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Abstract

An adaptive technique for a partial differential system automatically adjusts a computational mesh or varies
the order of a numerical procedure with a goal of obtaining a solution satisfying prescribed accuracy criteria in
an optimal fashion. Processor load imbalances will, therefore, be introduced at adaptive enrichment steps during
the course of a parallel computation. We develop and describe three procedures for retaining and restoring load
balance that have low unit cost and are appropriate for use in an adaptive solution environment.

Tiling balances load by using local optimality criteria within overlapping processor neighborhoods. Elemental
data are migrated between processors within the same neighborhoods to restore balance. Tiling is restricted
to uniform two-dimensional meshes and provides limited control of communications volume by priority-based
clement selection criteria. These shortcomings can potentially be overcome by creating a dynamic partition
graph connecting processors and their neighboring regions. After coloring the edges of the graph, elemental
data are iteratively transferred between processors by pairwise exchange to permit a more global migration.

Octree decomposition of a spatial domain is a successful three-dimensional mesh generation strategy. The
octree structure facilitates a rapid load balancing procedure by performing tree traversals that (i) appraise
subtree costs and (ii) partition spatial regions accordingly.

Computational results are reported for two- and three-dimensional problems using nCUBE/2 hypercube,
MasPar MP-2, and Thinking Machines CM-5 computers.

1. Introduction

Adaptive finite element methods that automatically refine or coarsen meshes (A-refinement) and/or
vary the order of accuracy of a method (p-refinement) offer greater reliability, robustness, and com-
putational efficiency than traditional numerical approaches for solving partial differential equations.
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High-order methods and the combination of mesh refinement and order variation (/Zp-refinement)
can produce remarkably efficient methods with exponential convergence rates [2,4,5,11,12,27].
Like adaptivity, parallel computation is making it possible to solve previously intractable problems.
With problems continuing to increase in complexity through the inclusion of more realistic effects in
models, it seems natural to unite adaptivity and parallelism to achieve the highest gains in efficiency.
Adaptivity, however, introduces complications that do not arise when simpler solution strategies
are implemented on parallel computers. Adaptive algorithms utilize unstructured [2] or hierarchical
[3,7] meshes that make the task of balancing processor loading much more difficult than with uni-
form structures. A balanced loading will, furthermore, become unbalanced as additional degrees of
freedom are introduced or removed by adaptive h- and p-refinement.

Successful load partitioning strategies for unstructured-mesh computation on distributed-memory
parallel computers employ recursive bisection to repeatedly split the discretized domain into two
subdomains having balanced loading. Specific techniques use geometric [6], connective [15], or
spectral [16,26] information. When applied to the entire mesh, recursive bisection methods require
a complete remapping of the elements of the mesh and, thus, involve a substantial overhead. Some
methods also require considerable computation [26]. Thus, global recursive bisection methods are -
too expensive for use with adaptive methods which, as noted, require repeated element redistribution.
Recursive bisection may be of use with an adaptive strategy if applied locally to regions of the domain
affected by adaptive enrichment [33].

Two partitioning strategies described herein use local migration to exchange elements between
processors associated with neighboring spatial regions in order to achieve a global load balance.
Local interchanges propagate incremental changes in the mesh or method between processors without
solving an expensive global partitioning problem. Local computational cost metrics, such as the
number of degrees of freedom, can be combined with similar information on partition boundaries to
minimize the total workload including both the computational and communications efforts.

Our most mature partitioning strategy tiling [34] is a modification of a dynamic load balancing
technique developed by Leiss and Reddy [25,28] who used local optimality criteria within over-
lapping processor neighborhoods to achieve a global load balance. A neighborhood consisted of
a processor at the center of a circle of a given radius and all processors within that circle. With
tiling, we extend the definition of a neighborhood to include all processors having finite elements
that are neighbors of elements in the central processor (cf. Fig. 3). Every processor is the center
of one neighborhood and, typically, belongs to many neighborhoods. Elements are migrated from
a processor to others within the same neighborhood to obtain local optimality. Tiling is applicable
to two-dimensional problems on structured meshes and we demonstrate its performance by using it
with adaptive h- and p-refinement strategies to solve transient systems of conservation laws on a
256-processor nCUBE/2 hypercube (cf. Section 2).

At present, tiling is unsuitable for unstructured and three-dimensional meshes. With only local
optimization, it can require several time or iterative steps to achieve a global balance. Finally, tiling
provides limited capabilities for controlling the shape of partitions to reduce the communications
volume. Partition shape control could utilize orthogonal recursive bisection [6] in, say, directions
of principal axes of inertia of partitions. Redistribution through pairwise exchanges, our second
migration strategy, builds upon tiling and can correct some of these deficiencies. Neighborhood
adjacency is represented by a dynamic partition graph. Loading information is used to color edges of
the partition graph so that work can be transferred between pairs of processors in a manner similar to
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a pairwise heuristic strategy introduced by Hammond [19]. This strategy, described in Section 3, can
be used with local partitioning strategies to provide better shape control when selecting elements for
migration. Two-dimensional unstructured-mesh computations performed on a MasPar MP-2 SIMD
system demonstrate some capabilities of this procedure.

Octree decomposition is a successful strategy for generating three-dimensional unstructured meshes
[29] and we develop (cf. Section 4) a partitioning technique that exploits the properties of the
underlying tree structure. Partitioning may be done locally or globally, but, in either case, it is
inexpensive and, hence, may be used with adaptive procedures. Partitioning is based on two tree
traversals that (i) calculate the processing costs of subtrees connected to each node and (i1) form
the partitions. When used globally, partitions have approximately the same communications volume
as other strategies [21,24,26], but their cost is far less. We demonstrate the performance of the -
tree-based partitioning technique on three-dimensional meshes that are associated with flight vehicle
flows. Results computed on a Thinking Machines CM-5 computer are presented for an adaptive
h-refinement solution of the Euler equations for a supersonic conical flow.

