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Abstract

A parallel automated adaptive methodology for the
analysis of steady and unsteady compressible fluid flows
on distributed memory computers is presented. The
technique developed here relies on a stabilized implicit
space—time finite element formulation, on a domain de-
composition based strategy for achieving parallelism
while efficiently exploiting data locality, on an edge
based adaptive scheine that combines refinement, dere-
finement and triangulation optimization. An element
migration and load balancing procedure is used for re-
ducing the load imbalance caused by the adaptation
process. The message passing paradigm is employed
in each stage of the analysis, realizing a uniform soft-
ware environment that shares a common data struc-
ture. Some preliminary results relative to the parallel
adaptive analysis of compressible flow problems are pre-
sented at the end of the paper.

Introduction

The accurate simulation of the evolution of steady and
unsteady compressible aerodynamic flows is a challeng-
ing problem that requires the ability to resolve the vary-
ing length and time scales of the flow. The present sta-
tus of knowledge indicates that adaptivity is a viable
way for effectively and accurately analyzing complex
physical phenomena like compressible flows. A typical
adaptive methodology should be able to efficiently real-
ize the following steps: (i) effectively discretize the flow
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domain, (4) analyze the problem using an appropri-
ate solver on the generated discretization, (%) estimate
which regions of the flow are not providing sufficient ac-
curacy, or are over refined, (iv) adaptively modify the
discretization so that the characteristics of the flow are
efficiently resolved to the desired accuracy. These steps
can be accomplished in the framework of an automated
adaptive environment. However, the appropriate choice
of the building blocks of such an environment is crucial
for the success of the methodology.

In our contribution, we try to analyze the various
characteristics of the methods available in numerical
mathematics, mesh generation and adaptation, and
computer science, in order to select those that allow
to obtain the most efficient solution of the simulation
problem. This interdisciplinary approach allows the
development of a horogeneous software environment,
where the various tools closely cooperate sharing the
same data structure and avoiding the creation of bot-
tlenecks during the simulation process. The final goal
of our research effort is to develope a reliable tool for
the automated analysis of the complex unsteady flow
fields that characterize helicopter rotors. This paper
presents the parallel adaptive solver that represents the
kernel of our future simulation tool. In the following,
we will briefly discuss the main motivations behind the
choice of the components of the proposed integrated
methodology implemented.

The choice of an appropriate computer environment
is & major concern, since the computational cost and
the memory requirements of large-scale fluid dynamic
simulations is prohibitive on classical scalar comput-
ers, while vector computers do not seem to keep up
with the demands of today’s CFD applications. The
problem Is exacerbated when unsteady simulations are
attempted, since large and highly non-linear problems
must be sclved at each time step. Distributed mem-
ory parallel computers have recently been successfully
employed for large-scale analysis of fluid flows [8][10].
These computers seem to offer the potential for satis-



fying the demands of high performance as well as pro-
viding large memories.

Another distinguishing feature of the proposed
methodology is the use of the finite element method for
discretizing the governing Navier—Stokes/Euler equa-
tions. Historically, finite difference methods have been
the traditional approach for numerically solving fluid
flow problems. Moreover, finite difference algorithms
are particularly well suited for developing parallel im-
plementations on distributed memory computers, due
to the regular nature of their data sets. Yet, the struc-
tured discretizations needed by finite difference tech-
niques represent a major drawback when considering
the automatic grid generation for complex geometries
and the adaptive modification of the computational
grid. Recognition of this inherent drawback has led
to an increased interest in the application of finite vol-
ume and finite element methods to computational fluid
dynamic problems. These methods, being able to use
unstructured discretizations of the computational do-
main, can be coupled with automated adaptive mesh-
ing techniques that modify the grid based upon the lo-
cal discretization error of the solution or an estimate
of that error. The implemented finite element formula-
tion is the Time-Discontinuous Galerkin Least-Squares
method [18][19]. This method is very well suited for the
incorporation in an automated adaptive environment.
It has a firm mathematical foundation, with its stabil-
ity, convergence and accuracy having been rigorously
established. Moreover, it possesses the ability to nat-
urally handle moving boundary problems by means of
space—time deformed elements [23].

