REPAS — Rensselaer Electronic
Packaging Analysis Software

Programmer’s Manual

M. Beall
A. Garg
R. Garimella
R.B. Iverson
Y.L. Le Coz
B.-J. Lwo
T.-L. Sham
M.S. Shephard
L.-Y. Song

V.S. Wong

Rensselaer Polytechnic Institute,
Troy, NY 12180-3590

April 28, 1994

Contents

1 Introduction o e e e e 1
1.1 Analysis Components 1
1.2 Analysis Model Generation and Integration of Analyses 2
1.3 Software system 3
1.4 Note for Programmers oo oo v i it i e i e v oo e 5
1.5 Conventions . . . v v vt i i e e e 6

2 SCOREC Attribute Manager —SAM 7
2.1 Global and Local Attribute Retrieval Operators 8

2.1.1 General information retrieval — AT_gtmoname 8
2.1.2 Global Attribute Retrieval — AT_gtvalgbl 8
2.1.3 Local Attribute Retrieval Operator — AT_gtvalocal . . . 24

3 Preprocessing — REPASpre 29

3.1 Physical ModelBuilding o o 30
A1 Approach oo e 30
312 DataStructure e 34

3.2 Global Model Building e 35
321 Approach oot e e 37
322 DataStructure o e 45

4 Global Heat Conduction Analysi's 48
4.1 Description and Algorithmot 48
42 Source Code v i e 49

4.2.1 Global Heat Conduction Analysis 49

4.2.2 Global Heat Conduction Interface Routines 49

T 43 Inputand OUIPUL . oo v vt e 50
431 Inputfrom SAM 50

4.3.2 Dimension Parameters 52

433 0UtpUt. .. v i e e 52

4.4 Global Heat Conduction Interface Procedure. 53

4.4.1 Output from Global Heat Conduction Interface

Procedurev..... e Ce.oB4

ii

45 CompilingandLinking oo i 54

4.6 Global Heat Conduction Post-Processing 54
4.7 Replaceability of module with an equivalent module 57

5 Global Thermal Stress Analysis 59
5.1 Description and Algorithm 59
52 SourceCode. i e e 59
53 InputandQutput e e 60
5.3.1 Global Heat Conduction Interface Input 60

5.3.2 Inputfrom SAM e e e e 60

5.3.3 Dimension Parameters 61

5.3.4 0Utput e 62

5.4 Interface Procedure0 62
5.5 CompilingandLinkingo 63
5.6 Post-processing. F 63
6 Local Heat Conduction Analysis 65
6.1 Overview/Description 65
B2 INPUL . . o vt e e 67
6.3 0UPUL. . ..o e 68
6.4 Compiling. PSS 68
7 Local Thermal Stress Analysis 69
7.1 OVEeIVIEBW . . o it e e ... 69
7.2 Building a manifold geometric model of the MCM — gmodloc 69
7.2.1 Description and algorithm. P R 69

7.2.2 Important modules/lib_raﬁes. e 75

7.2.3 Input/Output e e e e e e 75

724 Compiling.o v i e e 75

7.2.5 Software Limitations P]

7.2.6 Replaceabilityot 76.

iii

7.3 Non-manifold Modeling and Finite Octree Mesh Generation —
paroct_nonman_batch

7.3.1 Description of non-manifold modeling procedures
7.3.2 Automatic mesh generation — Finite Octree
7.3.3 Important modules/libraries,
734 Input/Output
735 Compiling. . v v o e
7.3.6 Software Limitations
7.3.7 Replaceability 0L

7.4 Reassociating attributes with the non-manifold model —
FEasSatD . . . i e e e e

7.4.1 Description and Algorithm
7.4.2 Important modules/libraries
7.43 Input/Qutput o
744 Compiling. o
7.4.5 Software Limitations
7.4.6 Replaceability e
7.5 Analysis Interface Manager —AIM.
7.5.1 Description and Algorithm
7.5.2 Description of important
sub-modules/subroutines/libraries
753 Input/output o e
7.5.4 Interfaceto othermodules
7.5.5 Compiling/linking with other modules
7.5.6 Replaceability of module with an equnvalent module ..
7.6 Finite Element Analysis —ABAQUS
' 7.6.1 Description e
7.6.2 Description of User Subroutines
7.6.3 Inputfoutput e
7.6.4 Compiling and Linking
7.6.5 Software Limitations
7.6.6 Replacement of Analysis Module e 7

v

7.7 ERREST — A Posteriori Error Estimation. 90

7.7.1 Description and Algorithm +.. 90
7.7.2 Description of Important Subroutines 90
773 Input/Output 91
7.7.4 CompilingandLinking. 91
7.7.5 Software Limitations 92
7.7.6 Replacement of Error Estimation Procedure 92

7.8 Adaptive Local Remeshing — adaptm_nonman_parasol ... 92
7.8.1 Description. B 92
782 InputandOQutput L 92
7.8.3 Compilingand Linking. 93
7.8.4 Replacing the local remeshing module 93

7.9 CIFParser i e e e 93
8 MCM Router and Electromagnetic Analysis 95
8.1 OVBIVIBW . v . i ittt e e e e 95
82 MCMRoutingOverview, 95
8.3 Electromagnetic Analysis Overview 96
8.4 Extractor e e 96

Bibliography S 104

1 Introduction

1.1 Analysis Components

The analysis of MCMs requires a system of carefully coordinated software
to perform thermal, thermomechanical and electromagnetic analyses. The Rens-
selaer Electronic Packaging Analysis Software (REPAS) is a seamlessly inte-
grated system of thermal and thermomechanical analysis procedures for MCMs,
with an interface to an electromagnetic analysis capability.

Since MCMs are highly complex structures with a large number of individual
components in terms of wires, vias, etc., it is not practical to fully represent
each of these entities in a thermal or thermomechanical analysis of the entire
interconnect. At the same time, the local geometric details of these entities are
critical to the prediction of the conditions under which a failure will occur. To
address these problems, the thermal and thermomechanical analysis procedures of
REPAS employ a global/local solution methodology where a global analysis is first
performed on an idealized model to provide the boundary condition information
needed for a local analysis which includes the geometric details of all the entities
in that region [27].

Both the global thermal and thermomechanical analysis are performed using
a unique variational technique [25, 31] which operates on a layered representation
of the interconnect. The properties for each layer of the interconnect are deter-
mined based on the volume fraction of the wires using an averaging procedure
appropriate for that analysis procedure. Since there are differences in the tech-
niques required to successfully implement the variational approach for the thermal
and thermomechanical analysis, separate software modules have been developed
for them.

The local heat conduction analysis in REPAS is performed using a highly
efficient stochastic algorithm for solving Laplace’s equation [19]. The algorithm
is based on the floating random-walk method [4, 11]. Briefly put, the algorithm
solves the Laplace equation on a scalable cubic domain, subject to arbitrary
Dirichlet conditions. A boundary-integral solution is found, from which an
integral for temperature at the domain center is obtained. This integral is expanded
as an infinite sum, and probability rules that statistically evaluate the sum are

deduced. These rules define the algorithm, yielding temperature at a specific

point within the windowed local heat conduction domain. The Dirichlet boundary

1

conditions are obtained from the global heat conduction analysis over the window
boundary.

REPAS performs local thermomechanical analysis using adaptive finite ele-
ment techniques including the possibility of nonlinear material behavior. Since
there are a number of effective commercial finite element analysis codes, this
capability employs the ABAQUS [12] nonlinear finite element code as the basic
analysis engine. User defined extensions have been added to ABAQUS through
its user routine capability to support specification of a temperature distribution.
The finite element mesh is generated using the Finite Octree automatic mesh gen-
erator [28] developed at Rensselaer. To ensure the accuracy of the finite element
analysis, it is run adaptively using an error estimation procedure to predict the
required mesh refinements which are then carried out using the functionalities of
the automatic mesh generator.

To support the electromagnetic analysis needs, the MagiCAD [24] program is
linked with this software system. It is used after routing to ensure that the critical
nets are performing within the noise and time specifications.

1.2 Analysis Model Generation and Integration of Analyses

Each of the REPAS analysis procedures requires a discretization of the domain
of the MCM with the appropriate analysis attributes associated with that discretiza-
tion. The form of the discretization, and the techniques used to define it depends
on the analysis procedure being used. For each analysis type the discretization
process must begin with the information in the CIF (Caltech Intermediate For-
mat) file. In some cases, the discretization is constructed directly from the CIF
file, while in others the information in the CIF file is used to construct a more
appropriate geometric definition which is then discretized. Since CIF can be used
only for description of 2-D geometry, it is supplemented by additional geometry
information in an attribute file for building of the discretizations.

REPAS contains different model building procedures to construct appropriate
analysis models for the two thermal and two thermomechanical analyses [30]. The
model building procedures provide the global analyses with a layered description

of the MCM with averaged material properties for the interconnect layers, ideal- .

ized solder bump information and chip layout on the top surface of the MCM.

The local thermal analysis is provided with a discretization where the conduc- -
tors within the region of the analysis are represented as rectangular prisms. For = = -~

2

local thermal stress analysis, information in the CIF and attribute files is used
to construct a 3-D non-manifold geometric model of the local region using the
Parasolid solid modeler and proper extensions to support the non-manifold rep-
resentation. Finite Octree is then used to generate a mesh for this model. The
mesh and analysis attributes together form the finite element analysis model for
local thermal stress analysis.

The construction of consistent discretizations for the different analyses, and
storage and retrieval of the various model and analysis data is enabled by
a generalized attribute manager, SAM (SCOREC Attribute Manager). The
attribute manager allows for specification of analysis information, organization
of such data in a hierarchal manner and association of this information with the
different discretizations. The above functions also facilitate transfer of information
between analyses.

1.3 Software system

REPAS is made up of a set of programs, in-house and commercial, and
scripts seamlessly integrated to perform automated thermal and thermomechanical
analysis of MCMs with the capability of performing electromagnetic analysis on
MCM designs. Figure 1 shows the groups of software and their interactions.

The electromagnetic analysis, done by the MagiCAD software from Mayo
Foundation [24], is a stand-alone program and draws only from the CIF file
augmented with some user extensions. The rest of the software (consisting of the
preprocessor, and the heat conduction and thermomechanical analyses) is run by
a shell script. This script in turn calls other shell scripts or programs to perform
the different analyses. The preprocessor is a stand-alone program which does
the input processing and the global model building. The global heat conduction
analysis is a single program executed by a simple script which performs some
file checks before execution. The global thermal stress analysis consists of three
programs, each program performing one step of the analysis. They are executed
by a shell script similar to the global heat conduction analysis script. The local
heat conduction analysis is performed by single program. The local thermal stress
analysis consists of 8 programs to build the local geometric model and perform
an adaptive finite element analysis. They are managed by a shell script which
automatically executes the adaptive loop until the solution has converged.

In contrast to the other software components, SAM is a library of functions
that all programs requiring model information not in the CIF file must call. The
preprocessor invokes SAM, and stores model and attribute information in the SAM
database. When the preprocessor finishes building all the required attributes, it

MCM Design

A

; CIF, Attribute files
|
: |
Information \
Management Electromagnetic|
System Analysis -
(SAM) y
B Global
T ”| Heat Conduction
| Analysis
|
% Y : ‘ y
g Local Global
"+ ~™ Heat Conduction | |Thermomechanical
i Analysis Analysis
|
S >
|
|
: A\ Y
: Local
i » Thermomechanical
‘ Analysis

Y

Figure 1. Overview of software functional groups and their interactions

4

Design Improvements

asks SAM to write out its information onto disk. In each subsequent program
that requires attribute information, the SAM database is setup from the disk files
and queries made to SAM for the required information. Only local stress model
building procedures modify attribute information contained in SAM apart from
querying it.

In addition to the software described above, some of the individual analyses
use software libraries (commercial, in-house and public domain) for their pur-
poses. These are described in individual sections or referenced.

1.4 Note for Programmers

This manual is intended for programmers who would like to incorporate new
capabilities into the REPAS software or make changes to its modules to tailor
it to their own needs. Some familiarity with the concepts and use of REPAS
software is assumed, although the programmer’s information is supplemented by
brief explanations of related concepts and references where details may be found.

Although, REPAS is made up of a large number of components, special
care was taken in the design of the system, to allow for easy replaceability of
components with equivalent modules. To this end, all software descriptions in
this manual discuss the replaceability of that module and the changes required
in the other modules. Often, the replacement of a procedure by an equivalent
procedure affects its interface to only the preceding and subsequent modules in
the execution sequence. Much of the REPAS code has also been designed for
replaceability of individual operators or functions.

REPAS was developed by multiple groups concurrently working on different
aspects of the project and involves a wide variety of software, some of which
were developed afresh while others were used as is or adapted for this task. Due
to this, source codes and scripts are written in a variety of languages, including
FORTRAN, C and C++. Thus, in spite of the specific considerations given to the

ease of the task of modifying REPAS, considerable familiarity with programming

in the relevant languages and the technical details associated with the procedures
is necessary for making major changes to the software. The programmer will

be aided in this by the numerous citations throughout the text and by the other

manuals accompanying this package.

The rest of this manual contains a description of the SCOREC Attribute = '
Manager, the input processor or preprocessor, the global and local heat conduction - -

analyses, the global and local thermal stress, and the electromagnetic analysis.
Each section contains (where applicable) a short description of the functionality
of the component, description of important modules or subroutines, the input and
output procedures, instructions for compiling the module and discussion of issues
in replacing the module.

1.5 Conventions

|
a

Ooon

Filenames and path names are specified in bold letters.

bold-italic portions of filenames must be substituted by an appropriate string,
e.g., if one is working with a-model xyz, the file referred to in the text as
modelname.cif refers to the file xyz.cif.

When described, variables of procedures are listed in italics.

Pseudo-code is presented largely in computer listing style.

Shell commands that must be executed are presented in com-
puter listing style.

$NAME refers to a path variable that is site specific. In particular,
$REPAS_HOME is the top level directory in which the REPAS software
resides.

2 SCOREC Attribute Manager — SAM

The SCOREC Attribute Manager (SAM) provides the framework for seamless
integration of the analyses. This is done by providing a generalized mechanism
for storing analysis attributes, maintaining associativities between attributes and

models, and coordinating inter-analysis information exchange. The salient features
of SAM are:

1. Tensorial specification of attributes independent of analysis type.

2. Mechanism for description of complex distributions (like non-uniform loads)

3. Ability to maintain associativity of attributes with any type of model (geo-
metric or idealized).

4. Generalized organizational structure

5. Operator driven interface to the analyses

In the context of REPAS, SAM is used to build up attribute definitions, store
them and answer analyses procedure queries about the analysis attributes. A
preprocessor (Chapter 3) reads in the input files required for REPAS and builds
up the attribute definitions, organizes them and associates them with the global
idealized models.

Although SAM has a number of low level operators that can be used to retrieve
this information, the task of retrieving information is made simpler for the analyses
by two higher level operators, AT_gtvalgbl and AT_gtvalocal. AT_gtvalgbl is
used by the two global analyses and AT_gtvalocal, by the two local analyses.
The operators take as input the name of the analysis that is making the query,
description of the type of information it is asking for (physical dimensions or
material properties) and the layer number (or name) or spatial location for which
this information is needed. Using input constructed from this information, these
operators call an information retrieval operator of SAM and then output the
retrieved data in a form that can be understood by the calling analysis.

Only the local stress analysis procedures modify the attribute database in

addition to querying it. This is required since the attributes on the geometric .

model must be derived from the CIF layer attributes and associated with the

appropriate topological entities. The creation and association of the local model = .-

attributes is done through direct calls to SAM operators.

7

If any of the analyses require information in a form other than what is
provided, these two operators may need to be appropriately reprogrammed. This
requires familiarity with the design of SAM and syntax of SAM operators. The
programmer is advised to refer to the appropriate SAM documents [33] for this
information.

2.1 Global and Local Attribute Retrieval Operators

2.1.1 General information retrieval — AT_gtmoname

All the REPAS procedures use the model name (specified in the file
epii.model) as a basename to build file names from. To get the model name,
the operator AT_gtmoname (modelname) is called, where modelname returns a
character string of the name. Each analysis uses a unique extension to this name
for its own output files.

2.1.2 Global Attribute Retrieval — AT_gtvalgbl

Global analyses use the operator AT_gtvalgbl to retrieve information about
the global idealized model. This routine can be called directly from FORTRAN.
It returns a list of values based on the particular layer or spatial coordinate, the
‘type of attribute requested, and the specific attribute requested. The syntax of
this operator is given below. The convention followed in describing these two
operators is as follows

* bold = operator name

* CAPS = input

* italics = output

» ITALICS-CAPS = input may be modified and returned as output

AT _gtvalgbl (ANALYSIS_NAME, LAYER_NAME, ATTR_TYPE,
ATTR_NAME, MAX_ARRAY_SIZE, RFLAG, returned_values, value_specs,
number_returned)

0 ANALYSIS_NAME: character string :
/* The type of analysis calling the operator. For global thermal,
ANALYSIS_NAME should be “gt” while it should be “gs” for global stress.

8

O LAYER_NAME: character string
/* The name of the physical layer of which the information is being
requested, e.g., “layerl,” “layer2,”... etc. (see REPAS User’'s Manual [22]
for a definition of a physical layer). The layers are numbered, from the bottom
up, consecutively starting with one, ie., “layerl.” If the information of the
chips is requested, one can use, for LAYER_NAME, “chipl,” “chip2,” ... etc.
“layer0” is used to store information that pertains to the entire MCM and not
to a particular layer. For more information on the global idealized model,
refer Section 3.2.
O ATTR_TYPE: character string
/* This specifies the type of the attribute being queried. The pos-
sible options are: “physical_dimensions,” “material_properties,” “bound-
ary_condition,” and “layout_info.” For global stress analysis, an additional
option is “initial_condition”. Depending on what information is needed, the
appropriate character string should be used.
O ATTR_NAME: character string
[* The identification of the attribute. See description of valid inputs later
in this section for details. For example, some possible options are “thickness,”
“stiffness,” and “‘therm_expan.”
O MAX_ARRAY_SIZE: integer
[* This number is the maximum size allocated for the arrays “re-
‘turned_values” and “value_specs.” If the amount of data retrieved exceeds
the maximum array size, only the first MAX_ARRAY_SIZE data is returned.
Therefore it is important to allocate enough space for the desired values.
O RFLAG: integer
/* An integer flag that tells how many total remaining attributes can be
retrieved. An input of zero will mean that the calling routine will not retrieve
the remaining attributes. For example, this is useful when the calling routine
wants to retrieve the stiffness coefficients of a physical layer where this layer
contains two materials. With the first call to AT_gtvalgbl(), “returned_values”
will contain the stiffness coefficients of one of the two materials, with RFLAG
indicating there is one more material left. If after this first call to AT_gtvalgbl()
RFLAG is not set to zero as input, a subsequent call to AT _gtvalghbl() will |
retrieve the stiffness coefficients of the second material, with RFLAG being
returned as zero to indicate there is no more stiffness coefficients to retrieve.
If at the first call to AT_gtvalgbl() RFLAG was already set to zero as input,

9

however, the stiffness coefficients of the second material cannot be retrieved
with a subsequent call to AT _gtvaigbl().
O returned_values: double precision array
/* The values of the particular attribute are returned here. For example,
attribute of thickness will return in the order of z_min and z_max. The stiffness
coefficients are returned as Cyj, Cpz, Cy3, ..., Cyj, ..., Cjj. If the attribute
is spatially dependent and the spatial coordinates are not supplied, spatial
coordinates of (0, 0, 0) are used.
O value_specs: integer array
/* The contents of this array will indicate whether the corresponding
position of the returned_values is defined or not. The content of “1” will
mean that it is specified, while a content of “0” means it is not specified.
For example, say a boundary condition of zero displacement only along the 7
direction is to be specified. Even though the boundary condition along the x
and y directions are not specified, what is returned in the returned_values array
is [0.0, 0.0, 0.0]. The corresponding value_specs are [0, 0, 1]. The zeros in
the first two slots of value_specs indicate that the zeros in the first two slots of
returned_values are meaningless and should be ignored. Therefore, this should
always be checked before a value in returned_values is used.
O number_returned: integer
/* The total number of values returned.

The following is a list of possible inputs to AT_gtvalgbl and the expected
outputs

1. For heat transfer coefficients:
ANALYSIS_NAME = gt for global thermal
LAYER_NAME = chipl, chip2, ..., or layerl
ATTR_TYPE = boundary_condition
ATTR_NAME = heat_trans
MAX_ARRAY_SIZE = maximum size allotted for the arrays
RFIAG = 0, since there is only one to get
returned_values{1] = 1, if convective heat transfer
2, if constant temperature
3, if zero flux
returned_values[2] = 0, if constant temperature or zero flux
non-zero number as convective heat transfer coeffi- -

10

cient if boundary condition is convective heat transfer

returned_values[3] = n, n is the reference temperature if the b.c. is con-
vective heat transfer, if it is constant temperature b.c., then n is the constant
temperature.

value_specs[1],[2] = (1, 1), if the data is correct.

number_returned = 3

2. For number of chips:
ANALYSIS_NAME = gt for global thermal, gs for global stress
LAYER_NAME = layer0
ATTR_TYPE = layout_info
ATTR_NAME = nchips
MAX_ARRAY_SIZE = maximum size allotted for the arrays
RFLAG = 0, since there is only one to get
returned_values[1] = n, where n is the number of chips.
value_specs[1] = 1 if the data is correct.
number_returned = 1

3. For coordinates of the center the n't chip:
ANALYSIS_NAME = gt for global thermal, gs for global stress
LAYER_NAME = chipn, where “n” is the chip number
ATTR_TYPE = layout_info
ATTR_NAME = chip_center
MAX_ARRAY_SIZE = maximum size allotted for the arrays
RFLAG = 0, since there is only one to get
returned_values{1],[21,(31 = (x, ¥, 2)
value_specs[11,[21,[31 = (4, 1, 1) if the data is correct.