2. Tiling
2.1. Adaptive enrichment

We describe adaptive 4- and p-refinement local time-stepping algorithms that are being used with
the tiling partitioning scheme (Section 2.2) but which are typical of adaptive strategies. Applied
to vector systems of conservation laws, finite element solutions U (x, t) are obtained on a two-
dimensional net of rectangular elements using a spatially discontinuous Galerkin method [5,8-10]
and explicit Runge-Kutta integration [5]. A spatial discretization error estimate E (t) in the L' norm
is obtained by p-refinement [5,11] and used to control adaptive spatial enrichment so that £(7) < &,
for a prescribed tolerance e.

With adaptive p-refinement (cf. Fig. 1), we initialize U(x,0) to the lowest-degree polynomial
satisfying E;(0) < e/J, j=1,2,...,J, where E; ;(t) is the restriction of E(t) to element ] and J
is the number of elements in the mesh After each time step, we compute E;, j = 1,2,...,J, and
increase the polynomial degree of U on element jbyoneif E; >¢/J (=TOL). The solutlon U and
the error estimate are recomputed on enriched elements, and further increases of degree occur until
E; < TOL on all elements. The need for backtracking may be reduced by predicting the degree of the
approximation needed to satisfy the accuracy requirements for the subsequent time step. After a time
step is accepted, if E; > Hyy TOL, Hpoy € (0, 1], we increase the degree of U(¢+ At) on element j
for the next time step. If E; < Hyy, TOL, Hy € [0, 1), we decrease the degree of U (t + At) for the
next time step.

In the adaptive h- reﬁnement algorithm (cf. Fig. 2), we locally refine element j if E > TOL/2™,
where m is the level of refinement. Refinement involves dividing an element into four and initializing
the solution through L? projection of the coarse-mesh data [5]. Elements neighboring high-error
elements are also refined to provide a buffer between high- and low-error regions and maintain a
difference of at most one level of refinement across element edges. For each time step, the local finite
element method [5] is applied on successively finer meshes. To satisfy the Courant conditions, the
time step is halved on each finer mesh.
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void adaptive_p.refinement()
{
while (t < lﬁnal) {
perform_runge _kutta_time_step(all_elements);
do {
Solution Accepted = TRUE;
for each element {
error_estimate = calculate_estimate();
if (error_estimate > TOL) {
mark_element_as_unacceptable();
increase_elements_polynomial degree();
Solution Accepted = FALSE,;
}
}
if (1Solution_Accepted) {
recalculate_solution_on_unacceptable_elements( ) ;
}

} while (!Solution_Accepted);
accept_solution(all_elements);

predict.degrees_for_next_time_step(all_elements);
t=1t+ At

Fig. 1. An adaptive p-refinement procedure.

2.2. Dynamic load balancing via tiling

The tiling algorithm consists of (i) a computation phase and (i1) a balancing phase, and is designed
to be independent of the solution procedure. The computation phase corresponds to solution generation
without load balancing. Each processor operates on its local data, exchanges inter-processor boundary
data, and processes the boundary data. A balancing phase restores load balance following a given
number of computation phases. Each balancing phase consists of the following operations:

(1) Each processor determines its work load as the time to process its local data since the
previous balancing phase less the time to exchange inter-processor boundary data during the
computation phase. Average work loads are also calculated for each overlapping neighborhood
(cf. Fig. 3).

(2) Each processor compares its work load to the work load of the other processors in its
neighborhood and determines those processors having loads greater than its own. If any
are found, it selects the one with the greatest work load (ties are broken arbitrarily) and sends
a request for work to that processor. Each processor may send only one work request, but a
single processor may receive several work requests. .
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void adaptive_h_refinement(mesh, t.u, tnal, A2, TOL)
{
I = Lgare;
fine_mesh = mesh — nextmesh;
while (7 < tgay) {
perform_runge kutta_time_step(all elements of mesh);
for each element of mesh {
error_estimate = calculate_estimate();
if ((error_estimate > TOL) && (element not _refined_yet) ) {
refine_element_into_four_fine_elements();
add_new_elements(fine.mesh) ;
}
}
if (mesh is refined) {
buffer(fine_mesh);
project_coarse_data(mesh, fine_mesh);
adaptive_h_refinement(fine_mesh, t, t + At, At/2, TOL/2);
interpolate_fine_solution_to_coarse_mesh (fine_mesh, mesh);

}

=1+ Ar

Fig. 2. An adaptive h-refinement procedure.

Fig. 3. Example of 12 processors in 12 neighborhoods using tiling.
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(3) Each processor prioritizes the work requests it receives based on the request size, and deter-
mines which elements to export to the requesting processor. Details of the selection algorithm
are given below. '

(4) Once elements to be exported have been selected, the importing processors and processors
containing neighbors of the exported elements are notified. Importing processors allocate space
for the incoming elements, and the elements are transferred.

Each processor knows the number of computation phases to perform before entering the balancing

phase. Synchronization guarantees that all processors enter the balancing phase at the same time.

The technique for selecting elements gives priority to elements with neighbors in the importing
processor to prevent the creation of “narrow, deep holes” in the element structures. Elements are
assigned priorities (initially zero) based upon the locality of their neighbors. An element’s priority
is decreased by one for each neighbor in its own processor, increased by two for each neighbor in
the importing processor, and decreased by two for each neighbor in some other processor. Thus,
elements whose neighbors are already in the importing processor are more likely to be exported to
that processor than elements whose neighbors are in the exporting processor or some other processor.
When an element has no neighboring elements in its local processor, it is advantageous to export it to
any processor having its neighbors. Thus, “orphaned” elements are given the highest export priority.

