is intersecting or is too close to the curved
entity is modified or eliminated, they will continue to be too close and
always lead to unacceptable elements.

The steps involved with the development of a procedure for producing
acceptable curved elements consists of the following steps:

1. Identification of the unacceptable elements.

9. Identification of the mesh entities that must be modified or elimi-
nated.

3. Determination and execution of corrective actions necessary to

modify or eliminate the problem mesh entities through local mesh
modifications.

The next subsection discusses the metrics used to determine unaccept-
able elements and the mesh entities causing the elements to be unaccept-
able. The following subsection presents an incremental approach for elimi-
nating the problem entities through a hierarchy of local mesh modifications.
The last two subsections provide some specifics of the implementation of
the mesh modification procedures and present the results obtained with
those procedures implemented to date.

Determination of unacceptable elements and the mesh entities to
be modified or eliminated

As indicated previously, elements become unacceptable when curved
either because they self intersect, causing the triangulation of the mesh to
violate the definition of a geometric triangulation, or the element shape
becomes so poor that it will lead to numerical stiffening due to large vari-
ations in the determinant of the Jacobian. The two causes of unacceptable
elements immediately lead to consideration of two metrics to determine
unacceptable elements, intersection calculations and variations in the de-

# - terminant of the Jacobian.

The use of intersection calculations has two advantages. The first is
that determination of the intersection directly indicates which mesh enti-
ties of the current element must be modified or eliminated. The second

" advantage is its ability to also determine problem mmesh entities of other
elements in the neighborhood. To see this, consider the 2D case shown in
Figure 3.2 where the curved edge of element Sﬁw Intersects mesh entities
in elements p77 through »7¢. Clearly the mesh modifications will need
to propagate into the mesh far enough to modify or eliminate all the inter-

FIG. 3.1. Unacceptable curvings in 2D and 8D, Figures 3.1a and 3.15 have penetration - sected mesh edges. There are, however, two disadvantages to intersection
H‘@M%Smiﬂﬂ% entities, Figures 3.1¢c and 8.1d have entities “too close” to neighboring : calculations. The most critical is intersections only identify the invalid
aontadio T uuTes de and 3.1f have entities that curve too far from lincar repre- ~ - element situations, they do not identify the elements that are valid but

, o v are unacceptably shaped. The second disadvantage is the computational
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F1c. 3.2. Interior elements affected due to curving of boundary entity

expense. It is possible to supplement the intersection test with a closest
distance check to determine the situations where the mesh entities come
too close to the curved entity. The addition of such calculations greatly in-
creases the computational cost past.the already computationally expensive
intersection calculations.

The second metric of evaluating the variation and minimum value of
the determinant of the Jacobian can 1dentify both invalid and poorly shaped
elements. Since it considers only the influence of the mesh entities of the
element itself, this procedure will not identify additional problems with

neighboring elements in the way a set of intersection checks can. Again

consider Figure 3.2 where entities belon
intersect the curved edge of element mTE. Since all the edges of elements
En@m through »T7 are straight and the elements have positive area, the
Jacobian is constant through the element and positive. Other potential
drawbacks of the determinant of the Jacobian variation evaluation is the
ability to identify the problem entities in the element and the computational
effort required to determine the location of the maximum and minimum
determinants of the Jacobian. As discussed in the subsections that follow,
the use of an incremental approach focused on elimination of the problem
mesh entities is capable of incrementally determining all the entities in the
neighborhood of the curved mesh entities for eventual elimination. The use
of only a limited number of pointwise determinants of the Jacobian evalu-
ations can greatly reduce the computational cost, but does introduce some
level of approximation into the process. This approximation is typically
acceptable since the common method used by .mm&%mmm codes to determine
unacceptable elements is to examine the positiveness of, and maximum
difference between, the determinants of the Jacobian evaluated at the nu-
merical integration points used in the caleulation of the stiffness matrix.
In addition, pointwise determinants of the J acobian evaluations should be
able to identify the problem mesh entities which must be modified or elim-

ging to elements p 73 through 4,73
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inated. . o