© number_returned = 3

4. For the distribution of area of vias under the n® chip to each physical layer:
ANALYSIS_NAME = gt for global thermal and gs for global stress
LAYER_NAME = chipn, where “n” is the chip number
ATTR_TYPE = layout_info
ATTR_NAME = via_area S
MAX_ARRAY_SIZE = the maximum size allotted for the arrays T
RFLAG = 0, since there is only one to get By
returned_values[11..[1] = (m1, N1, ., Ioy), Where n is the total area of

11

thermal vias
value_specs[1]..[11 = 4, 1, ..., 1Y if the data is correct.
number_returned = L, where L is the number of physical layers

5. For the number of solder bumps under the n® chip:
ANALYSIS_NAME = gt for global thermal and gs for global stress
LAYER_NAME = chipn, where “n” is the chip number
ATTR_TYPE = layout_info
ATTR_NAME = nsold_bmp
MAX_ARRAY_SIZE = maximum size allotted for the arrays
RFLAG = 0, since there is only one to get
returned_values[1] = n, where n is the number of solder bumps
value_specs(1] = 1 if the data is correct.
number_returned = 1

6. For the average diameter of a solder bump under the n™ chip:
ANALYSIS_NAME = gt for global thermal and gs for global stress
LAYER_NAME = chipn, where “n” is the chip number
ATTR_TYPE = layout_info
ATTR_NAME = sol_diam ,
MAX_ARRAY_SIZE = maximum size allotted for the arrays
RFLAG = 0, since there is only one to get
returned_values[1] = n, where n is the average diameter of a solder.
value_specs[1] = 1 if the data is correct.
number_returned = 1

7. For the width of the n'M chip:
ANALYSIS_NAME = gt for global thermal and gs for global stress
LAYER _NAME = chipn, where “n” is the chip number
ATTR_TYPE = physical_dimensions ‘
ATTR_NAME = chip_width
MAX_ARRAY_SIZE = maximum size allotted for the arrays
RFLAG = 0, since there is only one to get
returned_yalues{1] = n, where n is the width of the chip.
value_specs[1] = 1 if the data is correct.
number_returned = 1

12

8. For the length of the 't chip:
ANALYSIS_NAME = gt for global thermal and gs for global stress
LAYER_NAME = chipn, where “n” is the chip number
ATTR_TYPE = physical_dimensions
ATTR_NAME = chip_length
MAX_ARRAY_SIZE = maximum size allotted for the arrays
RFLAG = 0, since there is only one to get
returned_values{1] = n, where n is the length of the chip.
value_specs{1] = 1 if the data is correct.
number_returned = 1

9. For the power density (Watts per square meter) of the n™ chip:
ANALYSIS_NAME = gt for global thermal
LAYER_NAME = chipn, where “n” is the chip number
ATTR_TYPE = boundary_condition
ATTR_NAME = power_density
MAX_ARRAY_SIZE = maximum size allotted for the arrays
RFLAG = 0, since there is only one to get
returned_values[1] = n, where n is the power density in Watts per meter

squared.. »
value_specs{1] = 1 if the data is correct.
number_returned = 1

10. For the origin offset of the MCM layer definition:
ANALYSIS_NAME = gt for global thermal and gs for global stress
LAYER_NAME = layer0
ATTR_TYPE = layout_info
ATTR_NAME = org_offset
MAX_ARRAY_SIZE = the maximum size allotted for the arrays
RFLAG = 0, since there is only one to get
returned_values[1],[2],[3] = %, ¥, 2)
value_specs{1},[2],131 = (1, 1, 1) if the data is correct.
number_ returned 3

11. For the minimum wire width: _
ANALYSIS_NAME = gt for global thermal and gs for global stress
LAYER_NAME = layer0

13

ATTR_TYPE = layout_info

ATTR_NAME = min_wire_width

MAX_ARRAY_SIZE = maximum size allotted for the arrays
RFLAG = 0, since there is only one to get

returned_values{1] = n, where n is the minimum width of the wire.
value_specs{1] = 1 if the data is correct.

number_returned = 1

12. For the minimum wire pitch:
ANALYSIS_NAME = gt for global thermal and gs for global stress
LAYER_NAME = layer0 .
ATTR_TYPE = layout_info
ATTR_NAME = min_wire_pitch
MAX_ARRAY_SIZE = maximum size allotted for the arrays
RFLAG = 0, since there is only one to get
returned_values[1] = n, where n is the minimum wire pitch
value_specs[1] = 1 if the data is correct. -
number_returned = 1

13. For the average geometrical information on wires of the n™ layer:
ANALYSIS_NAME = gt for global thermal and gs for global stress
LAYER_NAME = layern where “n” is the layer number
ATTR_TYPE = physical_dimensions
ATTR_NAME = averages
MAX_ARRAY_SIZE = maximum size allotted for the arrays
RFLAG = 0, since there is only one to get
returned_values[1] = a, where a is the average area ratio; it is zero zf no
wire were in this layer

returned_values[2] = b, where b is the average center-to-center pitch, it
is zero if no wire were in this layer

returned_values[3] = ¢, where c is the average wire width; it is zero if no
wire were in this layer

value_specs[1],[2),[3] = 1 if the data is correct.

number_returned = 3

* 14. For number of layers:
ANALYSIS_NAME = gt for global thermal and gs for global stress

14

LAYER_NAME = layer0

ATTR_TYPE = layout_info

ATTR_NAME = nlayers

MAX_ARRAY_SIZE = the maximum size allotted for the arrays
RFLAG = 0, since there is only one to get

returned_values{1] = n, where n is the number of layers.
value_specs[1] = 1 if the data is correct.

number_returned = 1

15. For the major direction of a layer:
ANALYSIS_NAME = gt for global thermal and gs for global stress
LAYER_NAME = layern, where “n” is the layer number
ATTR_TYPE = layout_info
ATTR_NAME = maj_dir
MAX_ARRAY_SIZE = the maximum size allotted for the arrays
RFLAG = 0, since there is only one to get
returned_values{1] = 0 (layers with no wires) 1 (layer with wires) if it is

x-directional; 2 (layer with wires) if it is y-directional

value_specs{1] = 1 if the data is correct.
number_returned = 1

16. For the width of a layer:
ANALYSIS_NAME = gt for global thermal and gs for global stress
LAYER_NAME = layer0 '
ATTR_TYPE = physical_dimensions
ATTR_NAME = layer_width
MAX_ARRAY_SIZE = maximum size allotted for the arrays
RFLAG = 0, since there is only one to get
returned_values[1] = n, where n is the width of the layer.
value_specs{1] = 1 if the data is correct.

" number_returned = 1

17. For the length of a layer:
ANALYSIS_NAME = gt for global thermal and gs for global stress
LAYER_NAME = layer0 ‘
ATTR_TYPE = physical_dimensions
ATTR_NAME = layer_length

15

MAX_ARRAY_SIZE = maximum size allotted for the arrays
RFLAG = 0, since there is only one to get
returned_values{1] = n, where n is the length of the layer.
value_specs[1] = 1 if the data is correct.

number_returned = 1

18. For the thickness of a layer:
ANALYSIS_NAME = gt for global thermal and gs for global stress
LAYER_NAME = layern, where “n” is the layer number
ATTR_TYPE = physical_dimensions
ATTR_NAME = thickness
MAX_ARRAY_SIZE = maximum size allotted for the arrays
RFLAG = 0, since there is only one to get
returned_values{1] = n, where n is the thickness of the layer.
value_specs[1] = 1 if the data is correct.
number_returned = 1

19. For the heat conduction coefficients of the n® layer:
ANALYSIS_NAME = gt for global thermal
LAYER_NAME = layern, where “n” is the layer number
ATTR_TYPE = material_properties
ATTR_NAME = thermal_cond
MAX_ARRAY_SIZE = maximum size allotted for the arrays
RFLAG = 0 to get the first one only; 1, to get the heat conduction
coefficients of the next material in the given physical layer with a subsequent
call. As output, it will return how many more can be retrieved. For a layer
with more than one material region (e.g., wires embedded in polymer), the last
material returned will always be the dielectric (e.g., the polymer) and all the
previous returned materials are embedded in the dielectric (e.g., the wires).
For Isotropic material:
returned_values[1] = &
value_specs[1] =1 if the data is correct.
number_returned = 1
For Orthotropic material:
returned_values{11,[2],13]1 = (811, £22,%33)
value_specs[11,[21,13] = (1, 1, 1) if the data is correct.
number_returned = 3

16

20. For the thermal expansion coefficients of the ntl layer:

21.

ANALYSIS_NAME = gs for global stress
LAYER_NAME = layern, where “n” is the layer number
ATTR_TYPE = material_properties
ATTR_NAME = thermal_expand
MAX_ARRAY_SIZE = maximum size allotted for the arrays
RFLAG = 0 to get the first one only; 1, to get the thermal expansion
coefficients of the next material in the given physical layer with a subsequent
call. As output, it will return how many more can be retrieved. For a layer
with more than one material region (e.g., wires embedded in polymer), the last
material returned will always be the dielectric (e.g., the polymer) and all the
previous returned materials are embedded in the dielectric (e.g., the wires).
For Isotropic material:
returned_values[1] = a
value_specs[1] = 1 if the data is correct.
number_returned = 1
For Orthotropic material:
returned_values[1],[21,[3] = (11, @22,033)
value_specs[11,[21,{3]1 = 1, 1, 1) if the data is correct.
number_returned = 3
For Anisotropic material:
returned_values = (a1, 012,013y 022, 0123,233)
value_specs = (1, 1, 1, 1, 1, 1) if the data is correct.
number_returned = 6

For the stiffness coefficients of the n® layer:

ANALYSIS_NAME = gt for global thermal and gs for global stress

LAYER_NAME = layern, where “n” is the layer number

ATTR_TYPE = material_properties

ATTR_NAME = stiffness :

MAX_ARRAY_SIZE = maximum size allotted for the arrays

RFLAG = 0 to get the first one only; 1, to get the stiffness coefficients of
the next material in the given physical layer with a subsequent call. As output,

it will return how many more can be retrieved. For a layer with more than one

& LLie JC CL. L£°UF &0

material region (e.g., wires embedded in polymer), the last material rei‘uméd i
will always be the dielectric (e.g., the polymer) and all the previous returned e

17

materials are embedded in the dielectric (e.g., the wires).
" For Isotropic material:
returned_values[11,12] = (E, v)
value_specs{11,[2] = (1, 1) if the data is correct.
number_returned = 2
For Orthotropic material:
returned_values = (€11, €125 €13, €145 €155 €165 €225 €23, €245 €25, €265
€33, C34, C35, C36, Cdds C45, Cd6» €55, C56, Co6) Where Cl4, C15, C16, C24, C25, €26,
C34, C35, C36, C45, C46, C56 are Zeros
value_specs = (1,1,1,1,1,1,1,1,1,1,1, 1,1, 1,1, 1,1, 1, 1,
1, 1) if the data is correct.
number_returned = 21
For Anisotropic material:
returned_yalues = (€11, €12, €13, €145 €155 €165 €225 €23, €245 25, C265
€33, €34, €35, C36, C44, €45, C465 €55, €36 C66)
value_specs = (1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1, 1, 1,
1, 1) if the data is correct.
number_returned = 21

22. For the heat conduction coefficients of the n chip:
ANALYSIS_NAME = gt for global thermal
LAYER_NAME = chipn, where “n” is the chip number
ATTR_TYPE = material_properties
ATTR_NAME = thermal_cond
MAX_ARRAY_SIZE = the maximum size allotted for the arrays
RFLAG = 0 to get the first one only, 1, to get the heat conduction
coefficients of the next material in the given chip with a subsequent call. As
output, it will return how many more can be retrieved. For now, the chip is
assumed to have been composed of entirely one material.
For Isotropic material:
returned_values(1] = &
value_specs[1] = 1 if the data is correct.
number_returned = 1

= Nrth 3 1al-
For Orthotropic material:

returned_values[1],12],13] = (511, £22,%533)
value_specs[1],[2],13]1 = (1, 1, 1) if the data is correct.

18

number_returned = 3

23. For the thermal expansion coefficients of the n™ chip:
ANALYSIS_NAME = gs for global stress
LAYER_NAME = chipn, where “n” is the chip number
ATTR_TYPE = material_properties
ATTR_NAME = thermal_expand
MAX_ARRAY_SIZE = the maximum size allotted for the arrays
RFLAG = 0 to get the first one only; 1, to get the thermal expansion
coefficients of the next material in the given chip with a subsequent call. As
output, it will return how many more can be retrieved. For now, the chip is
assumed to have been composed of entirely one material.
For Isotropic material:
returned_values{1] = «
value_specs[1] = 1 if the data is correct.
number_returned = 1
For Orthotropic material:
returned_values[11,[2],13] = (a11, @22,033)
value_specs[11,[2],13]1 = (1, 1, 1) if the data is correct.
number_returned = 3
For Anisotropic material:
returned_values = (11, Q12,0135 022, 023,033)
value_specs = (1, 1, 1, 1, 1, 1) if the data is correct.
number_returned = 6

24. For the stiffness coefficients of the n® chip:

‘ ANALYSIS_NAME = gt for global thermal and gs for global stress

LAYER_NAME = chipn, where “n” is the chip number

ATTR_TYPE = material_properties

ATTR_NAME = stiffness

MAX_ARRAY_SIZE = maximum size allotted for the arrays

RFLAG = 0 to get the first one only; 1, to get the heat conduction
coefficients of the next material in the given chip with a subsequent call. As
output, it will return how many more can be retrieved. For now, the chip is
assumed to have been composed of entirely one material. '

For Isotropic material: '

returned_values{11,[2] = (E, v)

19

value_specs{11,[21 = (1, 1) if the data is correct.
number_returned = 2 “
For Orthotropic material:
returned_yalues = (€11, €12, €13, €14, €15, C16, €22, €23, €24, C25, C26,
€33, €34, €35, €36, Cdd, €45, Cd6, €555 C565 C6) Where C14, CI5, €16, €24, €25, €26,
C34, C35, C36, C45, C46, C56 Are 7€ros
value_specs = (1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1, 1,
1, 1) if the data is correct.
number_returned = 21
For Anisotropic materia}:
returned_values = (€11, €12, €135 C145 €155 €165 €225 €235 €245 €25, €265
€33, €34, €35, €36, Cdds €45, C46y €555 C565 C66)
value_specs = (1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1, 1,
1, 1) if the data is correct.
number_returned = 21

25. For the heat conduction coefficients of a solder bump:
ANALYSIS_NAME = gt for global thermal and gs for global stress
LAYER_NAME = layer0
ATTR_TYPE = material_properties
ATTR_NAME = thermal_cond
MAX_ARRAY_SIZE = maximum size allotted for the arrays
RFLAG = 0, since solder bumps are assumed to be made of only one

material.

For Isotropic material:
returned_values{1] = &
value_specs[1] = 1 if the data is correct.
number_returned = 1

For Orthotropic material:
returned_values(11,[21,[3] = (k115 £22,533)
value_specs{1],[21,13] = (1, 1, 1) if the data is correct.
number_returned = 3 '

26. For the thermal expansion coefficients of a solder bump:
ANALYSIS_NAME = gt for global thermal and gs for global stress
LAYER_NAME = layer0
ATTR_TYPE = material_properties

20

ATTR_NAME = thermal_expand

MAX_ARRAY_SIZE = maximum size allotted for the arrays

RFLAG = 0, since solder bumps are assumed to be made of only one

material.

For Isotropic material:
returned_values[1] = a
value_specs[1] = 1 if the data is correct.
number_returned = 1

For Orthotropic material:
returned_values[11,[21,[3] = (o111, a22,033)
value_specs[1],[21,[3] = (1, 1, 1) if the data is correct.
number_returned = 3

For Anisotropic materia}:
returned_values = (11, 012,013, @22, 023,0433)
value_specs = (1, 1, 1, 1, 1, 1) if the data is correct.
number_returned = 6

27. For the spring constant bottom layer of the interconnect:
ANALYSIS_NAME = gs for global stress
LAYER_NAME = layer0
ATTR_TYPE = material_properties
ATTR_NAME = spring
MAX_ARRAY_SIZE = maximum size allotted for the arrays
RFLAG = 0, since there is only one to get
For Isotropic material:
returned_values[1] = k
value_specs[1] = 1 if the data is correct.
number_returned = 1
For Orthotropic material:
returned_values = (Ky1, ka2, K33)
value_specs = (1, 1, 1) if the data is correct.
number_returned = 3
For Anisotropic materiaj:

215 Koz, K23, K3z, kg, kaz) -

a2 %4 Tt

returned_values = (K3, Ky2, K13,
value_specs = (1,1, 1,1, 1, 1, 1, 1, 1) if the data is correct.

number_returned =

21

28. For the temperature expansion coefficients:

ANALYSIS_NAME = gs for global stress

LAYER_NAME = layern or chipn

ATTR_TYPE = boundary_condition

ATTR_NAME = temp_expand

MAX_ARRAY_SIZE = maximum size allotted for the arrays

RFLAG = 0, since there is only one to get

returned_values[1] = vector of temperature expansion coefficients

value_specs{1] = (1,1,1...)

number_returned = 4+3*(num+1)*(ynum+1) for layers and
6+6*(xnum+1)*(ynum+1) for chips, where xnum and ynum are the
number of Fourier series terms in the x and y directions respectively.

29. Initial temperature of interconnect:
ANALYSIS_NAME = gt for global thermal and gs for global stress
LAYER_NAME = layern orchipn
ATTR_TYPE = initial_condition
ATTR_NAME = initial_temp
MAX_ARRAY_SIZE = maximum size allotted for the arrays
RFLAG = 0, since there is only one to get
returned_values{1] = T
value_specs[1] = 1 if data is correct
number_returned = 1

30. Processing temperature of interconnect:
ANALYSIS_NAME = gt for global thermal and gs for global stress
LAYER_NAME = layern orchipn
ATTR_TYPE = initial_condition
ATTR_NAME = process_temp
MAX_ARRAY_SIZE = maximum size allotted for the arrays
RFLAG = 0, since there is only one to get
returned_values(1] = T _
value_specs[1] = 1 if data is correct
number_returned = 1

31. For stiffness of pin (spring, hook, ..) at the bottom of the substrate:
ANALYSIS_NAME = gs for global stress

22

LAYER_NAME = layer0

ATTR_TYPE =-material_properties

ATTR_NAME = stiffness_pins

MAX_ARRAY_SIZE = the maximum size allotted for the arrays

RFLAG = 0, since there is only one to get

returned_values[1],[2] = (E,v), where E is Young’s modulus and v is
Poisson’s Ratio '

value_specs{11,[2] = (1, 1) if the data is correct

number_returned = 2

32. For total number of pins:
ANALYSIS_NAME = gs for global stress
LAYER_NAME = layer{
ATTR_TYPE = layout_info
ATTR_NAME = npins
MAX_ARRAY_SIZE = the maximum size allotted for the arrays
RFLAG = 0, since there is only one to get
returned_values[1] = n, where n is the total number of pins.
value_specs{1] = 1 if the data is correct
number_returned = 1

33. For the geometry of pins:
ANALYSIS_NAME = gs for global stress
LAYER_NAME = layer{
ATTR_TYPE = physical_dimensions
ATTR_NAME = pin_size
MAX_ARRAY_SIZE = the maximum size allotted for the arrays
RFLAG = 0, since there is only one to get
For circular cross-section
returned_values[1],{2] = (h, d) where h is the average height of the
pins and d is the average diameter of the pins. '
value_specs[11,[2] = (1, 1) if the data is correct
number_returned = 2 '
For rectangular cross-section

returned_values[1],[2] = (h, w, |) where h is the average height of the -
pins, W is the average width of the pins, and 1 is the average length of the pms e

23

value_specs[1],[21,[3] = (1, 1,1) zf the data is correct
number_returned = 3

2.1.3 Local Attribute Retrieval Operator — AT_gtvalocal

AT _gtvalocal (ANALYSIS_NAME, CIF_LAYER_NAME,
POINT_SPATIAL_LOCATION, ATTR_TYPE, ATTR_NAME,
MAX_ARRAY_SIZE, RFLAG, returned_values, value_specs, number_returned)

/* This routine is used by the two local analyses to retrieve information

from SAM. It returns a list of values based on the particular CIF layer or spatial
coordinate of a point location, the type of attribute wanted, and the specific
attribute wanted. :

d

1

ANALYSIS_NAME: character string

/* The type of analysis calling the operator. For global thermal,
ANALYSIS_NAME should be “It” while it should be “Is” for local stress.
CIF_LAYER_NAME: character string _

/* The name of the CIF layer, as read from the CIF file, of which
the information is being requested, e.g., “signal_x,” “ground,”... etc. If the
calling routine is querying for pointwise information, this argument must be
given as NULL, with the spatial location given in the next argument.
POINT_SPATIAL I OCATION: double precision array

/* The CIF_LAYER_NAME should be NULL and a location given here if
the value being inquired is spatially dependent. In this case, the value returned
is evaluated on the location given in this argument. The spatial location should
be specified in the order of (x, y, 2).