A key issue in the implementation of finite element so-
lution techniques on distributed memory parallel com-
puters is the partition of data among the processing
nodes, given the irregular communication patterns that
characterize unstructured meshes. Domain decompo-
sition strategies are used for partitioning the compu-
tational domain in sub—domains, each sub~domain be-
ing assigned to a processing node. The sub-domains
~ then exchange data with one another through the sub—
domain boundaries. A number of algorithms have been
developed for partitioning the computational domain
while satisfying the load balance and low communi-
cation requirements, like Recursive Bisection (RB, to-
gether with Orthogonal RB and Moment RB) [2], which
repeatedly splits the mesh into two sub—meshes, or the
Spectral Recursive Bisection (SRB), which makes use
of the properties of the Laplacian matrix of the mesh
connectivity graph [15].

The irregular evolving behavior of adaptive unstruc-
tured meshes poses additional difficulties in a dis-
tributed memory parallel environment. In order to
minimize the load imbalance created by the adaptation

process, mesh redistribution techniques must be devel-
oped. Global techniques that repartition the mesh pose
the fundamental problem that the cost of redistribution
might be higher than the cost of performing the anal-
ysis with an unbalanced load. Hence, local procedures
that redistribute the load migrating clements among
the sub—domains seem to offer attractive advantages.

Another issue related to the implementation of adap-
tive finite element procedures on distributed memory
parallel computers is the choice of the programming
style. The two programming models actually avail-
able are: data parallel languages, such as High Per-
formance Fortran (HPF), and message passing proto-
cols. Data parallel languages provide a number of com-
piler directives to control the distribution of data to the
memory of the processing nodes. On the other hand,
message passing environments provide the programmer
with a collection of routines for a detailed manage-
ment of the inter-processor communications. In prin-
ciple, both styles are well suited for the development
of parallel finite element procedures on fixed discretiza-
tions. In practice, the data parallel paradigm has been
the method of choice in recent publications [13][8][10].
However, when dealing with adapiive strategies and
mesh modification techniques like mesh refinement and
derefinement, retriangulation and migration, the soft-
ware development is more easily accomplished in a mes-
sage passing programming model. With the idea of de-
veloping a uniform software environment, we decided to
make use of portable message. passing protocols in each
stage of the analysis. . The implementation has been
carried out on a IBM SP-1 system using the message
passing library Chamaleon [7], which is a light weight,
highly portable library.

All the software tools that make up the implemented
integrated adaptive environment are realized using the
C language and share a novel mesh data structure [1],
designed on the philosophy of object oriented program-
ming.

Another distinctive characteristic of the present
methodology lies in the specification of the physical at-
tribute information required to support the analysis (as
for example, the specification of boundary conditions).
This information is tied to the geometric model defini-
tion and it is defined in a general tensor order form [20].
This is in contrast with the common procedure of defin-
ing the physical attribute information directly in terms
of the discrete model. This approach offers distinct ad-
vantages in an aufomated analysis environment Iike the
one described here.

The following sections describe the major issues re-
lated to this work. The finite element formulation im-
plemented, as well as the iterative method used to solve
large scale non-symmetric linear systems on distributed




memory parallel computers, a simple error sensing tech-
nigue for driving the adaptation procedure, the mesh
partitioning procedures, element migration and load
balancing techniques developed are given. A section
1s devoted also to the paralle]l mesh refinement and
derefinement. In the last section some preliminary nu-
merical test problems involving the adaptive analysis of
compressible flows are presented.