" A curved finite element is valid with respect to .mw: En.mmmmoSo: if .ﬁw@
determinant of the Jacobian of the element mapping s wo.m;?o at m:%o_b M
within the element. If X(€) defines the geometric mapping of the e oﬁm.os
where £ represents the natural coordinates of the element then the Jacoblan
7,18] of the mapping is given by

0X
(3.1) J(&) = MN
and a valid element has
(3.2) det(J(€)) >0 V £

Numerical stiffening due to large <wlmﬂonm. in the amﬁowgpwwadmm MMM
Jacobian variation is related to the numerical Eﬁ.mmmeos A_um M e m_w MME
matrix over the element. Consider the Bo.m.ﬁ basic Edmmamso Qmwsoﬁosm
the volume of a tetrahedral finite element with mmoaaﬁu\ m_ ape W -
written in volume coordinates {&1, €2, €3,84}. The exact volume, Vexact,
the element is given by

(3.3) Sxﬁnw \ s\ \ det(3(€))d1dEzds

ion i i , Is cal-
When numerical integration is used as an approximate volume, V,
culated as
Nint

Awm._nv Vexact @V = M Qmaﬂﬁﬁﬁsvvgs

1
6 4
where Ni,: is the number of integration points, mﬁ. and w® are the integration

point coordinates and the corresponding Smwmrﬁm .Hmmw.moﬁﬁw_%. Based on this
a common measure of element shape distortion is given by [9]

Nine ﬁwbamnaﬁms‘déﬁ.v
Vv

(3.5) I=

An element is considered acceptable when anﬂmmi.u ENw') > 0and I >

?::wvwwm.m other expressions can equally be used as a metric of the &mwﬁmbw

acceptability, care is taken in the WEEmBmimaMwHMo allow the details o
1 be changed by changing one proce -

e HMWMMMWM o@amﬁow {3.5) indicates the E.Eooowgv:;% of an M_.MEMHMW

it does not indicate which of the mesh oc.o.::mm need to be mo me o

eliminated. However, the location of negative, or ma.bm:“ .H&wn:\m oE

other, determinants of the Jacobian should to able to identify the problem
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entities. For example, evaluation of the determinant of the Jacobian along
the specific entities should indicate which are problems. Current studijeg
are underway to more carefully qualify the nse of this type of informatioy.

Incremental approach to eliminate problem entities

Given a list of unacceptable finite elements, and an indication for each
such element which mesh entities must be modified or eliminated to poten-
tially produce acceptable elements, a variety of approaches to the develop-
ment of the mesh improvement procedures are possible, Since the number
of unacceptable elements is typically small, it is appropriate to focus at-
tention on local mesh modifications to produce the acceptable elements,
This has the advantage that the individual components of the procedure
are based on well qualified operations. However, the overall procedure is
still based on a heuristic combination of these operations due to the large
number of constraints on the operations possible in any specific circum-
stance, and the tendency for propagation of unacceptable elements past

the current element (see the simple 2-D example of Figure 3.2). £

Because of the number and complexity of the local mesh modifications
possible and required to make the elements in the neighborhood of an m
unacceptable element acceptable, an incremental approach is used which
focuses on the specific mesh entities of an unacceptable element that must

be modified or eliminated. The basic Justification for this is that, under
the assumption that an acceptable set of elements can be created through
mesh modifications in the local neighborhood, any final mesh modification _
can be obtained through a series of basic mesh modification operations.
It is also assumed that it is possible to determine the final modifications
needed by the incremental application of a set of operations.

The classes of local mesh modification operators that can be used in
the process of producing a mesh of acceptable elements includes:

1. Altering the shape of mesh edges and mesh faces classified interior
to the domain. .

2. Repositioning of mesh vertices without altering their classification.

3. Performing local retriangulation, where retriangulation is defined
as an operation where the mesh topology is modified without chang-

ing the number of mesh vertices and without changing their posi-
tion.

4. Deletion of elements with reclassification of interior mesh entities to
the boundary. This operation includes the repositioning of reclas-
sified mesh vertices onto the boundary entity they are reclassified
onto. As with the previous operations, this one does not change
the number of mesh vertices.