ATTR_TYPE: character string

/* This specifies the type of the attribute being queried. The pos-
sible options are: “physical_dimensions,” “material_properties,” “bound-
ary_condition,” “problem_definition,” and “accuracy_constants.” Depending
on what information is needed, the appropriate character string should be
used.

ATTR_NAME: character string

/* The identification of the attribute. Some possible options are “thtck- s
ness,” “local_wind,” and “heat_cond.” The complete set of valid names are i

given later in this section.

24

0 MAX_ARRAY_SIZE: integer
/* This number is the maximum size allocated for the arrays “re-
turned_values” and “value_specs.” If the amount of data retrieved exceeds
the maximum array size, only the first MAX_ARRAY_SIZE data are returned.
Therefore it is important to allot enough space for the desired values.
O RFLAG: integer
. I* An integer flag that tells how many total remaining attributes can be
retrieved. When there is only one attribute of a particular name and type to be
retrieved, RFLAG must be sent in as zero. When there are multiple attributes
of a particular name and type to be retrieved, this flag should be sent in as
zero, on the first call. On subsequent calls, RFLAG must be sent in as it was
returned on the previous call until it finally becomes zero again, indicating
that all the attributes of that name and type have been retrieved.

O returned_values: double precision array
/* The values of the particular attribute are returned here. For example,
attribute of thickness will return in the order of z_min and z_max. The stiffness
coefficients are returned as Cy;, Cra, Ci3, ..., Cyjp ..., Cyj. If the attribute
is spatially dependent and the spatial coordinates are not supplied, spatial
coordinates of (0, 0, 0) are used.

O value_specs: integer array

/* The contents of this array will indicate whether the corresponding
position of the returned_values is defined or not. The content of “1” wil
mean that it is specified, while a content of “0” means it is not specified. For
example, a boundary condition of zero displacement may have been specified,
say, only along the z-direction. Even though the boundary condition along the
x and y directions are not specified, what is returned in the returned_values
array is [0.0, 0.0, 0.0]. The corresponding value_specs are [0, 0, 1]. The
zeros in the first two slots of value_specs indicate that the zeros in the first
two slots of returned_values are not specified. Therefore, this should always
be checked before a value in returned_values is used.

O number_returned: integer
I* The total number of values returned.

The detailed list of possible input and output parameters to AT_gtvalocal is
as follows:

25

1. For the local window coordinates:
CIF_LAYER_NAME = CIF layer name
POINT_SPATIAL_ILLOCATION{11,[21,[3]1 = (0, 0, 0)
ATTR_TYPE = problem_definition
ATTR_NAME = local_wind
MAX_ARRAY_SIZE = maximum size allotted for the arrays
RFLAG = 0, since there is only one to get
returned_values{1],{2],[3],[41,[5L[6] = (X, ¥; Z)mins (X, ¥s Z)max
value_specs{] = (1, 1, 1, 1, 1, 1) if the data is correct.
number_returned = 6

2. For the position resolution:
CIF_LAYER_NAME = layer0
POINT_SPATIAL_LOCATION[1],{21,[3] = (0, 0, 0)
ATTR_TYPE = accuracy_constants
ATTR_NAME = position_res
MAX_ARRAY_SIZE = the maximum size allotted for the arrays
RFLAG = 0, since there is only one to get
returned_values[1] = n, where n is the position resolution
value_specs[] = 1 if the data is correct.
number_returned = 1

3. For the temperature resolution:
CIF_LAYER_NAME = layer0
POINT_SPATIAL_LOCATION[1],[21,{3] = (0, 0, 0)
ATTR_TYPE = accuracy_constant
ATTR_NAME = temp_res
MAX_ARRAY_SIZE = maximum size allotted for the arrays
RFLAG = 0, since there is only one to get
returned_values{1] = n, where n is the temperature resolution
value_specs[] = 1 if the data is correct.
number_returned = 1

4. For the thickness of a particular CIF layer:
CIF_LAYER_NAME = CIF layer name
POINT_SPATIAL_LOCATION[11,[2L[3]1 = (0, 0, 0)
ATTR_TYPE = physical_dimensions

26

ATTR_NAME = thickness

MAX_ARRAY_SIZE = the maximum size allotted for the arrays

RFLAG = 0, just want the first one since there is only one to get

returned_values[11,[2] = (z_min, z_max) where 7_max — z_min is the
thickness of the CIF layer

value_specs[1],[2] = (1, 1) if the data is correct.

number_returned = 2

5. For the heat conduction coefficients of a particular CIF layer:
CIF_LAYER_NAME = CIF layer name
POINT_SPATIAL_LOCATION[11],[2,[3] = (0, 0, 0)

ATTR_TYPE = material_properties
ATTR_NAME = heat_cond
MAX_ARRAY_SIZE = maximum size allotted for the arrays
RFLAG = 0, to get the first one only; 1 to get the heat conduction
coefficients of the next material in the given physical layer with a subsequent
call. As output, it will return how many more can be retrieved.
For Isotropic material:
returned_values[1] = k
value_specs[1] = 1 if the data is correct.
number_returned = 1
For Orthotropic material:
returned_values{11,[2],[3] = (11, K22, K33)
value_specs{11,[21,[3] = (1, 1, 1) if the data is correct.
number_returned = 3

6. For temperature field from the global heat conduction analysis at a given
spatial location: '
CIF_LAYER_NAME = NULL
POINT_SPATIAL_LOCATION[11,[21,[3] = x, ¥, 2)
ATTR_TYPE = boundary_condition
ATTR_NAME = temperature
MAX_ARRAY_SIZE = maximum size allotted for the arrays
RFLAG = 0 since there is only one for this location
returned_values[1] = T
value_specs[1] = 1 if the data is correct.

27

number_returned = 1

7. For displacement field from the global thermal stress analysis at a given
spatial location:

CIF_LAYER_NAME = NULL
POINT_SPATIAL_LOCATION[11,[21,131 = %, ¥, 2)
ATTR_TYPE = boundary_condition
ATTR_NAME = displacement
MAX_ARRAY_SIZE = the maximum size allotted for the arrays
RFLAG = 0 since there is only one for this location
returned_values[1] = Uy, Uy, Uy
value_specs[1] = 1 if the data is correct.
number_returned = 1

28

3 Preprocessing — REPASpre

REPASpre is an input processing procedure which translates the input infor-
mation into attributes and derives idealized models from the input. The building
of idealizations for client analyses (analyses querying the SAM for model at-
tributes) requires a knowledge of all the information associated with the domains
to be analyzed. The first to be built is the physical model, from which all other
domains are derived. The physical model is an abstract description of the MCM
in terms of layers, referred to as physical layers. Each physical layer contains
one or more CIF layers and the structure of its cross-section is constant through
the layer thickness. To maintain consistency in the information used to build the
analysis domains for the global and local procedures, each client analysis domain
is derived from the physical model domain. The domain information is obtained
from the CIF file supplemented with information from the attribute file. All other
model building procedures draw upon this representation for information about
the MCM.

REPASpre primarily consists of essentially three major parts: database prepa-
ration,. physical model building, and global idealized model building. Figure 1
shows the algorithm of the REPASpre for preprocessing the input data.

First, the data structure for the creation and storage of attributes for the various
model domains are set up. Since SAM is the means of storing domain information
and providing it to client analyses, it is setup before any information is processed.
This enables the interface operators of SAM be used in the model building process.

Then the CIF file is parsed from top to bottom to obtain the CIF layer
information for the physical model domain (see Section 7.9 for a description
of the CIF parser). The cumulative x-y cross-sectional areas of each CIF layer
is tracked during this first parsing step. As each new CIF layer is encountered,
a set of routines is called to build the physical model from the corresponding
attribute information specified in the attribute file. Three keywords in the CIF file
are of particular interest to the parser in this first pass — “L” and “B” standing
for Layer and Box respectively. This first pass ignores any definition with wire

specified in box form. When a box in a particular layer is encountered, the x-y
cross-sectional area of the box is calculated based on the given box length and

width. This area is added to the cumulative x-y cross-sectional area of the CIF

29

layer in the physical model. As the need arises, extensions to other geometries
may be added simply as more parsing options. '

After the CIF file has been completely parsed, the idealized global model
is then built. Another pass through the CIF file is made at this time to obtain
information of the solder bumps and vias under each chip. The global model
attributes are then created and added to the global model. Finally, all the attributes
is stored in three output files to be used for each of the five client analyses.

3.1 Physical Model Building

3.1.1 Approach

The basic approach in building the physical model is first to read in each
layer as defined in the CIF file. When a layer is read, all relevant information
of the current layer (from the CIF file and the attribute file) is read in and
appropriate attributes created and organized — until all CIF layers are processed.
The additional layer of pins specified in the attribute file but not in CIF are then
processed in the same way.

The requirements on the input allow for the building for the physical model
in a structured manner. . The routines that parse the supplemental information
of the attribute file take full advantage of the attribute file format as illustrated
in Figure 2. All the attributes of a CIF layer are grouped into one large data
block. To aid in discussion, this grouping is called level I division. The level 1
data blocks can be divided into level 2 data blocks. A close examination of the
attribute file specification as described in Section 5.3 of REPAS User’s Manual
[22] identifies four types of level 2 data blocks: material properties, physical
dimensions, boundary conditions, and layout information. Each of the level 2
data blocks are divided further into level 3 data blocks that contain numerical
values of the attribute. Some examples of level 3 data blocks are heat conduction
and stiffness coefficients for the material properties (level 2) data block.

Just as the attribute file format is organized into 3 level data blocks, so the

parsing routines are organized in like manner. At the top level is an overall
driver named CIFsup(), which calls four level 2 modules of CIFReadMatl(),

CIFReadPhys(), CIFReadBC(), and CIFReadLayout() for the four respective level e

2 data blocks. The pseudo-code for the level 2 modules are shown in Pseudo—Code

2. These modules search for and locate in the attribute file the target level 2 data

30

REPASpre()

{

open_input_files();

/* get the model name from “epii.model” */
get_model_name () ;
SAM_data_base_setup()

/* set up the organizational framework for the
* five analyses. */
SAM organization_setup();

/* get scaling factor of the CIF file épecification
* from “epii.model” */
get_scaling_factor();

/* start reading the CIF file for the layers */

/* have a peek at the next character in CIF file
* to look for keywords. */

Peek_at__the_next_input_character;

while (NOT _End_Of File)

{
skip_all_blanks();
switch(next_input_character)
{
case EOF: goto done;
case ‘L’: CIF_Read_Layer(CIF_layer_number);
case ’B’: CIF_Read_Box(CIF_layer_number,
scalling factor)
case ’‘E’: CIF_Parse End();
/* for now, ignore polygon or rectangle
* specifications in the CIF file */
default: Ignore_As_Comments(};
}
Skip_To_Semicolon{();
}
done:

build_global_model;

CIF _Read _Additional_Info();
store_attribute data_base();

" Pseudo-Code 1 REPAS preprocessing

31

~
P R A O N R I N N I I A N A R N N N P P e

A A A A AN AN A RA D A e A
ClFL &Ahhhhhaaah«h-\hhwbhl\h&hﬁnaa« e
aer PP PPN ~a
s
-

- material properties s 23 RS 4

. a
R R FTEIIEN % %

“&1 " heat conduction - ¥ thermal expansion

(7]
=t
=
=3
@

173

L7

%

S

%

2
NN’ B
b - -1

4 solder diameter

—
=.
S
=
<D
D
173

2%

AN AN A A A A A S A A S A A A A AR A AN A A A A A A AN A AN

therr ‘sion 3 stiffnese '-:i'i

KA g R R X%
AR HEKRHRR KL
++ XK ARKKNK

Figure 2. Attribute File Parsing Routine Format

— level 1

[GTpreproc()
+ CIFsup()]

level 2
[CIFRead—()]

block and obtain the keywords for the level 3 data blocks. According to the
keyword (such as stiffness), the appropriate level 3-modules are invoked to parse

the level 3 data blocks. The level 3 modules all named with the convention
crt—(). The level 3 parsing routines read in the numerical information from
the attribute file and create the appropriate attributes. The SAM operators as o

described in [33] are utilized for the creation of proper attributes. As can be seen,
the programming structure is designed to be easily expandable. New-. routmes ‘
(most frequently crt—() routines) may be inserted into the current structure as

32

/* check the SAM organization structure to see if this portion
* of the data for the current CIF layer had been processed
* already. The keyword that identifies the level 1 data block
* 15 used. Exit if yes. */

i1f (keyword processed == TRUE)
exit;

else

{
/* use the layer name to setup and build into the data

* structure of SAM. */

Attribute_Create_Organization{(CIF_Layer);

/* parse the attribute file for the relevant information */
while (within the CIF layer (level 1) data block)

{
/* skip those data level 2 data blocks that are not the
* the same as that of the target level 2 data block. */
Skip_Level2_Data_Block();
/* skip the comment lines */
Skip_ Comment();
/* 1f the level 2 data block is equivalent to that of another
* CIF layer, get the attributes from that level 2 data block */
if (level 2 data block == another level 2 data block)
Grab_Level2_Data_Block (keyword) ;
else
{
/* else, parse the current level 2 data block */
switch (level 3 data block keyword)
{
/* according to keyword, call level 3 routines to parse
* the level 3 data block */
crt—();
crt-——{();
crt-—();
}.
}
}

Pseudo-Code 2 Attribute Processing Modules

new data blocks are required for the client analyses. All of the parsing modules
assume that the rules for the attribute file specification as described in Section
5.3 of REPAS User’s Manual [22] are strictly followed, and the integrity of the
attributes created is strongly dependent upon the strict adhesion to the rules.” -

33

/* The data structure to hold the CIF layers as was read in
* from the CIF and attribute files. This is used as a reference
* for all the other indices sorted in various ways. */

typedef struct attlist { /* type define for linked list */
struct attlist *next; /* of attributes */
void *attPtr;

} attlist;

typedef struct layerlist {

char *layerName; /* CIF layer name */
double z_min, z_max; /* z-min and z-max of CIF layer */
double area; /* total cumulative area of layer */
int phyLayer; /* index to owning physical layer */
/* negative numbers are chips */
attList *attList_ptr; /* linked list of attributes */
/* applied on this layer */

} layerList;

Pseudo-Code 3 Data Structure Definition for Physical Model

3.1.2 Data Structure

The data structure for storing the physical model information needs to accu-
rately reflect information of the CIF layers and to be easily searched and retrieved
by the subsequent model building routines. The data structure used is shown in
Pseudo—-Code 3. All the attributes created for a CIF layer are stored in a linked
list. The handle to this list is stored with the CIF layer. The CIF layer may be
identified by name or by the vertical position of the layer (z-min and z-max). Two
indices (both are one-dimensional integer arrays) utilize the CIF layer name and
the z-mins. One index array points to the CIF layer in alphabetical order, accord-
ing to the name of the CIF layer. The other index array points to the CIF layer
in ascending numerical order, according to the z-min of the CIF layer. Instead
of manipulating the main physical model data structure (which is at best very
cumbersome and error prone), all manipulations and sorting are done through the
index arrays. These arrays are maintained as the physical model is built so as to
provide fast access to a particular CIF layer.

Two other pieces of information are stored: the cumulative area of the CIF
layer and the index to the owner physical layer (from the global idealized model).

These are needed to build the global idealized model. The parsing routine allocates

memory for a new structure in the array of layerList every time a new CIF layer

is encountered while parsing the CIF file. Table 1 shows an example of the R

34

CIF name z-min Z-max Area Attributes

substrate 0 0.00060 5.94e-3 pointer—
gnd_1 . 0.00060 0.000625 5.94e-3 pointer—
via_ground 0.000625 0.0007222 2.75e-7 pointer—
vdd 0.000625 0.000650 5.94e-3 pointer—
dielectric_ins1 | 0.000650 0.000680 5.94e-3 pointer—
via_power 0.000650 0.0007222 2.95e-7 pointer—
signal_h 0.000662 0.000668 1.82e-4 pointer—
via_contact 0.000668 0.000698 3.29e-07 pointer—
gnd_2 0.000680 0.000686 5.94e-3 pointer—
dielectric_ins2 | 0.000686 0.000716 5.94e-3 pointer—
signal_v 0.000698 0.000704 7.90e-5 pointer—
gnd_3 0.000716 0.000722 5.94e-3 pointer—
chip_10 0.0007222 0.0007972 1.00e-4 pointer—
chip_9 0.0007222 0.0007972 1.00e-4 pointer—
chip_2 0.0007222 0.0007972 1.00e-4 pointer—
chip_8 0.0007222 0.0007972 1.00e-4 pointer—
chip_19 0.0007222 0.0007972 1.00e-4 pointer—

Table 1 Physical Model Information Stored in a 25-Chip MCM Design

information built from a sample 25—chip MCM design. The CIF layers are listed
in ascending numerical order according to the z-mins of the layer. Notice the
remaining chips have the same information as those layers shown. Notice also
when two layers have the same z-min with different z-max’s the order between
the two layers is arbitrary.

3.2 Global Model Building

The global analysis domain is modeled from a layerwise idealization of
the actual MCM. This domain is the same for both the global thermal and

35

thermomechanical analyses. The information of the actual MCM is obtained from
the physical mode] created in the previous preprocessing step. With the exception
of those layers containing the interconnect signals, all other layers are modeled
as homogeneous global layers with averaged properties of the real physical layer;
the vias through each layer are considered to have negligible area compared to
the interconnect and hence have little effect on the material properties. The layers
with the interconnect signals are idealized as 2-material heterogeneous layers,
consisting of dielectrics and signals. The two global analyses use this information
to determine layer properties based on the volume fraction of the wires using
an averaging procedure appropriate for that analysis. In addition to interconnect
layer information, the global idealized model also contains the layout, geometry
and material properties of chips, and solder and pin information. Figure 3 shows
a schematic of the physical model on the left and the global idealized model on
the right. '

Physical Model Global Idealized Model

W ARAARLRAAAAL Bfs SRABARAR T PAARRASISAS

Ao

=

o

=== =

> b=

Z 7
XTLELIEIYY; Y} YT Err Y] 3/ A PEPRIREEP LGP IE LIRS
RRFVITYYY. BF XA AY N 2 FLLLRLLLLVERETA LY LSS
y SR LLLLLE | 5 S
-~ 2

b v L

L2 3 -

omef mm | 44 § <= Z 8

23 7 2

3 7 =
CCA e CCAA LA A P LIPS L 4 . L ELAEL A CR A PELLLEE LTS EFE L A AN
CEROIP ORI RPOIPCPL PRI PO ERIPELELIPEPELIPLIET? R R A R R R R R R R

CAA A A FELLE PELES LT L L G CEELLEEEEL L FESEEESFEL L EEEETE A F A

/fo‘f’f/’i’.’/-’////////////%f’///!/a‘f/ff/l//l[////‘ll// /f//l/.;/fffa’/d'l‘-"nf/f//ff///-’/’f/lflll//)‘lI/IIII/III//

signals

Figure 3. Tllustration of the Global Idealized Model

36

3.2.1 Approach

The strategy for building the idealized model from the physical model requires
two major operations (Figure 4): a) decompose the physical model into appropriate
layers and b) consolidate the decomposed layers into global idealized layers.
The decomposition requires full understanding of how all the layers given in the
physical model fit together. From the knowledge of the physical model, the layers
are broken up into idealized model layers. Since one idealized layer may contain
parts of many CIF layers, all of the decomposed pieces need to be consolidated
into the appropriate idealized layers. As a final step to complete the model for
the global client analyses, the global analysis domain needs to inherit all the
appropriate attributes from the domain as described by the physical model. The
global idealized model is complete when all idealized layers are consolidated and
the domain information fully defined.

As one can see from step 2 of Figure 4, the decomposition and consolidation
steps are actually iterations of steps because they are carried out one idealized
layer at a time. When all the idealized layers are consolidated, the global idealized
model are completed with the appropriate domain information. The algorithm that
implements the global building strategy is as follows:

1. The CIF layers are sorted with respect to their positions in the z-direction in
ascending order.

2. Each CIF layer is examined, with the layers needing further processing sifted
out. The remaining CIF layers are then inserted into the global model.

3. The dielectrics layers, which were sifted out in the previous step, are then
inserted into the appropriate global layers.