Because individual elements’ processing costs can vary widely in the adaptive p-refinement method,
elemental processing costs are computed and used so that the minimum number of elements satisfying
the work request are exported. This approach differs from that of Wheat [34], who uses the average
cost per element to determine the number of export elements. When two or more elements have the
same priority, the processor selects the element with the largest work load that does not cause the
exported work to exceed the work request or the work available for export.

In the adaptive A-refinement method, the local time-stepping scheme, outlined in Fig. 2, requires
that each mesh level be distributed evenly over the processor array to avoid idle time. Communication
costs are increased since offspring elements may be on different processors than their parent elements;
however, the increase in communication time is outweighed by a decrease in processor idle time.
Memory overhead for the tiling algorithm is also increased, as processor location information for
parent and offspring elements must be maintained and “ghost elements” near subdomain boundaries
must be allocated for non-local coarse elements along coarse-fine mesh interfaces. Selection prior-
ity schemes that account for the interconnections between mesh levels could reduce the additional
communication and storage needed; such schemes are the subject of future study.

Example 2.1. We solve

u, + 2u, +2u, =0, t>0, (1a)
on 0 < x, y < 1 with initial and boundary conditions specified so that

u(x,y, 1) = 1[1 —tanh(20x — 10y — 20t + 5) 1, (1b)

using adaptive p-refinement on a (32 x 32)-element mesh with TOL = 3.5 x 107> and tiling on 16
processors. In Fig. 4, we show the processor domain decomposition after 20 time steps. The shaded
elements have higher-degree approximations and, thus, higher work loads. The tiling algorithm redis-
tributes the work so that processors with high-order approximations have fewer elements than those
processors with low-order approximations. The total processing time for the adaptive p-refinement
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Fig. 4. Processor domain decomposition after 20 time steps for Example 2.1 using adaptive p-refinement and tiling. Dark
lines represent processor subdomain boundaries.
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Fig. 5. Processor domain decomposition after 10 time steps for Example 2.1 using adaptive A-refinement and tiling. The
decomposition on each mesh level is shown.

method was reduced 41.98% from 63.94 seconds to 37.10 seconds by balancing once each time
step. The average/maximum processor work ratios without and with balancing are -0.362 and 0.695,
respectively. Parallel efficiency is increased from 35.10% without balancing to 60.51% with tiling.
We also solve (1) using the adaptive h-refinement method on a (16 x 16)-element base mesh with
TOL = 107 and tiling on 4 processors. In Fig. 5, we show the processor domain decomposition for
each mesh level after 10 times steps. The total processing time for the adaptive h-refinement method
was reduced 58.0% from 104.89 seconds to 44.01 seconds by balancing a mesh after each time
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Table 1
Performance comparison for Example 2.2 using adaptive p-refinement without balancing and with balancing at each time
step, and a fixed-order method yielding comparable accuracy

Adaptive p-refinement Fixed-order

Without tiling With tiling Without tiling
Total execution time (seconds) 3636.53 1088.36 10,590.87
Maximum computation time (seconds) 3557.77 778.57 10,570.07
Average/maximum work ratio 0.118 0.543 0.999
Average communication time (seconds) 22.31 31.38 19.03
Maximum balancing time (seconds) 0.00 28.98 0.00
Parallel efficiency 11.62% 38.84% 99.71%

step. The average/maximum processor work ratios without and with balancing are 0.271 and 0.747,
respectively. Parallel efficiency is increased from 26.7% without balancing to 63.8% with tiling.

Example 2.2. Again, we solve (1) on 2= (0,16) x (=7.5,8.5) with a fixed-order (p =2) method
and with adaptive p-refinement for 86 time steps to # = 0.3 using a (160 x 160)-element mesh on 256
processors of the nCUBE/2 without balancing and with balancing once each time step. In the adaptive
p-refinement method, polynomial degrees of the elements varied from O to 2, and computation time
per element varied from 0.02 to 1.2 seconds per time step, indicating a great deal of imbalance along
the front. Even without balancing, the adaptive p-refinement method required 65.7% less execution
time than the fixed-order method to achieve comparable accuracy (cf. Table 1). With balancing, the
maximum computation time of the adaptive method (excluding communication or balancing time)
was further reduced by 78.1%. The irregular subdomain boundaries created by the tiling algorithm
increased the average communication time by 40.7%. Despite the extra communication time and
the load balancing time, there is a 70.1% improvement in the total execution time relative to the
non-balanced adaptive method, and an 89.7% improvement relative to the fixed-order method.

Example 2.3. We solve

u+2u, +2u,=0, >0, (2a)
on 2= (0,16) x (—=7.5,8.5) with initial and boundary conditions specified so that

u(x, y,1) = L[1 — tanh(100x — 10y — 20f + 5)1, (2b)

with p = 0 on a uniform (640 x 640)-element mesh and on a (160 x 160)-element base mesh with
adaptive h-refinement for 60 time steps on 256 nCUBE/2 processors without balancing and with
balancing once per time step on each mesh level. Two levels of refinement were used along the
steep front. We compare the adaptive h-refinement computation with a uniform mesh computation of
similar accuracy. The adaptive solution required 46.9% less total execution time than the non-adaptive
solution, despite the load imbalances created by the adaptive method (cf. Table 2). With balancing,
the maximum computation time (excluding communication or balancing time) was reduced by 86.1%
relative to the adaptive method without balancing. The average communication time with balancing
is nearly doubled, due to the communication between coarse and fine mesh elements that have been
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Table 2
Performance comparison for Example 2.3 using adaptive A-refinement without balancing and with balancing at each time
step on each mesh level, and a uniform mesh yielding comparable accuracy

Adaptive A-refinement Uniform mesh

Without tiling With tiling Without tiling
Total execution time (seconds) 3455.07 681.48 ' 6508.16
Maximum computation time (seconds) 3430.17 476.00 6491.07
Average/maximum work ratio 0.0743 0.535 1.000
Average communication time (seconds) 7.68 15.33 14.82
Maximum balancing time (seconds) 0.00 42.14 0.00
Parallel efficiency 7.38% 37.36% 99.70%

mugrated to different processors. The total balancing time is larger than the balancing time for p-
refinement, since many more balancing phases are used as each mesh level is load balanced. Despite
the tiling overhead, we see an 80.3% improvement in the total execution time of the h-refinement
method.