5. Performing local remeshing, where remeshing is defined as an op-
eration that adds or deletes one or more mesh vertices.
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FiGc. 3.3. Ezample of creation of acceptable elements through retriangulation

Although the altering of the shape of mesh edges and faces &mmmﬁmm
interior to the domain can often yield @nomwnwzw mwww&.o_.oamam with
little effort, it is considered an undesirable operation since it increases the
number of curved finite elements. Curved elements require higher wamw
numerical integration rules to ensure the convergence rate and are S%SNE%
considered to be less desirable than straight sided elements due to potential
stiffening due to Jacobian variation. .

Mesh vertex repositioning is a simple operation which ww.:mo@b in some
cases. However, it is of limited applicability as is easily seen in the axmmBEm
in Figure 3.2 where any reasonable repositioning of mesh vertices 573 and

-pTY under the constraint that the other mesh vertices are constrained will

not yield acceptable elements.

Under the right conditions the application of a retriangulation opera-
tion can effectively yield an acceptable mesh. Consider the example shown
on the left side of Figure 3.3 where the element .Eﬁm. w.moogmm unacceptable
when a7} is curved to the model edge Tt since it H.snmwmmoﬁm mesh edge
mT4. However, if the same set of mesh vertices is retriangulated as mrowé.z
on the right of Figure 3.3, element pT¢ is fully acceptable évmz My 1s
curved to the model edge ¢T7. Retriangulation wmm. the ._umm_o mm<g§mm
of closely maintaining the original mesh gradation since ﬁm used Q.:w orig-
inal set of mesh vertices in their original positions. Retriangulation can
not, however, yield acceptable elements in all situations. ‘Again consider
Figure 3.2 where no possible retriangulation will yield an acceptable set of
elements. .

Deletion of elements with reclassification of mesh entities is a :m.w?_
local mesh modification operation for eliminating :uwooowdmgw, eleménts.
Figure 3.4 shows a simple 3D situation where all the mesh vertices of the
element 5,73 are classified on gT%. In this case all ﬁ:w H.ﬁmmw edges mwomwﬁ
M1} are also classified on ¢T7. When the element 4 T7 is a&.mﬂma S0 18 ﬁrm
mesh edge p7} and the two mesh faces it bounds. The deletion operation
is completed by reclassifying the mesh edge 7% and the two mesh faces of
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F1G. 3.4. Deletion of ¢ 3D element with reclassification of mesh entities

F1G. 3.5, Deletion of a 2D eleme

E nt with reclassification of mesh entities and 143
mg of a mesh vertex e reposttion:

the original element 5, T3 that
face ¢T2. The most usefu
which also allows the reel
to one of its boundary ent
valid if the coordinates o

1t bounds from the model region to the model
1 version of the element deletion operation is one
assification of mesh vertices from a model region
ities. Such reclassification of mesh vertices is only
f the mesh vertex are modified so it is positioned
on the model boundary entity upon which it is classified. Figure 3.5 shows
a 2D example of this operation in which the element iﬂm 1s deleted. In this
case the mesh vertex » 70, and mesh edges p T} and y T4 are reclassified on

the .Eo%_ edge gT1. In the process the mesh vertex 4T was repositioned
to lie on the model edge T},

The ability of remeshing procedures to add and delete mesh vertices

makes it the most flexible of procedures. At the cost of at least some

variation in the local mesh gradation, it can always yield an acceptable
set of elements. Figure 3.6 shows two

possible retriangulations starting
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\ V

FiG. 3.6. Two retriangulations of the mesh with unacceptable elements shown in Figure
3.2

from the mesh containing unacceptable elements shown in Figure 3.2. The
retriangulation on the left maintained all the original mesh vertices and
created three new ones on the model edge, while the retriangulation on the
right eliminated two interior mesh vertices and added one on the model
edge.