Finite Element Formulation

This work is concerned with the transient response of a
compressible low. The initial/boundary value problem
can be expressed by means of the Navier—Stokes/Euler
equations as

divF+F =0 (1)

plus well posed initial and boundary conditions. In
equation (1), div is the divergence operator in n,q + 1
space-time dimensions, being n,4 the number of space
dimensions, while ¥ = (U, F; — Ff), where U =
p(1,u1,us,us,€) are the conservative variables, F; =
pui(1,u1, ug, us, e) + p(0, 615, 624, 835, w;) is the FEuler
flux, FY = (0,71, 72, 735, 7ij45) + (0,0,0,0, —¢;) is the
diffusive flux, and F = p(0,by, by, b3, b;u; + r) is the
source vector. In the previous expressions, p is the den-
sity, w = (u1, ua, uz)? is the velocity vector, e is the to-
tal energy, p is the pressure, é;; is the Kronecker delta,
T = [r;] is the viscous stress tensor, ¢ = (g1, ¢s, ¢3)7 is
the heat—flux vector, b = (b1, b4, b3)7 is the body force
vector per unit mass and r is the heat supply per unit
mass.

The Time-Discontinuous Galerkin Least—Squares
(TDG/LS) finite element method is used in this ef-
fort [18][19]. This method is developed starting from
the symmetric form of the Navier-Stokes/Euler equa-
tions expressed in terms of entropy variables and it
is based upon the simultaneous discretization of the
space—time computational domain. A least-squares op-
erator and a discontinuity capturing term are added to
the formulation for improving stability without sacri-
ficing accuracy. The TDG/LS finite element method
takes the form
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Integration is performed over the space—time slab @Q,,,
the evolving spatial domain Q(¢) of boundary I'(¢) and
the surface B, described by I'(%) as it traverses the time
interval T, =]t,, 1] W and V" are suitable spaces
for test and trial functions, while 7 and v* are appropri-
ate stabilization parameters. Refer to [18] for additional
details on the TDG/LS finite element formulation.

We have implemented two different three dimensional
space—time finite elements. The first is based on a con-
stant in time interpolation, and, having low order of
time accuracy but good stability properties, it is well
suited for solving steady problems. The second makes
use of linear-in—time basis functions and, exhibiting a
higher order temporal accuracy, it is well suited for ad-
dressing unsteady problems. As pointed out by Tezdu-
yar et al. [23], this latter element naturally allows direct
treatment of moving boundary problems. In fact the
motion of boundaries or interfaces is automatically in-
cluded in the Jacobian that relates the physical space—
time coordinates with the local finite element space—
time coordinates. The only difficulty in this case arises
in three dimensional applications when one has to com-
pute the space~time boundary integral. This term ap-
pears as a consequence of the integration by parts per-
formed in the four dimensional domain, and represents
the flux that traverses the three dimensional space-time
boundary. This problem can be solved using the con-
cept of differential forms and the General Stokes’ The-
orem (see for example Corwin and Szczarba [4]).

Discretization of the weak form implied by the
TDG/LS method leads to a non-linear discrete prob-
lem, which is solved iteratively using a quasi-Newton
approach. At each Newton iteration, a non-symmetric
linear system of equations is solved using the GMRES
algorithm [16].

Parallel Implementation

The message passing paradigm is employed in the im-
plementation of the finite element method. The domain
decomposition is used for mapping the finite element
data to the processors in order to efficiently exploit data
locality. Two main processing phases naturally emerge
in the finite element method: the form phase, where
the local finite element arrays at the sub-domain level
are generated, and the solve phase, where the global
problem is solved. Implementation of the form phase is
straightforward, in the sense that it can be performed in
parallel with no communication among the processing
nodes.




The solve phase is realized in this work by means of
the preconditioned matrix—free GMRES algorithm [8].
This algorithm approximates the matrix—vector prod-
ucts with a finite difference stencil with the advantage of
avoiding the storage of the tangent matrix, thus realiz-
ing a substantial saving of computer memory at the cost
of+ additional on-processor computations. Precondi-
tioning is achieved by means of a nodal block—diagonal
scaling transformation. Given the non-symmetric lin-
ear system

T'p:_R7 (3)

the GMRES algorithm attempts to find the approxi-
mate solution py+2 to (3}, z being in the Krylov space
K= (TO,T-’:’O,...,T’“"1 ‘rg)and ro = ~R—T-p;y. 2
1s the solution of the minimization problem minzex ||
—R—T - (py+ z) ||, which is solved by means of the
QR algorithm. The GMRES algorithm obtains an or-
thonormal basis of K by means of a Gram-Schmidt pro-
cedure, that involves matrix—vector multiplications and
dot products. These operations represent the computer
intensive part of the algorithm.

