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ABSTRACT

Presented in this thesis is a generalized attribute manager that provides a consistent
analysis framework in which analysis data may be defined, organized, and associated
with appropriate model entities. An attribute is that information, beyond the geometric
domain, needed to qualify the physical problem to be solved. This thesis is divided into
two major portions: 1) presentation of the design and implementation of the SCOREC
Attribute Manager (SAM), and 2) presentation of the application of the manager in
conjunction with the preprocessing activities of the Rensselaer Electronic Packaging

Analysis Software (REPAS) project.

The first portion of this thesis focuses on the design and implementation of the
attribute manager. From the viewpoint that every attribute may be characterized as a
tensor, four aspects of a tensor are used to qualify an attribute: the attribute tensor order,
its symmetry, the coordinate system with respect to which the tensor is defined, and the
distribution functions specifying the tensor components of the attribute. In addition to the
qualification of an attribute, the design and implementation of an attribute organizational
framework is also presented. The organizational framework implemented is a flexible
four-level hierarchy structure. This structure allows for organizing attributes appropriate
to single or multiple analysis cases. To complete the speciﬁcation of an analysis problem,
the attributes must be associated to analysis model entities. Issues of this relational aspect
of the manager are discussed, with minimum capabilities implemented. Finally, a suite
of application interface operators, as well as I/O formats for SAM, are presented. These

operators allow analysis applications to use the facilities of the attribute manager.
The second portion of this thesis focuses on the integration efforts of the REPAS

Xii



project. SAM was used as the information manager that seamlessly tied together the
global/local thermal/thermomechanical analyses. One source, in the form of three input
files, is used to build the necessary idealized models for the analyses. The formats of
these input files are presented, as well as an overall picture of the preprocessing step
from the users’ point of view. The approach taken in the data preprocessing is to first
build a physical model from the given data of the interconnect. When the physical
model is complete, most of the required attributes are defined, organized, and associated
to the physical model entities using SAM operators. The data structure and algorithm
for building the physical model is presented. The analysis models are derived from
the physical model. Of the three analysis models, only the construction of the global

layer-wise model of the interconnect is presented.
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1 INTRODUCTION

Previous efforts at the Scientific. Computation Research Center (SCOREC) had
focused on finite element algorithms and methods. The maturing of such methods
and the demand for faster performance and wider scope of geometric representation
began to drive a shift towards building more comprehensive data structures (for example,
Weiler’s radial edge data structure [23][24] to handle complete non-manifold modelling
information, then mixed-mesh data structure [22] followed by reduced mixed—mesh
structure [3]). Increasingly, demands for automated analyses and multi-discipline/ multi-
-procedural solution methods are pushing the data structure to capture analysis information
beyond that of the geometric domain, defined here as attriéutes [17][18]. Attributes
include (but are not limited to) material properties, loads, and boundary conditions.
Because the nature of multi-procedural analyses involves common data sets and different
analysis procedures may model the analysis domain differently, a more efficient attribute
ﬁandling mechanism must be in place to manage the potentially large number of attributes
requiréd for the analyses. Furthermore, each attribute must be attached to the appropriate
domain entities. Thus, recent efforts involving multi-discipline multi-analysis modules
require a much more complex set of data structure to accommodate the demand. The
Rensselaer Electronic Packaging Analysis Software (REPAS) project to analyze the
thermal and thermomechanical properties of Multi-Chip Modules (MCMs) is such an
example [4][51[19].

An MCM is composed of a complex network of signal paths that span multiple
dielectric layers. As such, it is not practical to model every intricate detail of the

entire MCM for analysis — only the critical areas require detailed analysis. The
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Figure 1 REPAS Analysis Modules Overview

approach taken in the REPAS project is to analyze the interconnect in several stages,
as shown in Figure 1. First, the MCM is idealized by modelling the interconnects in
a layerwise fashion. The effective layerwise properties of the interconnect is generated
from an averaging procedure based on the volume fraction of the materials in each
layer. This idealized layerwise model of the interconnect is used by a set of global
thermal and themomechanical analysis procedures based on a variational approximation
technique[21][15]. The steady-state temperature from the global thermal analysis is
passed as thermal loading conditions onto the global thermomechanical analysis. The

results from the two global analyses show the critical areas affected by the given
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temperature load. In turn, a set of local analyses are invoked to focus in on these critical
sections. The calculated temperature field from the global thermal analysis is passed on
to a local thermal analysis procedure as boundary conditions. Based on a fast random
walk technique [11], this local thermal procedure calculates the temperature distribution
of a detailed representation of the critical domain. The calculated displacement field
from the global thermomechanical analysis and the temperature field from the local
thermal analysis are then passed to a local thermomechanical analysis procedure as
boundary conditions. This local thermomechanical procedure utilizes adaptive finite
element techniques [2] to calculate the displacement and stress fields of the corresponding
critical section of the MCM. Along with the results from the electromagnetic analysis,

this knowledge is fed back to the MCM design for any design improvements.

An important criterion of the REPAS project is that the execution of and commu-
nication between one analysis and the next be seamlessly integrated. Such integration
requires that the analyses can efficiently communicate with each other without any in-
formation loss or duplication. The information must be consistently defined and must be
easily accessible. The set of information required for the analyses must also be flexible in
that new information required can be easily integrated into the analysis process. The in-
tegration effort must also involve providing support for the generation of analysis models

suitable for each analysis with the attributes attached to the correct analysis model.

The REPAS project is but one example of the requirements of multi-analyses inte-
gration efforts (another similar requirement can be found in the composite project). In
response to this need, a generalized attribute manager, the SCOREC Attribute Manager

(SAM), was developed. This manager coordinates the definition and flow of analysis
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data from one module to the next, as shown in the role of the “Information Management
System” module of Figure 1. The basic focus of this thesié is on SAM and the prepro-
cessing step needed to provide for the modelling requirements of the REPAS project. The
approach of this thesis is to first describe the generalized attribute framework in detail.
Chapter 2 discusses the theory and design behind SAM. Chapter 3 details implementation
specifics and related issues of SAM, and chapter 4 documents the interface operators, as
well as the format of the I/O files, developed for applications to make use of the man-
ager. The set of interface operators provides a foundation for powerful analysis tools to
dynamically change the input attribute during an analysis on an as needed bases.
Having laid down the foundation of the framework with the attribute manager, SAM
is used as the basis to integrate all five analyses into a seamless whole. The remaining
chapters discuss the preprocessing activities that are closely tied with the manager, with
Chapter 5 beginning the discussion with introductions to some of the issues facing
the data preprocessor. Figure 2 shows the scheme used for the REPAS Information
Management System. For the purposes of discussion, all analyses that query SAM for
attribute information are called client analyses. For this REPAS project, the input source
comes from three files: start-up file, CIF file, and attribute file. Chapter 6 describes
each of these three files as the initial data requirements for the client analyses. A set of
preprocessing routines parse the input data, construct the global model, call the attribute
manager to create the appropriate attributes, and associate the attributes to the model
entities created in the preprocessing routine. Chapter 7 describes the preprocessing stage
- from the point of view of the user.  Chapters 8 and 9 look at the preprécessing from
the implementation point of view — describing the building of the physical model and

global idealized models. At the conclusion of the preprocessing step, all of the attributes
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Figure 2 Schematic of of SAM as the Heart of Integration for the REPAS Project

for the client analyses are defined in SAM. This information is written into output files,
which are used as input files for clients that wish to use the attribute information. Each
client analysis uses the SAM query operators to access all necessary information. In this
way, SAM becomes the framework that pulls together all the analyses and satisfies all the
integration requirements as specified above. The extend of this thesis is limited only to
the SAM design, implementation, interface operators, and the preprocessing steps of the
REPAS project. The final chapter summarizes what is discussed in this thesis and details

potential future work that will expand the robustness and functionality of the manager.




2 GENERALIZED ANALYSIS FRAMEWORK (a) —
DESIGN OF ATTRIBUTE MANAGER

2.1 Qualification of Attributes

Important, yet common, attributes such as boundary and loading conditions can
generally be characterized as tensorial in nature [18]. This viewpoint not only is the
foundation of the design and implementation for the SCOREC Attribute Manager (SAM),
but it also provides a means for mathematical consistency in describing attributes. Thus an
attribute can be defined fully given the tensor order, the tensor symmetry, the distribution
of each tensor component, and the coordinate system in which the tensor is defined.
Therefore, a general structure for a full qualification of an attribute is shown in Figure 3.
The subsequent sections of this chapter discuss in det’ail each of the components under

Attribute Physical Information.

Attribute
Physical Information
Attribute Distribution
Tensor Order Information
Component 1
~ Attribute

Symmetry Information Distribution
information

Coordinate

Component 2

System Information

Figure 3 General structure of attribute physical information specification
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2.1.1 Attribute Tensor Order

The order of the tensor, p, and the dimension of the coordinate system in which the
tensor is defined, n, determines the maximum number of components, n? allowable for the
tensor. For example, a second-order tensor in 3-space has at most, 32 =9 independent

components.

2.1.2 Symmetry

Two types of notational symmetries can be observed intrinsically in a tensor [6]: 1)
A tensor is said to be symmetric with respect to a pair or groups of indices if the value
of the tensor remains unchanged when the pair or groups of indices are interchanged.
(e.g. Cijin = Ciyj), and 2) A tensor is said to be antisymmetric (or skew-symmetric) with
respect to a pair or groups of indices if the value of the tensor remains the same, but
with a sign change, when the pair or groups of indices are interchanged (e.g. Cij =
—Cuiij)- A tensor that is symmetric with respect to any pair of indices is called a rotally
symmetric tensor, and likewise, a tensor that is antisymmetric with respect to any pair of
indices is called a totally antisymmetric tensor. An example of a totally antisymmetric

tensor of order n is the Ricci symbol (with n indices), namely,

N

(1 2.0 \. .
1, if ( by kg ke > is ag even permutation,
¢ =Y -1,if L2..n is an odd permutation 1)
klkg...kn » k1k2...kn P )
0 otherwise. )

The number of components needed to characterize the tensor can be determined from
these two types of symmetries. For example, the number of components needed to

characterize the fourth-order stiffness material tensor reduces from 81 to 36 for basic
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minor symmetries (Cyrq = Cjua and Gy = Cyjix) and it drops further to 21 for a major
symmetry (Cjiq = Ciij)- In the case of solids, the stiffness tensor with these symmetries
characterizes a generally anisotropic linearly elastic material; the stiffness tensor can be

represented as the following array [25]:

[Crnn Cr2e Crss Cies Cis Chae ]
2222 Casss Casas Caos Coopg
C - Casza Cssaz Cssiz Casne 2)
1gkl Cosas Casziz Cogna
SY M. 01313 C'1312
L C 912 A

Although these are the only two notational symmetries inherent in a tensor notation,
another type of symmetry, what will be called here as spatial property symmetries, also
affects the minimum number of independent components needed to specify a tensor. This
spatial property symmetry can be viewed as symmetries of the spatial properties of that
which the tensor describes with respect to the particular coordinate system in which the
tensor is defined. For example, take the stiffness tensor mentioned above, the material
that the tensor describes might be symmetric with respect to a plane in space, say the
z-plane in the Cartesian coordinate system. That is, the strain energy remains unchanged
when z is replaced by —z. Physically, this means that the elastic properties of the material
are the same when viewed from either the position (x, y, z) or (x, ¥, —z). As a consequence

of the symmetry, the strain components are transformed as:

{-511=511 €12 €9 513=“513-l

- — = — = — 72

CZ']. =1 €9g T Egg E93 = TEy3 3
SY M. Ey3 =Eg3

The coefficients of the terms that change signs are forced to vanish to maintain the

symmetry. That is, any coefficient having an odd number of 3’s as indices must be zero,




making the stiffness tensor:

[Ci111 Crizz Cliss 0 0 Cie]
Coooa Coo33 0 0 Cai
C3333 0 0 03312
Cing =
ikl Caozez Coziz 0 @
SY M. Ci313 0
L Ci212

The material this tensor describes is called a monotropic (or monoclinic) material.
Furthermore, if the material is elastically symmetric with respect to the other two surfaces,

all the stiffness terms with indices repeating an odd number of times must vanish. That is

Ci111 Ciizz Chiss 0 0 0 7
Coga O3z 0 0 0
o C3333 0 0 0
SY M. Ci313 0

L C1212 |

The material this tensor describes is called an orthotropic material. If the material is
symmetric with respect to a line, say, the z—axis and to the z surface, then it can be
proved that the index numbers 1 and 2 can be interchanged, that is,
Ciint = C222 Cii33 = (233 Ci313 = Co323
In addition,
Cr212 = 0.5(Cr111 — Criz2)

The stiffness tensor can then be characterized by five independent values:

Ciii1 Cru2e Cuiss 0 0 0 ]
Ciiin Cliss 0 0 0
C 0 0 0
Cijkt = 3333 Civin 0 0 (6)
SYM. C1313 0
i $(Ci111 — Cuiz2) |

The material this tensor describes is called a transversely isotropic (or hexagonally

symmetric) material. For a material that has no preferred direction, that is, one having a
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point symmetry, the roles of the indices 1, 2, and 3 can be fully interchanged, allowing
further simplifications to be made. Namely,
Ciunn = Ca222 = G333 Crizz = Crzz = C33
Ciz12 = Ci313 = (o33

In light of the above discussion on symmetries, whate\;er data structure and scheme
used for the symmetry must allow for the storage and differentiation of these different
types of symmetry. The types of symmetry are: symmetric, totally symmetric, antisym-
metric, totally antisymmetric, plane, line, point, and plane-line [6]. This list, though not
exhaustive, is sufficient for most applications. In addition to the symmetry types found
in the tensor and the specific symmetries, any pertinent information about each symmetry
must also be stored. For example, if a symmetry is with respect to a certain axis in a

certain angle, this information must be reflected in the data stored.

2.1.3 Distribution

The value and “direction” of a tensor may vary as functions of space, time, and other
variables. Moreover, each component of the tensor may have different dependencies.
The Attribute Manager considers each of the dependencies a distribution. Take the case
of the pressure load as shown in Figure 4, for example. The load in the radial direction
varies linearly around the cylinder, while the axial and tangential components of the

pressure load are identically zero. One issue becomes immediately apparent is that one

j=n

must be able to specify a distinct distribution for each of the tensor components. Often
times, these distributions need to be expressed with various independent variables, such
as spatial and time variables, and in the form of some well defined functions, such as sine

and cosine. The attribute manager needs to be able to handle these types of dependencies.
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Figure 4 Example of pressure load

Also, the attribute manager needs to have the capability to evaluate the distributions in
any given coordinate system.