The power of remeshing coupled with the ability of retriangulation and
element deletion to effectively convert a set of unacceptable elements into
acceptable elements makes them the primary tools for performing the re-
quired local mesh modifications. The current mesh modification algorithm
uses only these three classes of mesh modification. The final procedure will

=~ include mesh vertex motion, and, if further study indicates a necessary, or

useful, role for the curving of mesh entities classified interior to the do-
main, it will also be included. The current algorithm begins by creating a
list of unacceptable shaped elements and an indication of the mesh entities
which must be modified or eliminated. With this input, the steps in the
incremental procedure are:

1. Select the next unacceptable element from the list. Terminate
when the list is empty.

2. Considering the mesh entities that must be modified or eliminated,
evaluate the best, if any, retriangulation operation which either
yields an acceptable set of elements, or improves the situation by
reducing the number of mesh entities to be modified or eliminated.
If the best retriangulation operation yields an acceptable set of el-
ements, it is performed, the list of unacceptable elements updated,
and control returned to Step 1.

3. Considering the mesh entities that must be modified or eliminated,
evaluate the best, if any, deletion operation which either yields an
acceptable set of elements, or improves the situation by reducing
the number of mesh entities to be modified or eliminated. If the
best deletion, or combined deletion and retriangulation operation,
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that yields an acceptable set of elements is performed, the list of
unacceptable elements updated, and control returned to Step 1. If
there is a deletion, or combined deletion and retriangulation op-
eration, that reduces the number of problem entities, perform the
operation, update the list of unacceptable elements, and continue.

Considering the mesh entities that must be modified or eliminated
evaluate the best remeshing operation which either yields an ac-
ceptable set of elements, or improves the situation by reducing the
number of mesh entities to be modified or eliminated. "It is 3]
ways possible to perform a local remeshing that will improve the

situation. After the remesh is performed, update the list of unac-
ceptable elements and return to Step 1.

3

One reason triangulation and deletion are attempted before mesh mod-
ification is they generally maintain the mesh gradation closer to that of the

original mesh because they do not change the number of mesh vertices. Ap
open issue however is the selection and a
gulation or del

but must still

pplication of appropriate retrian-
etion operations when they appear to improve the situation,
be followed by remeshing operations to yield acceptable el-
ements locally. Since the remeshing operations alter the triangulation as
well as introduce new mesh entities, it is not critical to exhaustively eval-
uate all the retriangulation and deletion procedures that may lead only to
an improved situation before proceeding to attempting a remeshing. The
numhber of options evaluated is driven more by the desire to create accept-
able elements without remeshing. On the other hand, it is critical when
a remeshing operation is required to determine the appropriate operation.
Experience indicates that the constraints on the type of retriangulation and
remeshing operations allowed, and the basic properties of the various spe-
cific retriangulation and remeshing operations, usually make it clear which
mesh modifications should be performed. However, the lack of a proof of
& convergent sequence of operations for all situations indicates additional
effort is required to ensure the overall reliability of the procedure,

Application mesh modification procedures

The decision of which retriangulation, deletion or mesh modification
procedure to apply depends on the entities causing the element to be un-
acceptable. The operations required when the curved mesh entities are
too far from'their linear approximation (Figures 3.1e and 3.1f) are fairly
obvious. In these cases remeshing operations which add mesh vertices clas-
sified on the geometric entities of concern are needed. In those cases where
the curved mesh entities intersect or come too close to other mesh entities
(Figures 3.1a through 3.1d) it is not obvious which mesh modification is
the most appropriate. As indicated above, the retriangulation and deletion
operations are considered first followed by consideration of remeshing.
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Unlike the 2D case where the basic Snzwsmiwﬁo: ovowwﬂoz wm“ www-
agonal swap, there are a large number of 8@55@..:5505 Mmmmwdwozmmwwb& m
The two most powerful that have been qualified into use ul wo S ° g
swapping [1,5,2] and multi-face removal [1]. m@mo swapping Hwowmo_. ers m
mesh edge that is to be eliminated from the triangulation. mHmaEm a
the elements that are bounded by that edge creates a polyhedra omain
that can be remeshed by creating edges between m&.wgmm mesh <9,Sommm
and defining the appropriate mesh faces and mesh regions. The number o
possible retriangulations grows as the square of the HE.BU.Q, of mesh ver-
tices on the bounding polygon {5,2], therefore, an wm.mo‘akm ygw_oaoiwsow
must quickly determine a limited number of possibilities 6 vm. m<m5m§m
[1,5,2]. Although edge swapping has the advantage of Fw%zm itse . to an
effective algorithmic implementation, the total number of mesh regions in
the retriangulated region is higher when the total bcs.iuoa of Emmr <m?.8mm
in the local polygon is seven and greater [1,5,2]. . Since Rﬁjwbm&ﬁuog
which reduce the number of mesh regions mwm,aﬁwo.@:% superior mo those
that increase the number of mesh regions, it is desirable to oObm&o.w the
development of operators that do this. The recently developed multi-face
removal operator, which is the reverse of the edge swap operator addresses
this issue. . . .