4. Once the global layers are built, the CIF file is parsed to find the area of the
vias going from each chip to each of the global layers. This information is
used in global thermal analysis to determine the amount of heat carried by
the vias from the chip to the different layers of the MCM.

5. The CIF file is parsed again to find the number of solder bumps and the
averaged area and the averaged height of the solder bumps under each chip.

This algorithm is illustrated in detail in Pseudo-Code 4 and some of the important
points are discussed following the pseudo-code.

37

Physical Model Decomposition

{ L 3 { —
98 909 9 s & 8 29 2 90
R Ao AR S 2

¥
n 0 .
I » w.
fom— o s i ot ot v st ——
Rt 4 [— F‘:-j F‘:-j Fﬂ
e =} X = . L%
»
==] | — B — - 3 g
& -i I””’””’Eg”";”;‘H””””””'””;{-’.‘E;}
-

PLLIILL RIS ILT TIPSR T ELS P LA F LSS T LS TE % ' i’:,'] f‘:.'] [:j _]

N
0
)

L
A

L L

fa =}

i
EaE
]
Lebad
'-'n-.ﬁjl .l

YIVEVIVTY, o YTXYE
",

nh k00,0 %t o

R R T R R AR

L ZAZART 174 Ex) ¥ 7T PR AT/ "1

) »4
4 .
x
7 A
i aai iotisosoosorerersonmben
e waam]

A
E/////r///x//////x///////If/t///////i!f/t///ld

Consolidation
Ja T] L]
R AR AR A A AR AR AR AR AR T
WYY L Y Y Yy Y

Lr, [[i il Global Idealized Model

*aare v 4 T
F/r//////)l/////f///f//(/////l/////t////////’

SR A AR Y Lyl | 1

K 11 T '

) SACHSICS RS C Y53 A K TSR3 S AR X S BTG 1 § XIS € 5500 SR MR XX |

V2P RLILLILLELPLIERERL I P L PLLEL I PP IP P L LI 2L E4 2 A

Broareesrirsersorrersrcrrsrrrrrrrsrrrr 27 7 ae s @
PAAAAAAAAAAAAAAA Z /

t 3

AR AR frntointointscitodtonitisdosnloctintenonitotonintntibiatittinintocidiiimenintintontodesindoiontd
”J L LLL. Ll PIIIIIIIIFT Oy
FPP PP LIS L ELLLLELIIIEVELL LI IIEPL IV ELIIEE

Figure 4. Global Idealized Model Building Approach

Pseudo-Code 4 Global Model Building Algorithm (Continued) . . .

38

/* keep an index list of the CIF layers of the physical
* model sorted by z-min.

*/ '

Sort_CIF_Layers_By_Z_min

/* initialize counters of chips, vias, dielectric, physical, global
* and current working global layer(s) */

Initialize_Count

/* go through all layers of the physical model from the bottom up,
* starting with first (bottom) CIF layer, using sorted index list
*/

while (layer != Total_Number Of_CIF_Layers)

{

’

Extract_Keyword From_CIF Layer Name

/* based on the keyword, sift out all chips, substrate, via &
dielectric layers */
switch({ keyword)

{
case “substrate”:
{
/* From the assumption, the substrate is always physically
* the bottom-most layer of the MCM. Therefore, the substrate
* should be the first CIF layer encountered. This layer is
* set to be the first (bottom) layer of the global model */
Set_Global_Layer
/* set back pointer on CIF layer to this first layer*/
Set_Back_Pointer :
Increment_Global_Layer Count
}
case “chip”:
{
/* keep count of number and keep track of chips */
Store_Chip Index
Increment_Chip_Count
/* set back pointer of CIF layer to negative of the chip */
Set_Back_Pointer
}
case “via”:
{

/* keep count of number of and keep track of the vias
encountered */
Store_Via_Index

P S P T

- . - vyl Y
lucremenlt _via _Loulll

Pseudo-Code 4 Global Model Building Algorithm (Continued) . . .

39

}

case "“dielectric”:

{ .
/* keep count of number of and keep track of the dielectric
layers
* encountered */
Store_Dielectric_Layer Index
Increment_Dielectric_Layer_ Count
}
default:
{
/* The remaining CIF layers should fit directly into global
layer
* without further processing */
/* Check and set the current working global layer */
If (Current_CIF_Layer. Higher_Than_Previous_Global_Layer)
)
Increment_Current_Working Global_Layer
If (Gap_Between_Current_CIF_Layer_And_Previous_Global_Layer)
Increment_Current_Working Global_ Layer
}
/* check for overlap */
If (Current_CIF_Layer_ NOT Overlap_Previous_Global_Layer)
{
/* increment # of CIF layers this global layer contains*/
Increment_Member_layers
/* add the index of the CIF layer to current global layer
*/
Set_Global_Layer
/* set back pointer of CIF layer to current global layer*/
Set_Back_Pointer
}
else
{
/* two layers overlap, which violates the assumptions that
other
* than via and dielectric layers, no other CIF layers may
have
* partial overlaps in the z-direction. Issue warning. */
Echo_Warning
}

/* break up and insert each dielectric layer into the global
idealized

Pseudo-Code 4 Global Model Building Algorithm (Continued) . . .

40

* model structure */
Foreach (Dielectric_Layer)
Insert_Layer
/* Now that the global analysis domain is constructed, associate
the

* appropriate attributes to each idealized layer to fully
*define the domain */

Foreach (Global_Layer)
{ .
/* loop over member CIF layers & retrieve owning attributes */
Foreach (Member_CIF_Layer)

{
Get_Attributes
/* loop through each attribute and associate it with
* current global layer */
Foreach (attribute) i

Assocliate Attribute_With_Global_Layer
}
}
/* Do the same for the chips */

Foreach (chip)

{
Get_Attributes
/* loop through. each attribute and associate it with
* current chip */
Foreach (attribute)
Associate_Attribute With_Chip
}

Pseudo-Code 4 Global Model Building Algorithm

Several important points about the algorithm are mentioned in this section.
The success of the decomposition and consolidation steps depends heavily on the
strict adhesion of the CIF and attribute file inputs to the assumptions as detailed
in Chapter 5, MCM Physical Description of [22]. The strategy in building the
global model is to build one global layer at a time, starting with the bottom layer.
When the bottom layer is finished, the current working layer is incremented to -
the next global layer. An index array, with z-min of each CIF layer sorted in -~
ascending order, is used to reduce the number of searches needed to find all the
CIF layers belonging to a particular global layer. Figure 1 shows the CIF layers
of the physical model sorted in this order of the vertical position. Notice the ﬁrst

41

layer (i.e., the bottommost layer) must necessarily be the substrate according to
assumption 13 of the CIF File Specifications (Section 5.2, [22]). Error in the
global model building process will occur if this assumption is not met, since the
substrate is used as the reference point for all subsequent layers.

In addition to the substrate, three other types of CIF layers from the physical
mode] are sifted out for further processing: chips, vias, and dielectric layers. As
the chips are sifted out, they are stored and numbered according to the order of
encounter. Recall from assumption 12 of the CIF File Specifications (Section
5.2, [22]) that the via and dielectric layers are the only two layers that may span
the height of more than one CIF layer (in the z-direction). Therefore, these two
layers need to be sifted out and be broken into the appropriate global layers. The
decomposition step (Step 1) in Figure 4 illustrates the breaking of the via and
the dielectric layers.

All other types of CIF layers should fit directly into the global layer without
any further processing. Notice also from Table 1 that if the vias, chips, and
dielectric layer are taken out, of the remaining layers the z-max of one layer
should never be greater than the z-min of the next CIF layer. The CIF layer
vertical positions, z-min and z-max, are used to place the CIF layers into the
appropriate global layer. This placement is always relative to the current working
global layer. As was mentioned above, the substrate is necessarily the first CIF
layer inserted into the global structure. This is the only known position at the start
of global model building. After the substrate is inserted into the first global layer,
the vertical position (z-min and z-max) of the next CIF layer is compared to that
of the current working global layer, which is the vertical position of the substrate.
Since one global layer may contain many CIF layers, this comparison determines
whether the next available CIF layer belongs to the current global layer or that
the current global layer must be incremented to the next global layer. Figure 5
illustrates the criteria used to determine the state of a CIF layer relative to that
of the current global layer. Four cases are checked.

Case 1. (z-min)cip < (z-max)gpa According to the assumptions set forth in
Section 5.2 CIF File Specifications, this case is invalid. Only the via
and dielectric layers may span the height of (overlap) more than one
layer, and the via and dielectric layers had been sifted out previous to
this decomposition step. A warning message to check.this CIF layer is
issued, and this CIF layer is ignored.

42

(case 1) (case 2) (case 3)

(z-max)e

(z-min) o,
(z- maX)g;obal

>z (emin)yy:
E = (Z-min) ol

Case 2.

Case 3.

Case 4.

Figure 5. Criteria of Layer Comparison

(z-min)cip = (z-max)gipa The next CIF layer is directly above the
current global layer. Therefore, the current working global layer is
incremented to the next global layer.

(z-min)cip > (z-max)gopa A gap implies that a background material
is defined between the next CIF layer and the current global layer.
According to the CIF file specification assumption 12 of Section 5.2,
the background material is a dielectric layer — which was sifted out
previous to the decomposition step. This gap, then, is filled with the
dielectric, which is a new global layer. Therefore, the working global
layer needs to be incremented twice to make room for the dielectric
layer to be inserted at a later time.

(z-min)cip >= (z-min)giopar and (z-maxjcip <= (z- ma-x)global The forth

case is when the next CIF layer is part of the current global layer. For this

case, the vertical position (z-min and z-max) of the current global layer
must bound those of the CIF layer. If only one of the two conditions are
satisfied, an invalid CIF layer specification warning is issued and the CIF

layer is ignored. This is the same reasoning as two overlapping layers

43

of Case 1. Since the CIF layer is neither a via nor a dielectric layer, it

cannot span the length of more than one global layer.

At the conclusion of the comparison, the placement of the next CIF layer is
determined and the CIF layer is consolidated into the current global layer. This
placement process continues until all the remaining CIF layers are consolidated
into the global structure. Finally, the layer that were sifted out earlier are now
ready to be decomposed and consolidated into the global model.

The chips do not need any further processing. Also, only selected information
on the vias need to be processed. The vias are important to the global analyses
in that they are some of the major heat carrying agents from the chips and
distribute the heat to the different layers of the MCM. Therefore, the total x-
y cross-sectional area of the vias extending from each chip to each layer of the
MCM is tabulated. This tabulated information is made into attributes and made
available to the global client analyses. In proportion to the tabulated areas, the
distribution of the amount of heat of each chip carried into the MCM is determined
by the client analyses. Other than this information, the global analyses assume
that the contribution of the vias to the averaged material properties of the global
idealized layers is insignificant. Therefore vias do not need to be incorporated into
the global model (only the x-y cross-sectional attributes are needed). Therefore,
for the decomposition step, only the dielectric layers need to be decomposed and
consolidated into the global structure. The vias can be inserted easily into the
global model at a later time if they need to be taken into consideration. The solders
are also tabulated for each chip and given to the global client analyses the same
way as the vias. They carry portions of heat to the very top layer of the MCM.

At this point, the basic structure of the global model is defined except for the
dielectric layers. The insertion strategy is that for each of the dielectric layers,
the global model is scanned from the bottom and up. For the sake of discussion,
a gap between two current global layers is also considered to be a global layer.
For each global layer that satisfies the insertion criteria, as listed below, a new
layer that is a “derivative” of the current dielectric layer is created. This new
layer inherits all of the attributes of the dielectric layer and spans the height of
the global layer. The insertion criteria are:

The dielectric layer must span the complete height of the global layer, and

EA1 2 RLW 3 A=) e 111kl

1. T
2. The total area of the global layer is less than that of the substrate.

44

The second criterion is based on assumption 13 of the CIF File Specifications
(Section 5.2) that the x-y dimension of the substrate is used as the x-y dimension of
the MCM. The dielectric layers are basically used as “fillers” for the global layer,
that is, it fills in gaps between two layers as well as filling into global layers in
which the total cumulative x-y cross-sectional area of all the member layers is less
than that of the MCM. This is consistent with the actual manufacturing process
because the signals are usually etched out of the dielectric block. The new CIF
layers are then consolidated to the global model. Thus the final decomposition-
consolidation step is completed.

Finally, the members of each global layer must inherit the appropriate at-
tributes from the physical model. The strategy here is to loop through all the
global layers. The attributes of all the member layers (obtained from the physical
model) of each global layer are retrieved. Each attribute is then associated with
the global model layer. The association is done through SAM interface operators.
The global model is now complete. '

3.2.2 Data Structure

Two major points govern the structure used to store the global model informa-
tion: 1) Since all the global model information is derived from the physical model,
information that do not change should not be duplicated. 2) Furthermore, each
global layer is made up of one or more of the CIF layers defined in the physical
model. The number of CIF layers contained in one global layer may be different
from layer to layer. A data structure used that satisfies these two requirements
is a variable length two dimension index array. Figure 6 is a representation of
the global idealized model of the 25—chip MCM design as previously mentioned.
This global model is extracted from the information of the physical model, which
is shown in Figure 1. A tabulation of the global model information is shown in
Figure 2. For this example model, there are a total of 11 global layers, extracted
out of 12 CIF layers, excluding chips. Notice none of the vias appear in the
global layer. Also, the two dielectric layers are broken into three global layers
each. Within a global layer, the first position of the global index array indicates
the number of member layers the global layer contains. The subsequent positions
contain the indices to the CIF layers from the physical model. In this way, none
of the information specified in the physical model is duplicated. This structure is_

45

No. of member Index to member layers
[CIF] layers (physical model)

1 | 1 — [substrate]
2 | ; — [ond_1] |
23 | 1 — [vad]
g 4 | 11 \ [dielectric_ins1yyy1 7
E5 | 2 — [signal_h] [dietectric_ins 1yyy2]
_% 6 | ; | [dietectric_ins1yyy3] |
g 7 | -; — [gnd_2] |
s [1 — [dielectric_ins2yyy4]
9 | 2r — [signal_v] V [dielectric_ins2yyys]
10 | » | [dielectric_ins2yyy6]
1m [1 M [ond_3] |

Figure 6. Data Structure of the Global Idealized Model

also flexible enough to allow for any number of global layers as well any number
of member layers within each global layer.

Global

. CIF name Z-min Z-max Area Attributes

0.00060

pointer—

Table 2 Global Model Extracted From the Physical Model = (Continued) . -

46

iz);il CIF name z-min z-max Area Attributes
8 dielectric_ins2yyy4 0.000686 0.000698] 5.94e-3 pointer—
9 | dielectric_ins2yyy5 | 710.000704. .| 5.86e-3 | ' pointer—
Lo sfsignally o 1 0.000698 -+ |:0.000704 | 7.90e-5 ~ pointer—
10 dielectric_ins2yyy6 0.000704 0.000716 |} 5.94e-3 pointer—
LN CE | gnd:3ff s © 10000716 '-.'|-"0.0007-22' | 594e-3 | .. pointer—

Table 2 Global Model Extracted From the Physical Model

47

4 Global Heat Conduction Analysis

4.1 Description and Algorithm

The global heat conduction analysis procedure computes a steady-state tem-
perature field in the MCM in order to provide

1. the thermal loading conditions for the global thermal stress analysis, and
2. the temperature boundary conditions for the local thermal analysis.

The basis of the computation is a variational principle given by Tiersten [31] for
a vector system of equations. In this principle, all boundary conditions of the
constrained type are transformed to natural boundary conditions by the use of
Lagrangian multipliers. This variational principle can be specialized to the case
of a scalar system and thus is well-suited for the steady-state heat conduction
calculation. '

In the global heat conduction analysis, the signal planes which contain discrete
metal wires and insulating polymer are represented as "effective" homogeneous
layers, having effective thermal properties. Zero normal heat flux boundary
conditions are enforced exactly in the software on (i) the four external vertical
faces of the interconnect, and (ii) the four external vertical faces of each chip.
A combination of constant temperature, zero normal heat flux and convective
heat transfer thermal boundary conditions can be selected on (i) the bottom
surface of the interconnect and (ii) the top of the chips. The software allows
for the selection of the thermal boundary conditions on a chip by chip basis.
Layerwise geometrical information and attributes are obtained by querying SAM
through operators. The output of the global heat conduction analysis involves
information on the global temperature field. The output data is organized so that
the local thermal analysis can obtain the global temperature at any specified spatial
location through operators managed by SAM. Also, the coefficients of the series
representation of the global temperature field required by the global thermal stress
analysis are organized in a form that can be queried by the giobal thermal stress
analysis through the operators managed by SAM.

48

4.2 Source Code

4.2.1 Global Heat Conduction Analysis

The source codes for the global heat conduction analysis are stored in
groups according to their functionalities. The top level sub-directory is called
$REPAS_HOME/gt/src/analysis and it has 7 sub-directories: Main, Sam, Data-
base, Util, Form, Eqn and Post. The sub-directory Main contains the main pro-
gram and a driver that controls the flow of the analysis. There is also a file called
dimen.h which contains parameter statements that control the sizes of the arrays
in the global heat conduction analysis program. The sub-directory Sam contains
routines that interface with SAM. These routines query SAM to obtain the geo-
metrical data and the material properties of the MCM and the thermal boundary
conditions. The layerwise thermal properties are then computed and organized
for subsequent use in the program. The routines in the sub-directory Database
are responsible for setting up the database structure of the global heat conduc-
tion analysis. The routines in the sub-directory Form carry out the evaluation of
the integrals in the variational principle and assemble the coefficient matrix and
the right hand side vector to form the linear algebraic equations. These equa-
tions are solved by the routines in the sub-directory Eqn which contains routines
that perform diagonal scaling of the coefficient matrix and a symmetric equa-
tion solver from the linear algebra package LAPACK. The source codes for the
equation solver are placed in the sub-directories LAPACK and BLAS under the
sub-directory Eqn. The output data from the global heat conduction analysis are
prepared by the routines in the sub-directory Post. These data are to be used by
the global thermal stress and local thermal analyses. The data can also be used by
the post-processing program to generate a suitable database for visualization of
the results from the global heat conduction analysis. Routines in the sub-directory
Post, also perform calculations to estimate how well the interface and boundary
conditions are satisfied by the global heat conduction solution. Finally, the files in
the sub-directory Util are utility routines that are frequently called by the global
heat conduction analysis.

4.2.2 Global Heat Conduction Interface Routines

The global heat conduction analysis generates the temperature field in the .
MCM based on layerwise effective thermal properties. The temperature field is S

49

used by the global thermal stress and local thermal analyses through interface
Fortran and C routines. The source codes of these interface routines are stored in
the sub-directory SREPAS_HOME/gt/src/interface.

4.3 Input and Output

The necessary inputs for the global heat conduction analysis are obtained
through the attribute manager SAM and program parameters set up in the global
heat conduction analysis code. The output consists of a data file which is to be
used by the global thermal stress and local thermal analyses. The following is a
description of the input and output.

4.3.1 Input from SAM

In the initial phase of the global heat conduction analysis, the geometrical
information and material data of the MCM, as well as the thermal boundary con-
ditions, are obtained by querying the attribute manager SAM. In this input phase,
the following parameters are either obtained directly from SAM or computed
using information provided by SAM.

1. xOmcm, yOmem (reals) - The size of the interconnect in the x and y-directions.

2. “zmcm(i] (real) - The thickness of interconnect layer no. i. The bottommost
layer in the interconnect is taken to be layer no. 1.

3. geochp[l,j] (real array) - The size of the /% chip/solder unit in the x-direction.

4. geochp(2,j] (real array) - The size of the /% chip/solder unit in the y-direction.

5. geochp([3,j] (real array) - The thickness of the chip of the j® chip/solder unit.

6. geochp(4,j] (real array) - The thickness of the solder continuum of the j&

chip/solder unit.

7. kmem[1,j], kmcm[2,j], kmcm[3,j] (real arrays) - The X, y, z components,
respectively, of the effective heat conduction coefficients in the j® layer of
the interconnect. , ‘

8. kchp[l,j], kchp[2,j], kchp(3,j] (real arrays) - The x, y, z components, re-
spectively, of the effective heat conduction coefficients of the chip in the j&
chip/solder unit. ‘

9. ksld[1j], ksld[2,j], ksld[3,j] (real arrays) - The X, y, z components, respec- S

tively, of the effective heat conduction coefficients of the solder continuum
in the j® chip/solder unit. ' e

50

10.

11.

12.

13.
14.

15.

16.

17.

19.
20.

21.

22.

bemem{1] (real array) - The value of the prescribed constant temperature
which enters into the effective convective heat transfer condition for the
bottom surface of the interconnect.

becmem[2] (real array) - The value of the effective convective heat transfer
coefficient for the bottom surface of the interconnect.

beehp[1,j] (real array) - The value of the prescribed constant temperature
which enters into the effective convective heat transfer condition on the top
surface of the j chip/solder unit.

bechp[2,j] (real array) - The value of the effective convective heat transfer
coefficient on the top surface of the jf chip/solder unit.

bechp[3,j] (real array) - The surface heat generation density measured in
Wi/m? for the j chip/solder unit.

omem[1], omem[2], omcm([3] (real) - The x, y, z offsets, respectively, between
the origins of the CIF coordinates and the global thermal coordinates. These
input values are used to transform the input CIF coordinates to the ones used
in the global thermal analysis.

ochp[1,j], ochp[2,j] (real arrays) - The x and y global thermal coordlnates
respectively, of the comer of the j chip/solder unit.

ntmem[1], ntmem(2] (integers) - The number of cosine terms used to represent
the variation of the temperature field in the interconnect in the x and y
directions, respectively.