In order to do any manipulation and/or evaluation of the distribution, the attribute
manager needs to understand fully the properties of each parameter of the equation.
In this discussion, a parameter is taken to be the smallest unit that an equation may
be decomposed. For example, “3”, “+”, and “x” are the parameters of the equation,
y = 34z, whereas “7” is the sole parameter of the equation, k£ = 7. In light of the above
discussion, a schema for the distribution information that satisfies these requirements is
shown in Figure 5.

Each distribution has information regarding the parameter relationship, the individual
parameters, and their respective dependencies. The relationship between these parameters
is captured in the string parameter relationship and stored in a parsed binary tree array.
For example, Figure 6 shows the tree resulting from a distribution of 3sin(26 — ¢). The
distribution is stored in a reversed-Polish format for easy evaluation. The content of

the tree node is shown in the first column of the table entry and is considered to be a
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Distribution Info. Distribution Info.
Tensor Component 1 Tensor Component 1
Distribution
Parameter Parameter

Information

Relationship

Distribution

Parameter Information

Figure 5 Data structure for distribution information

parameter. The position of the left child of the tree node is shown in the second column
of the table entry, whereas the position of the right child is shown in the respective

third column. For the example tree, the last row of the table indicates that the operator,

tree left right
~_node child child

1 130010

2 (200 | 0

3 e 1 0|0

s | %23

5 ¢ 0|0

6 |— | 4|5

7 Isine] 0 | 6

s |%| 1|7

I R R
-TTTrTTTrTTT T

. . . N

Figure 6 Example of a parsed binary tree
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“*” is operating on the two elements stored in rows 1 and 7, whose nodal contents
are, respectively, “3” and “sine”. This corresponds to the top three nodes of the above
binary tree. The two zeros (nodal leaves) in row one of the table indicate that this node,
“3”, is an operand, not an operator. Next, row seven indicates that “sine” is an operator
operating on the nodal content stored in row six, whose content is “-”. The rest of the
table entries are corresponded in the same way. It is apparent that the tree nodes stored
in rows 1, 2, 3, and 5 (with respective contents of “3”, “2”, “0”, and “¢” ) are operands,

and the tree nodes stored in rows 4, 6, 7, and 8 (with respective contents of “*”, ,

“sine”, and “*”) are operators operating on their respective operands.

Allowing for maximum flexibility, seven types of parameters are used in defining a
distribution: numbers, basic operators, constants, built-in functions, variables, attribute
components, and distributions. In the example shown in Figure 6, parameters “3” and
“2” are numbers, whereas parameters “*” and “-” are basic operators. The remaining

types of parameters are:

* Constants: fixed numerical values such as 7 and e;

* Built-in functions: selected functions from the system math library and any user

defined functions such as sine and cosine functions;

*  Variables: any undefined variables in which the user needs to specify the value at the

time of evaluation, such as any spatial variables of a particular coordinate system;

» Attribute components: the value of a given attribute component at a specified

evaluation point; and

» Distributions: the value of a given distribution at a specified evaluation point.
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This distribution structure allows for the possibility of a distribution of a distribution, of

a distribution, and so on.

Thus far, only those distributions that are numerical equations are considered. An-
other common form of dependencies also need to be considered. For multiple analyses
operations, the results of one analysis may be passed as input into another analysis. For
example, the displacement calculated of a body from a global analysis might be used as
boundary condition of a local analysis for a critical area. The local analysis might require
displacements at discrete points along the boundary of the body. The scheme discussed
above allows for this displacement to be defined as a distribution, where this displacement
may be defined as a parameter of user defined function (Built-in function). At the time of
evaluation for this distribution, a spatial position is entered as input to the user function.
The function evaluates the displacement at the given point (for example, from a results
table or an equation) and returns to the evaluator the resulting displacement. Thus, this

scheme greatly increases the robustness of the distribution definition and evaluation.

2.1.4 Coordinate System

A set of linearly independent vectors spanning a given space is called a basis for
this space [1]. Given a set of basis vectors spanning a 3-D space, for example {vy, vz,
v3}, with origin at O, any vector OP from O to point P in this space can be expressed
as a linear combination of this basis, OP = avy + bvy + cv3. The coefficients of this
linear combination, expressed as a coordinate matrix [a, b, c]T can be thought of as
the coordinates of point P relative to the coordinate system defined by this set of basis

vectors. Thus a change of coordinate system implies a change in the basis vectors. For
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example, if for a vector space an old coordinate system (basis) [B] is changed to the new

coordinate system (basis) [B'], with
B = {uy, uz} and B' = {u/q, u'3}
which are related by:
u'1 = auy + buy
vy = cuy + duy
Given a vector v defined with respect to the new basis as
v =kiu'y + k',

or written as a coordinate matrix

k
— ™M
[V]B, - [kz} (7)
The coordinate matrix [V]Bl is then related to the new basis B by
_je ¢ k,
e[ 2L
or
a [
M= |5 5" ©

The basis vectors do not have to be orthogonal so long as they span the space in

which the coordinate system is defined. The matrix
f'a c | .
P= 10
is called a transition matrix and is invertible. It transforms the coordinates from one
coordinate system to another. Notice the transition matrix can be obtained easily once the

relation between the old basis (coordinate system) and the new basis (coordinate system)

is defined. As an example, when a set of coordinates in 2-space are transformed by
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rotation to another coordinate system by an angle § as shown in Figure 7, the resulting

transition matrix is

cosf —sind
b= [sin@ cosf } a1

————

%)

0

e

Figure 7 Example of Transformation of Coordinate System by Rotation

This discussion can be generalized to curvilinear coordinate systems [26]. The
transformation matrix becomes more complex because the new basis can no longer be
written as a linear combination of the old basis. An example of a common curvilinear
system is the spherical coordinate system as shown in Figure 8, which can be written

with respect to the Cartesian coordinate system as

r=+/x%+y%+ 72 , (12)

@ = arccos / z \ (13)
\ /X2 4 y2 n Z2}
§ = arcsin Y (14)

X2+y2
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Figure 8 Spherical Coordinate System

Let x, y, z be the coordinates of the new coordinate system, and let the relationship
between the coordinates to the X', y', Z of the old coordinate system be described by
x =1,y 7) y=g(x,y,z) z=h(x,y, )
These functions, f, g, h, must have continuous first derivatives in some domain D
of the xyz-space, and at point Py:(X'o, ¥'0, Z'9) in D the Jacobian of the functions f, g,

h is written as

of o of
ox’  dy’ 9z’
Hy2) |G G e g (15)
ol N | 5% y! 2’/
o, y,2) |3
ax’  dy’ o7

This insures that at point Py in D it is possible to determine each point (X', ¥, Z ) in
terms of the coordinates X, y, z. This means that there are inverse functions that map the
coordinates in the new coordinate system back to coordinates in the old one. In other

words there exist functions f', g’, and h' such that

X =f(x,y,2) Yy =gy, 2 Z =Wy, 2)
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Accordingly, the position vector of a point in terms of its curvilinear coordinates is
now given by
Rx,y,2)=fx v,2)i+gdx y,20j+Wxy 2k
At each point where the Jacobian

ox,y,7) OR OR R

o(%,vy,2) bx Oy o> (16)

is non-zero, the three vectors %%, %};-, %IZL are tangents to the coordinate curves. They

are linearly independent and hence form a basis for this space defined in this curvilinear
coordinate system [8][26].

From the above discussion, one can see that the speciﬁcation of one coordinate
system with respect to another coordinate system requires three pieces of information:
1) a reference that identifies the base coordinate system on which the current coordinate
system is defined, 2) the coordinates of the origin of the current coordinate systém in the
space of the base coordinate system, and 3) the functions (three for a coordinate system
in 3-space) defining the relationship between the coordinates in the current coordinate

system and the base coordinate system.
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2.2 Organization of Attributes

SAM is designed to be a generalized attribute manager that is application independent.
This means that the organization structure needs to be constructed for robust manipulation
of attributes for a wide variety of analysis applications that also accommodates for
multiple load cases. Additionally, it needs to provide a structure for the sharing of
common analysis and domain information, and it should be one that properly reflects the

relationships of attributes within an analysis and between analyses.

Consider an application consisting of multiple analysis cases. The application
might analyze the thermal, electrical, and thermal-mechanical behaviors of an electrical
component. Though the three analyses are quite different, the three analysis domains
will have an overlap of information. The material properties are the same for all three
domains, but the parameters of interest may vary. While the boundary conditions and
loading conditions might be very different among the three analyses, both the therfnal and
thermal-mechanical analyses might use the same geometric description of the domain.
The proper way to specify such data is to avoid information duplication. All the common
information should be shared between the three analyses. Furthermore, all three analyses
- might have multiple load cases to be analyzed. The thermal analysis might study various
load distributions to determine the optimal design of the component. Then the thermal-
mechanical analysis might study the component loaded with the resulting load distribution
_in various strengths. In the latter case, the distributions do not need to be duplicated
for each load case — only multiplication factors need to be specified. In addition to

the ability of the organization structure to share information, it must also need to have
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a way to describe the relationship between attributes. For example, results from the

thermal analysis might need to be used as input for the thermal mechanical analysis.

Thus the organization structure needs to provide a means to describe the “results-input”

relationship between analyses.

The design of the organization structure provides a flexible framework to deal

effectively with the many aforementioned requirements according to their functional

needs. The organization structure employs a hierarchy of different analysis cases that

are assembled into groups of specific sets of attributes. It provides a means to organize

the many attribute sets in a manner that is appropriate to the analysis at hand. Some

terminologies used to define this structure are as follows:

o

Attribute Type: The type of the physical information of the attribute, such as
displacements, body forces, traction loads, and material properties
Attribute: A single attribute specification, such as thermal conduction coefficients

or a prescribed displacement boundary condition

Set: A combination of attributes of a given type

Group: A combination of sets and/or attributes in a meaningful manner, such as sets
of body forces and tractions that make up a particular load case

Case: A combination of groups, sets, and/or attributes representing a complete
specification for an analysis, such as the global heat conduction of the REPAS project
Collection: All the attributes associated with a given function to which the attributes
are being applied in a modeling system. The collection of attributes that this section
had been focused on are mainly analysis attributes. Other important.collections are

idealization attributes and numerical model attributes, both of which will be discussed
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Figure 9 Overall Framework of Organization Structure

in later sections of this paper.

7. Multiplier: Factor used to scale any of the organization hierarchies under a case

The overall framework is illustrated in Figure 9. Several features of this organization
structure is worthy of mention here. Given an analysis case, all the attributes belonging to
this case are known. The picture shows that the node at the tail of the arrow knows only
the node to which the head of the arrow points. Multiple multipliers can be specified
between any hierarchical levels. The value of the attribute of a given set in a given
group under a given case will be modified with all the multipliers specified along the
path. The hierarchical associations are also flexible in that, depending on what makes
sense for the analysis, a case can directly be associated with a set or an attribute — ihus
“by-passing” the group. Likewise, a group can be directly associated with an attribute,

“by-passing” the set.
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2.3 Association of Attributes

The third major requirement of the attribute manager is the ability to associate given
attributes to the correct analysis model entities. Generally speaking, an analysis model
is a description of the domain being analyzed by an application. Some examples of an
analysis model include the physical, geometric, idealized, and numerical models. One
could generalize from the discussion of Shephard and Finnigan [16] the relationship
between data sets for finite element modeling to that of general modeling needs. This

generalized relationship is depicted in Figure 10. Each of the boxes represents a distinct

Application

Vodel / Program

Augmented
Model Info.

A

Attribute
Manager

Figure 10 Relationship Among Modeling Modules

set of modules. The module at the tail of the arrow queries or gives commands to the
module to which the arrow is pointing. Consider the interaction of these modules in thé
REPAS application. Attributes are attached to four different models: a physical model
for general information queries, an idealized model for the global analyses, a geometric
model for the local stress analysis, and a numerical model for the local thermal analysis.
(The first two “models” will be more carefully defined and discussed in later chapters;

the descriptions of the latter two “models” maybe found in the REPAS — User’s Manual
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[4]1[5]. Given an analysis model, one application (such as the preprocessing module
of the REPAS project) might invoke the attribute manager to create attributes, organize
them appropriately and attach the attributes to the model entities for a particular run,
while another application (such as the local stress analysis) might use the model and
attribute information to drive its analysis procedure. In these two instances, the “Model”
in Figure 10 represents two entirely different types of models. Similarly, the “Application
Program” module for the REPAS project includes the two global analysis procedures, the
local heat conduction analysis procedure, and all the supporting modules of the local
thermal elastic stress analysis. Clearly, the Attribute Manager must be able to handle a

wide variety of modeling specifications, querying needs, and applications.

" To aid in the discussion, four terms need to be identified and differentiated:

1. Original Model: The very first model before any modifications to the model are
performed; this original model is never modified and is the model from which other

models are derived.

2. Idealized Model: A model that has gone through one or more idealizations of the
original model. For example, an idealization can be a simplification of an existing
model, such as removal of a model feature irrelevant to the analysis at hand or
dimension reduction of a model. An idealized model may also be derived from
another idealized model.

3. Auxiliary Model Entities: Additional model entities not defined in the idealized
model but needed for the deﬁniﬁon of attributes. The auxiliary model entities are of
the same types of model entities as that of the idealized model, but the auxiliary model

entities have no direct geometric or topological associations to the idealized model.
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4. Augmented Model: Model created by a combination of the idealized model and

relevant auxiliary model entities associated with the attributes of the analysis case.

This section focuses on the interactions between the attribute manager module and
the model and augmented model information modules. A large part of the discussion
focuses on the specification and association of the augmented model information. Finally,

a scheme emerging from the discussion to drive the augmentation process is discussed.

2.3.1 Model Interactions

A geometric model is a mathematical domain of an object in physical space, defined
by a collection of geometric entities consisting of points, curves, surfaces, and volumes
and topological entities of vertices, edges, faces, and topological regions. The geometric
entities are needed to define the shape of the domain, whereas the topological entities
are needed to describe the relationship between the geometric entities. The present
discussion is focused on only the geometric model, with the discussion limited further to
the interactions between the idealized model, auxiliary model entities, and the augmented
model. A simple example shows some of the complexities of these interactions. For the
analysis case shown in Figure 11, one can consider the augmentations of the idealized
model [16] required to properly account for the attributes.