The decision as to which retriangulation option to apply Is driven .U%
the entities which must be modified or eliminated. If the undesirable entity
is a mesh edge bounding the unacceptable &mgmzmm;m .&mm swap configu-
rations based on that edge are considered. In @a&fo? if the cdmwomwﬁmzw
edge is classified interior to the model then BE.SA.@S méwwm.sgov mE.E;
nate that edge are also considered. If the c:mmm:wzo entity is an interior
face then a multi-face swap is considered along with edge swap based on
the bounding edges of the undesirable face.

The swapping possibilities are evaluated based on the E:dv.m_u of un-
desirable connections that are produced in elernents of @m Homﬁsbm mer
compared to the original mesh sharing the entity on which retriangulation
is based. If a retriangulation exists that results in all affected elements
being acceptable, it is applied. If no Hoﬁim:m:FSo: could be moE.E that
makes all the elements acceptable in the resulting mesh the m@.ﬂafo: op-
tions are considered. If a deletion option is found %m.a results in a mesh
that yields no unacceptable elements it is applied. .HH, this does :.3 SmE all
acceptable elements, the best possible retriangulation and a&m.ﬂo.b options
are compared based on the number of undesirable B.awr entities in ﬁ,r.m w.m,
fected mesh and the one which results in fewer undesirable mesh entities is
selected to be applied and the process repeated with the next unacceptable
element. o . .

If unacceptable elements remain after the @U@:ww?om of mmwdwbmamﬁos
and deletion, remeshing procedures are then m.vvbma‘ Again, there are a
wide variety of possible tools available for this process. Hb‘@m o:E.obM
implementation the primary remeshing tool for creating additional mes
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F16. 3.7. Ezample of o 2D edge collapse operation to eliminate an unacceptable element

vertices is splitting of mesh entities, while the primary tool for reducing
the number of mesh vertices is collapsing. The focus of the application of
these two operations are mesh edges {1] since their s
operations typically produce the best results.

The edge collapse operation is typically applied to edges of unaccept-
able elements which have one mesh vertex classified on the boundary and
one classified interior to the domain The collapse of such an edge typi-
cally eliminates the problem mesh entities by collasping them onto mesh
entities classified on the boundary. Figure 3.7 demonstrates this process
for a simple 2D example. The original mesh (Figure 3.7a) is modified by
collapsing a7} which pulls uT3 onto »T? eliminating the mesh entities
MT3 o T, mTE , and mT5. This collapsing process yields the acceptable
element M7% shown in Figure 3.7b.

When the curved mesh entities are too far from their linear approx-
imation edge splitting is applied. In edge splitting a new mesh vertex is
introduced along the mesh edge the appropriate mesh entities connecting
to it and the entities it bounds are created. Since the new mesh vertex
inherits the boundary classification of the mesh edge, it is positioned at
an appropriate location on the model boundary entity. As demonstrated
in the left hand example of Figure 3.6 , edge splitting plus retriangulation
can also be used to eliminate the ‘unacceptable elements which intersect

the curved boundary shown in Figure 3.2. The actual implementation in
this case is best performed by:

plitting and collapsing -
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1. Deleting the unacceptable elements creating an empty polygon of
mesh entities.