3. Element redistribution by pairwise exchange
3.1. Redistribution

The element redistribution algorithm and its similarities and differences to the tiling procedure of
Section 2 are described through an example. Consider the unbalanced mesh distribution on eleven
processors as shown in Fig. 6(a). Let Gp(V E) be a partition graph with each vertex in V representing
a partition assigned to a processor and E representing the set of edges between partitions. Two
partitions u and v are connected by an edge (u,v) € E if they share a mesh edge, and not just
a vertex. By excluding vertex adjacency in Gp, the number of edges in E and, hence, the time to
communicate with adjacent processors is kept minimal during the load balancing phase. Additionally,
transferring elements between partitions that share only a vertex results in a higher surface to volume
ratio which increases communication cost. Fig. 6(b) shows the partition graph obtained from the
mesh distribution in Fig. 6(a). ’

Following Leiss and Reddy [25], a work load deficient processor will request work from its most
heavily loaded neighbor. As a result, a processor can receive multiple requests but can only request
load from one processor. This pattern of requests produces a load hierarchy and forms a forest of
trees T;, consisting of subgraphs of Gp, as shown in Fig. 6(c).

The proposed redistribution algorithm pairs the processors on each tree 7; and transfers load from
the heavily loaded to the lightly loaded processor of the pair. The pairing of processors is equivalent
to coloring the edges of each tree 7; with colors representing separate load transfer (communication)
cycles. The edge coloring approach synchronizes the load transfer between neighboring processors and
differs from tiling (cf. Section 2). With pairing, processors P, and P; of Fig. 6(b) would be engaged
with load transfer with only one neighbor at a single transfer step. With tiling, processors P, and P;
would receive and send work during the same transfer step. Tiling would be more efficient since load
transfer occurs in one direction only, i.e., from a heavily loaded to less loaded processor. Processors
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© (d)

Fig. 6. Unbalanced load in each partition (a), partition graph Gp (b), load request (c), load transfer between pairs in steps
0,...,3 (d).

P, and P; would be doing useful work packing elements to be transferred to their offspring while
their parents pack elements to be transferred to them. With pairwise exchange, coloring determines
the ordering of processor load transfers. Therefore, in this example, P; would first exchange load
with offspring Py corresponding to color 0. It would then exchange load with parent P, corresponding
to color 1 and during the third color cycle, exchange with Ps. The color cycles cause processors to
remain idle and, hence, reduce efficiency. However, this disadvantage is overshadowed by a number
of advantages. First, if unidirectional load transfers are done, the fewer messages per color cycle
may reduce network congestion and synchronous exchange of messages will increase communication
performance. Second, since processors are synchronized by pairs, a greater repertoire of selection
criteria can be used to decide which elements to transfer. Unlike tiling, where elements can only
be transferred from heavily loaded to less loaded processors, pairing allows transfers in the opposite
direction. This can be used to improve the surface to volume ratio (or communications volume)
of partitions. Since there is no explicit synchronization by edge coloring with tiling, a bidirectional
transfer of load would be extremely difficuit.

Fig. 6(d) shows the coloring phase used to pair processors. If 4(G) denotes the maximum vertex
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void redistribute (mesh, tol_imbalance, max_iters)

{

mypid = get_my_processor-id();
iter =0 ;
while (imbalance(mesh) > tol_imbalance && iter < maxiters) {

compute.neighboring_load_differences (mesh);

proc = neighbor_having_largest_load difference(mesh);
T = request_load_from_neighbor(proc, mesh);
determine_amount_of_load_to_send_or_receive(7, mesh);
set_up_links_to_linearize_tree(T);

color_tree(T);

for each color C {
if (processor_owns. color(C, mypid) &&
is-a_neighbor_of_color_pair(C, mypid, pair_processor))
transfer_load between_pair(mesh, mypid, pair_processor):
h
iter = iter + 1;

}

Fig. 7. Redistribution algorithm.

degree (number of edges incident on a vertex) in a graph G, then Vizing’s theorem [36] indicates
that G can be edge-colored using C colors with 4(G) € C < A(G) + 1. Special graphs, such as
trees, only need A(G) colors; therefore, A(T;) colors are required to color 7.

The main steps of the redistribute algorithm are illustrated in Fig. 7 and the detailed steps follow:

(D
(2)
(3)

(4)
(5)

(6)

The transfer of work between paired processors is iterated until the load on each processor
converges to a value close to the optimal balance (cf. Section 3.2).

Load differences are computed in A4(Gp) time by having each processor send and receive load
values to and from its neighbors. '

The Leiss and Reddy [25] load request process is used to construct the forest of trees
Ti. An edge of Gp is marked when a request has been made to indicate whether or not
it is a tree edge. Since the incoming requests for load should be sorted, this step takes
O(max,{4(T;) log A(T;) }) time.

Deciding the load to transfer to requesting processors is crtically related to the convergence
of the redistribution algorithm (cf. Section 3.2).

To facilitate efficient parallel scan operations on T}, each tree is linearized by establishing links
between neighboring processors. The links can be constructed by either an Euler Tour [22]
or a depth-first traversal [31] of the tree.