The matrix—vector multiplications are realized in par-
allel and necessitate the exchange of data through the
inter-processor boundaries. In the matrix—free version
of the algorithm, matrix—vector multiplication of the
form T'(v) - w are approximated by means of a finite
difference stencil as

T(v) u= R(”"“f?"R(v)’

(4)

where ¢ is a perturbation parameter which is computed
minimizing the truncation error, which results from
truncating the Taylor expansion, and the cancellation
error, which is a consequence of operating in finite preci-
sion arithmetic. In order to overlap communication and
computation for efficiency reasons, these operations are
realized following a four step procedure on each pro-
cessing node: (i} non-blocking send data relative to
the inter-processor boundaries to each neighboring pro-
cessor, (i) perform computations involving only data
relative to nodes that lie within the internal volume of
the partition, {47} blocking receive data-relative to the
mter—processor boundaries from all the neighbors, (iv)
perform computations involving only data relative to
nodes lying on the inter—processor boundaries.

For the implementation of the dot product opera-
tions, nodes that lie on the inter—processor boundaries
are randomly split, so that two partitions that share
an internal boundary are assigned only a subset of the
nodes of that internal boundary. Each processing node
performs then the dot product involving nodes con-
talned in its internal volume and its subset of nodes
on the partition boundaries. Global sum of the local

results at the processor level yields the global dot prod-
uct result.

The minimization problem can be written in terms of
an upper Hessenberg matrix, whose entries are essen-
tially the results of the dot products performed dur-
ing the orthogonalization procedure. At the end of

‘the Gram—Schmidt procedure, each processing node has

then complete knowledge of the upper Hessenberg ma-
trix and it is therefore able to perform the solution of
the minimization problem independently with no com-
munication. It should be remarked that the size of
the Hessenberg matrix is the size of the Krylov space
employed, typical values for the applications here con-
sidered being around 5-30. The computer intensive
SAXPY operations (y = y+a-x) needed in order to up-
date the solution of the linear system are consequently
performed in parallel with no communication. Once
convergence is achieved in the iterative linear solver,
each processing node has complete knowledge of the in-
cremental solution at the current Newton step, and it
is therefore able to update the current state completely
independently, without any inter—processor communi-
cation.

Error Sensing

The discontinuous nature of the solution of the Navier—
Stokes/Euler equations makes the development of rigor-
ous a posteriori error estimates difficalt. Some progress
towards this result has been recently reported [9]. Note
that this result was accomplished within the framework
of the TDG/LS finite element method. What has been
traditionally done to overcome the lack of sharp error
estimators, is to employ error indicators. Although er-
ror indicators do not measure the real discretization
error, they typically “indicate” regions of the compu-
tational domain where errors are high. Possible imple-
mentations of error indicators are based on the monitor-
ing of the change of certain flow quantities or the use of
appropriately modified error estimates for smooth prob-
lems. These approaches do suffer from the fact that
the error indicated at discontinuities does not approach
zero as the mesh is refined and can have difficulty in
detecting weak flow features in the presence of strong
flow features. Therefore, the successful use of error in-
dicators in an adaptive solution system does require the
knowledgeable selection of the indicator used and the
initial mesh analyzed. This of course does partly de-
tract from reliability of the automated system and it is
an important area requiring further development.

In this work we have implemented an error indica-
tor [12] for elements making use of linear basis functions




which takes the basic form

h% | Second Derivative of ¥ |

“7 % | First Derivative of ¥ | +¢

(5)
where e; is the error indicated at node i, A is a mesh size
parameter, ¥ is the solution variable being monitored,
€ is a tuning parameter. The second derivative of ¥ is
computed using a variational recovery technique.