2. Splitting the mesh edges classified on the model boundary the ap-
propriate number of times.

3. Using the new mesh edges retriangulate (creation of surface tri-
angulations) the appropriate portions of model faces, yielding an
updated empty polygon.

4. Fill the updated empty polygon by tetrahedral element d&wsmﬁm-
tion. This step may or may not introduce new mesh vertices into
the polygon.

Examples of local mesh modifications to produce curved meshes
of acceptable elements

Two images are given for each of the examples discussed in this sub-
section. The first shows the original mesh in which the m_ﬁ.dozﬁ edges
for elements that would become unacceptable if curved are &mvﬂm%mm as
straight edges. The second image shows the mesh after wml,.oiébm the ap-
propriate mesh modifications where all the mesh edges classified on curved
boundary entities are curved.

The first curved mesh example is depicted in Figures 3.8a and 3.8b. In
the original mesh the mesh edge on the circular Boa& edge that was left
straight (Figure 3.8a) would cause an invalid o_mBmi if curved. ‘A simple
retriangulation (an edge swap in this case ) resulted in an acceptable curved
mesh (Figure 3.8b). ‘ .

The second curved mesh example also had an invalid element as its
worst case where one of the curved edges classified on a model face was
intersecting a bounding mesh face classified in the interior of the 50.@&
(Figure 3.8¢). Two local retriangulations (edge swaps of the voEﬁEm
edges of the undesirable face) lead to an acceptable curved mesh (Figure
3.8d).

,W,rm original mesh for the third example also had invalid &m«bma.m re-
sulting from the curving of some of the edges. The top mesh in m;mﬁm
3.9 shows the mesh edges left straight in the original mesh. The corrective
steps required to get to the acceptable curved mesh (bottom mmf& con-
sisted of local retriangulation, element deletion and edge collapsing. The
edge collapsing procedures lead to a slight coarsening of the final mesh.

4. Curvature-based refinement. Curvature-based refinement pro-
vides a convenient method to control the gradations of the mesh on ogm‘gm.
with curved faces. It has been observed that given a variety of a priori
mesh control devices, users find curvature-based refinement ow.sgm among
the most useful. The primary reasons for this is that it provides a direct
means to control the geometric approximation of mﬁwwmr?mao@ finite .m_m-
ments yielding esthetically pleasing meshes. More importantly, in a variety
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F1G6. 3.9. Curved mesh ezample 3

F16. 3.8. Mesh ezamples 1 and 2 .
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of analysis types, ranging from the stress in solid parts, to the flow around
an aircraft, the areas of high curvature, which will receive a finer mesh, tend

to be among the critical areas in the analysis. Therefore, mesh refinementg
based on curvature are typically effective initial meshes.

Approach

The application of curvature-based refinement first requires an ability
to evaluate the curvature of the surface. Maintaining a functional link to
the geometric model representation which employs only pointwise geomet.
ric interrogations [15,16], the options to obtain curvature information are
to directly request it of the geometric modeler, or to obtain an approximate
measure in terms of the distance between the centers of straight finite ele-
ment entities and curved model faces. Two drawbacks of the approximate
measure are (i) the interrogation to find, even approximately, the distance
from.the point to the face is an expensive operation, and (i) this distance
only provides a scalar value, not allowing any potential use of the vecto-
rial nature of the curvature! Although not all modeling systems provide a
direct measure of the surface curvatures, enough derivative information is
available to calculate the curvature information (3,4,6,8]. The specific cur-
vature information determined by the geormnetric Interrogation is to obtain
the principal curvatures and directions at given points on the surface.