The linearized tree is edge-colored by employing a parallel scan operation. Since there can
be as many as A(T;) links on a processor, the scan operation using the Euler Tour links takes
O(max;{A(T;) log|Vi|}), where |V is the number of vertices in T,. A depth-first traversal
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stores two links per processor and, hence, enables a more efficient scanning step with time
complexity O(max;{log|Vi|}).

(7) One iteration of the edge-synchronized redistribution algorithm involves C steps corresponding
to the max;(4(T;)) colors.

(8) The elements to be transferred are selected. As with tiling, a cost reflecting the communication
and computational effort is. associated with partition-boundary elements. The element yielding
the smallest increase in communication cost is transferred.

3.2. Load transfer and convergence

Suppose a parent processor with load value L, has m load requesting offspring with load values
L,i=1,2,...,m, as shown in Fig. 8(a). Each offspring requests an amount r; which is equal to the
~ difference from its current load to the average of its load and that of its parent, 1.e.,

ri=[(Lo— L /2]. (3a)

The parent processor will send a total load to make its load become the average of the loads L,
i=0,1,...,m; thus,

oL,
to_send,y = Lo — li:’i 1 j (3b)

The parent determines the individual amounts to_send; to transfer to children in proportion to the
their load requests truncated to the nearest integer with the remainder distributed evenly, i.e., for

tosend; = min{r;, [to_sendm[ : —%—J + &:}, (3&)
v Zj:l ¥y
where
Cn . Yy
1, ifi<<t dor — > iy |1 ot - =—1>
5 = if i < tosendy — > 1y Lo_sen ot ijl er (3d)

0, otherwise.

The minimum prevents transferring loads greater than the requested load. In Fig. 8(b), we show
the load requests and grants for a sample subtree.

sender sender

receivers receivers

@ ®)
Fig. 8. Load request r; = 1,...,m from sender (a) and a transfer example (b).
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Leiss and Reddy [25] investigated convergence of the iterative load balancing algorithm without
limit cycles (indefinite repeated load transfer patterns). Let an H-neighborhood denote the neighbors
of a processor within a distance of H and 7 denote a load threshold value. If elements are taken as load
units, then 7 = 1. Also, let d be the diameter (the maximum of all the shortest paths between any two
nodes) of the processor graph, which, in the present case, is G. Finally, define an H-neighborhood
imbalance at time ¢ as the variance

GIMB}; = > (L; — a)*.

JES,

Here S, is the processor set for the H-neighborhood, and « is the H-neighborhood average load
value. Leiss and Reddy show that

(1) after a rebalancing iteration GIMBY' < GIMB:, and
(2) after balancing terminates, the maximum system imbalance is bounded by [dr/2H].

Their first result implies that the imbalance in the neighborhood and not necessarily in the whole
system reaches a minimum. The second result states that loading can be severely imbalanced even if it
is neighborhood-balanced. A worst-case example involves a configuration with P processors forming
a one-dimensional chain with each having a load that differs from its neighbor by unity, i.e., a load
ramp. If H =7 =1, then, since d = P, the imbalance after termination of the algorithm will be 1P
Increasing H to lP produces a global system balance; however, it requires each of the P processors
to send messages to the 1P H-neighbors and is, thus, impractical. In general, choosing H > 1 will
increase the commumcatlon volume and reduce the efﬁc1ency of the iterative balancmg algorithm.

To avoid this problem with Leiss and Reddy’s [25] approach while keeping H = 1, two modi-
fications are made to handle the case when the load difference between neighboring processors is
7. First, instead of considering Ly — L; = 7 as balanced, this procedure (and tiling) exchanges the
excess load (3a) even when GIMBY' < GIMB.,. Second, the previous exchange is stored to ensure
that excess load is not transferred back to the original processor, thus, preventing period two limit
cycles. This modification does not, however, avoid cycles of period greater than two.

Example 3.1. The iterative redistribution heuristic was tested on a MasPar MP-2 system which has
a torus-connected architecture and an SIMD style of computation. Up to 2048 processors were used
in the test cases with each processor having 64K bytes of memory. The MasPar system provides two
types of communication mechanisms. The xnetr mechanism provides a fast eight-way communication
between processors arranged in a mesh topology. The router provides a slower general-purpose
communication among any pair of processors. Since our applications involve unstructured meshes
with curved boundaries, the communication requirements between mapped partitions are irregular.
Hence, the slower router communication had to be used.

Four test cases involving meshes on square and irregular regions were run. Starting with a coarse
mesh, orthogonal recursive bisection [6] was used to get an initial partition. The partitioned mesh was
mapped onto the processors and refined selectively in parallel to create imbalanced processor loads.
The square mesh was refined in one corner to create a “plateau” of high loading. As neighboring load
transfers progress, the plateau evolves to the difficult ramp load distribution. In Table 3, we show
various statistics for the test cases. In squarel, a small mesh with 16 processors was employed. (cf.
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Table 3

Test cases for Example 3.1 and statistics before and after convergence to load balance

Test No. of No. of Avg. elements  Load (Min, Max) Max. boundary No. of Time
elements  processors  per processor edges iterations  (secs)

Before  After Before  After

squarel 164 16 10.25 2,32 7, 11 16 12 25 9.7

square2 32904 2048 16.06 16,52 16, 18 24 21 63 336

square3 33300 2048 16.25 16,52 16, 18 24 25 398 2149

curved 1008 32 31.5 18,47 31,32 22 25 25 123

35 Y T T T
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30 "average load” " 4
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iterations
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Fig. 9. Test squarel of Example 3.1: unbalanced load after mesh refinement (a), after redistribution (b), and convergence
history (c).
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Fig. 10. The mesh for tests square2 and square3 (a) of Example 3.1, and convergence histories (b) and (c), respectively.