The idealized model is a simple block with a total of four vertices and four edges,
as shown in Figure 1la. A set of loads and boundary conditions is imposed on the

<7 £l

block, as shown in Figure 11b. In order to reflect properly the load attributes on t

3 9
ne

finite element mesh (with nodes aligning with points vj, vz, v3, vy, and finite element
edges aligning with internal edge e;), the mesh generator that constructs the mesh needs

to see these geometric entities at their respective locations. This means that the side
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a. Idealized Model

g

‘ b. Imposed Loads and Boundary Conditions

c¢. Augmented Model

Figure 11 Example Analysis Domain

edge on the right needs to be split into three edges, with vertices at points v3, and vy
(compare Figure 11a and Figure 11c). Likewise, the rectangular face needs to be split
at the junction marked by edge e;, creating two faces with an edge at the same place
and two bounding vertices at points v; and v;. Associated topologies also need to be
modified to reflect the correct augmentations. The vertices (v, v, v3, and v4) and edges
(e; and the seven edges resulting)from the splits created by the four vertices) created as
a result of the need for accurate representation of the loading conditions are auxiliary
geometries that were not in the idealized model. | The resulting augmented model, then,
is shown in Figure 11c. As one can see, the nature of the analysis attributes necessitates
the creation of aux:iliary geometries to insure correct analysis results. Consequently, a
set of modeling operators need to be made available from the geometric modeler to.the
attribute manager so that these augmentation operations can be performed. A list of the

needed operators are defined and listed in Appendix A. These augmentation operators
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are separated into categories of 1) definition of geometric and topological entities, 2)
interrogation of any existing geometric and topological data base, and 3) manipulation
of geometric and topological entities.

Implicit in the specification of the problem is that more than one attribute can be
specified on the same model entity. The reverse is also true — more than one geometric
entity may have the same attribute definition. Of course, this last point is contingent upon
the correctness of specifying such attribute on both entities. The requirements of having
the ability to check for attribute definition correctness and even automatically inherit
appropriate attributes for adjacent lower order entities require much more intelligence

from the attribute manager than is currently implemented.

2.3.2 Augmentation Scheme \

Once the relevant auxiliary model entities are created and the attributes are specified,
the proper association of the auxiliary entities poses an additional level of complexity.
Consider dividing the analysis shown in Figure 11 into two analysis cases — both using
the same geometric domain: one with only p; applied on the right side edge and the
second with only p, applied on the same edge. If all the auxiliary geometries (defined for
all the analyses) are augmented to the idealized model indiscriminately, the discretization
based on the resulting augmented model will be very inefficient. For example, for the
analysis case With only p; applied, the extra vertex on the right side edge created by p»
would have imposed unnecessary constraints on the finite element mesh for something
that has nothing to do with the problem at hand. This is only a simple example; a
typical suite of analysis cases might have many more sets of attribute with complicated

overlapping of attributes and auxiliary geometries.
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A solution to this problem is to have the attributes for the analysis case drive the
augmentation of the model. In this scheme, the auxiliary geometries are selectively
augmented to the idealized model at the start of an analysis run. The attributes are
organized according to the analysis needs and are consistent with the organizational rules
as described in section 2.2. During the setup for an analysis case, augmentation operators
are called to choose only those auxiliary geometries attached to the attributes that are
relevant to that analysis. The idealized model is then augmented to reflect the condition
of the analysis. A different augmented model may be created for another analysis case
that has a different set of attributes. In this way, the augmented model always reflects
the current analysis, without redundancies.

This scheme introduces two important issues that need to be addressed: 1) the
augmentation process must have rules that clearly keep track of the attributes and
associated auxiliary geometries from creation through all the inheritance and evolution
of the augmented models, and 2) rules and operators need to be developed to handle
the augmentation logistics of what information to retain, what to delete, and how to
switch from one augmentation level to another. Although these features have not been

implemented yet in SAM, both issues will be discussed briefly in the following sections.
2.3.2.1 Model-Attribute Relations and Associations

To facilitate the discussion, the relationship between the model and the attributes need

to be defined and clarified. The notation convention used to specify the model entities is:

v T? Topological entity i of dimension 4 from model Y, where d =0, 1, 2, 3,
corresponding to a vertex, edge, face, and region respectively and ¥ = [, G,
A, corresponding to Idealized, Geometriq, and Augmented models
respectively.
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1
(Augmentation process)

Figure 12 Relationship between the idealized model, auxiliary geometries, augmented model, and the attribute manager

The overall picture of the approach taken to relate the idealized model, the auxiliary
geometries, the augmented model, and the attribute manager can be diagrammed as in
Figure 12. The arrows shown between the boxed modules depict who has a knowledge
of whom. For the given example in Figure 12, the only relation before the augmentation

process 1is:
Attrl — [T} Attr2 — 4 Th an

where the first expression reads: attribute 1 is being attached to the idealized (I) model
entity i of the first order (i.e., a model edge). The second expression of equation 17
“reads: attribute 2 is being attached to the ¥ auxiliary edge, ie, auxiliary (A) geometric

entity of the first order. Before augmentation, the analysis attributes are attached to only

the idealized model and auxiliary model entities. The relations after the augmentation
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process are:

Attrl — (T} Attr2 — zTh (17)
¢Ti = 1TF  oTo e (T ATk (18)
oTH = Attrl  GTL — Attrl, Attr2 (19)

As discussed in the previous section, the attributes defined for an analysis case drive the
analysis (and the model augmentation). From the knowledge captured in the attributes,
the relevant auxiliary geometries are integrated with the idealized model — creating the
augmented model along with a new set of relationships. A two-way mapping is created
between the augmented model entities and their parent idealized and aﬁxiliary geometric
entities (equation 18). In this way, the attribute manager only works with the idealized
model (and, if applicable, the auxiliary geometries), as expressed in equation 17. Any
inquiry of the augmented model is through the forward mapping from the idealized model
(and auxiliary geometries) to the augmented model. The backward mapping from the
augmented model entities to the idealized model and auxiliary model entities is essential
for applications that need to reassociate the augmented model domain information to the
idealized model domain — for example, reassociating a mesh back to the idealized model
for analysis. To simpﬁfy searching, the augmented model entities inherit the knowledge
of the associated attributes (equation 19).

Now consider the example shown in Figure 13. The auxiliary geometries shown
in the right of Figure 13 are needed to specify the distributions p;, pz, and p3. The
resulting augmented model is shown in the box on the foreground, with the right edge

split at points b, ¢, and d. For the sake of discussion, let the augmentation order be pi,
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Idealized Model a Auxillary Geometries

e P

Figure 13 Example of Augmentation Process

p2, and p3. The augmentation of p; will cause the right edge of the idealized model to
split at point b. After the augmentation, the attribute specifying p; will be reassociated
(or propagated) to the newly created edge bounded by points a and b. Notice in this
first augmentation, the auxiliary geometry is not modified. Rather, it is used to augment
the idealized model, and the attribute attached to the auxiliary edge, AT%, is propagated
to augmented edge, GT%‘

Next, the auxiliary geometry associated with p, is augmented to the partially aug-
mented model. This second auxiliary geometry will cause the right edge of the partially
augmented model to split at point d. As with the first auxiliary geometry, the attribute
is propagated from AT% to the newly created edge (bounded by points b and d) of the
partially augmented model.

Next, the auxiliary geometry associated with- p3-is-augmented to the partially aug-
mented model. This third auxiliary geometry will cause the right edge of the partially

augmented model to split at point ¢, which also splits the edge (bounded by points b
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and d) created from the previous augmentation. In this third case, edge GT% bounded
by points ¢ and d has association to two attributes: the attribute associated with AT%
and another associated with AT;. Since these two attributes have different distributions,
the attribute manager must provide operator(s) to consolidate multiple distributions‘from
overlapping attributes (as with the case of GT% where portions of p; and p3 overlap).
Moreover, because in this scheme the augmented model has a knowledge of the applied
attributes, the geometric modeler must have the facility to store multiple references to
the attribute manager. In most CAD modelers, this might come in the form of entity
attributes that are specific to the modeler. Otherwise, the attribute manager must provide
another operator to store the attribute association of modeler entities.

From the above demonstration of the augmentation steps, it is clear that a set of rules
must be developed to keep track of the attributes and their associations with partially
augmented entities throughout the evolution of the augmented model. Furthermore,
appropriate attribute manager operators to handle consolidation of attribute distributions

must be developed.
2.3.2.2 Model-Attribute Augmentation Information

The augmentation process as discussed in the previous section reveals many potential
complexities. A particularly important issue is in the augmentation logistics of the reten-
tion and deletion of augmented modelling information. From the definitions presented in

section 2.3 and the scheme discussed in section 2.3.2, a major working requirement is tha

(=3

_the augmentation process is driven by attributes. Strictly speaking, these attributes are
defined on idealized and auxiliary entities, and an augmented model is the result of the

process. This definition is not very flexible for processes that require multiple augmen-
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tations, such as in metal-forming analyses in which the geometry evolves through time
— thus requiring multiple levels of augmentation. To resolve this issue, an augmented
model can be considered a pseudo-idealized model opened for another augmentation.
Restricting the augmentation to only one level simplifies the implementation logic to
only one level. On the other hand, a set of logistics needs to be developed to retain the
pseudo-idealized model for further augmentations, to transfer (and create) the appropriate
attributes for the second augmentation, and to transfer (and create) appropriate auxiliary
entities for the new analysis. This set of logistic can then be recursively applied for any
subsequent augmentations.

A scheme that should aid the logistics of multiple augmentations is that all the
information for one augmentation be isolated and put into a file, which consists of a
packet (or grouping) of auxiliary entities. The attributes also will have a flag with an
identifier specifying to which auxiliary they belong. In analyses that involve multiple
interdependent idealized models, all the packets need to be retained for moving back and
forth between idealized models.

The entire augmentation process can be summarized thus: given an idealized model,
it is enhanced with a set of attributes specific to the particular analysis to be run. To
retain consistency, auxiliary entities must be created for those attributes that act on only
portions of the model entities that are notA explicitly defined (such as load on a portion
of a face or a projected wind load). These auxiliary geometries are then augmented to
the idealized model using geometry manipulation operators. The resulting augmented
model can then be discretized for analysis. The augmented model entities will know of

the attributes attached to the entities of the idealized model and auxiliary geometries.




3 GENERALIZED ANALYSIS FRAMEWORK
(b) — IMPLEMENTATION OF ATTRIBUTE
MANAGER DESIGN

Implementation of the attribute manager is performed in three stages: 1) basic data
structure and functionalities, 2) interface operators, and 3) higher level functionalities.
The data structure is defined based on the needs and issues as discussed in the previous
chapter on the design of the attribute manager. Basic functionalities to support the
attribute manager capabilities are also developed. As such, this chapter focuses on only
the first of the three implementation stages. Interface operators that allow for general
usage of the attribute manager are discussed in the next chapter. Enhancements and
higher level functionalities are outlined as future work in the last chapter. The basic
structure of this chapter follows that of the previous chapter. The first section focuses
on the schemes used to capture the required physical information of an attribute. The.
second section details the implementational specifics of the organizational aspects of the

attribute manager. Finally, the implementation for the relational aspects are discussed.

3.1 Physical Information Implementation
of Attributes

An attribute is fully qualified by the collection of physical information as described
in the first section of the previous chapter. Corresponding to section 2.1 and visualized
in Figure 3, this section discusses the implementational details of each piece of the
physical information, which includes the tensor order of the attribute, attribute symmetry
information, coordinate system information, and the tensor component distributions. The

corresponding data structure for the physical information of an attribute is shown in

33




34

/* Define the fields containing the physical information of the attribute ¥/
struct PHYSICAL_INFO {

long attrib_tensor_order;

/* a flag specifying the order of the attribute tensor */
COORDINATE_SYS *attrib_coord_sys_ptr;

/* pointer to the local coordinate system information of the attribute */
SYMMETRY ~attrib_tensor_symmetry_ptr;

/* pointer to the tensor symmetry information */

struct comp_distrib {
struct comp_distrib *next;
/* pointer to next in linked list */
DISTRIBUTION *distrib_info_ptr;
/* pointer to the distribution information of the tensor components /
} *cdist_ptr;

struct list_distrib {
struct list_distrib *next;
/* pointer to next in linked list */
DISTRIBUTION *listDist_ptr;
/* pointer to the distribution that is kept separate from the
* global distribution list. This is also different from
* struct comp_distrib in that other attributes could have
* the same name for distribution but with different values.
* Also could be a list of "non-tensorial”
* numbers (such as stacking sequence). */
} *idist_ptr;
} attrib_physical_info;

Pseudo-Code 1 Attribute Physical Information Data Structure

Pseudo-Code 1. The following subsections discuss each portion of the data structure

in detail.

3.1.1 Attribute Tensor

The implementation of the attribute tensor data structure is the most trivial. An integer.
is used to store the tensor order of the attribute. This value controls the maximum number

of tensor components one may input for a specific attribute.
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3.1.2 Symmetry

In the implementation of symmetry, two major types need to be accounted for:
intrinsic and spatial property symmetries. A data structure that captures the necessary
symmetry information is presented, followed by two simple examples of how this
structure may be used.

The data structure for the symmetry information is shown in Pseudo-Code 2. Since
there may be many levels of symmetries within one tensor, a linked list structure is used
to define the symmetries of the tensor. A linked list is suitable because it allows for
flexible definition of list members (in this case, symmetries) and memory is allocated

only on an as needed basis. The first field of the symmetry structure is a pointer

/* Define the data structure for the symmetry information */
typedef struct symmetry {

struct symmetry *next;
/* pointer to the next symmetry */

long symmetry_type;
/* code for the different types of symmetry */

SYMMETRY_INFO *"LHS_symmetry;
/* define the structure to store information about the left-
* hand-side of the symmetry */

SYMMETRY_INFO *RHS_symmetry;
/* define the structure to store information about the right-

* hand-side of the symmetry */

} SYMMETRY;

Pseudo-Code 2 Symmetry Data Structure
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to the next symmetry definition. The second field specifies the type of the current
symmetry. At the time of implementation, twelve types are identified: 1-symmetric,
2-totally symmetric, 3-antisymmetric, 4-totally antisymmetric, 5-plane symmetry, 6-line
symmetry, 7-point symmetry, 8-plane-line symmetry, 9-anisotropic, 10-orthotropic, 11-
transversely isotropic, 12-isotropic. Each type is represented by the corresponding integer.
The third and fourth fields are pointers to linked lists of real numbers. The structure is

shown in Pseudo-Code 3.