One approach to apply curvature-based refinement is to evaluate the
curvature at node points on the model face as they are generated and to uge
this information to set the appropriate parameters in the mesh generator to
control the element sizes in that area. For example, following this approach
within the Finite Octree mesh generator [15], where the nodes on the mode]
face are obtained by intersecting octant edges with the model face, the
curvature would be evaluated at those intersection points. If the curvature
is high enough to indicate additional refinement is required, the tree is
locally refined and new node points obtained at the intersections of the
new octant edges with the model face. OFf course the curvature at these
new nodes would also be evaluated. A danger of this approach is that when
the curvature varies over the face, and is locally high with respect to the
basic finite element mesh control parameters, areas of high curvature can be
missed. Therefore, it is appropriate to employ additional sampling points
in the process. Although it is possible to develop an adaptive sampling
approach that minimizes the number of additional sampling points that
may be required, the computational effort required does not Jjustify its use
over a simple sampling process over a more uniform structure. ’

"The uniform structure used in this work is a grid in parametric space. A
comparison of sampling on the corners of a uniform grid to that of sampling

1 Although not demonstrated here, the vector nature of curvature can be effectively
used to perform directionally-based refinement. This can be highly desirable in cases

such as obtaining the best surface approximation with the minimum number of discrete
facets.

{..Closure of Mode! Face
Parametric Space of Surface

® Retained Sampling Point
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| P i | ! B Existing Sampling Point

..|Ilﬂ...ll._.lllJIlIlﬁ.llIﬂlllA.lllJllli
i t
[}

F1G. 4.1. Sampling points for use in curvature-based mesh refinement

at both the corners and centroid of each 8:. indicates that the use of voww
the corners and centroid yields a smaller distance between points for the
same total number of sampling points. To account for the fact SS._“ faces
can be trimmed, only those sampling points on .ﬁHm face are oosm&oamm.
In addition, sampling points that are close ao.wo:;m sampled during any
previous meshing steps are not considered. Figure 4.1 shows the various
i oints just discussed.

mmamwwmwwgm @wuoé considerations, a basic curvature _uwmmm refinement
procedure applied during the meshing of a model face consist of:

1. Obtain principal curvature at each node point generated on the
model face.

2. If the local element sizes are too large, locally alter the mesh control
functions to obtain the correct size elements.

3. Sample at all newly created nodes and refine as necessary.

4. Determine additional sampling points based on the grid in para-
metric space.

5. Evaluate the curvature at the additional sampling points and refine
the mesh as required.

An alternative approach would be to first evaluate at all ﬁrm. grid mmd.%:bm
points within the face and locally alter the Emmr. control information so
the correct mesh gradation is obtained. The m&mosn.u: between the two ap-
proaches should be based on the computational efficiency of the mkuom%mm
with the particular mesh generation algorithm. ‘ o
Accounting for the vector nature of the oﬁ?mac.wm ?.v control m:moﬂos&
refinement would follow a similar process. The main difference is that the
vector information on the curvature would need to be ﬁmg;&. by gm
modeler, and the mesh generator must be able to mooo:wa for anisotropic
mesh control information. For example, the interrogation for n:?w.ncu.a
nformation at a point could return the principal curvatures and princi-
pal directions. This information could then be used to set the element
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!=required mesh edge length
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F1c. 4.3. Ezample comparing two methods of controlling element length

size directions in the principal directions for use by the mesh generation
procedure.

It is still necessary to determine the correspondence between the values
of the curvature and the mesh control information. A straight forward
means to do this is to convert a curvature value into the requested element
‘length at that point in the direction to which the curvature was measured.
One way to do this is to consider the geometric approximation of a straight
element edge to the curved geometry. Assuming a constant curvature, an
“acceptable local approximation, the curvature, s, can be related to the
distance from a straight edge to the curve, €, to the length of that straight
edge, £, as shown in Figure 4.2. .

One method to employ the distance between the element edge and a
model face is to force a uniform geometric approximation by setting

(4.2) £E=¢,

where € is a constant. Under these conditions the curvature dependent
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value of the element edge length is

(4.3) €= (8Rpme, — 4e?)?