Fig. 9). In square2 and square3, 2048 processors were employed with refinement occurring in 4 and
16 processors, respectively, of the upper right comner of the mesh as shown in Fig. 10(a). The final
test involved a highly unstructured mesh with a curved boundary (Fig. 11).

In Table 3, we list the average number of elements per processor, the maximum and mini-
mum loads, and the maximum number of edges located on the partition boundaries before and
after redistribution has been run until it converged to an optimal balance. Tests squarel, square2,
and curved show rapid convergence. Test square3, on the other hand, shows slow convergence
even though the number of elements and the maximum imbalance is similar to the square2 test.
Since a ramp evolves during redistribution, only a small load can be transferred from the highly
loaded to the less loaded processors. In the worst case of a one-dimensional ramp with a unit
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Fig. 11. Test curved of Example 3.1: initial coarse mesh partitioned by orthogonal recursive bisection (a), unbalanced mesh
after refinement (b), balanced mesh after redistribution (¢), and convergence history(d).

Table 4
Iterations and CPU times to achieve various percent reductions in imbalance for Example 3.1

Percent reduction in imbalance

Iterations Time (secs)
Test 50% 75% 90% 50% 75% 90%
squarel 4 5 10 52 5.7 7.6
square2 4 11 30 7.1 12.7 21.9
square3 13 29 98 28.6 47.7 92.8
curved 2 4 9 44 6.4 8.9

load difference between neighboring processors, only one element can be transferred per iteration.
Hence, the larger the excess load to be migrated from the plateau, the slower the convergence
of the redistribution algorithm. The average load and the distance the elements have to travel
is approximately the same in both the square2 and square3 cases. Since square3 has four times
the excess load of square2, we expect the number of iterations of square3 to be approximately
four times that of square2. The convergence histories, shown in Figs. 10(b) and 10(c), indicate
this. ‘

~The number of boundary edges, which represents the communications volume of a partition,
does not necessarily decrease after redistribution. Whereas tests squarel and square2 show a slight
reduction, square2 and curved show an increase in the number of boundary edges after balancing.
Hence, even though the redistribution algorithm reduces the load imbalance, the selection criteria
used for element migration does not guarantee a reduction of communication costs.

The convergence histories, shown in Figs. 9-11, exhibit a sharp decline in the imbalance within the
first few iterations and a slower rate in subsequent iterations. We further demonstrate the performance
of the procedure by listing, in Table 4, the number of iterations and the CPU time required for a
50%, 75%, and 90% reduction in the original imbalance. Since higher percentage reductions require
far more iterations, a trade-off can be established between the time to do a computation with an
imbalanced load and the time needed to achieve further reductions in imbalance. As a result, the
redistribution process can be halted prior to convergence.
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Fig. 12. A quadtree representation of the flow field surrounding an object (a), division of terminal quadrants into triangular
elements (b), and the quadtree structure (c).

4. Octree-based partitioning

Special data structures used by the adaptive solution strategy may be exploited to improve par-
allel performance relative to the general-purpose partitioning techniques described in the previous
two sections. In particular, we propose a tree-based partitioning algorithm that uses the hierarchical
structure of octree-derived unstructured meshes to distribute elemental data while reducing informa-
tion exchange between processors. An octree-based mesh generator [29] recursively subdivides an
embedding of the problem domain in a cubic universe into eight octants wherever more resolution is
required. Octant bisection is initially based on geometric features of the domain but solution-based
criteria are introduced during adaptive h-refinement. Finite element meshes of tetrahedral elements
are generated from the octree by subdividing terminal octants. 7

In Fig. 12, we illustrate a tree and mesh for a two-dimensional flow domain containing a small
object. The root of the tree represents the entire domain (Fig. 12(c)). The domain is recursively
quartered until an adequate resolution of the object is obtained (Fig. 12(a)). A smooth gradation 1s
maintained by enforcing a one-level maximum difference between adjacent quadrants. After obtaining
adequate resolution, leaf quadrants are subdivided into triangular elements that are pointed to by
leaf nodes of the tree (Figs. 12(b) and (c)). Quadrants containing the object are decomposed
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using the geometry of the object. Smoothing [29], which normally follows element creation, is not
shown.

Our tree-based procedure creates a one-dimensional ordering of the octree and partitions it into
nearly equal-sized segments based on tree topology. Initially, a cost metric is determined for all
subtrees. Cost is currently defined as the number of elements within a subtree. For a leaf octant,
this would simply be the number of tetrahedra associated with it. P-refinement would likely use the
elemental degrees of freedom as a cost metric. If the solution algorithm employs spatially-dependent
time steps then, typically, a greater number of smaller time steps must be taken on smaller elements
and this must also be reflected in the subtree cost. In any event, appropriate costs may be determined
by a traversal of the octree.

With the total cost available from the initial phase and the number of partitions prescribed, the
optimal partition size is also known. Partitions, consisting of a set of octants that are each the root
of a subtree, are determined by a truncated depth-first search. Thus, octree nodes are visited and
subtrees are accumulated into successive partitions. The subtree rooted at a visited node is added to
the current partition if it fits. If it exceeds the optimal partition size, a decision must be made to
add it or to continue the traversal. In the latter case, the traversal recursively visits the offspring of
the node and may divide the subtree among two or more partitions. The decision to add the subtree
or continue the traversal is based on the amount by which the optimal partition size is exceeded. A
small excess may not justify an extensive search and may be used to balance another partition that is
slightly undersized. When the excess is too large to justify inclusion in the current partition, and the
node is either terminal or sufficiently deep in the tree, the partition is closed and subsequent nodes
are added to the next partition.