Equation (5) is used for estimating the error at the
finite element nodes. Different key variables are used
for detecting different features of the fluid flow. In par-
ticular, the Mach number is employed for identifying
shocks and stagnation points, while entropy is used for
targeting for refinement vortical regions. The edge val-
ues of the error indicator are computed by averaging
the corresponding two nodal values. These edgewise er-
ror indicator values are then used for driving the mesh
adaptation procedure. Appropriate thresholds are sup-
plied for the error values, so that the edge is refined if
the error is higher than the maximum threshold, while
the edge is collapsed if the error is the less than the
minimum threshold. Parallel implementation of equa-
tion (5) is straightforward.

Data Structures, Mesh Partitioning,

Migration and Load Balancing

The data’structures used in a parallel adaptive finite
element solver must provide fast query and update of
partition boundary information. Queries commonly
needed include: (3) adjacency information for entities
located on more than one partition, (32) number and list
of adjacent processors given an entity type adjacency,
(133} list of entities on a partition boundary given an
adjacent processor and entity type, (3v) lists of scatter
and gather maps of nodes on the partition boundary.

Besides the queries, update procedures must be avail-
able to the refinement/coarsening and element migra-
tion/load balancing components of the parallel finite
element solver. Efficient computation requires updated
entities be inserted into or deleted from the partition
boundary within constant time, or at most time pro-
portional to the number of adjacent processors.

To implement these fast query and update routines,
a topological entity hierarchy data structure [1], which
provides a two-way link between the mesh entities of
consecutive order, i.e. regions, faces, edges and ver-
tices, is used. From this hierarchy, any entity adjacency
relationship can be derived by local traversals. The en-
tities on the partition boundary are augmented with

Mean Value of ¥ |’

links which point to the location of the correspond-
ing entity on the neighboring processor. These inter-
processor links are then maintained in a doubly linked
list with a processor id node as the header. From these
structures, partition boundary entity insertion-deletion
can be made in constant time. The entities neighbor-
Ing a processor can also be traversed by starting at the
header node given by the processor and following the
doubly link list. Figure (1) summmarizes the data struc-
tures used.

3
élﬂ processor 2
2

A

&Q

processor 3

Processor 1 Processor 2

¥ Processor 3

(b)

Fig.ure 1: Data structures illustrated in 2D: (z) doubly
linked list of inter—processor links, (b) inter-processor
links pointing to locations of duplicate entities.

Each partition boundary entity can have attached
to it either the complete or the minimal set of inter-
processor links. In the complete set, all the boundary
entities store the location of the corresponding dupli-
cate entity. Since the lower entities inherit the higher
level entity adjacency, it is possible to eliminate the
inter-processor links whose adjacency can be derived
from higher level entities. This minimal link representa-
tion-has the advantage of reducing the storageneeded to
maintain the partition boundary entities. However, the
minimal representation has the disadvantage of compli-
cating the link update procedures when element migra-
tions are performed. Therefore, a switching mechanism
is used to allow both representations to be used dis-




jointly.

The initial mesh is partitioned using orthogonal RB
or its variant, moment of inertia RB. The whole mesh
is first loaded into one processor and then recursively
split in half and sent to other processors in parallel. The
splitting can be done by either sorting or the faster lin-
ear time median finding algorithm. In this way, the ini-
tial partitioning by parallel RB takes O(n) time where
n is the number of elements. Since very little of the
computation is performed on the initial mesh, concern
for optimizing the initial partitions is not critical. What
is more critical is what happens to the partitions as the
calculation proceed.

In an adaptive parallel distributed memory envi-
ronment, procedures are needed to migrate elements
among the processors for the purpose of redistributing
the mesh in order to achieve load balance. The migra-
tion routines are implemented in three stages: (i) the
element mesh and its attribute data is packed into mes-
sages and sent, (%) packed elements are received and
unpacked, (74} the inter-processor links are updated.
The procedures provided allow each processor to send
and receive multiple migrations of the elements.