. ntmcm[3] (integer) - Control flag for denoting the different types of thermal

boundary condition on the bottom of the interconnect, 1 - for effective con-
vective heat transfer boundary condition, 2 - constant temperature boundary
condition, 3 - zero normal heat flux boundary condition.

ntmcm[4] (integer) - The number of analysis layers in the interconnect.
nunit (integer) - The number of chip/solder continuum units placed on the top
surface of the interconnect.

nichp[1,j], nichp[2,j] (integer arrays) - The number of cosine terms used to
represent the variation of the temperature field in the j® chip/solder unit and
in the x and y directions, respectively. .
ntchp(3,j] (integer array) - Control flag for denoting the different types of - =
thermal boundary condition on the top surface of the j chip/solder unit,
1 - for effective convective heat transfer boundary condition, 2 - constant

il LORLYLCLLIVE Albal Lialialiol UWLiiidl LAJEILLILER M

temperature boundary condition, 3 - zero normal heat flux boundary condition.

51

4.3.2 Dimension Parameters

This section lists parameters which are related to maximum array di-
mensions in the global thermal analysis. They are set up in the file
$REPAS_HOME/gt/src/analysis/Main/dimen.h. These arrays should be con-
figured to handle the largest problem that must be analyzed. Note that all the
following parameters are integers.

1. ndmm - Maximum number of cosine terms used to describe the temperature
variation in the interconnect in the x direction.

2. ndnn - Maximum number of cosine terms used to describe the temperature

variation in the interconnect in the y direction.

nd3 - Maximum number of analysis layers in the interconnect.

4. ndpp - Maximum number of cosine terms, among all the chip/solder units,
used to describe the temperature variation in the chip/solder unit in the x
direction. _

5. ndqq - Maximum number of cosine terms, among all the chip/solder units,
used to describe the temperature variation in the chip/solder unit in the y
direction. '

6. nd6 - Maximum number of chip/solder units.

W

Based on these six parameters, the correct size of the arrays in the global heat
conduction Fortran codes is computed accordingly.

4.3.3 Output

There are three output files from the global thermal analysis. They are
modelname_gt_analysis.LOG, modelname_gt_analysis_err.LOG and model-
name_gt_interface.dat. These three files are created in the current work-
ing directory where the global thermal program is executed. The model-
name_gt_analysis.LOG provides a log of the global thermal analysis and al-
lows users to monitor the progress of the program. This is an ASCII file. In
general, this information is useful for trouble-shooting only. The file model-
name_gt_analysis_err.LOG is an error log file which contains error messages,
if any, for the global thermal analysis. This file is also in ASCII format. Users
should check for any error messages related to abnormal abort of the program
in this error log. Appropriate response to these error messages as suggested in’
Section 7.6 of the REPAS Users’ Manual [22] should be taken. The last output
file, modelname_gt_interface.dat, contains the interface data for the subsequent

52

global thermal stress and local thermal analyses. This data file is also used by the
global thermal post-processing routines for generating global temperature data for
visualization. This output file is in binary format.

4.4 Global Heat Conduction Interface Procedure

The interface routines found in $SREPAS_HOME/gt/src/interface allow the
output from the global thermal analysis to be used by (i) the global thermal
stress analysis, and (ii) the local thermal analysis. There is an initialization phase
that is common to both global thermal stress and local thermal analyses. For
each of these analyses, an initialization routine is called. The data in the file
modelname_gt_interface.dat is read and organized into an internal data structure
to facilitate the extraction of appropriate information for each analysis. This
initialization is done only once for all calls to this procedure from each analysis.

For the global thermal stress analysis, the information required are the ampli-
tudes in the polynomial (two terms) and cosine series representation of the tem-
perature field in each layer of the interconnect and the chip/solder units. Other
data required are the wavelengths of these cosine terms; the number of terms
employed in the series representation of the temperature; and parameters related
to the thermal properties. The procedure responds to queries from the global
thermal stress analysis through the attribute manager SAM and returns all of this
information on a layer by layer and chip by chip basis.

For the local thermal analysis, the information required are the temperatures at
specified locations in the MCM. In this case, the local thermal procedure queries
the interface procedure through SAM about the temperature at a given location.
The interface procedure first determines whether the queried location is inside the
interconnect or the chip/solder units. The layer number of the interconnect or the
chip/solder unit number and the corresponding layer number are then determined
so that the data stored in the internal database can be processed and the temperature
at that location computed. The procedure then returns this temperature through
SAM to the local thermal analysis.

Note that the interface program cannot link and execute by itself as there is

no main routine. These routines can only be used for calling from the global .
thermal stress and local thermal programs. Users who need the temperature result = =~
at any point in the global structure should refer to the post-processing procedure ..

which is described in Section 4.6 in this manual.

53

The parameters which decide the sizes of the arrays in the interface routines
have to be the same as the ones used in the global thermal analysis for generating
the interface data file modelname_gt_interface.dat. Otherwise, erroneous output
or abnormal abort of the program will result. A check is made in the interface
program to ascertain such a consistency. Error messages from the interface
routines and appropriate responses are outlined in Section 7.6 of the REPAS
Users’” Manual [22].

4.4.1 Output from Global Heat Conduction Interface Procedure

The output file from the global heat conduction interface procedure is called
modelname_gt_interface_err.LOG. It is in ASCII format and it resides in the
current working directory. Error messages, diagnostics and trouble shooting
suggestions for the global heat conduction interface routines are outlined in Section
7.6 of the REPAS Users’” Manual [22].

4.5 Compiling and Linking

Makefiles are available for the global thermal analysis and interface pro-
grams. To compile the global thermal analysis routines, users can exe-
cute the Makefile in the directory SREPAS_HOME/gt/src/analysis by issu-
ing ‘the command make. Likewise, the routines for the global thermal inter-
face procedure can be compiled by executing the Makefile in the directory
$REPAS_HOME/gt/src/analysis. If new values for the array size parameters
defined in the file $REPAS_HOME)/gt/src/analysis/Main/dimen.h have to be
used, all the object files for the global thermal analysis, the interface procedure,
and the post-processing procedure (see Section 4.6) have to be removed and
remade as described above. All of these object files can be removed by executing
the command make clean in each of the directories where the Makefile resides.

Note that the object files for the global thermal interface procedure must stay
in the standard directory SREPAS_HOME)/gt/src/interface as other procedures
linking with it will require it to be there.

4.6 Global Heat Conduction Post-Processing

The post-processing procedure is a utility that enables users to output the
global temperature on a two-dimensional grid in the x-y plane, either in the

54

interconnect or in a chip/solder unit, of the global structure for the purpose
of visualization. Currently, the only format that this routine supports is the
IBM Data Explorer [18] format. However, the source codes in the directory
$REPAS_HOME/gt/src/post can be modified easily to suit an individual user’s
requirement for the output format.

The post-processing procedure is almost the same as the interface procedure
described in Section 4.4, except that a main program is available and therefore an
executable binary can be created. The user is first prompted for the information
on the location of the desired x-y plane and the number of grid points for the
output temperature. The format of this is as follows:

1. iwhere (integer input) - “ 0” if the temperature in the interconnect is required;
“chip/solder unit number” if the temperature in the chip/solder unit is required.

2. layer (integer input) - layer number; if iwhere = “0”, use the layer numbering
convention for the layers in the global structure in the interconnect, assuming
that the bottom layer is layer no. 1; if iwhere > “0”, set layer = 1 for the
chip and layer = 2 for the solder continuum.

3. height (real input, between zero and one) - the location of the x-y plane
on which the temperature data is required. This input parameter is defined
so that the user can select the location of this x-y plane as follows. Each
layer of the global structure in either the interconnect or the chip/solder unit
has its own local coordinates. The origins of these local coordinates
shown schematically in Figure 7. The input value height represents the ratio
hplot/ h@ckness . '
nx - number of grid points for the temperature in the x-direction.

5. ny - number of grid points for the temperature in the y-direction.

It is noted that the temperatures calculated for the grid points are not stored in
an array, but rather, they are written to an output data file as soon as they are
computed. Thus there is no restriction on the number of grid points to be used as
far as the sizes of arrays in the post-processing program are concerned. However, -
an excessive number of grid points might require long CPU time. In order to

visualize the temperature distribution, a grid of 50 by 50 in the interconnect and - = .. .

a grid of 15 by 15 in the chip/solder unit should be adequate. Of course, users
can decide on the number of grid points that would give satisfactory resolution
for visualizing the temperature distribution. o

55

x-y grids for the
temperature output

”~
h s TS T T T T
thickness < L€ - L — < - F

Chip or Solder Laver of Global Structure

x-y grids for the temperature output

| Interconnect iazer of Global Structure

' Figure 7. Coordinate systems for the chip/solder unit and interconnect structure :

56

After these user-controlled input are read in, the post-processing program goes
through an initialization phase to read in the data file modelname_gt_interface.dat
and organize the data according to an internal database structure. This step is the
same as the initialization phase for the interface procedure. Similar to the interface
procedure, the parameters which decide the sizes of the arrays in the interface
routines have to be the same as the ones used in the global thermal analysis
for generating the interface data file modelname_gt_interface.dat. Otherwise,
erroneous output or abnormal abort of the program will result. A check is also
made in the post-processing program to ascertain such a consistency. Error
messages from the post-processing routines and appropriate responses are the
same as those for the interface procedure and they are outlined in Section 7.6 of
the REPAS Users’ Manual [22]. ’

After the initialization phase is completed, the post-processing program pro-
cesses all the grid points one by one. For each grid point, the program first calcu-
lates its coordinates, then computes the corresponding temperature, and then writes
out the coordinates and the temperature into two separate output ASCII data files
that are suitable for processing by Data Explorer. The output files are (i) model-
name_gt_post_xy.dat for the coordinates; and (ii) modelname_gt_post_t.dat for
the corresponding temperature values.

A Makefile is available for the post-processing routines in the directory
$REPAS_HOME/gt/src/post; executing the UNIX command make will create
the post-processing executable.

4.7 Replaceability of module .with an equivalent module

The coefficient matrix obtained from the global thermal analysis is a dense
symmetric matrix. After the coefficient matrix has been diagonally scaled, the
linear algebraic equations are solved by using the symmetric equation solver
dsysv from LAPACK. This linear algebra package is highly optimized and has
been well tested in a variety of computers, from engineering workstations to
supercomputers. A very important feature of this LAPACK equation solver for
the global thermal analysis is the attention to locality of reference in the program.
Also, BLAS level 3 routines are employed. These serve to drastically reduce
the number of memory page faults and hence improves the turn around time
of a global thermal analysis run. User prescribed control parameters to further
fine-tuning the solver dsysv can be made. Reference to the LAPACK Users’ Guide

57

[1] is recommended. If the user are like to replace this equation solver, the file
$REPAS_HOME/gt/src/analysis/Main/driver3.f can be changed by replacing
the statement

call dsysv(uple,n,nrhs,sx,lda, ipiv,x1,1db,work, lwork,info) With an
equivalent call to another solver. Here, the important quantities are: sx - the
coefficient matrix, x/ - the right hand side vector, Ida - the leading dimension of
the coefficient matrix sx. The new equation solver should return the unknowns in
the vector xI. The entries in the coefficient matrix sx could be destroyed during
the equation solution phase.

58

5 Global Thermal Stress Analysis

5.1 Description and Algorithm

The global thermo-elastic stress analysis programs solve linear thermal stress
problems through a semi-numerical procedure which is based on the variational
approximation principle [27].

Global stress analysis uses a three-step process for solving the boundary value
problems. In step 1, a chip layer and a solder continuum layer are assumed to
cover the top of interconnect layers. The input temperature field in the idealized
chip layer is derived from the global heat conduction analysis such that there is
no thermal load in the inter-chip spacing. Based on this structure, displacements
and tractions at the interfaces between the solder continuum and the interconnect
are derived. Step 2 uses the tractions under the solder continuum from step 1 as
traction boundaries at the top of interconnect layers and calculates displacements in
the interconnect. Displacements in chips and the solder continuum are calculated
by step 3 using displacements under the solder continuum from step 2 as boundary
conditions.

Global thermal stress procedures also contain an interface procedure for the
local stress analysis, details of which are described in Section 5.4 of this manual. A
post-processing program is available for extracting the solution in various formats;
currently, the only format supported is the IBM Data Explorer™[18] format.
Details of the post-processing programs are given in Section 5.6 of this manual.

5.2 Source Code

The source codes for.the analysis procedure are stored in the sub-directories
$REPAS_HOME/gs/src/analysis/step* (where * is the number 1, 2 or 3). In
sub-directory SREPAS_HOME/epii/gs/src/analysis/stepl, there are 15 FOR-
TRAN files, 1 C file and 16 other files for the common blocks for step
1. For step 2, there are 14 FORTRAN files and 16 common block files
stored in $REPAS_HOME/epii/gs/src/analysis/step2. For step 3, there are
14 FORTRAN files, 1 C file and 16 common block files in sub-directory
$REPAS_HOME/epii/gs/src/analysis/step3. :

59

The source codes for the interface procedures and the post-processing proce-
dure include 10 FORTRAN files and 1 file for common block. They are stored in
sub-directory SREPAS_HOME/gs/src/interface. The two procedures share most
of the source code because they have similar functions.

5.3 Input and Output

The necessary inputs for the global stress analysis procedure are derived from
the global heat conduction interfaces, SAM, and program parameters set up in the
code. Sections (5.3-1) to (5.3-3) describe these inputs.

5.3.1 Global Heat Conduction Interface Input

The file named modelname_gt_interface.dat is the interface data file from
the global heat conduction analysis. Information from this file is obtained by the
analysis procedure through SAM.

5.3.2 Input from SAM

In step 1 of the analysis procedure, the following parameters are derived
through programs by either calling SAM directly, or modified by the programs
after getting information from SAM. In step 2 and step 3, they are derived from
reading the interface data files! between each step

1. nlay (integer) — Total number of layers. In step 1, nlay includes the virtual
layers for chip and solder bump; in step 2, it does not.

2. nchip (integer) — Total number of chips.

3. xoff, yoff, zoff (reals) — Origin offset of MCM layers in X, y and z direction,
respectively.

4. ax, ay (reals) — Width and length of the interconnect layers, respectively.

z[i] (real array) — z-coordinate at the bottom of interconnect layer number

i. Note that i is nlay + 1 at the top of the interconnect layers where nlay is

the total number of layers.

6. idir (integer) — Major direction of metal wires in an interconnect layer.

e

idir = 0 if no wire; idir = 1 if wire along X direction; idir = 2 if wire i

Vmom e X7 X5 g

aiong I Qirection.

1 ie., files modelname_gs_stepl.dat and modelname_gs_step2.dat

60

10.
11.

12.
13.
14.

15.

ww, wp (reals) — Average wire width and average center-to-center pitch of

wires, respectively.

arf[i,j] (real array) — Effective linear thermal expansion coefficient of layer
number j. ¢ = 1 ~ 3 means linear expansion coefficient in X, y and z
direction, respectively.

c[ij] (real array) — Effective stiffness of layer number j. ¢ = 1 ~ 9 means
9 independent stiffness constants for an orthotropic material.

x¢, ye, zc (reals) — x, y, z coordinate of the center of a chip, respectively.
chxyz[i,j] (real array) — Maximum and minimum coordinate of the chip
number j. ¢ = 1 and 2 means minimum and maximum in X, respectively;
¢ = 3 and 4 means minimum and maximum in y, respectively.

ds (real) — Average diameter of the solder bumps.

ns (integer) — Total number of solder bumps under all chips.

spri[i,j] (real array) — 3 by 3 spring constant matrix under the bottom of
the substrate.

nsp (integer) — A parameter which is derived from spring constants. nsp = 1
means the spring constants only have diagonal terms so that the analysis is
faster; nsp = 0 means the spring constants include off-diagonal terms, thereby
increasing the amount of computation required.

5.3.3 Dimension Parameters

This section lists parameters which are related to maximum array dimensions

in global stress analysis procedures. They are set up in the file par.i from step 1
to step 3. These arrays should be configured to handle the largest problem that
must be analyzed. Note that all the following parameters are integers.

1.

ily — Maximum number of layers allowed. ily should be at least equal to
the total number of interconnect layers in the global structure plus two. Note:
The substrate is counted as one interconnect layer (Default = 15).

idmi — Maximum number of Fourier series terms allowed for the solution
functions for interconnect layers (Default = 20).

idm¢ — Maximum number of Fourier series terms allowed for solution
functions of chips and solder continuum (Default = 15).

itmi ~— Maximum number of Fourier series terms allowed for the transforma-
tion functions for interconnect layers. In step 1, itmi should be greater than
the number of terms in the Fourier series which expand temperature field in

61

the virtual chip and virtual solder continuum layer (Default = 50). In step
2, itmi should be the same as in step 1. In step 3, it should be the same as
ittm (described below).

5. itmc — Maximum number of Fourier series terms allowed in the transforma-
tion functions for chips and solder continuum (Default = 30).

6. ich — Maximum number of chips allowed (Default = 25).

7. idk — Maximum dimension of the final matrix. idk is set to be equal
to 4 * (¢dmi + 1) * (edmi + 1) + 15 in step 1 and step 2, where idmi is
described in (2) above (Default = 1779). In step 3, idk is set to be equal to
4 * (idme + 1) * (1dme + 1) + 15 (Default = 1039)

8. ittm, ittn — Maximum number of Fourier series terms allowed for the
transformation function in x and y directions for interconnect layers in analysis
step 2. iftm and ittn are suggested to be set at 2 to 3 times the value of itmi
(Default = 120).

5.3.4 Output

Outputs of the analysis procedure include 5 files. The files named mod-
elname_gs_step2.dat and modelname_gs_step3.dat are the interface data files
between the analysis procedure and the interface and post-processing procedures,
and they contain the coefficients of the Fourier series for the solution functions
after analysis. The file named modelname_gs_step*.log is the log file with which
‘users can monitor the progress of the program. The log file also contains CPU
time and the average traction on boundaries where the approximate solutions do
not satisfy boundary conditions exactly. If the analysis parameter nave is set to
be zero, the traction average will not be calculated.

5.4 Interface Procedure

This section discusses the interface procedure between local stress analysis
and global stress analysis.

Input files for the interface procedure are the interface data files model-
name_gs_step2.dat and modelname_step3.dat which are derived from the anal-
ysis procedure. When executing, the procedure first reads these files and derives

Atara Amn mrmler memna £ o ~a1la i A

nnnnnnnnnnnnn Thic 1o A tm £ a1l ol b £ty o S,
the necessary Pcucu'ncu:mz. 1118 1S Qofie Omy Once Ior all caus o inis proceaure

2 Which are similar to those described in Section 5.3.2 of this manual

62

by SAM. The procedure responds to queries from local stress analysis (through
SAM) about the solution at any given location by returning the displacements at
that location.

Note that the interface program cannot link and execute by itself because
there is no main routine. These routines can only be used for calling from other
programs. Users who need stress and displacements results at any point in the
global structure should refer to the post-processing procedure which is described
in Section 5.6 of this manual.

The parameters which decide the maximum dimensions of interface routines
are exactly the same as described in Section 5.3.3. Those parameters are set up in
file gs_com.i. To avoid erroneous results, it is recommended that these parameters
be set to the same values as they are in the analysis procedure.

5.5 Compiling and Linking

Makefiles are available for each step of the analysis procedure under the
sub-directories $REPAS_HOME!/gs/src/analysis/step* (* = 1, 2 or 3). Since the
temperature field is a necessary input for step 1 and step 3, source codes in these
steps must be linked with the global heat conduction interface. Also, step 1 and
step 3 must be linked with SAM.

To compile and link the routines in each step, type the command make in
each of the sub-directories.

Note that the object files for the interface procedure must stay in the standard

directory SREPAS_HOME/gs/src/interface since other procedures linking with
it will require it to be there.

5.6 Post-processing

The post-processing procedure is a utility that enables users to output the
solution on a grid representing any portion of the global domain for the purpose
of visualization. Currently, the only format that this routine supports is the IBM
Data ExplorerTM[lS] format. This section discusses modification of this routine
to suit an individual user’s requirement for the output format.