This partitioning method requires storage for nonterminal nodes of the tree that would normally not
be necessary since they contain no solution data. However, only minimal storage costs are incurred
since information is only required for tree connectivity and the cost metric. For this modest investment,
we obtain a partitioning algorithm that only requires O(J) serial steps.

Partitions formed by this procedure do not necessarily form a single connected component; however,
the octree decomposition and the orderly tree traversal tend to group neighboring subtrees together.
Furthermore, a single connected component is added to the partition whenever a subtree fits within
the partition. :

A tree partitioning example is illustrated in Fig. 13. All subtree costs are determined by a post-order
traversal of the tree. The partition creation traversal starts at the root, Node 0 (Fig. 13(a)). The node
currently under investigation is identified by a double circle. The cost of the root exceeds the optimal
partition cost, so the traversal descends to Node 1 (Fig. 13(b)). As shown, the cost of the subtree
rooted at Node 1 is smaller than the optimal partition size and, hence, this subtree is added to the
current partition, Py, and the traversal continues at Node 2 (Fig. 13(c)). The cost of the subtree
rooted at Node 2 is too large to add to Py, so the algorithm descends to an offspring of Node 2 (Fig.
13(d)). Assuming Node 4 fits in Py, the traversal continues with the next offspring of Node 2 (Fig.
13(e)). Node 5 is a terminal node whose cost is larger than the available space in P,, so the decision
is made to close P and begin a new partition, P;. As shown (Fig. 13(f)), Node 5 is very expensive,
and when the traversal is continued at Node 3, P, must be closed and work continues with partition
P 2. ‘

Our partitioning algorithm is similar in spirit to that of Farhat’s automatic finite element decomposer
[15]. Farhat essentially performs a breadth-first search of the mesh, accumulating elements into
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Fig. 13. A tree partitioning example. The partition creation traversal starts at the root (a). Nodes are visited and added to
the current partition if their subtree fits (b). When a subtree is too large to fit (c), the traversal descends into the subtree
(d). Alternatively, the partition is closed and work begins on a new partition (e). The process continues until the traversal
is complete (f).

partitions. Subdomains are accumulated during the search, and each is closed in turn when its
cardinality reaches the number of elements divided by the number of processors. This is directly
analogous to closing partitions in the tree algorithm. Likewise, subdomains (partitions) may be
multiply connected. The similarity, however, ends with the hierarchical nature of the tree traversal.
With the large-scale information available at each tree node, larger and more compact spatial regions
may be added to a partition; thereby, reducing the likelihood of creating thin partitions having large
surface areas.

The tree traversal partitioning algorithm may easily be extended for use in a parallel adaptive
environment. An initial partitioning is made using the serial algorithm described above. When a new
partitioning is needed due to adaptive enrichment, each processor computes its subtree costs using
the serial traversal algorithm within its domain. This step requires no interprocessor communication.
An inexpensive parallel prefix operation may be performed on the processor-subtree totals to obtain a
global cost structure. This information enables a processor to determine where its local tree traversal
is located .in the global traversal.

Now, following the serial procedure, each processor may traverse its subtrees to create partitions.
A processor determines the partition number to start working on based on the total cost of processors
preceding it. Each processor starts counting with this prefix cost and traverses its subtrees adding
the cost of each visited node to this value. Partitions end near cost multiples of N/P, where N is
the total cost and P is the number of processors. Exceeding a multiple of N/P during the traversal
is analogous to exceeding the optimal partition size in the serial case and the same criteria may be
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Fig. 14. Iterative rebalancing of tree-based partitions. The subtree rooted at Node 4 (a) has been shifted from P, to P, (b)
to relieve a load imbalance. The new root of P; is Node 2, the common parent of Nodes 4 and 5.

used to determine where to end partitions. When all processors finish their traversals, each subtree
(and its associated data) is assigned to a new partition and may be migrated to its new location.
Migration may be done using global communication; however, on some architectures, it may be more
efficient to move data via simultaneous processor shift operations. This linear communication pattern
is possible due to the one-dimensional nature of the partitioning traversal.

While the cost of computing the new partition is small, the cost of data movement is likely to be
high and it would be desirable to amortize this by tolerating small imbalances. A strategy to delay
the need for complete repartitioning would simply shift partition boundaries, thus, migrating subtrees
from a processor P, to its neighbors P,_; and P,.1. If, for example, processor P, seeks to transfer
cost r to P,_y, it simply traverses its subtrees accumulating their costs until it reaches r. The nodes
visited comprise a subtree which may be transferred to P,_, and which is contiguous in the traversal
with the subtrees in P,_;. Likewise, if P, desires to transfer work to P,.1, the reverse traversal could
remove a subtree from the trailing part of P,. Consider, as an example, the subtree rooted at Node
4 of Fig. 14(a) and suppose that its cost has increased through enrichment. In Fig. 14(b), we show
how the partition boundary may be shifted to move the subtree rooted at Node 4 to partition P,.
The amount of data to be moved between processors may utilize the tiling or pairwise exchange
procedures discussed in Sections 2 and 3, respectively.

Example 4.1. Performance results obtained by applying the tree-based partitioning algorithm to var-
ious three-dimensional irregular meshes are presented in Figs. 15 and 16. The meshes were generated
by the finite octree mesh generator [29]. “Airplane” is a 182K-element mesh of the volume sur-
rounding a simple airplane [13]. “Copter” is a 242K-element mesh of the body of a helicopter [13].
“Onera”, “Onera2” and “Onera3” are 16K-, 70K-, and 293K-element meshes, respectively, of the
space surrounding a swept, untwisted Onera-M6 wing which has been refined to resolve a bow shock
[14]. “Cone” is a 139K-element mesh of the space around a cone having a 10° half-angle and which
also has been refined to resolve a shock.