/* define the structure to store symmetry information */

typedef struct symmetry_info {
struct symmetry_info *next;
/* linking to the next piece of symmetry item 7/

float sym_info;

/* This stores the first piece of symmetry information.
* For LHS, this could be the left-hand-side index of
* the symmetry, or it could be the ang/e of symmetry
* For RHS, this could be the right-hand-side index of
* the symmetry, or it could be the axis number of the
* axis or axis plane that is coincidental with the
* line or plane of symmetry 7/

} SYMMETRY_INFO;

Pseudo-Code 3 Symmetry Information Structure

To explain the third and fourth fields, recall from the discussion on symmetry in
section 2.1.2 the symmetries can be separated into types of intrinsic and spatial property.
For intrinsic tensor symmetries, only- the-index locations -of the symmetry need to be
- identified. These locations are stored as linked lists of numbers. For example, to specify

a major symmetry for the stiffness tensor (Cjjq =Cuijj), the information stored in the data
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SYMMETRY
Type = LHS_ RHS_
1-symmetric | symmetry symmetry next—4--—-»
SYMMETRY_INFO SYMMETRY_INFO

T —T

Figure 14 Example of storing major symmetry information

structure is shown in Figure 14. The symmetric label indicates the nature of the tensor
symmetry. For a major symmetry, index positions / and 2 can interchange with index
positions 3 and 4 while still retaining the value of the tensor. Therefore, the numbers
I and 2 are stored in the first linked list while the numbers 3 and 4 are stored in the

second. Thus all symmetry components are specified.

For the spatial property symmetries, if the symmetry is with respect to a particular
angle (e.g. a line symmetry), this angle is stored in the first slot in the first linked
list. The first slot in the second linked list is used to identify the axis that coincides
with this line. It is assumed that the coordinate system is defined such that its axes or
axis surfaces coincide with the line, plane, or plane-line symmetries of the system. For
example, if a tensor has a symmetry with respect to the z-axis every 36 degrees, the

symmetry information stored is shown in Figure 15.

SYMMETRY
Type = LHS_ RHS_
6-line symmetry | symmetry next—---—--+
_SYMMETRY _INFO / .. SYMMETRY_INFO
36 ' 3
(degrees) V (z-axis)

Figure 15 Example of storing of line symmetry information
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3.1.3 The Parser

A robust and efficient handling capability of distributions is essential to the oper-
ation of an effective general purpose attribute manager. Many of the issues regarding
distribution definition requirements had already been discussed in section 2.1.3. Some of
these issues include the capability of complete understanding and storage of equations,
equation evaluation capabilities (with various dependent and independent variables), and
the ability to incorporate results from other analyses. In response to these requirements, a
general purpose equation parser is developed to parse distributions into a format suitable
for equation manipulation and evaluation. The implementation of the parser is described

in this section, followed by a description of the distributions in the next.

Part of the parsing routines is a lexical analyzer that provides the parser with a
workable block of data from the given equation. The parsing routines developed has
the ability to take almost any equation, sort out the individual equation parameters, and
put them in a form useful for manipulation and evaluation. The parser is generated
by yacc — Yet Another Compiler Compiler, a program that generates a parser based
on a set of grammatical rules. yacc was used for compilers of many conventional and
unconventional computer languages, desk calculator languages, and a debugging system
[9][10][20]. The parser is written so that it can obtain an equation from a given character
string or an input file. Given an equation, the lexical analyzer grabs the next recognizable
parameter. The parser then takes this parameter and, according to a predefined set of
rules, invoke the appropriate routines to build up the parse tree with the new parameter
information. Once the entire equation is parsed, the parsed tree is then stored as a new

distribution. This distribution is then given to the calling routine.
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Input equation:
X = sin(4*$1)

lexical analvzerl<

X: undefined variable

sin:  built-in function,
find function and get number
of expected arguments

Parser augment tree
gets info with new
parameter info

): ends argument list

Inform parser
end of equation

store tree and output

tree as distribution
parsed tree: | expression id:

4, $1, *, sin

X

Figure 16 Example of Equation Parser

The basic flow of the equation parser can be illustrated with a simple example as
shown in Figure 16. Given the example input equation of z = sin(4 * §1), the lexical
analyzer takes the parameter of the equation from left to right. The first parameter it
takes is “x”, which is marked as an undefined variable. The parser then decides to

e __ 9%

have the lexical analyzer grab the next parameter, which is . With this new piece
of information, the parser now knows that “x” is actually an id for the expression. So

it retags “x” as an expression id. When the lexical analyzer gets to “sin”, it checks
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and recognizes that the parameter is one of the built-in functions. So it is stored into
the parse tree tagged with a type of “built-in function.” The set of built-in functions
are predefined and built into the database at the time of compilation. Pseudo-Code 4
shows the data structure for the definition of the built-in functions and the constants. The
built-in functions are described in the latter part of this subsection. Noting that “sin”
is actually a built-in function, the parser expects the parameters following “sin” to be
arguments to this function — beginning with the open parenthesis “(“, deliminated with
commas “,” and ending with a closed parenthesis “)”. So, for the argument list, the first
parameter the parser encounters is “4”. The parser tags it as a number. Next, a “*”
is encountered. The parser correctly interprets it as a multiplication operator — thus
knowing the preceding “4” is actually one of the operands of “*’. The parser than gets
the second operand of “$I”. Since it doesn’t match any of the constants or the built-in
functions, it is tagged as an undefined variable. Finally, the parser encounters the closing
parenthesis, thus knowing that the argument consists of one single expression of “4 *
$I ”. Each time the parser receives a piece of information that unambiguously defines
the parameter, it is augmented to the parse tree. At the end of the parsing effort, the
resulting parse tree has the expression stored in a reversed Polish format: 4, $/, *, and

sin with an expression id of “x”.

extern double Log(), Log10(), Exp(), Sqrt(), Integer();

extern double Sin(), Cos(), Tan(), Asin(), Acos(), Atan();
extern double Sinh(), Cosh(), Tanh(), Atan2(), Mod(), Fabs();
extern double GT_temp(), LT_temp(), GS_disp(), GT_amp();

static struct { /* Constants */
char *name;

Pseudo-Code 4 Data Structure for Built-in Functions and Constants  (Continued) . . .
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double cval;

} constsf] = {
"$PI", 3.14159265358979323846,
"$SE", 2.71828182845904523536,
"$GAMMA", 0.57721566490153286060, /* Euler */
"$DEG", 57.29577951308232087680, /* deg/radian */
"$PHI", 1.61803398874989484820, /* golden ratio %/
0,0

}’.

static struct { /* Built-ins */
char *name; /* name of the input function ¥/
double (*func)(); /* pointer to the function */
int noargts; /* number of arguments */
} builtins[] = {
"sin", Sin, 1,
"cos’, Cos, 1,
"tan”, Tan, 1,
"asin”, Asin, 1,
"acos”, Acos, 1,
"atan’, Atan, 1,
"sinh", Sinh, 1,
“cosh”, Cosh, 1,
"tanh”, Tanh, 1,
"atan2”, Atan2, 2,
‘mod", Mod, 2,
"log", Log, 1, /* checks argument */
"log10", Log10, 1, /* checks argument */
"exp", Exp, 1, /* checks argument %/
"sqrt", Sqrt, 1, /* checks argument */
“int", Integer, 1,
‘abs”, Fabs, 1,
"GT_temp”, GT_temp, 3,
"LT_temp”, LT_temp, 3,
"GS_disp", GS_disp, 3,
"GT_amp”, GT_amp, 3,
0,00

Pseudo-Code 4 Data Structure for Built-in Functions and Constants
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As one can see from Pseudo-Code 4, any function that the lexical analyzer needs to
recognize must be included in the structure. At the moment, this structure is defined in
the same physical file as the initialization routine called init(), which puts the functions
and constants into a table. To define a constant, one must give the name by which the
constant is to be referenced. For the attribute manager, a constant always starts with a
“$” sign, followed by an alpha-numerical string, and is always capitalized. As described
in Section 3.1.5, the variable “$n”, where n is a numerical number, is a special variable
syntax reserved for the specification of coordinate system independent variables. Other
than constants and coordinate system independent variables, no other types of variables
may begin with a “$”. The second piece of information needed to define a constant is
the value of the constant. To define the built-in functions, notice that the data structure
named “builtin[]” takes three fields to store the function: 1) the name which the lexical
analyzer can recognize and by which the actual function is referenced, 2) the pointer to
the entry point of the actual function which corresponds to the name (specified as the
actual name of the routine), and 3) the number of arguments the function takes. Notice,
too, that two types of functions are stored here: 1) functions in the system math library,
such as sin() and cos(), and 2) functions defined by the user, such as “GT_temp”. When a
new user function is defined, it must be incorporated into the structure “builtin[]” and the
corresponding prototype must be specified at the top of the file. In addition to providing

the three fields mentioned above, the input argument specification must be in the format of

double function_name (long number_of_arguments,

double argument._array[])

where the function_name must return a double. The first argument, num-
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ber_of arguments, must always specify the number of arguments this function
takes, and the second argument, argumente_array[], must be a double precision array
of the argument values. This is done so that the attribute manager will have a consistent
way of handling user defined functions. Incidentally, this is also the approach taken in
incorporating the results of one analysis as boundary conditions for another analysis.
That first analysis simply has to provide an operator in which one can retrieve the
needed information to the attribute manager. In the way described, this operator can
be incorporated into the structure and be used as a distribution for attributes. The
operator/user defined function can then be used as a distribution once it is linked with

the parsing routines.

3.1.4 Distribution

The versatile capabilities of the parsing routines is vital in a complete understanding
of any input equations. As was discussed, equations are stored as distributions. Pseudo-
Code 5 shows the data structure of a distribution. Each distribution is treated as a cell in
a linked list. The data type is defined to be DISTRIBUTION. The first field is a pointer
that points to the next distribution. The second field provides for a way to reference this
distribution. For example, *label will be “b” for the distribution “b = 4 sin(é7).” For
those distributions given without name (such as “4 sin(fr)”), a sequential name of “@n”

is given to that distribution — where 7 is taken to be the n't such equation withou

=3

an‘ 7

name. The relationships between the distribution components are stored in the third field.

Within this third field, there is a character string that stores the entire distribution (for

example, “b =4 sin(@#)”). This string is also parsed and stored in reverse-Polish format
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/* data structure for distribution */
typedef struct distribution {
struct distribution *next;
/* pointer to the distribution information of the next distribution */

char *label;

/" a label for this distribution for later identification
* for example: "a" for the equation, a = 2 + sin(x) */

/* define the structure that stores the parameter relationship of the tensor
* component distribution in a string and a 2-D binary tree array */

struct parameter_reln {
char “char_string;
/* a character string that stores the function that describes the distribution
* of the tensor component in a string form, inciuding the label. */

long tree_size;
/* an integer that specifies the row size of the binary tree below */

BINARY_TREE *bin_tree;
/* The above character string is first parsed into a binary tree, which is
* then stored in this structure called binary_tree. Notice its array size
* is not specified until at definition */
} PARAMETER_RELN;

PARAM_INFO *param_ptr;
/" define the structure that define each of the parameters

* in the character string in PARAMETER_RELN */
} DISTRIBUTION;

Pseudo-Code 5 Distribution Data Structure

in a 1-D binary tree array in this third field. The exact nature of each of the parameters

are stored in the last field of DISTRIBUTION and is defined to be PARAM_INFO.

The PARAM_INFO data structure is shown in Pseudo-Code 6. Again, a linked

list for the structure of the parameter information is most appropriate since the number



/* the parameter info of the distribution */
typedef struct param_info {
/* NOTE: only the parameters that are not numbers nor alphanumeric (such
* gs "+t """ are listed here as a separate parameter. */
struct param_info *next;
/* pointer pointing to the next parameter */

char “param_string;
/* a string that contains one of the parameters }
* described in the character string in parameter_rein */

long param_type;
/* type code for the parameter:
* 1 = constant, 2 = builtin function,
* 3 = variable, 4 = attribute , 5 = distribution */

/* informaton to the parameter dependencies */
union param_dependency {

double const_value;

/* value of the constant (type 1) /

struct bltinfo {
long noargts;
/* number of arguments for this function. */

double ("ptr)();
/* pointer to a builtin function that
* returns a double. */
} BLTINFO;

struct distribution *distrib_ptr;
/* pointer to the distribution on which the parameter is defined (types 5) 7/

struct attribute “attrib_ptr,
/* pointer to the attribute on which the parameter is defined (type 4) */

} PARAM_DEPENDENCY; /* param_dependency */
} PARAM_INFO;

Pseudo-Code 6 Structure of Parameter Information

45
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of parameters may vary with each equation. The first field is a pointer to the next
PARAM_INFO, and the current parameter in character string form is stored in the second
field. Aside from the basic operators (such as “+” and “-”) and numbers there are
five types of parameter dependencies the manager needs to support: constants, built-
in functions, variables, attribute components, and other distributions. The third field
indicates the type of the current parameter. Depending on the type, the appropriate
information to qualify the parameter is stored in the last field. The parser and all the
associated routines are responsible to provide, sort, and put all the information for the

distribution in the appropriate places.

An added benefit of associating pointers with distributions can be easily illustrated
with the case of a prescribed boundary condition as shown in Figure 17. The horizontal
displacement at wall A and vertical displacement at wall B are prescribed to be zero,
while the other component of the displacements are not prescribed at all. In specifying the
prescribed displacements, one must be able to distinguish whether the tensor component

is actually defined or is explicitly zero. In this case, only those components explicitly

A load

T

B

Figure 17 Example of prescribed boundary condition
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defined have pointers to the associated distributions. The components not defined point

to a NULL pointer.