Our load balancing scheme iteratively migrates ele-
ments from heavily loaded to less loaded processors. To
decide which processors should be involved in load mi-
gration, we use a heuristic based on the Leiss and Reddy
approach [11] of letting each processor request load from
a heavily loaded neighbor. Leiss and Reddy, as well as
heuristics based on similar load request process [24][14],
calculate the amount of load that will be transferred by
a local averaging of neighbor processors. The treatment
of hierarchic load request as a tree [14] enables pro-
cessor pairing by edge-coloring the trees formed. The
edge-coloring is performed efficiently by a parallel scan
operation on the tree. The pairs of processors exchange
load to even out the load imbalance.

Let T denote a tree and |7} denote the number of
nodes in the tree. Scan operations on trees can be per-
formed efficiently with complexity O(log|T]). Details
and implementation on distributed memory machines
can be found in [14][22]. The total load on the whole
tree can then be found and the load that should be mi-
grated to balance the tree can be calculated. Since the
whole tree is balanced rather than immediate processor
neighborhood as in [11], the convergence of the iterative
load balancing scheme can be expected to be faster.

Let load_mig; denmote amount of load that will be
migrated into or out of a tree node { which represents
a processor. Let also 7; denote the subtree with node
i as the root of the subtree and load(T;) be the sum
of loads of nodes in this subtree. The amount of load

migration is then calculated as

load_mig; = load(T;) — avg load(T) = |T;|

with avg_load(T) = load(T)/|T| representing the aver-
age load on the tree when balanced. Given load_mig;,
the direction of load migrations can be found as

load.mig; =0, do nothing with parent,
<0, get load from parent,
>0, send load to parent.

Having calculated the directions of load migration,
the elements on the partition boundary are migrated
slice by slice until load_mig; of them has been trans-
ferred. Each slice of elements forms a peeling of the
partition boundary and are selected by choosing ele-
ments which touch the boundary by any one of their
vertices.

Figure (2) (a) gives an example of the tree formed
when processors request load from heavily loaded neigh-
boring processors. Since the total load on the tree is 14,
the load migrations shown in (3) is needed to balance
the nodes to average load of 2 per processor. All the
calculations needed to compute the above values are
performed by the scan operation on the tree.

-2 {load=3| load=5 load=2 |load=0
I;’,aodc‘:zz proc=1| proc=0 proc=4 | proc=5
Joad=2 T
= load=0
proc=3 proc=6
D ] -— T
@
proc=0
proc-1 @\
proc_3 proc_

{b)

Figure 2: (a) unbalanced processors and load requests.
(b) hierarchical load tree and the amounts of load to be
migrated.

The procedure presented above enables a scan di-
rected load balancing technique-to be applied-within
a dynamically changing and irregularly connected ar-
rangement of processors. This extends and improves
some of the earlier applications of scan directed load
balancing [3] which were only used within the context
of static and uniformly connected processors in 1 or 2D.




Parallel Mesh Refinement and Derefinement

The mesh level adaptive scheme combines derefinement,
refinement and triangulation optimization using local
retriangulations [5]. The derefinement step is based on
an edge collapsing technique. A mesh edge is collapsed
by deleting all mesh regions connected to one end ver-
tex and connecting the faces of the resulting polyhedral
cavity to the other end vertex (see Figure (3)). Edge
collapsing is not always possible for two reasons: (i)
it may lead to local topological invalidity of the trian-
gulation and (7i) it can lead to the creation of invalid
elements. It does not require storage of any history
information and it is therefore not dependent on the
refinement procedure.

m:im-m

m = nbr of tets o
conneded logTy
m' = nbr of tets A

ocormedcied foyT

Figure 3: Edge collapsing in three dimensions.