The quality of a partition has been measured in Fig. 15 as the percent of element faces lying
on inter-partition boundaries relative to the total number of faces of the mesh. The graph displays
these percentages as a function of the optimal partition size. In all cases the cost variance between
the partitions is very small (about as small as the maximum cost of a leaf octant). The proportion
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Fig. 15. Global performance measure of the tree partitioning aigorithm on the five meshes of Ex:

is, in a sense, the total surface area that partitions hold in common. Smaller ratios require less
communication relative to the amount of local data access. This measure is closely related to the
number of “cuts” that the partition creates [20,24,30]; however, we have chosen to normalize by
the total number of faces in order to compare partition quality over a wide range of mesh sizes and
number of partitions. :

The data of Fig. 15 show the expected behavior that the interface proportion approaches zero
as the partition size increases (due to the number of partitions approaching unity). Conversely, as
the optimal partition size approaches unity (due to number of partitions approaching the number of
elements), the interface proportion goes to unity. The interface proportion is less than 12% when the
partition size exceeds 1000 for these meshes. Interfaces drop to below 9% and 8%, respectively, for
partition sizes of 2000 and 3000. This performance is comparable to recursive spectral bisection [23]
but requires much less computation (O(J) as opposed to O(J%) [26]).

The best performance occurred with the helicopter mesh, which was the only mesh of a solid object
(as opposed to a flow field surrounding an object). The solid can easily be cut along its major axis
to produce partitions with small inter-partition boundaries, and was included for generality. While
still reasonable, the lowest performance occurred with the cone mesh. This is most likely due to the
model and shock region being conically shaped, which is somewhat at odds with the cubic octree
decomposition.

In general, inter-partition boundaries should be less than 10%, indicating partition sizes of 2000 or
more. This minimum partition size is not an excessive constraint, since a typical three-dimensional
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Fig. 16. Local performance of the tree partitioning algorithm on the five meshes of Example 4.1.

problem employing a two-million-element mesh being solved on a 1024-processor computer would
have about 2000 elements per processing element.

Another measure of partition quality is the percent of a partition’s element faces lying on inter-
partition boundaries relative to the total number of faces in that partition. This is shown in Fig. 16.
This number is, in a sense, the ratio of surface area to volume of a partition. For our example meshes,
this measure was below 22% and 18%, respectively, for partition sizes of 1000 and 1500.

In Fig. 17, we show partitions of several of the meshes introduced in this example. The partitions
exhibit a blocked structure; however, several partitions of the airplane mesh appear to be made up of
disconnected components. It is possible, though unlikely, that a partition not be connected. However,
in this case the partitions only appear to be disconnected because the display is a two-dimensional
slice through the three-dimensional domain.

Example 4.2. In Fig. 18, we show the pressure contours of a Mach 2 Euler flow past the “Cone” mesh
of Example 4.1. The solution employs the discontinuous finite element scheme [5, 8-10] with van
Leer’s flux vector splitting [32] and was computed on a Thinking Machines CM-5 computer with 128
processors. Several h-refinement steps were required to yield this mesh. At each iteration, elements
were marked with the desired tree level (either larger for refinement, or smaller for coarsening),
and a new global mesh created to satisfy these constraints. The shock surface and pressure contours
are shown above; below are examples of how the mesh may be partitioned for 16 and 32 processor
machines.
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Fig. 17. The airplane mesh, and three refinements of the Onera M6 wing mesh, all divided into 32 partitions. Colors denote
partition membership. ‘

5. Discussion

We have described partitioning strategies that are appropriate for load balancing parallel distributed- ;
memory computation with adaptive s- and p-refinement techniques for partial differential equations.
Tiling performs local balancing within overlapping neighborhoods and we demonstrate its effective
performance by using it with a local finite element technique [1,8-11] to solve two-dimensional



Fig. 18. Shock surface and pressure contours found when computing the Mach 2 flow past a cone having a half-angle of
10° (top). Partitions of the mesh into 16 (left) and 32 (right) pieces (bottom). Colors in the top figures denote pressure
levels while those of the bottom figures denote partition membership.

systems of conservation laws by adaptive A- and p-refinement. The next step involves combining the
h- and p-refinement procedures to develop an /p-refinement algorithm. When used with hyperbolic
systems, A-refinement would be used near discontinuities while p-refinement would be used in regions
of smooth flow. Appropriate combinations of - and p-refinement at discontinuities, such as the 1:15
ratio used with elliptic problems [18], may, however, provide superior performance.
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Pairwise exchange extends tiling to unstructured meshes and provides a means for controlling
communications volume through bidirectional migration. This procedure is being implemented on
an MIMD computer and development and testing will continue using three-dimensional problems in
biomechanics and compressible flow as examples.

Octree-based partitioning provides an effective and efficient partitioning strategy that may either be
used in conjunction with octree mesh generation [29] or on its own, by the inexpensive construction of
an octree from an existing mesh. Parallel partitioning techniques and incremental migration strategies
for use with adaptivity are being developed. It should also be possible to combine octree partitioning
with other strategies to provide additional control of communications volume. For example, octree
decomposition could be used to provide a course partition that could be continued with recursive
spectral bisection [26]. Recursive spectral bisection at terminal tree nodes may be parallelized [24],
it costs less than a global application because of the smaller partition domains and its nonlinear
complexity, and it is more effective on smaller regions [23].

Theoretical issues associated with each algorithm must be investigated. Convergence under iteration
of either the tiling or pairwise exchange migration strategies must be established, as must the avoidance
of limit cycles.

Comparisons between methods are essential; however, the three techniques described herein are
under development and are not finished products. Software is being developed with portability in
mind and, with aims of unifying our research effort and performing explicit comparisons, we find
ourselves heading for a message passing environment using the Chameleon protocol [17].
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