The distribution structure is not only used in defining the tensor component distribu-
tion, but it is also used in defining the relationship of axis directions between coordinate
systems. Situations frequently arise such that some analysis expressions become cumber-
somely large and complicated or that two distributions of different values might use the
same name. For the latter situation, a common occurrence is when specifying the stiffness
of two different materials. Both stiffnesses might depend on E and v, though the values
of E and v might be different. It is unreasonable to require and unintuitive for the user to
keep track of the number of different E’s and »’s and assign them unique names. Just as
in a programming language, such as C, there is need for the distinction of global and local
variables, so too there is a need to distinguish between local and global distributions. By
local it is meant local to an attribute, i.e., the distributions will be stored and associated
only with a particular attribute. The local distribution is not seen by distributions out-
side of that attribute. This allows for the specification of local distributions whose name
might conflict with other globally and locally defined distriﬁutions. When the name of a
local distribution conflicts with that of a g‘lobalv distribution, the local name overrides the
global name. This concept of local and global definitions also provides a powerful way

to break down cumbersome distributions into smaller, more readable, chunks.

Recall the data structure defining the physical information of an attribute as shown
in Pseudo-Code 1. The fourth field, comp_distrib, is used to store the pointers to
distributions defined for each tensor component. The fifth field, struct list_distrib is

a linked list of pointers to the distributions defined local to that attribute. When parsing
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an equation, this local list of distributions is checked for dependencies first. Only when

dependencies are not found that the global distribution list will then be checked.

3.1.5 Coordinate System

Three pieces of information are required to specify a coordinate system (as concluded
from the discussion of section 2.1.4): 1) a reference that identifies the base system upon
which the current coordinate system is defined, 2) the coordinates of the origin of the
current coordinate system in the space of the base coordinate system, and 3) the functions
that define the relationship between the coordinates in the current coordinate system and
the base coordinate system. For the purposes of implementation, it is also desirable
to have two identification labels in addition to the above three pieces of information.
The first label is to uniquely identify the coordinate system for later réference, and the
second is to identify the coordinate system type: linear, curvilinear, or model, in a label.
This second label allows for easier recognition of the coordinate system type to insure
correct use of the appropriate transformation relations. The scheme used for defining a
coordinate system is shown in Figure 18.

The corresponding data structure to store a coordinate system is shown in Pseudo-
Code 7. The structure to hold coordinate system information is specified as a linked
list. The first field is a pointer to the next coordinate system. The pointer to the
reference coordinate system is stored in the second field. The unique character string
identification for the coordinate system is stored in the next field. As was discussed
in section 2.1.4, three types of coordinate systems can be identified. The fourth field
speciﬁés the coordinate system type: i—linear, 2—curvilinear, 3-model. A 1-D array is

used to store the coordinate of the origin of the current coordinate system in the space
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Coordinate System
] |

|
Coordinate ", n .
System x;' function Coord.
Type
of
"x,' function
Origin
Pointer
to

"xg' function

Coord. Sys.

Figure 18 Data structure of coordinate system definition

of the base coordinate system. This fifth field is not defined until the coordinate system
is defined. Given the dimension of the coordinate system (the sixth field), the dimension
of the coordinate of the origin with respect to the reference coordinate system is set and
defined. Finally, the relationship of the current coordinate system with respect to the
reference coordinate system is in the last field of the structure. Each of the functions
that describes the coordinate system axis are described and stored in the same manner
as the distributions. These functions must be defined with respect to the base coordinate
system. To reference the functions of the base coordinate system, the syntax of $n, where
n=1,2, 3, ... that corresponds to the value of the st gnd 3rd - bage coordinate system
function. For example, ($1, $2, $3) specifies the value of the coordinate (X,y,z) defined in
an x-y-z coordinate system. The suite of functional operators to evaluate the distributions
and transform coordinates from one coordinate system to another has yet to be developed.

These operators will make use of the evaluating routines developed for the parser.
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/* Define the data structure for the coordinate system information */
typedef struct coordinate_sys {

struct coordinate_sys "next;

/* pointer to the next coordinate stored in the linked list %/

struct coordinate_sys “coord_sys_pir;
/* pointer to the coordinate system based on which the
* current coordinate system is defined 7/

char *coord_sys_id;
/* an label that uniquely identifies this coordinate system */

long coord_sys_type;
/* a flag specifying the type of the current coordinate system */

float *coord_origin;

/* an array to store the coordinate of the origin of the current coordinate system
* with respect to the coordinate system pointed to by coord_sys_ptr — this

* number is written in terms of the current coordinate system.
* To provide for arbitrary length of array, the size is not specified until definition
* time. It is of the dimension of the coordinate system. "/

long coord_sys.__dimension;
/* the dimension of the coordinate system */

struct distribution **func_ptr;
/* the functional relationship of the current coordinate system with respect to a
* base coordinate system is defined by an array of distributions. The size of
this ‘
* array is the dimension of the coordinate system, which is indeterminant until
* after definition */ '
} COORDINATE_SYS;

Pseudo-Code 7 Coordinate System Data Structure

Something not discussed above is when the label is “model.” This label is used when
the user wants to define a coordinate system local to a geometric model entity. In this

case, the attribute modeler must query the geometric modeler for information about the
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coordinate system in which the model entity is defined. This set of operators is modeler
specific and has not been implemented. The first coordinate system function defines the
direction normal to the model entity. The subsequent coordinate functions define the

tangents to the model entity.

3.2 Organizational Implementation of Attributes

Two important characteristics of the organizational structure proposed and discussed
in section 2.2 are flexibility and generality — flexibility in the handling of various com-
binations of associations and generality in the handling of multiple and different appli-
cations. These are the main requirements for the implementation of the organizational
structure. The organizational types proposed and defined (in order from highest hier-
archical order to the lowest) are: case, group, set, and attribute. An additional type
of “multiplier” allows for convenient variation to the value of any of the organization
hierarchies. This section discusses the data structure and implementation details of each

of these organizational hierarchies.

Figure 9 from section 2.2 (reproduced here as Figure 19) provides a global view on
the overall framework of the organizational structure. Three characteristics about the

organizational structure as depicted are particularly important:

1. The hierarchies shown in Figure 19 must not be f/iolated. That is, an attribute cannot
be above a set in its hierarchical levels, neither can a set be above a group, or a
group be above a case.

2. Not all the hierarchies need to be present.in one particular branch of the tree. Notice

that the right most branch of the tree in Figure 19 is composed of a case-set-attribute.
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Case

Group

Set

Attribute

O = multiplier

Figure 19 Overall Framework of the Organization Structure

3. Any number of multipliers can be attached in between any pair of hierarchical parent-

child.

These hierarchy characteristics are the rules used in the implementation of the organization

structure.

Before the connection between the organization elements is established, both elements
must be defined. If after a search of the elements and one or both of the candidates were
not found, a linked list cell of the type of the element is created and the connection is
made. This automatic creation of organization elements only holds for case, group, and
set. An attribute must be previously defined. Within any pair of suc
node cannot be higher in the hierarchical level than that of the parent node according

to the first of the three organizational rules described above. Within this constraint, the

parent node can be a case, group, or set, while the child node can be a group, set, or
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attribute. All of the organization elements are structured as linked lists. Linked lists are
advantageous in this application because it gives great flexibility in inserting new nodes
or deleting existing nodes without having to rearrange the entire data set. Furthermore,
the nodes could be stored as a search tree for efficient retrieval of specific linked list nodal
information. Therefore, in addition to the interconnection between case, group, set, and
attribute, (as depicted in Figure 19) each of the organization elements are also linked
into a list. What emerges from this is an additional layer of the organization structure
shown in Figure 20. The user does not see this structure, and it is used primarily in
information bookkeeping and searching. All searching are done from left to right and
top to bottom. The structure of each of the organization element is examined in detail

in the following subsections.

Case case 1 > gl | mmm=m==b

—

Group gopl | T goup2 | TP goup3 | =~==»

/‘\\ /‘\\ /‘\\
S~ ¥ T ¥ S~a
Set set 1 - st? s R ———
/‘\\ /‘\\ I,‘\\\
¥ S~ ¥ S<a | 4 S~a

Attribute | attributei | ~T9™1 attribute2 | —T%™ attributed | —TP™ aftributed | P

Figure 20 Additional Layer of Organization Structure
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3.2.1 Case

The relationship of a case within the organization structure is diagrammed in
Figure 21, and the corresponding data structure of a case is shown in Pseudo-Code
8. The circles represent multipliers. The structure is defined to be of type CASE. The
first field is a pointer that points to the next node in the case linked list. The second field
is a unique character string identification of CASE. A brief description of the case can be
stored in the third field. The next field is used to establish the connection between organ-
ization elements; it is a pointer to the list of child nodes of the case. The children can be
of the group, set, or attribute. The flexibility built into this scheme requires that the case
can point to any element of a lower hierarchical level. This is a challenge in the declara-
tion of a group, set, and attribute. They have different declarations, yet they need to be
declared in such a way that the down-pointer can recognize as a single declaration. The
approach taken here to solve this problem is to make use of the union declaration in C.

Instead of having the child pointer of CASE pointing directly to a group, set, or attribute,

- ~ Case
Set/Group/Attrib. [ O
label
Set/Group/Attrib. [«————O+—O
descrip”
Set/Group/Attrib. «—O O
Set/Group/Attrib. <—O'§_O‘ -Or
) [ I

Figure 21 Relationship of a Case Within the Organization Structure
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/* Define the data-structure of attribute CASE %/
typedef struct cas {
struct cas *next;
/* pointer to the next case */
char *label;
/* a unique case label Y/
char *Case_description;
/* a brief description of the case */

Generic_List_Cell "ptr_grp_set_atf;
/* pointer to the linked list of pointers to the groups, sets, or attributes */

struct combined *union_ptr;
/* for efficiency in nodal traversal, this pointer retains the knowledge of the
* generic pointer pointing fo this case. */

} CASE;
/* end of the structure of CASE /

Pseudo-Code 8 Case Data Structure
it points to a union of the four hierarchical elements. Every organizational element has
an associated union. It is convenient to have this pointer to the associated union in the

definition of the element to eliminate any searching. The last field is this union pointer.

The general structure of a union is shown in Pseudo-Code 9. The structure shown in
Pseudo-Code 9 is defined to be COMBINED, which is used as targets of the up-/down-
pointers of the organization element. The first field indicates the element to which this
union is actually pointing. Given this knowledge, the appropriate pointer is selected in
COMB. This structure is vital in supporting the flexibility demanded in the organization
structure and in the writing of compact and general code. This approach of handling
down-pointers has also been extended to the way up-pointers are handled. -Incidentally, -

the fifth field of CASE as shown in Pseudo-Code 8 is the pointer to the target to which

another organization element can point when establishing a connection to this case.
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/* Define a union of attributes-sets-groups-cases to be used for the
* up-/down-pointer */
typedef struct combined {
/* an integer label specifying what the COMB is pointing at */
/* ATAT T=attribute, ATSET=set, ATGROUP=group, ATCASE=case ¥/
ORGNCODE label;

/* variable pointer pointing to any one of the structures below */
union comb {

ATTRIBUTE *Uatt;

struct set *Uset;

struct group *Ugroup;

struct cas *Ucase;
} COMB; /* end of comb 7/

} COMBINED; /* end of the union of set/group/case */

Pseudo-Code 9 Union Data Structure

3.2.2 Group

The relationship of a group within the organizational structure is diagrammed in
Figure 22, and the corresponding structure of a group is shown in Pseudo-Code 10. The
structure is defined to be of type GROUP. The first field is a pointer that points to the next
node in the group linked list. The second field is a unique character string identification
of GROUP. A brief description of the group can be stored in the third field. The next two
fields are used in establishing connection between organization elements, and the sixth
field is the pointer to the associated union of this group. The fourth field is a pointer to
the list of child nodes of the group. The children can be of the set or attribute, and the
fifth is a pointer to a list of parent nodes of the group. As can be seen in the diagram,
the up-pointers are different than the down-pointgrs by the absence of little circles in
the connection. Again, these éircles represent multipliers. Since the evaluation routine

always go from top to bottom, only the down-pointers need to know of the multipliers.
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Figure 22 Relationship of a Group Within the Organization Structure

/* Define the data-structure an of attribute GROUP */

typedef struct group {
struct group “next;

/* pointer to the next group */

char *label;
/* a unique group label */

char *Group_description;

/* a brief description of the group */

Generic_List_Cell "ptr_set_att;

/* pointer to the linked list of pointers to the sets and/or attributes */

Generic_List_Cell2 “ptr_case;

/* pointer to the linked list of pointers to the case belonging to the group 7/

struct combined *union_ptr;

/* a back pointer pointing to the associated union. */

} GROUP; /* end of the structure of GROUP */

Pseudo-Code 10 Group Data Structure
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3.2.3 Set

The relationship of a set within the organization structure is diagrammed in Figure
23, and the corresponding structure of a set is shown in Pseudo-Code 11. The structure
is defined to be of type SET. The first field is a pointer that points to the next node in
the set linked list. The second field is a unique character string identiﬁcaﬂon of SET. A
brief description of the set can be stored in the third field. The next two fields are used
in establishing connection between organization elements. The fourth field is a pointer
to the list of child nodes of the set. The children can only be of the type attribute, and
the fifth is a pointer to a list of parent nodes of the set. The parent nodes can be a group

or a case. Again, notice from Figure 23 that the pointers to the parent nodes do not have

— R Set —
Infomation Attribute | > Group/Case
|
Organizational ‘
Information label label
—— | | Description| |
Relational | |
Information label
I | Attrib. Group/Case
| o | e
Attribute «—O—1—0
deserip
Atiribute ~—0- O > Group/Case
Attribute «—CT0— O~ ,

Figure 23 Relationship of a Set Within the Organization Structure
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/* Define the data-structure of attribute SET %/
typedef struct set {
struct set *nexi;
/* pointer to the next set */

char *label;
/* a unique set label 7/

char *Set_description;
/* a brief description of the set */

Generic_List_Cell2 *ptr_grp_case;
/* pointer to the linked list of pointer to the parent groups */

Generic_List_Cell *ptr_attrib;
/* pointer to the linked list of pointers to the children
* attributes associated with the set 7/

struct combined *union_ptr;
/* a back pointer pointing to the associated union. */
} SET; /* end of the structure of SET */

Pseudo-Code 11 Set Data Structure

any associated multipliers. This is because these pointers are for searching conveniences

only. The sixth field is the pointer to the associated union of this set.