The post-processing procedure is almost the same as the interface procedure
described in Section 5.4 except that a main routine is available and therefore it

can be executed. This routine can be modified so that results can be output in a - e

63

format other than what is currently available. The routine initially reads in the
results of the global stress analysis. After this a subroutine gs_disp is called with
coordinates of the points of interest as input. gs_disp returns the displacement
and stress components at these points are returned. According to individual needs,
the locations at which this routine is queried for the solution may be varied. Also,
the output statements may be modified to write the results out in desired format.
The arguments to gs_disp are

gx (Input) — x coordinate of point of interest

gy (Input) — y coordinate of point of interest

gz (Input) — z coordinate of point of interest

u(i), i=1,2,3 (Output) — displacements at (gx,gy,gz)

s(i), i=1 to 6 (Output) — tractions at (gx,gy,gz)

ierr (Output) — ierr = 1 indicates that results were requested at a point

outside the MCM. Otherwise ierr is 0.

7. nar (Output) — Layer number (in the global idealized model) that the point
lies in.

8. nch (Output) — Chip number that the point lies in (O if the point lies in the

interconnect)

I R I e

A makefile is available for the postprocessing routines under the sub-directory
$SREPAS_HOME/gs/src/interface; type make to create the post-processing ex-
ecutable, gs_post

Like the interface procedure, post-processing routines need the interface data
files modelname_gs_step2.dat and modelname_gs_step3.dat as input. After
reading these files and retrieving information through SAM, all the necessary
parameters as described in Section 5.3.2 and 5.3.3 are found, and stresses and
displacements at the input points are calculated.

The interactive input/output of the current post-processing routines are dis-
cussed in the REPAS User’s Manual [22]. However, that may be altered to suit
specific needs. -

6 Local Heat Conduction Analysis

6.1 Overview/Description

The local thermal analysis module produces a parameterized description of the
temperature field within a specified window by using a random-walk technique.
Input to the program consists of geometric information, global-thermal results, and
resolution parameters. Output consists of a data file containing the parameterized
thermal field, and a log file.

Figure 8 shows a block diagram of the program submodules that make up
the local-thermal analysis module. The CIF parser clips the geometric data to
the local window and divides the window into a non-regular rectilinear grid of
homogeneous cells — each cell consisting of only one type of material. The
temperature at the window boundary is obtained from the global- thermal analysis
module. A random-walk method is used to find the temperature at points on the
surfaces of the internal cells as a function of the boundary condition. Results are
written to a data file.

An interface procedure has been written to interpret the local thermal analysis
results file and provide the local stress analysis module with pointwise temperature
data through SAM. Descriptions of the input, output, and error conditions appear
later in this chapter. See chapter 8 of REPAS User’s Manual [22] for an overview
of the theoretical operation of the local-thermal analysis package.

Figure 8 shows a block diagram of the program submodules that make up
the local-thermal analysis module. User input is combined with global-thermal
results to produce the detailed local temperature field, to be used by the local-
stress analysis module. An MCM is described by the CIF file and model attributes,
blocks (1) and (2). This information is combined and clipped to the local window
(3) by the CIF parser (4) to form a full 3D description of the MCM within the local
window. The local-thermal resolution parameters (5) control the accuracy of the
results and affect the execution time of the program. The boundary conditions are
evaluated using the global- thermal spatial resolution (6) and the global-thermal

output routine (7). The local-thermal parameter extractor (8) uses the random- .-

walk procedure and parameter fitting to produce a data file (9) containing the

parameterized temperature distribution. The local-thermal output routine (10) is -

used to provide the local temperature to the local-stress analysis task.

65

Global-Thermal| | Global-Thermal
Resolution Output Routine
Parameters Q)
Global Thermal Task ®)
—————————|———-——— ————— - . e ame
CIF !
File
¢Y) I
i
Model : CIF Parser
Attributes ™ 2D to 3D
@ : 2 Yy Y
: | l__> Local-Thermal
Local Wmdow | ‘ . Extractor
Coordinates ®
3) | *
1
Local-Thermal : Locslig%%rén al
Resolution T ©
‘Parameters I
()] 1) *
i Local-Thermal
User Input : Local Thermal Task Outpuzlgoutine
I
Local Stréss Task l

Figure 8. Local-thermal block diagram

The local-thermal parameter extractor is the body of the local-thermal analysis
and can be divided into three subblocks, global thermal lookup table, random-walk
method and parameter extractor, as shown in Figure 9. ’

The CIF parser provides three types of information: a grid of homogenééus
cells, used by the parameter extractor; a list of rectilinear objects in the window,

66

| _
| Grd Parameter | ; | Local-Thermal
CIF Parser | Extractor [P Data File
2Dto3D [(82) . ©
@ .
I
I Internal 1
Point Tx.y,2) I
J x.y.z)
I | |Object !
Local-Thermal | I || List ' Random-Walk :
Resolution i —»| Temperature :
Parameters I (8b)
®) 1 .
I i
Boundary I
| Point T(x,y,2)
Global-Thermal |t | [. ®¥? 1
Resolution |1 | Window !
Parameters |1 ™ Global-Thermal| !
®) I — Lookup Table | !
| —— 80) :
I
Global-Thermal | { I
Output Routine Local-Thermal Extractor !
D e e e o e o A = o e . |

Figure 9. Details of the local-thermal extractor

used by the random-walk kernel; and the local window coordinates, used to
generate lookup tables for the boundary temperature.

6.2 Input

1. Coordinates of local window: The coordinates of the local window are
obtained from SAM.
2. Geometric data: The 2D structure of each layer of an MCM is obtained

using a CIF file parser (see Section 7.9). The rest of the information about

the layer (such as the thickness, material properties, etc.) .are obtain_ed

through queries to SAM. The CIF parser routines are present in the file - S

$REPAS_HOME/lt/src/1tCIFparse.c.

67

Spatial Resolution: The spatial resolution for the random-walk method is
equivalent to a meshing size for finite-element or finite-difference methods,
but does not significantly affect run time or accuracy and has no effect on
memory requirements. This information is specified for the analysis in the
file epii.model and obtained by local-thermal analysis by querying SAM.
Temperature resolution: This parameter too is set in epii.model and can be
obtained from SAM.

Order of fit: The order of the fit is determined by the value of nTerms and
is a programmable parameter. It can be changed by editing the definition of
nTerms in the SREPAS_HOME/Nt/src/ItWalk.h header file and recompiling
and relinking all source code. A first-order fit (nTerms=1), however, has been
found to be sufficient for representing the local temperature field.

6.3 Output

1.

Standard Output: Error messages are the only output to the standard output
file. These are described in Section 8.5 of REPAS User’s Manual [22]
Log file: The local-thermal analysis module produces a log file named
modelname.lt.log. A sample log file with suitable explanation is given in
Section 8.3.2 of REPAS User’s Manual [22]. The log file will also include
any error messages generated.

Data file: The local-thermal analysis module produces a binary data file named
modelname.lt.dat. The data file is read and interpreted by routines provided
to the local-stress analysis module.

6.4 Compiling

A Makefile is present in the directory SREPAS_HOME/It/sre to compile the

local thermal analysis program It. Running the UNIX utility make will compile

’and link the program.

The interface routine to local stress analysis is present in the directory

$REPAS_HOMEt/src/interface and is called ltTemp.c. Like the analysis

program, the interface procedure can be compiled by running the make utility
in that directory. Note that the interface subroutine is compiled as an object file
and can only be linked to other programs. It cannot be executed by itself. '

68

7 Local Thermal Stress Analysis

7.1 Overview

Local thermo-elastic stress analysis of the MCM uses an adaptive finite
element analysis to predict thermal stress within a small portion of the MCM.
Broadly, it involves the generation of a geometric model of the local analysis
domain, meshing it automatically, and performing an adaptive finite element
analysis on the model] utilizing the results of global stress and local heat conduction
analyses [30]{2]. The different software components of the local thermo-elastic
analysis procedure and their interactions are shown in Figure 10. In the following
sections, each of the software components of the local stress analysis are described.

7.2 Building a manifold geometrié model
of the MCM — gmodioc

7.2.1 Description and algorithm

Automatic mesh generation of the local analysis domain requires a complete
geometric model of the domain. A complete and unique geometric model of
the local analysis domain is non-manifold® due to the presence of multiple
material regions. Therefore, a non-manifold data structure must be used to
represent the local model. Although data structures exist for representing non-
manifold models [32], most commercial geometric modelers do not support them.
Therefore, procedures have been developed to build non-manifold models using
the functionality of a manifold modeler [8][30]. Using these procedures, a non-
manifold model can be built from a manifold representation which meets specific
requirements. gmodloc is a program which builds such a manifold representation
of the local analysis domain from information in the CIF file and geometric
attribute information from the attribute manager.

gmodloc consists of a set of procedures to parse the CIF file (Section 7.9)

and a second set of procedures to create the geometric model of the portion of - = .-
Y

the MCM inside a given window using the solid modeler, Parasolid™ [26].

3 Non-manifold objects may have surfaces touching at a single point or an edge, have internal faces and be general
combinations of wires, surfaces and solids [20]{32]{8]. .

69

Solid modeler

= - (Parasolid) | b e

| Build manifold Attach analysis || || Build
| models of MCM [—>| attributesto {i I'| non-manifold | | Finite Octree| |
t mat/ regions manifold model b model P
! (gmodioc) | (paroct_nonman_batch4.3) :
""""" Ne 0 2§ —
g = 33 | Reassociate attributes
SIS § = Analysis atiributes | w/non-manifold mode/
Gi< < (reasatb)
Y V<

Analysis attributes | AM
SAM & pointwise displacement - (aim_epii)
boundary condition . i
Y VABAQUS input file
Pointwise temperature
distrioution ABAQUS

2 ‘
Attribute Definitions, Error Estimator
Organization, and (ERREST)
Relation : ;

7

Mesh prediction
(adspecsund)

Remeshing
(adaptm_nonman_parasol)

Figure 10. Organization of software for local stress analysis

The parsing routines are used to read the 2-D geometry of components
(assumed to lie in a plane parallel to the X-Y plane) from the CIF files. Currently,
the parser is only capable of reading circles or rectangles (boxes). Since each set
of component descriptions is preceded by the name of the CIF layer they are
in, the attribute manager is queried for the extents of the CIF layer in the Z
direction. The minimum and maximum Z dimensions of the layer are used for

70

constructing box and cylinder primitives for all subsequent components read in
until the next layer definition (not necessarily different from the previous one)
is encountered. Before constructing the primitives with the geometric modeler,
the components are clipped to the extents of the local window (obtained from the
attribute manager). If the attribute manager does not return the extents of the local
window, the extents in each coordinate direction are arbitrarily set to —500 and
500. An array of strings keeps track of the names of the different CIF layers read
in. A corresponding dynamic array of integer arrays stores the identifiers of the
primitives created in each CIF layer. As each primitive is created, the index of the
array it should go into is determined by locating its layer name in the array of CIF
layer names. When the CIF file is completely read, the primitives of each CIF
layer are unioned. The model bodies surviving the union are all put in an assembly
[26]. The result of this process is a manifold model of the local region containing
vias, wires, solder bumps, metal layers and dielectric layers. At this stage the
wires and vias in the model overlap the metal and dielectric layers. Therefore,
the wires and vias are subtracted from the surrounding dielectric or metal to create
voids into which they can fit in. A non-manifold model is later generated from
this model by procedures in paroct_nonman_batchd4.3 (see Section 7.3.1).

‘Also, analysis attributes must be attached to the appropriate non-manifold
mode] entities to be able to generate the finite element analysis input. However,
‘the initial attribute specification is in terms of the CIF layers. Therefore, attributes
of each CIF layer are associated with the material regions created from its
definition. They are later reassociated with the non-manifold model entities
utilizing specific knowledge of the non-manifold model building procedure. Only
association of the boundary condition attributes is done after the mesh generation
is completed and the non-manifold model written out. This is done so that the
boundary faces may be determined from the non-manifold model using topological
adjacencies alone avoiding less reliable geometric inquiries required if this were
done with the manifold model (see Section 7.4). Model entities are associated
with material attributes, initial conditions, temperature distribution from local heat
conduction analysis results, and an element type attribute which facilitates the
generation of solid 10-noded tetrahedral elements for the finite element analysis
input file.

gmodloc also determines the faces of the local geometric model which are free
faces of the interconnect. Distinguishing these faces from other boundary faces is

important because free faces must have zero traction boundary condition on them

71

instead of a displacement boundary condition that is on other boundary faces of
the local model. Boundary faces of a non-manifold model ¢an be recognized by
the fact that they are used by only one model region. Therefore, they are detected
using only topological information after the non-manifold model is constructed.
However, finding the free faces of the model requires comparison of the geometry
of a local model face with the surfaces forming the boundary of the complete
interconnect. The approach adopted here is to detect and tag these faces in
gmodloc so that they can be recognized later when boundary conditions are being
placed on the boundary faces in general (see Section 7.4).

A face of the local geometric model can be termed a free face if

1. the face does not overlap the boundary of the local window, or

2. a the face does overlap the boundary of the local window,
b. it is not the top face of a via, top face of a solder or the bottom face
of a solder, and
¢c. the face overlaps a vertical face or the top surface of the MCM, or any
face of the chip.

See Figure 11 for an illustration of the definition of free faces.

Free Surface

Free Surface Free Surface

SOLDER

Free Surface .

/
/
y
fFree Surface

Figure 11. Simplified MCM showing free faces

72

For Parasolid, in particular, the model entity identifiers (tags) are not unique
every-time a model is retrieved. What is guaranteed is that tag numbers will
be consistent whenever the exact sequence of modeling operations is followed
in a modeler session. Therefore, it is important to ensure that the attributes are
associated with the same set of tags that other programs of the local stress analysis
reference. For this purpose, once the manifold model is built and the attributes are
attached to certain model entity tags, the model is saved and the modeler stopped.
A new modeler session is then started, the model reloaded and the attributes
reassociated with the new entity identifiers. When this is done, any program
which starts Parasolid and loads the model uses the same set of identifiers that
the attributes are placed on.

Figure 12 and Figure 13 show pseudo code for the important procedures in
gmodloc.

main ()
Get_modelname
Setup_attributes
Get_local_window_coordinates_from_SAM
Open_CIF _file
Start_modeler

while (next_character is_not EOF) and
(next_character is_not ‘E’) {
if (next_character is blank) Skip_blank spaces
switch (next_character) {
case EOF: case ’‘E’:
goto done
case ’‘B’:
if (layer_name is_not "dielectric_air”) {
Read_box_geometry
1f (box_is_ in_local_window) {
Clip_box_to local_window
Make_box_primitive
Store_ID of box
}
}
case ‘'L’:
Get_layer_name
Get_thickness_of_layer_from_SAM
case ’'F’:
Read_round_flash_geometry

Figure 12. Algorithm to read CIF file and construct a geometric
model of the local analysis domain (Continued) ... -

73

If (flash _is_in local_window) {
clip_flash_to_local_window
Make_cylinder primitive
Store_ID of_ cylinder

}

case ‘(’:

Ignore_comment

default:

Report_error

}
}

done: :
Build_geometric_model /* from individual primitives */
stop_modeller

} /* end main */

Figure 12. Algorithm to read CIF file and construct
a geometric model of the local analysis domain

Y

for (each_CIFlayer) {

1f (there_is_more_than_one_body_in_the_layer)
Union_bodies_of_layer
Retrieve_material_ property attributes_of_layer
Assoclate_material attributes_to_regions_of_layer
Put_bodies_in_assembly
}

Save_model

Stop_modeler

Start_modeler /* new session */

Retrieve_saved_model

for (each_body_in_assembly) {
Find_attributes_assciated_with_body’s_old_ID
Reassociate_attributes_with_new_entity number

} .

Associate_initial: conditions_to_all_regions

Assoclate_temperature_distribution_with_each _region

Associate_element_attribute to_each_region

Identify_and tag free_faces_of_model

Save _model

Figure 13. Building geometric model from individual pﬁﬁﬁti‘ve‘sih; i

74

7.2.2 Important modules/libraries

1.
2.

4.
5.

CIF file parsing routines — see Section 7.9.

Main program of gmodloc — The source code may be found
in$REPAS_HOME!/Is/gmodloc/src/lsmain.c.

CIFBuild Chip — This routine combines the individual primitives built during
the parsing of the CIF file into a model and places attributes on the material
regions of the model. The source code for the module may be found in
$REPAS_HOME/ls/gmodloc/sre/lsparasol.c.

Parasolid libraries — see [26].

SAM libraries — see Section 2.

7.2.3 Input/Output

gmodloc and its modules obtain input from two sources — the CIF file and

SAM. The CIF file describing the MCM is parsed to obtain the detailed 2D
geometry of components of the MCM (see Section 7.9) while the attribute manager
is queried for all other information. Given below is a list of the important queries
made to the attribute manager to retrieve or associate attributes.

1.

A

N o

Scaling factor to be applied to dimensions read in from the CIF file (see
Section 2).

Local window coordinates (see Section 2).

Layer’s bottom and top plane locations (see Section 2).

Material properties of a layer (see Section 2).

Element type attribute (so that the right type of finite elements may later be
generated) (see Section 2).

Temperature distribution attribute (see Section 2).

Initial condition attribute (see Section 2).

The output of gmodloc is a model file (modelname.xmt_txt). Also, a

modified set of attribute files is written out by SAM reflecting the changes to
the attribute associations.

7.2.4 Compiling

[SS R

The steps for compiling gmodioc are
cd SREPAS_HOME/Is/gmodloc/script
gmake

75

7.2.5 Software Limitations
Important limitations of the procedures of gmodloc are described below.

1. A maximum of 1000 different CIF layers can be handled by gmodloc. This
can be easily increased by changing the parameter MAXLAYERS.

2. The clipping routines of gmodloc can only clip cylinders if the clipping plane
is perpendicular to the axis of the cylinder. This is an important restriction
since relaxing the restriction will imply that the clipped component is no
longer a primitive.

3. The local window cannot enclose only chips, i.e., it has to at least include
the solder bumps along with the chips. This constraint is present for the sake
of efficiency; otherwise the bottom face of a chip can also be a free face and
the procedure are have to check that.

7.2.6 Replaceability

Since gmodloc builds the manifold model of the interconnect region and
places attributes on it, any other set of procedures which can do the same can
replace it. The only constraint is that the solid modeler used to build the model
and the one used for the automatic mesh generator queries be the same.

7.3 Non-manifold Modeling and Finite Octree
Mesh Generation — paroct_nonman_batch

Finite Octree can broadly be viewed as consisting of two sets of procedures —
a preprocessing procedure to construct a radial edge representation (non-manifold
representation) from a manifold model and the meshing procedure which actually
generates the mesh. This discussion is mainly concerned with the non-manifold
modeling procedures. For a description of the Finite Octree mesh generator see
[9],[10] and [28].

7.3.1 Description of non-manifold modeling procedures
As mentioned earlier, a set of procedures have been developed to create

non-manifold models from manifold models [22][8]. Given a set of manifold

objects that are disjoint and have matching (coincident) entities at interacting

boundaries, and the coincident entity information, the procedures can create a .

radial edge representation [32]. In doing so, any one entity of a set of coincident

76

entities is recreated in the non-manifold representation and uses of the preserved
entity are created for every member of the coincident entity set [8]. If the
objects are overlapping, an operator is capable of making these objects disjoint.
Since splitting of intersecting objects contains ambiguities, it must generally be
resolved by additional input. The procedures can also create matching entities on
interacting boundaries of objects and identify coincident entities through geometric
inquiries to the modeler.

Since it is known that gmodloc creates a geometric model with disjoint
objects, the process for building the non-manifold model of the interconnect
from the manifold model can be tailored for this task. Thus, the flag for
making objects disjoint (MAKE_DISJOINT) is set to FALSE, the flag for
creating matching entities (IMPRINT_BODIES) is set to TRUE and the flag
indicating that coincident entity information should be obtained from a file
(READ_FROM_FILE) is set to FALSE. Matching entities are created on model
objects touching each other if they do not already exist. Then coincident entity
sets are identified using geometric inquiries to the modeler. The radial edge
representation is then created from the manifold model and the coincident entity
information.

7.3.2 Automatic mesh generation — Finite Octree

Finite Octree is an automatic mesh generator developed at SCOREC, RPI
[28]. It is capable of generating tetrahedral meshes for general non-manifold
3-D domains. Geometric information about the model required for meshing
is obtained from the solid modeler through a dynamic interface similar to the
CAM-I interface specifications [5]. The mesh generator-solid modeler interface
consists of a fixed set of geometric interrogation operators to query the modeler
and only these operators need be rewritten for the mesh generator to be usable
with a different solid modeler [9]. Currently Finite Octree interfaces exist to the
Parasolid, ACIS™, CATIA™ and Shapes™ solid modelers.

7.3.3 Ilnportant modules/libraries

Given below is a list of operators (procedures) used in the non-manifold
model creation. - C

1. C_MakeDisjoint — Make a given set of objects disjoint according to a given - - :

set of preferences.

7

2. C_CreateMatchingEntys — Create matching entities on boundaries of ob-
jects which touch each other.

3. C_Get_CoEn_From_Model — Deduce coincident entity relationships
through geometric and topological inquiries to the modeler.

Refer [9] for details of the mesh generation operators.

7.3.4 Input/Output

The input to paroct_nonman_batch is a file containing the solid model.
Since Parasolid is being used for this specific application, the expected input is a
modelname.xmt_txt file containing the solid model generated using Parasolid.