Refinement makes use of subdivision patterns. All
possible subdivision patterns have been considered and
implemented to allow for speed and annihilate possible
over-refinement. If the bounding face of a mesh region
to be subdivided with two and only two marked edges is
already triangulated, the template for that region must
be able to match the face triangulation. Since there are
a priori two ways to triangulate a face with two marked
edges, any pattern which has N faces with two and only
two marked edges needs 2V templates. The complete
set of subdivision patterns is shown in Figure (4).

Triangulation optimization is necessary to prevent
triangulation quality degradation. It is particularly im-
portant when the snapping of refinement vertices on
curved model boundaries can potentially create invalid
or poorly shaped elements. The idea is to iteratively
consider the local retriangulation of simple and well de-
fined polyhedra. The optimization procedure builds
upon the coupling of edge removal [6] and its dual,
multi-face removal. Both techniques can be seen as
tools to retriangulate simple polyhedra. Edge removal
consists of deleting all mesh regions connected to a mesh

1-edge . 4-edge
A Aok
2-edge S5-edge
Ach A
3-edge 6-adge

Figure 4: Subdivision patterns iu three dimensions.

edge and retriangulating the space in the resulting poly-
hedral cavity without recreating the mesh edge to be
removed (see Figure (5)). Multi-face removal is the re-
verse process of edge removal. An example of multi-
face removal is shown in Figure (6). At this point, it is
worthwhile to note that edge collapsing is also a form of
local retriangulation that removes a mesh vertex. Then,
derefinement and local retriangulation can be treated in
a similar way. R

Figure 5: Edge removal.

Since refinement uses templates, its parallelization
presents no difficulty. First, mesh faces on the parti-
tion boundary are triangulated. Triangulation compat-
ibility is implicitly guaranteed by the fact that dupli-
cate faces have the same orientation. Face level inter-
processor links are set up for the child faces of the mesh

faces..on the-partition-boundary. -Then; mesh- regions

are triangulated without communication involved. Any
mesh edge carrying minimal inter-processor links trans-
fers link information to its two child edges.

The challenge resides in the efficient parallelization of
the derefinement and triangulation optimization steps.
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Figure 6: Multi—face removal.

An efficient way to retriangulate polyhedra in paral-
lel can be decomposed in three steps: (i) retriangu-
late polyhedra which are fully interior to the partition,
(vi) shift the partition boundary using element migra-
tion techniques, and (%) retriangulate those polyhedra
that are now fully accessible due to the shift. Since it
is likely that several processors request the same off-
processor region, a decision has to be made concerning
which processors has priority over the others. The pro-
cessor with lowest identification number is the only one
which can have its request granted.

In the case of triangulation optimization which is iter-
ative by nature, shifting the partition boundary always
in the same direction will quickly create load imbalance.
Therefore, after each iteration, a load balancing step is
applied so that the next iteration is not penalized by
the shift.

The parallelized snapping procedure begins by com-
puting the snapped location of all refinement vertices
classified on model edge or face. This step involves
no communication. Each refinement vertex is then ex-
amined in turn for possible invalidity of connected el-
ements. If an element is found invalid, local retrian-
gulation using edge removal and multi-face removal is
attempted locally to that element. If local retriangu-
lation cannot be applied because the retriangulation
polyhedron lies across more than one processor, a re-
quest will be made for migration of the missing parts
of the polyhedron. After all requests have been pro-
cessed by shifting the partition boundary, the vertex
will eventually be reprocessed.

Numerical Examples

This section presents some numerical and performance
characteristics of our parallel adaptive methodology
with the help of a few preliminary example problems.

The scope here is of showing the potential of the pro-
posed approach, rather than solving complex fluid dy-
namic problems. With the maturation of this tech-
nique, we hope to be able in a near future to ad-
dress more challenging steady and unsteady aerody-
namic problems.

Oblique Shock Problem

This steady problem is characterized by a Mach two
flow over a wedge at an angle of 10°, resulting in an
oblique shock emanating from the leading edge of the
wedge at an angle of 29.3°. All flow variables are pre-
scribed at the inflow, while no boundary conditions are
prescribed at the outflow, the flow being supersonic.
This two dimensional problem was solved in a three
dimensional domain, using linear tetrahedral elements.
The slip condition is prescribed on the wedge and on
the two symmetry planes. A four Gauss point integra-
tion rule was used on each element, together with a
CFL number of 10 and a local time stepping strategy
to reach convergence.