3.2.4 Attribute

The structure of an attribute is shown in Pseudo-Code 12. The structure is defined to
be of type ATTRIBUTE. It is structured quite differently from SET, GROUP, or CASE.
Recall that the design of the attribute requires it to carry considerably more infermation-
— namely, information of the attribute physical definition and information of how it

relates to other components of the analysis. The structure of the physical of information
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/* Data structure of Attribute Abstract Data Type */
typedef struct attribute {
struct attribute *next;
/* pointer to the next attribute */

Generic_List_Cell2 *label;
/* pointer to the linked list of labels of the attribute */

char *Attrib_description_ptr;
/* a brief description of the attribute */

/* Define the fields containing the organizational
* descriptors of the attributes */
struct ORGANIZATIONAL_INFO {
char *attrib_type;
/* a string specifying the attribute type */

struct combined *union_ptr;
/* a pointer pointing to the associated union. this union will be used as the
* target of the up/down pointers for linked lists of parents/children. */

Generic_List_Cell2 *attrib_set_grp_case;
/* pointer to the linked list of pointer to the sets,
* group, or, case with which the attribute is associated */
} attrib_organization_info;

/* Define the fields containing the physical information of the attribute */
struct PHYSICAL_INFO { ...
} attrib_physical_info;

/* Define the fields containing the information regarding the
* relationship of the attribute with the rest of the system. */
struct SYS_RELATIONSHIP | ...
} attrib_sys_relationship;
/* end of the system relationship information of the attribute”/

} ATTRIBUTE; /* end of the data-structure of the ATTRIBUTE /

Pseudo-Code 12 Attribute Data Structure
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has been discussed in section 3.2, and the relational information will be discussed in
Section 3.3. The first field of ATTRIBUTE is a pointer that points to the next node in the
attribute linked list. The second field houses a unique character string identification of
ATTRIBUTE as well as a finite number of labels for ATTRIBUTE. The labels provide a
means for more detailed identification of the attribute. In the REPAS project, for example,
the label is a useful means to specify the type of material property of which the stiffness
attribute is describing (such as Linear-Isotrpoic-Elastic-Material). As one can see from
the declaration, a linked list is used for the specification of labels. The first cell in
that list is always the id, followed by additional labels, if any. A brief description of the
attribute can be stored in the third field. The next field is a structure for the organizational
information. Residing in this field are three pieces of information for the organization
aspect of the attribute. The first of these is the attribute type. Recall that only attributes
of the same type can be combined to form a set. Some examples of attribute types are
stiffness, temperature, and power density. The second of the three is the pointer to the
associated union of this attribute. The last of the three is a pointer to a list of parent

nodes of the set. The parent nodes can be a set, group, or case.

3.2.5 Multipliers

The structure used to define a multiplier is shown in Pseudo-Code 13. Since there
can be many multipliers modifying one organization node, the multiplier is structured as
a linked list node. The structure is defined to be of type MULTIPLIER. The first field of
MULTIPLIER is a pointer to-the next node in the multiplier link. Along with the value of -
the multiplier as the second field, it also has a unique character string identification (id)

of this multiplier. After a multiplier is defined, it can be used anywhere else by simply
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/* define a structure for multipliers */
typedef struct multiplier {

/* pointer to the next multiplier /
struct multiplier *next;

/* a unique name identifying the multiplier */
char *label;

/* multiplier value */
double value;

} MULTIPLIER; /* end of the structure for multipliers */

Pseudo-Code 13 Multiplier Data Structure
referring to the id of this multiplier. Any changes in the multiplier value, therefore, are

seen by all who use the multiplier.

If a multiplier(s) were specified to be used for the parent/child relationship and if
the multiplier(s) were not found in the multiplier linked list, a new multiplier(s) with the
specified value(s) is created and added to this linked list. A default multiplier with value

of one is used if no value were specified.

One of the features of the multipliers is that one can define an indefinite number of
multipliers for the child node of any organization pair. This creates an implementation
challenge in that this variable list of multipliers needs to become part of the association
of any two organization elements. To resolve this issue, the approach taken here is to
continue to take advantage of the linked list structure. Each of the child nodes and the
~multipliers is wrapped in a generic linked- list cell: The child nodes and- the multipliers
then become one and the same on the surface. The down-pointer of each organization

element sees only this “wrapper,” and the issue is resolved. The data structure of this
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typedef struct generic_list_cell {

void *generic_pointer;
/* this field can be the pointer to any type of structure or data */

long gptr_type;
/* If this flag is zero, generic_pointer is pointing to a Generic_List_Cell

* with an associated multiplier. Otherwise, generic_pointer is pointing
* to a COMBINED structure 7/

struct multiplier *mult_ptr;
/* this field points to the structure that defines the
* multiplier. Note this has a value only if gptr_type = 0 */

struct generic_list_cell "next;
/* pointer to next node in the linked list of Generic_List nodes */

} Generic_List_Cell; /* end of data-structure of Generic_List_Cell */

Pseudo-Code 14 Generic Wrapper Data Structure
wrapper is shown in Pseudo-Code 14.

Note that the generic wrapper is itself a linked list cell, with pointer to the next linked
list cell, i.e., the next child node. In addition, the second field is a flag that directs the
pointer to either the union of the organization element (first field) or to the multiplier
(third field). To remain consistent in operation, the up-pointers also point to wrappers,
which, in turn, points to the appropriate union of the organization element. Figure 24
shows the overall structure of one organizationai element. Notice the up-pointers are not
shown; these up-pointers are exactly the same as the down-pointers with the multipliers
taken out. Notice also that the organizational element knows only about the generic
wrapper. The wrapper then redirects-the element to-point to the correct-node, either-a .
multiplier or another organizational element. Between any two orgénizational elements

are a set of multipliers that modify the value of the child of the pair.
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Figure 24 Generic Picture of an Organization Element Structure

3.3 Relational Implementation of Attributes

The final step to completely specify all aspects of an attribute is to associate the
attribute to the appropriate model entities. The basic capability has been implemented.
Those involving creation and manipulation of auxiliary geometries and mociel augmenta-
tion still need to be implemented. As such the structure to hold the relational information

is shown in Pseudo-Code 15.

/* Define the fields containing the information regarding the
* relationship of the attribute with the rest of the system. */
struct SYS_RELATIONSHIP {
TOPO_POINTER "ptr_topology;
/* pointer to the header of the linked list containing pointers to the
* topological entities with which the attribute is associated. */

Generic_List_Cell *attrib_constraint;

Pseudo-Code 15 Relational Information Data Structure (Continued) . . .
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/* Define the data-structure of TOPO_POINTER that specifies the geometric
* information regarding the attribute. %/

typedef struct topo_pointer {
struct topo_pointer *next;
/* pointer to the next topo-pointer */

long entity_type;
/* a flag specifying the entity type
* For now, 1-vertex, 2-edge, 3-face, 4-shell, 5-region, 0-others */

char *entity_string;
/* pointer to the source topological entity when the pointer to the source
* topological entity is in form of machine pointer or a string */

long entity_number;
/* pointer to the source topological entity when the pointer
* to the source topological entity is in the form of an integer. */

Generic_List_Cell2 *ptr_aux_entities;
/* pointer to the header of the linked list of pointers to auxiliary entities */

char *model_name;
/* an identifier for the geometric model from which the entity is defined */
} TOPO_POINTER; /* End of data-structure of TOPO_POINTER */

Exhibit 16 TOPO_POINTER Data Structure

/* pointer to the linked list of pointers to the structures containing
* information regarding the constraints imposed on the attributes */
} attrib_sys_relationship;
/* end of the system relationship information of the attribute”/

Pseudo-Code 15 Relational Information Data Structure

Since an attribute can be applied to many model entities, the relational information
is specified with a linked list. If the attribute is not applied to any model entities, the first
field points to NULL. Otherwise, it points to TOPO_POINTER, where TOPO_POINTER

is a structure defined as shown in Pseudo-Code 16



66

The first field of TOPO_POINTER is a pointer to the next topological entity to which

the attribute is applied. The second field indicates the type of the model entity that is
being described. For the moment, the type code is mainly for geometric model entities.
However, the type code can be expanded as the need arises to account for different
models used. Two fields are used to identify the particular model entity used. The third
field can store a character string identification of the entity, such as how CATIA labels its
model entities, whereas the fourth field holds the numerical identification of the entity,
such as how Parasolid labels its model entities. The fifth field points to the auxiliary
entities defined for this attribute, and finally, a character string identification of the model

to which the entity belongs is specified in the sixth field.




4 GENERALIZED ANALYSIS FRAMEWORK
(c) — APPLICATION INTERFACE FOR
ATTRIBUTE MANAGER

After the attribute manager is formulated and the design implemented, the next step
is to provide mechanisms to interface the manager with application packages. This
chapter focuses on the I/O and interface formats used by the manager. Two methods for
the manager to communicate with application programs are: 1) I/O files to “statically”
create and store attributes and 2) operators to provide for dynamic interface between the

manager and the applications.

4.1 /O Formats

A file format is defined to store attributes that were created during a working session.
The output of one working session maybe stored and used as input for another working
session. As such, the input files are read only at the beginning of each session with
the attribute manager. Any changes/additions to the definition of attributes must then be
made through the interface operators during the working sesN‘si‘on with the manager. Some
excerpts from the attribute output files of the REPAS application is given as example
in Appendix C. A total of three files are used to sf)ecify the complete description of
attributes, corresponding to the physical, organizational, and relational aspects of an

attribute. These three files are:

1. filename.lib: a library containing information that define attributes and all the asso-

ciated values and definitions,

67
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2. filename.org: a file containing information that define the structure of the hierarchical
organizational tree, and
3. filename.rel: a file containing information that define the associative relationship

between the attributes and relevant model entities,

where filename is the name of the designated file to store the attribute information. In
addition to these three files, all run time messages are written to an error file named,

filename.ATerr.

These three I/O files are written in ASCII file format, and they are structured so as
to be readable and editable by users. Just as all /O formats have rules to govern the
information storage, so do the attribute I/O files. The eight items listed below is a set of
general rules that apply to all three input files. The sections folloWing the general rules

describe in detail the rules that apply specifically to each of the three input files.

1. Information is written in data blocks. Each data block is called a unit and is a block

of data defining a particular item, such as a coordinate system or multipliers.

2. A “*”in the first column marks the beginning of a new unit followed by a keyword

such as distribution or list.

3. Sub-keywords are keywords used within each unit, excluding the keyword that
identifies the begir;ning of the unit. Each sub-keyword,_ as well as all character
string inputs following the keywords and sub-keywords, must be one single word, i.e.,
“This_is_a_single_word”, versus, “This is NOT a single word.” The only deliminators'

for keywords are white spaces.
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4. When sub-keywords are specified with no associated values or the sub-keyword is
omitted in the input file, a default value is put into the data structure and a warning
message is printed out to the error file. The default values for each sub-keyword are

shown in the subsequent examples under the column Default Values.

5. Any of the following may be used as deliminators to separate data:

;= ., [space] ()
6. All input is case insensitive.

7. A ‘“#” in the first column of a line marks the beginning of a comment line. A carriage

return marks the end of the comment line.

8. Comments may be used anywhere in the file.

4.1.1 Library Attribute File

To date, the three keywords that identify the unit blocks in filename.lib are:
“distribution “coordinate system *multiplier
Any other keywords read are assumed to be keywords of type attribute. These keywords
are used as the identifier for the attribute. Because it is a block structure, additional
keywords (and consequently new units) can easily be added at a later date. The code that
reads in the attribute definitions are structured in the same way for ease of expansion.
The approach taken here to explain the format is to-give examples of each of the units
with appropriate explanations on the right-hand-side. When applicable, default values

are given in the center column.
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4.1.2 Organization Attribute File

The recognizable keywords that can mark the beginning of the organization unit,

filename.org are:

*Case *Group Set
By design (section 2.2, Organization of Attribute), the organizational units are hierar-
chical in nature. That is, a case can only be made up of groups, sets, and/or attributes;
a group can only be made up of sets and/or attributes; and a set can only be made up of
attributes. The ways to specify the dependencies are describéd in the following tables.
Note that in the description, within a unit only one of each allowable types are described.
In actual applications, one unit may have zero or multiple sub-units of the same type.
For example, a case may consist of multiple sets and attributes but no groups. Figure 19

is reproduced here as Figure 25 to aid in visualizing the organization structure.

Case

Group

Set

O = multiplier

Figure 25 Overall Framework of the Organization Structure
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4.1.3 Relational Attribute File

To date, the recognizable keywords that can mark the beginning of the relational,

filename.rel are:

‘model_name “attribute
#
# The following is a sample unit for model_name
#
# keywords comments

*model_name = model_iglentiﬁcation The model identification should uniquely
. identify the model to which the subsequent

named attributes are applied. The entities

specified in the subsequent attribute units are

associated with this model identification until

a new id is given in another model_name

unit.

#

# The following is a sample unit for attribute relation to model entities.

# Note: an attribute may be associated to more than one model entity, with the
# model entities belonging to the same or different models. Therefore, only a
# combination of the model_name and the attribute uniquely specifies

# the association of attributes and model entities

#
# keywords comments
*attribute = attribute_name The attribute identified by the attribute name

must be defined in the attribute library file.
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# keywords comments

model_entity_number: number This must be a number that identifies one of the
model entities of the given model, and can be a

numerical tag or id of the entity.

model_entity_string: string This must be a string that identifies one of the
model entities of the given model. Either this or
the "model_entity_number" may be used to for
model entity identification. If necessary, both

may be used.

model_entity_type: type This is the entity type (an integer) of the given
model entity. A suggested convention for entity
types of a geometric model is: O=vertex, 1=edge,
2=face, 3=shell, 4=region, S=vertex use, 6=edge

use, 7=face use

4.2 Interface Operators

The input/output files are useful for the initial creation of attributes and to store
the definitions for use in a later working session. However, it is also desirable to have
a set of operators that can be invoked to create, manipulate, and query for attribute
information on an as needed basis. An operator is a procedure designed to carry out
a specific task when given a set of instructions. The user is shielded from the inner
workings and data structure of a program. Communication is done solely through the
argument variables of the operator. This “blackbox” philosophy alleviates the user or
other programs from the Burden of knowing the nuts and bolts of a code on the one
hand and allows greater versatility for use and access of data on the other. An effective

operator needs to be general enough to be useful for a relatively large audience, yet it also
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must be specific enough to carry out the assigned tasks. This section describes four sets
of operators callable from C routines: 1) Set-up/wrap-up, 2) creation, 3) interrogation,
and 4) manipulation. The first set of routines are used for the beginning and ending of
an attribute manager session. The second set of routines are used to create the specified
attributes. The third set of routines are used to query information from the attribute
manager. The final set of routines are used to make changes in the definition of the
existing attributes. For quick referencing, a summary of these operators is listed in

Appendix ?. The following naming convention is used:

O normal-font() = routine name

O italic() = routine that has a return value of the given type
O bold = input parameter

O italic = output parameter

O bold-italics = input and output parameter

4.2.1 Attribute Manager Set-up/Wrap-up

This section describes the requirements to invoke and start the attribute manager.
The very first step to using the attribute manager is to set the environment variable that
specifies the path where the attribute home directory is. To do so, simply type at prompt

setenv ATT HOME “<the full path to the attribute directory>"
Those routines using any of therinterface operators mpst include the followigg header

in the calling routine:

$ATT_HOME/attribute/include/header.h



80

The first operator described in this section must be invoked before any attribute operators
may be called. This routine allocates memory for the appropriate variables and sets up
the data structure for the creation and manipulation of attributes. To start a SAM session,
simply call AT_setup(filename) in the application program. The attribute manager is
activated from this point forward. To end the SAM session, call AT_stop(filename) at
any point on the application program when the attribute manager is no longer needed.