There are a variety Finite Octree mesh control functions that can be controlled
by user defined flags in two files, modelname.atb and OCTREE.FLG. The flags
in the OCTREE.FLG file are meshing options (e.g. whether to create higher
order nodes, whether to write a mesh file out, etc.) whereas the .atb file contains
parameter values for element size control [7]. The absence of either of the
files causes Finite Octree to assume default values for any missing data. For
this application, an adaptive analysis is being performed which will eventually
determine the mesh gradations in the analysis domain. Therefore, the initial mesh
density is allowed to be the default coarse value. This is done by omitting the
.atb file in the ‘current directory. To obtain a finer mesh, the mesh refinement
parameters must be changed in the modelname.atb file. -

Higher order nodes are required for the elements and the mesh must be output
for the analysis. This requires setting the “Create higher order nodes (HON)” flag
and “Create mesh file” flag to 1 in the file OCTREE.FLG. An example of the
OCTREE.FLG file is given in the REPAS User’s Manual [22].

With the above options set, the following files written out by Finite Octree
are useful for subsequent modules of local stress analysis.

1. modelname.sms: File containing a description of the mesh
2. modelname.smd: File containing the topology of the non-manifold model
3. modelname.sav: File containing required information for remeshing

7.3.5 Compiling

Not applicable.

78

7.3.6 Software Limitations
Refer [8] and [28].

7.3.7 Replaceability

Most of the local stress analysis modules are built around Finite Octree and the
SCOREC mesh database. Replacing Finite Octree with a different mesh generator
will not affect any module, except the remeshing procedures, provided it

1. supports the meshing of non-manifold models,

2. either interfaces to a non-manifold modeler (in which case gmodloc may
have to be modified) or incorporates preprocessing procedures to build the
non-manifold model from the manifold model,

supports classification of mesh entities on model entities [28],

4. can output the mesh and the model in the SCOREC mesh database format.

w

Currently the remeshing procedures, for a large part, use the mesh generation
procedures; therefore, replacing the mesh generator will necessitate replacement
of the local remeshing procedures. This may in turn affect the output of the mesh
enrichment prediction procedure.

By comparison, interfacing Finite Octree with a different solid modeler for
‘mesh generation is straightforward provided some basic functionality is satisfied
by the modeler. As mentioned before, Finite Octree has a dynamic interface to
the solid modeler in the form of a small fixed set of geometric inquiry operators.
All the operators are keyed via the topological entities of vertex, edge and face.
Approximately one half of the operators request basic topological associativities.
The geometric interrogations used are limited to determining pointwise quantities
such as the points of intersections and surface normals. These operators have
been successfully developed for multiple geometric modeling systems.

Linking Finite Octree to another solid modeler requires the creation of these
operators for the new geometric modeling system. To proceed in the development
of these operators one should begin with a copy of reference [9]* and the code
for the operator set to at least one modeler.

Most geometric modeling systems provide basic sets of interrogation operators
in terms of callable routines. More recent geometric modeling systems are built
using a tool kit of such routines making it easy for applications such as finite

4 Contact Professor Shephard at RPI for a copy of this document.

79

element mesh generation to access the needed functionality. In all cases the
Finite Octree operators that request pointwise geometric information (line-surface
intersection, surface normals at a point, etc.) must be constructed using the
procedures provided by the solid modeler. If the solid modeler does not provide
the basic operators required to construct these operators, it is not likely that a
successful set of interface operators can be developed since the direct application
of the functionalities of the geometric modeling system is necessary to ensure
consistency of the geometric interrogations [29].

There are two approaches that have been used to provide the required topo-
logical adjacency operators. The most straight forward is to directly use operators
provided by the geometric modeling system to provide this information. One
drawback of this approach is that the geometric modeler’s topological representa-
tion may be limited to 2-manifold representations. Even though Parasolid could
perform the basic geometric operations needed to define the non-manifold ge-
ometries, neither provide a convenient method to store the required topological
adjacencies. A second possible drawback is that the modeler does not explicitly
store all next level adjacencies thus forcing searching, which is too time con-
suming for the number of interrogations required, to determine the information.
If these drawbacks exist, the alternative approach is to preprocess the geomet-
ric model to create the needed topological adjacencies in a general non-manifold
topological representation before the meshing process is initiated. This is the
approach that was used for the Parasolid interface.

7.4 Reassociating attributes with the
non-manifold model — reasatb

7.4.1 Description and Algorithm

In the process of constructing the non-manifold model of the local analysis
domain, the manifold model may be augmented (model entities may get deleted
or replaced or the model topology may be altered). Since, attributes have been
associated with the entities of the original manifold model, they have to be
reassociated with the augmented model entities. To facilitate the reassociation of

attributes, augmentation information is written out by paroct_nonman_batch4.3 =

in a file augment.dat. Each record in the file contains two fields; the first field
being the parent entity, and the second field a child of the parent entity [8].

80

reasatb reads the file augment.dat and associates the attributes of the parent
entities with the child entities.

reasatb also places boundary conditions on the boundary faces of the model.
The procedure for determining the boundary faces of the model is based on the
fact that for a non-manifold model only boundary faces point to one or no regions
while interior faces point to two regions (which may be the same). To facilitate the
identification of the boundary faces, the SCOREC mesh database and its operators
is used [3]. The model is loaded into the mesh database from the modelname.smd
file. Using topological inquiry operators, the boundary faces are identified and
boundary conditions are associated with them. Traction free boundary faces are
ignored in reasatb.

7.4.2 Important modules/libraries

The main routine of reasatb 1S in the source file
$REPAS_HOME/Is/reasatb/src/c_assatb.c.

reasatb uses the SCOREC mesh database [3] and the SAM libraries (Section
2).

7.4.3 Input/Output

reasatb utilizes three sources of input described below

oy
.

modelname.smd file — This file contains the non-manifold model topology

which is then loaded into the SCOREC mesh database.

2. augment.dat file — This file contains augmentation information. Specifically
it contains parent-child entity pairs in each field of the record.

3. SAM — The attribute manager SAM is queried for attribute information on

model entities. The following is a list of information obtained from SAM.

a. Boundary condition attribute for local stress.
b. Material property attribute for material regions of the local stress model.
c. A special character key attached to a face identifying it as a free face.

The output of reasatb is a modified set of attribute files.

7.4.4 Compiling }
Given below is the sequence of steps for compiling reasatb.

1. ¢d $REPAS_HOME/ls/reasatb/scri pt

81

2. gmake

7.4.5 Software Limitations

None

7.4.6 Replaceability

reasatb can be replaced with any other module which identifies boundary
faces of the non-manifold model of the local region based on topological queries
to a non-manifold model database. With the present setup, the module must be ca-
pable of reconstructing the non-manifold model topology from information output
by Finite Octree. Since reasatb only changes the associations of attributes with
model entities, no other modules are affected when replaced with an equivalent
module.

7.5 Analysis Interface Manager — AIM

7.5.1 Description and Algorithm

The analysis interface module is designed to perform two major tasks. First it
transforms the mesh information from a standard file format to the format specific
to an analysis input file. Next it retrieves all the appropriate attributes associated
with the analysis case that is being run, properly associating them with the entities
in the mesh and outputs them as appropriate to the analysis input file. The program
itself is written in C++ and implements various classes that represent the model,
the mesh, the attribute manager, and the attributes. In addition there is a class
that is the "problem" itself. In this situation the problem is to write out an input |
file with the appropriate format with the proper information. The problem class
is the one where all the work is done to output the information by querying it
from the other objects in the program. A basic outline of how the program works

is as follows: 1) load model 2) load mesh 3) go through each model entity in .

the geometric model and retrieve all attributes that are associated with that entity
make attribute objects and attach them to the appropriate model entity, and 4)
write out the input file. The manner in which step 4 is done is totally deperideh
on the analysis code used. .

82

7.5.2 Description of important sub-modules/subroutines/libraries

- The most important routines in AIM relate to those that output the analysis
input file. This is the only part of AIM that is designed to be easily changed to
accommodate other analysis programs.

SREPAS_HOME/aim/prob/Abaqus.cc - This file contains all the routines that are
specific to producing an ABAQUS input file from the mesh, model and attribute
information. '

7.5.3 Input/output

Input for mesh and attribute information is handled by routines that are
described in the documentation for SAM (Section 2) and the SCOREC Mesh
Database [3].

The only other input for AIM is the command file. This file is opened by the

main routine and the first word, the problem type, is read in. Based on the type
of the problem, an appropriate instance of the problem class is created. The input
stream corresponding to the command file is then passed to the problem classes
setup method. Here the rest of the information that is specific to the problem
definition is read from the stream. The stream is then passed to the parent of
“the problem class (FEProblem) by calling its setup method. Here the appropriate
.information for the mesh, model and attribute manager is read in from the file
and instances of the mesh, model and attribute manager objects are created.

7.5.4 Interface to other modules

The only module that AIM directly interfaces to is the attribute manager.
There are six operators of the attribute manager that AIM calls directly. These
operators are AT_setup, attptr. C, AT_rtatype, AT rtlabels, »
distrib_comp_C, AT dstlistval. These operators are described in the SAM
documentation 2. ’

7.5.5 Compiling/linking with other modules

In order to properly access the results from the global analyses, AIM must
be linked with the global stress interface routines.

83

7.5.6 Replaceablility of module with an equivalent module

This section will concentrate on the changes necessary to change the analysis
package to some program other than ABAQUS. In order to do this, knowledge of
C++ is required. In order for AIM to create an input file for a different analysis
program, a class must be created for that analysis program. This section will
describe the class that exists for creating input for ABAQUS. Here is the class
definition for the ABAQUS program.

class Abagqus5 : public FEProblem{

protected:
ofstream * outfile;

public:
void setup(istream & infile);
void doProblem(void);
void doElement (Element & el, NodePList &nodes,

int type, MEntity &whatlIn);
void doBC(GEntity *ent, AttPList & attList);
void doIC(GEntity *ent, AttPList & attList);
void doProp(GEntity *ent, AttPList & attList);
void doField(GEntity *ent, AttPArray & attList);
void doLoad(Element *el, AttPArray & AttList,
int side);

void outNodes (void);

};

Each of these methods (except outiodes) are virtual functions that are first
declared in one of the two parent classes of abagqus5: FEProblem Or Problem. The
main program first creates an instance of the problem and then calls its setup()
method. After everything is set up the main routine then calls the doproblem
method of the problem and exits. The setup method is passed as input the input
stream from the command file, here it reads the output file name and stores it (to
be opened later). Then the setup method of the class FEProblem is called which
reads in the rest of the command file and creates objects for the mesh, model and

SAM. In the process of creating these objects and reading in the data, all of the o -

attributes that are applicable to the current analysis case are associated w;th the
proper model entities. After the setup method is called the doProblem method R
is called. It is this method that drives the actual process of creating the data file.
For the abaquss class the doproblem method is as follows: I

84

o

void Abagus5::doProblem(void)

{
int 1i;
*outfile << "*HEADING\n"; // write out heading
*outfile << "\n”";
outNodes () ; // write out nodes
outElem();

gmodel->extProp();
gmodel~>extIC(analysisType) ;
switch(analysisType){
case stress:
case thermal_stress:
*outfile << "*STEP\n*STATIC\n";
break;
case heat_transfer:
*outfile << "*STEP\n*HEAT TRANSFER, STEADY STATE\n";
break;

}

// write out boundary conditions
gmodel->extBC (analysisType) ;

for(i=0,; i<numElem; i++) // write out loads
elements[i]->extLoad(analysisType);
gmodel->extField();
switch(analysisType) {
case stress:
*outfile << "*EL FILE\nE,S\nELEN\n*ENERGY FILE\n\

-ALLEN\n*NODE FILE\nU\n";

*outfile << "*EL PRINT\nCOORD,E\nCOORD, S\n\
*ENERGY PRINT\nALLEN\n-";
*outfile << "*NODE PRINT\nCOORD,U\n";
break;
case heat_transfer:
*outfile << "*EL FILE\nHFL\n*ENERGY FILE\n\
ALLEN\n*NODE FILE\nNT\n"; . .
*outfile << "*EL PRINT\n*ENERGY PRINT\n\
ALLEN\n*NODE PRINT\nCOORD,NT\n";
break;
case thermal_stress:
*outfile << "*EL FILE\nE,S\nELEN\n\
*ENERGY FILE\nALLEN\n";
*outfile << "*NODE FILE\nU,NT\n*EL PRINT\n\
COORD, EA\nCOORD, S\nn";
*outfile << "*ENERGY PRINT\nALLEN\n\

*NODE PRINT\nCOORD,U,NT\n";

1
4

*outfile << "*END STEP\n";

85

}

A general outline of the procedure to write out the analysis input file is as
follows:

1. A heading is written to the output file.

2. outNodes() method is called which writes out the nodal locations to the
output file. .

3. outElem() method is called which writes out the element connectivities to
the output file. The next few steps utilize a global variable called "gmode1"”
that stores the instance of the geometric model.

4. gmodel->extProp() is called. This routine loops through all the regions in the
geometric model and for each region that has a material property definition
calls the doprop method of the problem.

5. gmodel->extIC () is called which is similar to extProp () but acts on attributes
that define initial conditions and calls the problem method dozcy().

6. gmodel->extBc () is called which is similar to extProp () but acts on attributes
that define boundary conditions and calls that problem method doBc().

7. For each element in the problem, the extroad() method is called which
checks if the element has a distributed load on one of it’s faces. If it does it
calls the problem method dozoad for that face.

8. gmodel->extField is called which is, again, similar to extprop() but acts
on fields (such as temperature) that are defined over the body. It called the
problem method dorield().

The end of the file is then written to the output stream. Vari-
ous behavior may be modified by creating a subclass of abaguss
and overloading the appropriate routine. For an example of

this, see the filess $REPAS_HOME/aim/prob/AbaqusEpii.cc and
SREPAS_HOME/aim/prob/AbaqusEpii.h where some of these methods
are overloaded to change the output from a general ABAQUS input file to
one specific to this project.

7.6 Finite Element Analysis — ABAQUS

7.6.1 Description

The finite element analysis tool used in the local thermal stress analysis is
ABAQUS (v 5.2.1). ABAQUS is chosen as the finite element analysis enging _'

86

since it provides convenient user extensions for interface to local heat conduction
analyses results. This section gives a brief introduction to the use of the software
for the local stress task. Programmers should refer to ABAQUS/Standard Users’
Manual I, I, ABAQUS/Theory Manual and ABAQUS /Post [15, 16, 14, 13] for
more detailed information.

7.6.2 Description of User Subroutines

The user subroutine developed for local thermal stress analysis follows the
format requirements of ABAQUS (see [15]). In this section the user subroutine for
prescribing temperature distribution on nodes. Also described is a user subroutine
for prescribing displacement boundary conditions, although this information is
currently written into the ABAQUS input file directly.

utemp_ 18 a function used to prescribe temperatures on the nodes. It obtains nodal
temperature from local heat conduction analysis through SAM. This routine is
called for each node listed under keyword *reMpERATURE, uskR. Instead of the
FORTRAN subroutine UTEMP, REPAS uses an equivalent C subroutine utemp_
and has the following format

/* User subroutine to answer ABAQUS gqueries
about nodal temperature

* / .
#include <stdio.h>

void utemp_(double *temp, int *nsecpt, int *kstep, int *kinc,
double *time, int *node, double *coords)
{
static int first=0;
char *modelName;
double tempValue[l];
int valueSpecs[1l], numRet;

if (first == 0)

{ /* set up attribute database on first call */
AT_gtmoname (&modelName) ;
AT_setup (modelName) ;
first = 1;

}

tempValue[0] = 0;

87

/* get temperature from local thermal */
AT_gtvalocal ("ls", NULL, coords, "temperature_distribution’,
"temperature”, 1, tempValue, valueSpecs, &numRet);
if (numRet == 0) {
fprintf(stderr, "\n\nNo temperature returned to \
ABAQUS user subroutine.\n");
exit(-1);
}
temp[0] = tempValue[0];

The following is a list of arguments for utemp_ with an explanation of their
meaning.

temp (Output) — Temperature array of size NSECPT

nsecpt (Input) — Pointer to size of temp array (1 for solid elements)
kstep (Input) — Pointer to current step number

kinc (Input) — Pointer to current increment

time (Input) — Pointer to current time

node (Input) — Pointer to node number

NN ke Wy

coords (Input) — Pointer to coordinates of node

The body of the subroutine includes the definition of temp in a user defined
manner; in this case, this is simply a call to SAM asking for the temperature at
the coordinates of the node. SAM, in turn, queries the local thermal interface
routine [tTemp for the information (see Section 6).

Currently, displacement boundary conditions are written to the: ABAQUS
input file by AIM. The following user subroutine, disp, can be used instead to
prescribe displacements on nodes. disp is called for each degree of freedom of
the nodes listed under keyword *BOUNDARY, USER SUB. '

83

SUBROUTINE DISP(U,KSTEP,KINC,TIME,NODE, JDOF)
INCLUDE ’'ABA_PARAM.INC’

DIMENSION U(3),TIME(2)

DIMENSION NODE(2,*), COORD(3)

COMMON /CNS/IDUM, INCRD

CALL ACOPY (NODE (INCRD-1), COORD, NDIM)

user coding to define U
For REPAS, SAM operator to get displacement
from global thermal stress module is called

aan

RETURN
END

The following is a list of arguments for DISP with an explanation of their
meaning.

U (Output) — Displacement array of size 3
KSTEP (Input) — Current step number
KINC (Input) — Current increment

TIME (Input) — Current time

NODE (Input) — Node number

JDOF (Input) — Degree of freedom

SN A LD

7.6.3 Input/output

ABAQUS/Standard User’s I [16] has a summary of input, output, and
intermediate files either needed or generated during an ABAQUS run. Their
format is described in detail in various chapters of the ABAQUS User’s Manual
[15].

7.6.4 Compiling and Linking

Standard ABAQUS can be run without any compilation. However, the use of

user subroutines which interface with SAM requires that a customized ABAQUS .

executable be created for local stress analysis. This requires using an ABAQUS
command file template to create and run temporary executable each time a step

89

in the adaptive analysis process is executed or to run a copy of the customized
executable kept permanently on disk. Currently, the former approach is adopted.
Refer Section 9.11.6 of REPAS User’s Manual [22].

7.6.5 Software Limitations

Programmers are directed to references [15][161[14][13].

7.6.6 Replacement of Analysis Module

ABAQUS may be replaced in the local stress analysis with any other finite
element analysis software capable of doing a linear elastic and nonlinear elasto-
plactic thermal stress analysis. Only two procedures will be affected by this
change — AIM, since it produces the input file for the analysis software and
ERREST, since it gets the finite element solution from ABAQUS. Refer Section
7.5 on incorporating the capability to interface to different finite element analysis
software. If the analysis software does not support user extensions, AIM may
be modified to write out the temperature at each node (or some other mechanism
found to provide this information to the analysis software). Section 7.7 discusses
modifying ERREST to use a finite element solution from different analysis
software.

7.7 EBRREST — A Posteriori Error Estimation

7.7.1 Description and Algorithm

ERREST performs a posteriori error estimation for a three dimensional
thermal stress analysis. The error in the energy norm is calculated which serves
as a basis for further finite element adaptive refinement. A detailed discussion of
theory can be found in REPAS technical documentation [23][2].

7.7.2 Description of Important Subroutines

errest.f: main control program for a posteriori error estimation procedure.
rtisol.f: retrieves solution at integration points.

rtmatp.f: retrieves material properties for an element.

rtprob.f: retrieves analysis type. '

rtsoln.f: retrieves the strain energy of the finite element mesh.

NPE W

90

6. tetrlS.f: provides Gauss quadrature information for 3-D elements.

7. filread.f: interface routine to ABAQUS result file modelname.fil which reads
it and stores appropriate information needed for error estimation.

8. interr.f: error estimation procedure performed in this routine on an element
by element basis.

9. setmat.f: sets up material properties for error estimation using the ABAQUS
input datafile modelname.inp.

10. rtmats.f: sets up material classifications of finite elements using the SCOREC
mesh database [3].

11. shapes.f: provides hierarchical shape functions of finite elements.

12. refnee.f: computes required element sizes based on interior error norm
information.

13. wradp.f: writes out desired element sizes for mesh enrichment prediction.

7.7.3 Input/Output

The error estimation and element size prediction procedures of ERREST are
interfaced to the finite element analysis through a set of generic retrieval operators
(all functions named re****, e.g., remats). The error estimation procedures query
these operators for the finite element solution and these operators retrieve the
results of the finite element analysis. Thus all other procedures in the program
are not affected if these retrieval operators are modified.

Currently, these operators retrieve the required information from common
blocks which are initialized by the routine filread. filread reads the results of
the ABAQUS analysis and loads the necessary data into common blocks in the
program.

If ABAQUS is replaced by another software, then the routines that will be
affected, in general, will be some or all of the retrieval operators. The changes
that must be made to the retrieval operators will depend on the mechanism that
the new software provides to recover the solution. If the current mechanism of
 using filread to initialize common block arrays is retained, this routine too will
have to be changed. '

7.7.4 Compiling and Linking

A makefile is provided in $REPAS_HOME/Is/errest/src to automatically
compile and link the error estimation routines and various libraries. To compile

91

and link the program, type make in this directory.