The initial uniform mesh and the refined meshes
along the oblique shock are shown in Figure (7), in
clock-wise order from the top left portion of the pic-
ture. The sub-domains used for the computation are
also shown in the same picture. The final solution was
obtained by means of three adaptive steps character-
ized by one single enrichment level. The error indica-
tor was computed using density and Mach number as
key variables. The first partition was obtained on the
initial mesh with Moment RB, giving origin to three
element groups of 384 elements, one of 385, and two of
768. The other partitions are obtained as a result of the
mesh adaptation and load balancing procedures. The
second mesh has four partitions of 1462 elements, one
of 1463 and one of 1466. The third mesh has three par-
titions with 5044 elements and three with 5045, while
the fourth and last mesh has three partitions of 18843
elements and three of 18844.

Onera M6 Wing at Transonic Mach Number

The Onera M6 wing is a classical example for assess-
ing the performance of three dimensional compressible
flow calculations. Extensive experimental results are
reported in [17], for a variety of Mach numbers and an-
gles of attack. The wing has an aspect ratio of 3.8, a
taper ratio of 0.562, a leading edge sweep angle of 30°,

and a symmetric Onera D airfoil section. A steady flow

calculation has been performed at a Mach number of
0.84, with an angle of attack of 3.06°.

The initial mesh for this problem was obtained with
the Finite Octree automatic mesh generator [21], and
1t 1s shown in Figure (8), together with its partition in
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Figure 7: Oblique shock problem: initial uniform mesh
and adapted meshes.

eight sub—domains. A preliminary calculation involving
one single adaptive step was performed, and a zoom at
the upper surface tip of the refined wing mesh is shown
in Figure (9). The error indication was performed using
Mach number and density as key variables. The adap-
tive procedure is clearly starting to refine the mesh at
the tip and along one of the two inboard shocks. Clearly
more adaptive iterations are needed for accurately re-
solving the complex front patterns on the upper sur-
face of the wing. Performing a fully converged analysis
involving more adaptive steps will represent our next
research effort, together with timings of the simulation
procedure for investigating its scalability.

Concluding Remarks

This paper has presented a parallel automated adaptive
finite element method for the simulation of compress-
ible flows. The implementation has been carried out
in the context of a stabilized space—time finite element
formulation for compressible flows which readily allows
a natural way of dealing with unsteady moving bound-
ary problems by means of space—time deformed finite
elements. This solver represents the kernel of an in-
tegrated tool for the analysis of the flow field around
helicopter rotors that we are currently developing.

We have discussed possible solutions to the challeng-
ing problems posed by the steady and unsteady simula-
tions of compressible flows. Our starting point of view
implies the fact that adaptivity is the key to the efficient

Figure 8: Onera M6 wing problem: initial mesh with
partitions in eight sub-domains.
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Figure 9: Onera M6 wing problem: zoom at the tip.of
the upper surface of the refined mesh after one adaptive
step.
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and accurate analysis of complex physical phenomena.
In particular our efforts to date have been devoted to
the development of the software tools that compose the
proposed methodology in a distributed memory parallel
environment. A domain decomposition based approach
has been used for achieving parallelism, while the mes-
sage passing paradigm has been used for simplifying
the interaction among the various components: finite
element flow solver, mesh partitioner, mesh adaptation
and load balance procedures.

We have discussed some preliminary results relative
to a few example problems involving the adaptive anal-
ysis of steady compressible flows, showing some of the
basic features and numerical characteristics of our ap-

proach.




Our future developments will include more testing
and timing of the present procedure, the analysis of un-
steady problems, as well as the coupling of the present
CFD solver kernel with an appropriate CSD solver for
addressing the typical aeroelastic interaction problems
that characterize the dynamic response of rotors.
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