The following is a detailed description of the operators.

1. void AT_setup( char *filename )

This routine allocates and initializes the variables needed by the attribute man-
ager. This operator also checks to see if filename.lib, filename.org, and filename.rel
exist. If so, the contents of the files are read into the attribute manager. Attributes
are created, organization structure defined, and association performed as defined in
these attribute files. If only new attributes are intended to be created, care must be
taken to first remove these files before calling AT_setup() to avoid duplication of
attributes. If no input file is found, a message is echoed to the screen noting that
nothing is read in initially. A file with the name filename.ATerr is created, where
any warning and error messages are written. The present restriction is that if one of

the three files is present, then all three must be present.

O filename: char *
/* The name to be used for input files; it is also used for the error file,

filename.ATerr, where all warning and error messages are written.

2. void AT_stop( char *filename )

This routine writes to file everything that the attribute manager has in memory,
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including the attribute definitions, organization structure, and attribute associations.
The files to which these attributes are written are filename.lib, filename.org, and

filename.rel. Any files with the same names are overwritten.

O filename: char *

/* The name to be used to write out all attribute information.

4.2.2 Attribute Creation Operators

This section describes the interface operators that can be called by application
programs to create all the necessary information for an attribute. Just as the three
major types of information can be categorized as physical, organizational, and relational
information, so the attribute creation operators are also described in like categories.
One way of using these operators is to call AT_cratt() to create a new attribute.
The pointer returned by this operator may be used to define the remaining physical
information, organizational, and relational information. Given the pointer to the attribute,
tensor_order() may be used to specify the order of the tensor. The user may then call
coord_sys_ptr() to attach a new (or previously defined) coordinate system to the attribute.
With the returned coordinate system pointer, one may call csys_info() and csys_func()
to specify the coordinate system information. The functions specifying the coordinate
system can be parsed with parser() before invoking csys_func() and csys_info(). In the
same way, one may call symmetry_ptr() to atfach symmetry to the attribute and call
symm_info() and symmetry_gtype() to complete the attribute symmetry.

As for the distributions, there are three ways to create distributions. The operator
parser() may be used to create “global” distributions as dependencies in other distri-

butions, AT_mktencomp() may be used to create and attach a distribution to the next
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tensor component, and AT_mklist() may be used to create and attach local distributions
to an attribute. Finally, after the physical information of an attribute are all defined, one
may call AT_bultorgn() to build the organization tree and AT _astopat() to associate this

attribute to the appropriate model entities.
4.2.2.1 Physical Creation Operators

1. ATTRIBUTE *AT_cratt (char *attribute_id)

This routine creates an attribute with the given id. The pointer to the newly

created attribute is returned.

O AT _crat(): ATTRIBUTE *

/* The pointer to the newly created attribute is returned here.

O attribute_id: char *

/* This must be a unique character string that identifies the attribute.

2. MULTIPLIER *AT_crmult (char *multiplier_id, double multiplier_value)
This routine creates a multiplier with the given id and value. The pointer to the

newly created multiplier is returned.

O AT_crmul(): MULTIPLIER *

/* The pointer to the newly created multiplier is returned here.
O multiplier_id: char *

/* A character string that uniquely identifies the multiplier.

/* A double precision value that the multiplier is to have.
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void tensor_order (long retr_store_flag, ATTRIBUTE *attribute_pointer,
long *tensor_order)
This routine retrieves/stores the tensor order information, dependent on what

retr_store_flag is.

O retr_store_flag: long
/* I-retrieve, 2—store

O attribute_pointer: ATTRIBUTE *
/* pointer to the attribute

O tensor_order: long *

/* order of the tensor

void coord_sys_ptr (long retr_create_flag, ATTRIBUTE *attribute_pointer,
COORDINATE_SYS *coord_sys_ptr)

This routine retrieves the pointer to the coordinate system used by the given
attribute, pointed to by attribute_pointer. If the .command is to create, a pointer is
assigned to a new coordinate system and returned to the calling routine. The calling
routine is responsible to call csys_info() and csys_func() to complete the definition

of the new coordinate system.

O retr_create_flag: long
/* I-retrieve, 2—create new coordinate system
O attribute_pointer: ATTRIBUTE *

/* pointer to the attribute

NN ANTITNTAT o

O coord_sys_ptr: COORDINATE_SYS *

/* pointer to coordinate system
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void csys_func (long retr_store_flag, COORDINATE_SYS *coord_sys_pointer,
DISTRIBUTION **func_relation, long func_position,
char **func_string)

This routine retrieves or stores the pointers to the current function that defines
the coordinate system with respect to the given base coordinate system. If the retrieve
option is selected, the function returned is the next available function or a NULL
if the end of the function list is reached. If the store option is selected, the next

coordinate system function is stored to the data structure.

O retr_store_flag: long

[* Il-retrieve, 2—store

O coord_sys_pointer: COORDINATE_SYS *

/* pointer to the coordinate system

O func_relation: DISTRIBUTION **

/* Retrieval: returns the next available distribution — up to the dimension of
the coordinate system. // Store: stores this distribution as the next basis function
for the coordinate system pointed to by coord_sys_pointer. Although memory is
allocated in this routine, memory deallocation for this vqriable will be handled
with another routine that is yet implemented.

O func_position: long *
/* Retrieve: input of NULL = get the first function; “a number” = get
the next available function after this one; output of NULL = no more function

to retrieve. // Store: NULL = first function and return the number “one”; “a

number”: go to next function and return the incremented number.
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O func_string: char **
/* Retrieve: This is the function in the same character string form as before

the function was parsed. // Store: This is a dummy routine that is not used.

6. void csys_info (Jong retr_store_flag, COORDINATE_SYS **coord_sys_pointer,

long *coord_sys_type, float **coord_origin,
long *coord_sys_dimension, char **coord_sys_id,
COORDINATE_SYS **base_coord_sys_pointer,
DISTRIBUTION ***func_ptr)

Given the particular pointer to the coordinate system, this routine returns/stores

the following information from/into the attribute data base:

o Coordinate system type

o Origin coordinates of the current coordinate system

o Dimension of the coordinate system

o Coordinate system ID

o Pointer to the base coordinate system

o Pointer to an array of distribution functions of coordinate axes

O retr_store_flag: long
I* I-retrieve, 2—store
O coord_sys_pointer: COORDINATE_SYS *

/* pointer to coordinate system

O coord_sys_type. long *

/* I-linear, 2—curvilinear, 3—model

O coord_origin: float coordinate_origin[coord_origin_size]
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/* coordinates of the origin of the coordinate system with respect to the base
coordinate system. For retrieval, a pointer should be used as input. Although
memory is allocated in this routine, memory deallocation for this variable will be

handled with another routine that is yet implemented.

O coord_dimension: long *

/* dimension of the coordinate system

OO0 coord_sys_id: char **

/* label that uniquely identifies the coordinate system

O base_coord_sys_pointer: COORDINATE_SYS *

/* pointer to the base coordinate system

O func_ptr: DISTRIBUTION ***func_ptr
/* an array of distributions describing the basis functions of the coordinate
system. The difference between this and “func_relation” of esys_func is that this
handles all of the coordinate system functions at one time, whereas the previous
routine takes the functions one at a time. The address of a variable declared to
be DISTRIBUTION ** should be used as input. Although memory is allocated
in this routine, memory deallocation for this variable will be handled by another

routine that is yet implemented.

7. void symmetry_ptr (long retr_store_flag, ATTRIBUTE *attribute_pointer,
SYMMETRY **symmetry_pointer)
This routine retreives the pointer to the symmetry information or stores the
information into the data base. Note, this routine must be called first (before any

calls to the other symmetry related creation operators) since memory for each new
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symmetry is created here.

U retr_store_flag: long
/* I-retrieve, 2—create new symmetry
(0 attribute_pointer: ATTRIBUTE *
/* pointer to the attribute
O  symmetry_pointer: SYMMETRY **
| I* Retrieve: input of NULL = get the first symmetry, pointer location = get
the next available symmetry after this one, output of NULL = no more symmetry
to retrieve. // Store: NULL = start a new linked list and return the address of
the first link, pointer location = create new linked list element and link to pointer

location and return this new pointer.

8. void symmetry_type (long retr_store_flag, SYMMETRY *symmetry_pointer,

long *symmetry_type)

This routine stores/retreives the symmetry type to/from the data base.

O retr_store_flag: long
[*I-retrieve, 2—store
0O symmetry_pointer: SYMMETRY *
/*Pointer to the symmetry
O symmetry_type: long *
[*1—-symmetric, 2—totally symmetric, 3—antisymmetric, 4-totally antisymmet-
tic, 5-plane symmetry, 6-line symmietry, 7-point symmetry, 8—plané-line symmie-

Iry
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void symm_info (long retr_store_flag, SYMMETRY *sym_pointer, long Irflag,

SYMMETRY_INFO *Ir_sym_pointer, float *Ir_sym_info)

This routine stores/retrieves the information for a single symmetry into/from the

data base. The implemented routine has not been tested.

O retr_store_flag: long

/* I—retrieve, 2—store

sym_pointer: SYMMETRY *

[*Pointer to the symmetry linked list.
Irflag: long

/* 1-left-hand-side symmetry, 2—right-hand-side symmetry
Ir_sym_pointer: SYMMETRY_INFO *

* Pointer to the symmetry information linked list. Retrieve: input of pointer
to NULL = first piece of symmetry information, pointer location = get the next
available piece of symmetry information after this one, output of pointer to NULL
= no more symmetry information to be retrieved. // Write: NULL = start a new
linked list and return the address of first link, pointer location = create new linked

list element and link to pointer location and return the new pointer.

LR_SYM_INFO: float *
/* variable contains information pertaining to the particular symmetry type
types 1-4: index numbers
types 5, 6, 8:
LHS: angle of symmetry, where applicable

RHS: axis or axis plane of symmetry, where applicable
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type 7: no information needed, since assuming point coincides with

the origin of the coordinate system.

10. void dist_comp (long retr_store_flag, ATTRIBUTE *attribute_pointer,
struct comp_distrib **distrib_comp_pointer)

This routine gets the pointer to the distribution of the next tensor component.

O retr_store_flag: long

/* I-retrieve, 2—create new coordinate system

O attribute_pointer: ATTRIBUTE *

/* pointer to the attribute

O distrib_comp_pointer: struct comp_distrib *

/* pointer to the distribution component of the tensor: Retrieve: input
of NULL = get the first component, pointer location= get the next available
component after this one, output of NULL = no more component to retrieve. //
Store: NULL = start a new linked list and return the address of first link, pointer
location = create new linked list element and link to pointer location and return

the new pointer.

11. DISTRIBUTION *parser (long input_flag, void *input_source,
ATTRIBUTE *attribute_pointer, long store_flag)
Given an equation in character string form, this routine parses the equation and

returns the parsed equation as a distribution.

O parser(): DISTRIBUTION *

/* A pointer to the distribution that is created from the given equation.
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input_flag: long
/* A flag that indicates whether the source is a string or an input file: 1=

input file and 2= character string.

input_source: void *

/* If input_flag were 1, then this should be a pointer to an input file from
which the distribution is to be read. The file position should be set to immediatly
before the equation, for example, using a combination of fseek() and getc(). If
input_flag were 2, then this should be a character string containing the equation

that is to be parsed.

attribute_pointer: ATTRIBUTE *
/* If the equation to be parsed contains references to other distributions
defined locally in an attribute, the pointer to that attribute needs to be specified

here.

store_flag: long
/* Specify the manner of storage of the distributions.

0 = read from a distribution unit, marking the distributions created as
“global” distributions. After parsing one equation, keep on parsing until there
are no more equations to be parsed.

1 = read from a distribution unit, marking the distribution created as
“global” distribution. Parse only the next distribution.

2 = the equation given is that of a coordinate system function. The
distribution is to be separated from the global distribution.

3 = read from a distribution list, marking the distributions created as
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“local” distributions.

12. void AT_mktencomp (char *input_equation, ATTRIBUTE *attribute_pointer)

13.

This routine parses the given equation and attaches the resulting distribution to
a new tensor component of the given attribute. No provision is made to distinguish
which component of the tensor is being created. The order that AT_rtdstcomp()
returns the tensor components is the order in which the input equations are given

in this routine.

O input__equation:. char *
/* The equation that is to be parsed and inserted as a tensor component of

the given attribute.

0 attribute_pointer: ATTRIBUTE *
/* Pointer to the attribute whose next tensor component were to defined with

the created distribution.

void AT mklist (ATTRIBUTE *attribute_pointer, char **equations, int num_eqns)
Given an array of equations, this routine parses each equation and attaches
the parsed distribution to a list, which is attached to the attribute given in at-

tribute_pointer.

O attribute_pointer: ATTRIBUTE *
/* Pointer to the attribute to which the list is to be attached.
(0 equations: char **
/* An array of equations in character string form. These equations are parsed

and stored as distributions.
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O num_eqns: integer

/* The number of equations passed in.