1
o max(|ry], [ka])
w:bo%& curvatures respectively. An alternative method to the specifica-
tion of the required element edge length that users tend to favor is to make

the distance between the element edge and model face proportional to the
element edge length as

(4.4) e=al

where R,, =

and x; and & are the maximum and minimum

where « is the proportionality constant for that model face. Under these
conditions the curvature dependent value of the element edge length is

8Ro
45 L=
(4.5) 14402

Implementation in finite octree

'To demonstrate the application of curvature-based refinement, it was
implemented in the Finite Octree mesh generator [15]. Within Finite Oc-
tree the element sizes are controlled by the size of the octant, which is
dictated by the level of the tree at that location of that octant. Assuming
that the average edge length is equal to the octant edge length, the level
of tree level, N required at a particular location is defined by

(4.6)  N=log (%

ér.mao L w.m the side length of the root octant which is the cube enclosing the
object being meshed. In this case the application of the constant distance
between the element edges and model faces will yield octant levels defined

by

1 L2
47 N==x{
(*7) 28 Aw? - %WVW

while making the distance proportional to the element edge length yields

(1+4a%)L
S8R«

(4.8) N = {log,

E.m_:.m 4.3 shows the meshes comparing the two methods for a simple object
with one curved face with variable curvature where the shortest element

- lengths are the same.
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- To minimize the computational impact of the curvature-based refine-
ment on the meshing process, its implementation evaluates the curvature
as each node point is defined by the intersection of .an octant edge with
the model face. If the value of the curvature dictates octant level refine-
ment, it is carried out immediately. The additional sampling points, and
any refinements required by them, are then carried out after the face was
inserted. When implemented in this manner the average increase in mesh
generation time caused by the curvature evaluations was 1.35%.

Figure 4.4 shows a set of examples generated using curvature-based
mesh control only.

5. Closing remarks. The generation of valid, controlled finite ele-
ment meshes for general curvilinear 3-D geometries introduces a number
of additional complexities past that of planar geometries. This paper has
considered aspects of these complexities including (i) ensuring the validity
of the finite element mesh, (ii) the ability to maintain validity and accept-
ability of element shapes when curved finite elements are introduced to
reduce the geometric approximation and (iii) applying mesh gradation ac-
counting for the curvature of the geometry. Of the technigues presented,
those that deal with the mesh modifications to produce acceptable curved
finite elements would benefit from further qualification to ensure their re-
liability.
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OPTIMIZATION OF TETRAHEDRAL MESHES
ERIC BRIERE DE L'ISLE* AND PAUL LOUIS GEORGE*

Abstract. Finite element computations are all the more exact if we start from
sgood” elements. We are interested in meshes where the elements are tetrahedra and
we shall develop utilities allowing us to improve the quality of these meshes.

* 1. Introduction. The aim of this paper is to propose a method that
enables us to improve the quality of a mesh. The meshes we consider
“+ sre only composed of tetrahedra and are the result of mesh generation
. algorithm such as Delaunay-Voronoi, advancing front, octree, etc. ...(see,
for example, [2]). The paper covers three cases:

e Isotropic case: In this case, the aim is to improve the shape of
the elements in the mesh.

¢ Isotropic case with size specification: In addition to the initial
mesh, we have, in this case, a constraint regarding the desired size,
i.e. afunction that enables us to know for each location in the mesh
the desired size. Thus, the aim is to satisfy this property (i.e., for
example, to obtain the correct edge size) by locally modifying the
mesh while preserving the element quality in terms of shape.

¢ Anisotropic case: This case is quite similar to the previous one
but the constraint is replaced by a tensor field that can be seen as
a size specification along the three directions. The purpose of the
method is then as above (obtain a good quality mesh (in terms of
shape) such that the specification is satisfied).

After clarifying the notion of a mesh quality, four local tools are given:

point relocation,

edge (or face) removal resulting in a local re-meshing, ’
point creation to suppress an edge,
point removal,

* & o o

The proposed method for optimizing the meshes consists in the ade-
uate use of the previous tools. The summary of the paper is as follows:
after giving some useful definitions, each of the three cases of optimization

I discussed and illustrated by various application examples, after which a
conclusion is given.

.

- 2. Definitions. In this section, some useful definitions are given. First,
he mesh quality regarding the three cases is established, then two local

set th elements are introduced which will be used in the different steps of
.ﬁﬁ method: a shell and a ball.

?. INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay Cédex,
ance, )
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