7.7.5 Software Limitations

The error estimation routines developed are for three dimensional 10-noded
tetrahedral elements. It can be used for a posteriori computation of the error of
thermal stress finite element analysis, as well as three dimensional heat conduction
analysis and mechanical stress analysis.

7.7.6 Replacement of Error Estimation Procedure

The main concern when replacing the error estimation procedures is to ensure
that the input/output procedures maintain compatibility with the finite element
analysis software and the mesh enrichment prediction procedure. On the input
side, an interface must exist to extract the finite element solution and provide it
to the error estimator. Also, depending on the type of error estimation procedure
used, the procedure generating the analysis input file may have to be modified,
so that the analysis software provides all the necessary solution information. On
the output side, the error estimation procedure must be able to provide desired
element size information to the mesh enrichment prediction module.

7.8 Adaptive Local Remeshing — adaptm_nonman_parasol

7.8.1 Description

adaptm_nonman_parasol is a set of local remeshing procedures which
modify an existing Finite Octree representation of the model based on element
sizes specified at a set of spatial locations. Based on these refinement points, the
procedures refine or coarsen portions of the tree and then retriangulate modified
portions of the tree. The program incorporates preprocessing procedures used to
generate the non-manifold representation of the local domain (Section 7.3.1).

7.8.2 Input and Output

Since the local remeshing procedures are based on Finite Octree, they uti- . ..
lize the information of the Finite Octree representation of the model along with
refinement information to effect changes in portions of the mesh. Thus the proce-
dures require the octree as well as the mesh before collapsing or smoothing. The .

92

procedures also utilize other inputs required by the mesh generation procedures,
namely, the geometric model file and the options file.

Currently, refinement is requested by other procedures in terms of spatially
located refinement points. This may be modified to incorporate some other
mechanism if the interface to the mesh enrichment prediction program is suitably
changed.

7.8.3 Compiling and Linking

A link script is available in the directory $REPAS_HOME/scripts
and is called adaptm_script. Run this script to create the executable
adaptm_nonman_parasol in the directory SREPAS_HOME/Min. Note that
Parasolid libraries parasolid.lib, frustum.lib and fg.lib must be available for
linking this program and that the link script must be edited to indicate the path
to these libraries.

7.8.4 Replacing the local remeshing module

In the current implementation, the local remeshing procedures use the octree
representation of the model, and the mesh generated by Finite Octree together
with much of Finite Octree functionality to enrich the mesh. As discussed in
Section 7.3, this makes it necessary to replace the local remesher if the mesh
generator is replaced.

However, the local remeshing procedure itself is not constrained to use the
same algorithm as the mesh generator and may be replaced with an equivalent
remeshing procedure. Note that the functionality of this procedure is subject to the
same requirements as that of the mesh generator (see Section 7.3). In addition,
an interface between the mesh enrichment predictor must be established if the
existing one cannot be used.

7.9 CIF Parser®
The CIF parser is a set of routines that reads a CIF file by looking at the first

character in each line and cailing a suitable routine to parse the entire line (refer . .«

[21] for a description of the CIF format). The CIF parser recognizes commands

s This code has been adapted from the MAGIC design system, Copyright (C) 1984, Regents of the University of :

California.

93

specifying a layer name or the 2-D description of the geometry of a component
in the last encountered layer. Comments and other commands are ignored. The
parser can parse the “Box” and “Round flash” geometries. Each geometry parsing
routine takes as input a scaling factor to multiply the CIF dimensions read.

AR

8.
9.
10.
11.

The important higher level routines in the CIF parser are

CIFOpen — Opens the file modelname.cif. 1t gets the modelname from
SAM.

CIFParseDouble — Parses a real number.

CIFParseName — Parses a string.

CIFParselnteger — Parses a positive integer.

CIFParseSInteger — Parses a signed integer.

CIFParsePoint — Parses a pair of real numbers and assign to special structure
for points with x and y coordinates as fields.

CIFParseLayer — Parses layer changes in the CIF file and return the new
layer name. This is indicated in the CIF file by a line starting with an 'L’
and followed by a string. All geometry descriptors occurring after a layer
command is encountered are taken to belong to that layer until a new layer is
encountered. The routine to parse CIF layers also keeps track of the names
of unique layers that have occurred in the CIF file.

CIFParseBox — Parses a box command starting with a "B’ in the CIF file.
CIFParseFlash — Parses a round flash (circle) command starting with an "R’.
CIFSkipToSemi — Skips everything up to the next semicolon.
CIFSkipSemi — Skips a semicolon.

The CIF parser can be tailored to parse other commands such as wires and

polygons by adding new functions. It may also be replaced with other CIF parsers.

94

8 MCM Router and Electromagnetic Analysis

8.1 Overview

The multichip module (MCM) is routed using the RPI-MCM router (Donlan
Router [6]), which is a high speed line probe router. The router uses High-
tower[17] routing coupled with Al rules to route an MCM. It is a very versatile
router and can incorporate MCM blockout regions too. The output of the router
is in CIF (Caltech Intermediate Format) and can be used directly by other mod-
ules. The input to this router is a wafer level netlist which describes the interchip
connections and the wafer configuration along with the routing blockout regions.
The electromagnetic analysis module uses MagiCAD [24], a tool developed by
the Special Purpose Processor Development Group (SPPDG) at Mayo Founda-
tion. MagiCAD can help the user model transmission line networks on an MCM
and simulate them in both time and frequency domain. The electromagnetic tool
suite in MagiCAD consists of schematic compilers, netlist compilers, netlist sim-
ulators, and transmission line cross-section extractors. It uses boundary element
method (BEM) to extract the parameters of a transmission line from its cross-
section. The RPI-MCM router is available from the RPI CIE® and the MagiCAD
can be requested from Mayo Foundation. A short program has been developed to
extract the information about the wires in the final route. The program is called
as "extractor” which is an awk script executable on any system supporting awk
language and is attached in the appendix.

8.2 MCM Routing Overview

A block level diagram of the MCM routing procedure is shown in Figure
14. User input comes in the form of interchip connections as a net list and the
definitions of the location of the chip pads. The user also supplies information
about the configuration of the MCM such as MCM size, wire width and pitch,
and output pin locations.

The output of the router can be stored in several ways. The desired format -
is CIF as the rest of the analysis tools use the same database. The CIF output of

the router consists of all the nets with their horizontal and vertical segments in -~

6 Center for Integrated Electronics

95

order. This CIF output is supplied to the extractor, which can extract the length
of any net from this CIF file and supplies it to MagiCAD.

8.3 Electromagnetic Analysis Overview

Electromagnetic analysis procedure is shown in the block diagram in Figure
15. After the completion of MCM routing, the user extracts the information
about the desired net, whose performance is to be checked, and inputs it using the
graphical editor of MagiCAD. It also takes the information from the supplemental
file about the 3-D structure of MCM. Using this information a cross-section of
the transmission line is drawn and transmission line parameters are extracted from
it. The results of this extraction are supplied to the network simulation step to
simulate the time and frequency domain characteristics of the net. The block
diagram of the network simulation is shown in Figure 16.

8.4 Extractor

Extractor is an awk program developed to parse a CIF file and generate a list
of all the nets with their lengths in an ascending order. A listing of extractor is
shown in Figure 17 and it can be run on any UNIX system. This program needs a
CIF file as its input in the current directory. The name of the CIF file is currently
hard coded and should be named as input.cif. The program generates an output
file named as length.net. The program can be invoked by typing extractor at
the prompt.

96

Chip Design

DEF File

Interchip
Connections

'

NET File

Router Configuration >
(PAR,BND,BBS Files)

RPI-MCM
Router

Y

CIF Output

¥

Diﬁ;«:nﬁal . >

EXTRACTOR

Figure 14. Block diagram of the MCM routing method. |

97

CIF LAYOUT

MCM Router
(Extended)
USER INPUT
EXTRACTOR -l ———
{Net Selection)
TRANSMISSION
SMIS CIF SUPPLEMENT
LINE STRUCTURE
FILE
OF THE NET
MagiCAD N/W
SIMULATION

Figure 15. Flow chart of EM analysis with MagiCAD.

98

Define the network

1

1

Create Transmission

.) Draw Network Model Draw Source Waveforms
Line Cross-gections
Extract Netiist from Extract Time and
Get Static TL Parameters Network Model Voltage Data
Run EM Network

Simulation Program

View Resuits in Both
Time and Frequency
Domain

Figure 16. Block diagram of MagiCAD network simulation.

99

#! /bin/sh
rm router.cif.
rm mcm.dat
nawk ’ BEGIN { while (getline < "input.cif” > 0)
{ 1f ($0 = /°\(/)
tot_nets++
print 50
} # End of While
close("input.cif")

e e e TR L S #
Variable list
tot_segs -- Total cif segments
tot_nets -- Total MCM nets
cum_h_segs -- Cumulative horizontal segs
cum _v_segs -- Cumulative vertical segs
cum_h_length -- Cumulative horizontal length
cum_v_length -- Cumulative vertical length
cum_length -- Overall cumulative length
longest_v_seg ~-- Longest vertical seg
longest_h_seg -- Longest horizontal seg
longest_net ~~ Longest net
old_longest -~ Temporary longest net
old_long_v -~ Temporary longest vertical seg
old_long_h -~ Temporary longest horizontal seg
curr_h_segs -~ Current horizontal seg count
curr_v_segs -- Current vertical seg count
net_name -- Current net name being processed
#
print *TOT_NETS: * tot_nets > "router.cif”
first = 1

old_tally = 0
while (getline < "input.cif” > 0)
{ 1f (S0 ~ /°\(/)
{ if (!first)
{ print "(NET_NAME " $0 >> "router.cif”
print "processing net * net_name
print "H " curr_h_segs >> "router.cif”
net_tally = 0
one_tally[net_name] = 0
for (k = 1; k <= curr_h_segs; k++)
{ print "B " hx_cif[k],hy _cif[k], hxcnt_cif(k],
hyent_cif[k] >> "router.cif"
net_tally = net_tally + hx[k] .
one_tally[net_name] = one_tally[net_name] + hx[k]

] T igting nf Evfranfnt- {rraoram Taen nvrn:ln‘-\ln

re 17. L35ung Ol CXdaCior (Prograill aiSG avanaose

as SREPAS_HOME/em/extractor) (Continued) . ..

100

}
print "V " curr_v_segs >> "router.cif”
for (k = 1; k <= curr_v_segs; k++)
{ print "B " vx_cif(k],vy_cif[k],vxcnt_cif(k],
vycnt_cif[k] >> "router.cif”
net_tally = net_tally + vy[k]

one_tally[net_name] = one_tally(net_name] + vy[k]

}
if (net_tally > old_tally)
{ old_tally = net_tally
old_name = ""
old_name = net_name
}
h_flag
v_Fflag
h_index 0
v_index 0
net_name = ""
net_name = substr($1,2,8)

0
0

[l

}
else
{ net_name = substr($1,2,8)
print "processing net " net_name
h_flag =

OO

}
}
if (S2 == "W2;")

{ h_flag = 1
v_flag = 0
h _index = 0
curr_h_segs = 0

}

if ($2 == "W1;")

{ h_flag = 0
v_flag = 1
v_index = 0
curr_v_segs = 0

}

if (§1 == *B")
{ if (h_flag)
{ h_index++
bx[h_index] = ($2/100)

Figure 17. Listing of Extractor (program also available
as SREPAS_HOME/em/extractor) (Continued) . ..

101

hx_cif[h_index] = $2
hy[h_index] = ($3/100}-,
hy_cif[h_index] = $3
hxcnt(h_index] = ($4/100)
hxcnt_cif{h_index] = $4
hyent[h_index] = ($5/100)
hycnt_cif[h_index] = §$5
tot_segs++
cum_h_length = cum_h_length + ($2/100)
curr_h_segs++

}

else

{ v_index++
vx([v_index] = (82/100)
vx_cif[v_index] = $2
vy[v_index] = ($3/100)
vy_cif[v_index] = §3
vxent[v_index] = ($4/100)
vxcnt_cif[v_index] = $4
vycnt[v_index] = ($5/100)
vyent_cif{v_index] = $5
tot_segs++
cum_v_length = cum_v_length + ($3/100)
curr_v._segs++

}
}
print "(NET_NAME " $0 >> "router.cif”
print "H " curr_h_segs >> "router.cif”
net_tally = 0
one_tally[net_name] = 0
for (k = 1; k <= curr_h_segs; k++)
{ print "B " hx_cif[k],hy_cif[k],bhxcnt_cif[k],
hycnt_cif[k] >> *"router.cif”
net_tally = net_tally + hx[k]
one_tally[net_name] = one_tally[net_name] + hx[k]
; .
print "V * curr_v_segs >> "router.cif”
for (k = 1; k <= curr_v_segs; k++)
{ print "B " vx_ciffk],vy._cif(k],vxcnt_cif[k],
vyecnt_cif[k] >> "router.cif”
net_tally = net_tally + vy[k]
one_tally[net_name] = one_tally[net_name] + vyl[k]
}
1f (net_tally > old_tally)
{ old tally = net_tally

Figure 17. Listing of Extractor (program also available
as $SREPAS_HOME/em/extractor) (Continued) . . .

102

nan

[}

old_name
0ld_name = net_name
}
print "Total Nets Processed: " tot_nets
print "Total CIF Segments: " tot_segs
cum_length = (cum_v_length + cum_h_length)/1000
print "Total MCM Wire Length: " cum_length " (mm)"
print "Average Segment Length: " cum_length/tot_segs " (mm)"
print "Longest Net: ",old_name, " Length: ",old_tally/1000 " (mm)"
for (i in one_tally)
{ printf("$10s%10.2f mm\n",i,one_tally[i]/1000) > "mcm.dat" }
}
End of BEGIN

’

sort +rnl -2 < mcm.dat > length.net

Figure 17. Listing of Extractor (program also
available as SREPAS._ HOME/em/extractor)

103

Bibliography

[1] E. Anderson and et. al. LAPACK User’s Guide. Society for Industrial and
Applied Mathematics, Philadelphia, PA, 1992.

[2] Peggy. L. Bachmann, T. -L. Sham, L. -Y. Song, and Mark. S. Shephard.
Thermal and thermo-mechanical analysis of multichip modules using adaptive
finite element techniques. In D. Agonafer and R. L. Fulton, editors, Computer
Aided Design in Electronic Packaging, volume EEP-3, pages 57-63, New
York, NY, 1992. ASME.

[3] M. Beall. Scorec mesh database user’s guide, version 2.2 - draft. Technical
Report SCOREC Report # 26-1993, Rensselaer Polytechnic Institute, Troy,
NY 12180-3590, January 1994.

[4] G. M. Brown. Monte carlo methods. In E. F. Beckenbach, editor, Modern
Mathematics for Engineers. McGraw Hill, NY, 1956.

[S1 CAM-1. Applications interface specification (restructured version). Technical
report, CAM-I Report R-86-GM-01, Arlington, TX, Jan. 1986.

[6] B. Donlan. Design Automation for Wafer Scale Integration. PhD thesis,
Rensselaer Polytechnic Institute, Troy, NY 12180-3590, August 1986.

[7]1 R. Garimella, S. Dey, R. Ramamoorthy, M. K. Georges, and M. S. Shephard.
Specification of mesh control functions in finite octree. Technical Report
SCOREC Report # 5-1994, Rensselaer Polytechnic Institute, Troy, NY 12180-
3590, January 1994.

[8] Rao Garimella, Vincent Wong, Ravichandran Ramamoorthy, Marcel Georges,
and Mark S. Shephard. Support of non-manifold modeling with manifold
modelers - a design document. Technical report, Scientific Computation
Research Center, Rensselaer Polytechnic Institute, Troy, NY, 1993.

[9] M. K. Georges. Geometric operators for the Finite Octree mesh generator. -
Technical Report SCOREC Report # 13-1991, Scientific Computation Re-
search Center, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, 1990.

[10]M. K. Georges. Finite Octree data structures. Technical report, Scientific
Computation Research Center, Rensselaer Polytechnic Institute, Troy, NY,
1991.

[11]A. Haji-Sheikh and E. M. Sparrow. The solution of heat conduction problems
by probability methods. Trans. ASME, C-89:121-131, 1967. '

104

[12]Hibbitt, Karlsson and Sorensen, Inc., 100 Medway Street, Providence, RI.
ABAQUS User’s Manual Version 4.8, July 1939.

[13]Hibbitt, Karlsson and Sorensen, Inc., 100 Medway Street, Providence, RI.
ABAQUS/Post Version 5.2, 1992.

[14]Hibbitt, Karlsson and Sorensen, Inc., 100 Medway Street, Providence, RI.
ABAQUS/Standard Theory Manual Version 5.2, 1992.

[15]Hibbitt, Karlsson and Sorensen, Inc., 100 Medway Street, Providence, RI.
ABAQUS/Standard User’s Manual, Volume I Version 5.2, 1992.

[16]Hibbitt, Karlsson and Sorensen, Inc., 100 Medway Street, Providence, RI.
ABAQUS/Standard User’s Manual, Yolume II Version 5.2, 1992.

[17]D. Hightower. A solution to line-routing problems on the continuous plane.
In Proc. of 6th Design Automation Workshop, pages 1-24, 1969.

[18]IBM Corporation, T.J. Watson Research Center/Hawthorne, P.O. Box 704,
Yorktown Heights, NY 10598. IBM Visualization Data Explorer, User’s
Guide, second edition, August 1992.

[19]Y. L. Le Coz and R. B. Iverson. A stochastic algorithm for high speed
capacitance extraction in integrated circuits. Solid State Electronics, 35:1005—
1012, 1992.

[20]Miértti Mintyla. An Introduction to Solid Modeling. Computer Science Press,
Rockville, Maryland, 1992.

[21]C. Mead and L. Conway. Introduction to VLSI Systems. Addison-Wesley Publ.
Co., Reading, MA, 1980.

[22]Rensselaer Polytechnic Institute, Troy, NY 12180. REPAS - Rensselaer
Electronic Packaging Analysis Software, User’s Manual, April 1994.

[23]Rensselaer Polytechnic Institute, Troy, NY 12180. REPAS - Rensselaer
Electronic Packaging Analysis Software, Technical Documentation, April
1994.

[24]Scientific Application Internation for National Ocean Systems Center, San
Diego, CA. MagiCAD Version 2.3 User’s Guide, November 1989.

[25]T.-L. Sham, H.F. Tiersten, P.L. Bachmann, L.-Y. Song, Y.S. Zhou, B.J. Lwo,

Y.L. Le Coz, and M.S. Shephard. A global-local procedure for the heat

conduction analysis of multichip modules. In P. A. Engel and W. T. Chen,
editors, Advances in Electronic Packaging 1993, volume 2, pages 551-562, -
New York, NY, 1993. ASME. :

105

[26]Shape Data Limited, Parker’s House, 46 Regent Street, Cambridge CB2 1DB
England. PARASOLID v4.0 Programming Reference Manual, August 1991.

[27]M. S. Shephard, P. L. Bachmann, Y. L. Le Coz, and T. -L. Sham. Methodology
for the integration of global/local thermal and thermo-mechanical analysis of
multichip modules. In D. Agonafer and R. L. Fulton, editors, Computer Aided
Design in Electronic Packaging, volume EEP-3, pages 65-72, New York, NY,
1992. ASME.

[28]M. S. Shephard and M. K. Georges. Automatic three-dimensional mesh
generation by the Finite Octree technique. Int. J. Numer. Meth. Engng.,
32(4):709-749, 1991. ‘

[29IM. S. Shephard and M. K. Georges. Reliability of automatic 3-D mesh
generation. Comp. Meth. Appl. Mech. Engng., 101:443-462, 1992.

[30Mark S. Shephard, Ting-Leung Sham, L.-Y. Song, Vincent S. Wong, Rao
Garimella, Harry F. Tiersten, B.J. Lwo, Yannick LeCoz, and Ralph B.
Iverson. Global/local analyses of multichip modules: Automated 3-d model
construction and adaptive finite element analysis. In Advances in Electronic
Packaging 1993, volume 1, pages 39-49. American Society of Mechanical
Engineers, 1993. ’

[31]H.F. Tiersten, T.-L. Sham, B.J. Lwo, Y.S. Zhou, L.-Y. Song, P.L. Bachmann,
Y.L. Le Coz, and M.S. Shephard. A global-local procedure for the thermo-
elastic analysis of multichip modules. In P. A. Engel and W. T. Chen, edi-
tors, Advances in Electronic Packaging 1993, volume 1, pages 103-118, New
York, NY, 1993. ASME.

[321K. J. Weiler. Topological Structures for Geometric Modeling. PhD thesis,
Rensselaer Design Research Center, Rensselaer Polytechnic Institute, Troy,
NY, May 1986.

[33]V. Wong. Generalized SCOREC Attribute Manager. PhD thesis, Mechanical
Eng., Aeronautical Eng., & Mechanics, Rensselaer Polytechnic Institute, Troy,
NY 12180-3590, 1994.

106