14. void AT_mktmplat (ATTRIBUTE *attribute_pointer, char **equations,
int num_eqns)

Given a pointer to an attribute and a set of deﬁning equations, this routine
creates and assigns distributions, tensor order, and symmetries using a previously
defined template. The appropriate template is selected based on the specific label
and attribute type on the given attribute. This implies that the appropriate labels
(and coordinate system) and type are assigned prior to the calling of this routine.
What has been implemented as of this writting is only a set of stiffnesses for the
following materials: LOEM for Linear Orthotropic Elastic Material and LIEM for
Linear Isotropic Elastic Material. To use this template oi)erator, the first label of the
attribute must be one of the two keywords just mentioned. A_lso, the attribute type

must be stiffness.

O attribute_pointer: ATTRIBUTE *
/* Pointer to the attribute for which the template is to be instansiated.
O equations: char **

/* An array of equations in character string form. The assumption in calling
this routine> to instance the template is that the set of tensorial components of
this attribute are dependent upon the set of equations that are passed in as
argument. For example, to use the stiffness template for isotropic elastic material,

the calling routine must pass in values for E and nu, as shown in Figure 26. The

Y o

Fi.gure 26 Input example of equations and num_eqns  (Continued) . . .
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equations[0] = “E=3000000";

equations[1] = "nu=0.33";
num_eqgns = 2;

AT__mktmplatg attribute_ptr, equations, num_eqns );
Figure 26 Input exampl€ of equations and num_egns

corresponding equations for orthotropic materials are El, E2, E3, nul2, nu2l,
etc.
O num_eqgns: integer

/* The number of equations passed in.

4.2.2.2 Organizational Creation Operators

1. SET *AT _crset (char *set_id)

This routine creates a set with the given id. The pointer to the newly created
set is returned.
00 AT crset(): SET *
/* The pointer to the newly created set is returned here.

0 set_id: char *

/* A character string that uniquely identifies the set.
2. GROUP *AT_crgrp (char *group_id)
This routine creates a group with the given id. The pointer to the newly created
group is returned.
O AT _crgrp(): GROUP *
/* The pointer to the newly created group is returned here.
O group_id: char *

/* A character string that uniquely identifies the group.
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CASE *AT crcas (char *case_id)
This routine creates a case with the given id. The pointer to the newly created

case is returned.

O AT crcas(): CASE *
/* The pointer to the newly created case is returned here.
O case_id: Char *

/* A character string that uniquely identifies the case.

void AT bultorgn (char *parent_id, ORGNCODE parent_type, char *child_id,
ORGNCODE child_type, char **multitplier_id,
double *multiplier_values, int num_mults)
This routine builds a segment of the organizational structure with the given
parent, child, and the multipliers to the child.

\
O parent_id: char *

/* A character string that uniquely identifies the parent node. If there are no
node with such id, a new node of the type “parent_type” is created.
(1 parent_type: ORGNCODE
/* The type of the parent node. The parent types are restricted to ATSET,
ATGROUP, and ATCASE. |
0 child_id: char *
/* A character string that uniquely identifies the chilg? node. If there are no
node with such id, a new node of the type “child_type” is created for all types

except for child type of attribute.
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0 child_type: ORGNCODE

4.2

/* The type of the child node. The child types are restricted to ATATT, ATSET,
and ATGROUP.
multiplier_id: char **

/% A I-D character string array of multiplier ids. If the multipliers had not
been defined previous to the calling of this routine, the value of this multiplier must
be specified in the corresponding array slot in multiplier_values. A new multiplier
with such value is then created. If the multiplier had been defined previously, a
value is not needed. This argument can be a NULL if no multiplier were defined
for this segment.
multiplier_values: double *

/* An array of double precision multiplier values. As was detailed above, these
numbers are used only in the event where the corresponding multiplier specified
in multiplier_id was never defined previously. If no value were found for such a
case, a default value of 1 is used for the multiplier that is being defined. The size
of mutplier_values and multiplier_id should be the same. This argument can be
NULL if no multiplier were defined for this segment.
num_mults: integer

/% This number specifies the number of multipliers are actually passed in. If
zero, the two arguments, multiplier_values and multiplier_id, can both be NULL.

Otherwise, they must have the same size as num_mults.

For the moment, only one relational creation operator has been implemented:
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void AT _astopat (ATTRIBUTE *attribute_pointer, long model_entity_number,
char *model_entity_string, long model_entity_type,
char *model_name)
This function associates a given model entity with the attribute to which the
given pointer points. It takes as input a pointer to the attribute, the entity identification

in numerical or string form, the entity type, and the model identification.

0 attribute_pointer: ATTRIBUTE *
/% Pointer to the attribute that is to be applied toward the model entity.
0 model_entity_number: long
/* The model entity in numerical form to which the attribute is to be applied.
00 model_entity_string: char *
/% The model entity in character string form to which the attribute is to be
applied.
0 model_entity_type: long
/* A flag that indicates the type of the model entity. For example, if the entity
is part of a geometric model, a suggested convention is 1=vertex, 2 =edge, 3=face,
d=shell, 5=region, -1=vertex use, -2=edge use, -3=face use
0 model_name: char *

/% A character string identifier of the model being used.

4.2.3 Attribute Interrogation Operators

The -interrogation operators are called to query and tetrieve attribute information
from the manager. Similar to the attribute creation operators, the attribute interrogation

operators are categorized into attribute retrieval operator, organization retrieval operators,
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and attribute physical information retrieval operators. One way to use the operators
described in this section is to call AT;i'tatts() to retrieve pointers to all the attributes that
satisfy a given set of relational and organizational conditions (such as all attributes from
a specified organizational branch that were applied on a particular model entity edge of
a particular geometric model). Along with the pointers returned are also a set of relevant
information (mostly relational) about the retrieved attributes (such as model entity type,
attribute type, the product of all the multipliers relevant to the searched organizational
branches, etc.). To find the list of available attributes, AT _rtatts() searches through only
the branches of the organizational tree specified by the calling routine (for example, the
branch might be of a set called temperature of the first group of loading_condition in
the case of thermal_analysis). One important note is that AT_rtatts() always begins the
search at the CASE level. Any attributes not attached directly or indirectly to a case is
not searched. If a set of attributes is found, they are compared to the given relational

criteria to find the desired attributes.

If the calling routine does not know in advance the exact shape of the organizational
structure, the organizational operators can be used to systematically traverse the attribute
organization structure. AT_rtnxorgn()ytraverses the organizational structure horizontally,
while AT rtnxchild() allows the calling routine to traverse the organizational structure
vertically (please see Figures 19 and 20 for reference). The pointers retrieved from
AT rtnxorgn() can be used as input to AT rtnxchild() to get the next child. In addition,
at any time of traversal the calling routine can use AT _rtnodeid() to retrieve the id of the

organizational element (traction and temperature, for example). These routines can be

used in conjunction with AT_rtatts() to systematically retrieve all the desired attributes.
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For multipliers, both AT_rtmprod() and AT_rtmults() retrieve multipliers between two
specified connected nodes. The difference is that the former returns the product of all the
multipliers, while the latter returns all the individual multiplier ids and values between
these nodes.

Once all the attributes that satisfy the given organizational and relational conditions
are retrieved, the physical information of the attributes can be retrieved through the
physical information retrieval operators. Each of the operators (with the exception of
AT _rtesysinfo()) uses the attribute pointers as a means to identify the attribute whose
information is to be retrieved. The physical information include information on the
labels, type, tensor order, coordinate system, symmetry, and distribution of the attribute.
AT _rtesysinfo() retrieves information on the coordinate system ’When given either the id

of the coordinate system or the pointer to the coordinate system;

Again, the naming convention is reiterated here:

+ npormal font () = operator name
* Dbold = input
* italic = output

o bold-italic = the input might be modified by the output value
4.2.3.1 Attribute Retrieval Operator

Listed in this section is the operator to retrieve pointers to attributes that satisfy a

set of searching criteria.

void AT _rtatts ( long retrieval_method, char *case, char *group, char *set,

char *geom_model_name, long model_entity_type,
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long model_entity_integer, char *model_entity_string,
char *attribute_type, long array_size,
ATTRIBUTE **attribute_pointer, double *mult_value,
long *number_retrieved )

This routine returns pointers to attributes which satisfy the organizational and
relational condition specified in the input. Any information specified in the input
(arguments third through tenth) are used to narrow down the selection of available
attributes. The third, fourth, and fifth arguments are used to restrict the search to the
given branches in the organizational structure. The sixth through tenth arguments are
used to pin-point the desired attributes in the already shrunken selection of qualified
attributes. NOTE: This routine only searches the complete links of the organizational
structure, beginning with the CASE. If only a particular SET of attributes are sought, for
example, the calling routine must use AT_nxchild() instead.

At the time of writing, this routine has not been tested. However, another
routine named attptr_C() had been used extensively for attribute retrieval. AT _rtatts()
and attptr_C() are essentially the same with one major difference: attptr_C() returns
(geom_model_name, model_entity_type, model_entity_integer, model_entity_string, and
attribute_type) in addition to (attribute_pointer and mult_value). This added feature is
desirable if not for one important flaw in the return logic. When an attribute is associated
with more than one model entity, only one model entity is returned. The same flaw
occurs for both the geom_model_name and model_entity_type. Because of this flaw,
another operator, AT rtatts(), is developed that returns only the attribute. pointers. and

mult_value.
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retrieval_method: long
/* 1: retrieve pointers to all attributes
2: retrieve the pointer to the next attribute
case: char *

/* If the string is empty or if the case is pointing to NULL (no case given),
AT _rtatts() assumes no particular case information was wanted, i.e., it searches
through all available cases.
group: char *

/% If the string is empty or if the group is pointing to NULL (no group given),
AT _rtatts() assumes no particular group information wanted, i.e., it searches through
all available groups.
set: char *

/* If the string is empty or if the set is pointing to NULL (no set given),
AT _rtatts() assumes no particular set information wanted, i.e., it searches through
all available sets.

Essentially, the routine traverses only the branches indicated. If none of the
case, group, or set are specified, it searches through all the available attributes in
memory. Take the organizational structure as defined in Figure 27, for example. Attrl
and Attr2 are returned from AT_rtatts( ) when it is given an input of case = Casel,
group = Groupl, and set = Setl. For the sake of discussion, the input and output
written in short hand is (Casel, Group], Setl) = (Attrl, Attr2). Other examples are:
(Case2, NULL, Setd) = (Attr5). (Case2, NULL, NULL) = (Attr3, Attrd, Antr5), which
in effect is all the attributes under Case2. (NULL, NULL, Set3) = (Attrd, Attr5).

(Casel, Group2, Set4) = (NULL), since Group2 and Set4 are not connected. On the
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Figure 27 A Sample Organizational Structure

other hand, (NULL, NULL, NULL) = (Aurl, Antr2, Attr3, Attrd, Aur5), that is, all

attributes defined in all cases.

geom_model_name: character *

/* This argument identifies the geometric model the specified entity uses. If the
string is empty (pointer to NULL), AT_rtatts() searches through all geometric models.

- model_entity_type: long

/* This variable can be 0 = vertex, 1 = edge, 2 = face, 3 = shell, 4 = region,
5 = vertex use, 6 = edge use, or 7 = face use.

If this is set to —1, AT_rtatts() does not use this as a comparison criterion.
model_entity_integer: long

/* This variable needs to be an integer that uniquely identifies the model entity.

If this is set to —1, AT _rtatts() does not use this as a comparison criterion.
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0 model_entity_string: char *
/* This variable needs to be a string that uniquely identifies the model entity.
If both this and the model_entity_integer are specified, attributes that satisfy either

one or both of these conditions are returned.

O attribute_type: char *
/* This variable needs to be the attribute type to be used as a searching criterion.
Some examples are:

— Fluid_velocity
— Traction
— Temperature
— label
If this string is empty (pointing to NULL), AT_rtatts() does not use the

attribute type as a comparison criterion.

O array_size: long
/* If the calling routine wants this operator o dynamically allocate memory
for attribute_pointer and mult_value, then array_size should be set to zero as input.
Note, it is then the responsibility of the calling routine to free up the memory after
it is no longer useful. If the calling routine wants to pas.f a fixed sized array to be
used by the operator, then array_size should be ihe size of the array passed in. The
calling routine should then check the array size against the number_retrieved to make

sure that all eligible attributes are returned.

O attribute_pointer: ATTRIBUTE **

/* An input of pointer to NULL signals to get the first available attribute for
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the given criteria. When the retrieval_method is set fo get the next attribute, an
input of a pointer indicates to get the next attribute after the given attribute pointer.
An output of pointer to NULL means there are no more attributes to return. This
routine assumes consecutive retrieval of attributes for the option of retrieving the
next available attribute.

A word about the meaning of “next”: this operator retrieves all the attributes that
satisfy the given organizational and relational condition. There is a specific order of
traversal in searching for the qualified attributes. The word “next” is viewed against
this order. The order of traversal used in this operator is from right 1o left of the
organizational structure. For the example structure diagramed in Figure 27 above,
the order is from Attr5 to Attrl.

O  mult_value: double *

/* This is a list of final multiplier products corresponding to the attributes stored
in the pointer array attribute_pointer. These values are valid only for the path
specified by case, group, and set.

O number_retrieved: long *
/¥ When the retrieval_method is set to get the next attribute, the number
returned here is 1. When the retrieval_method is set to get all, the number returned
here indicates how many are retrieved from the data base. An output of 0 means no

attribute was returned.
4.2.3.2 Organization Retrieval Operators

Listed in this section are the operators to retrieve organizational information from

the attribute data base:
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void AT_rtnxorgn ( ORGNCODE node_type, void **node_pointer )

This routine returns the next organizational element in the organizational structure

with the given organizational element type, such as a case, group, set, or attribute.

a

node_type: ORGNCODE

/% ATATT—attribute, ATSET-set, ATGROUP-group, ATCASE-case
node_pointer: void **

/* Input of NULL = get the pointer to the first of the organizational element of
the type node_type, input of a pointer = get the pointer to the next organizational
element: a NULL is returned when there is no more organizational element defined

for the type of node_type.

void AT rtaxchild ( void *node_pointer, ORGNCODE node_type,

void **child_pointer, ORGNCODE child_type )

This routine returns the next child pointer and child type of a given node pointer

and node type.

d

node_pointer: void *

[* This is a pointer to the node of interest.
node_type: ORGNCODE

/* ATSET-set, ATGROUP-group, ATCASE—case
child_pointer: void **

/* This is a pointer to the child of the node of interest. Input of a pointer
to NULL = get the pointer to the first of the children of NODE_POINTER; input
of a pointer = get the next child; a NULL is returned when there are no more

children defined for the type of NODE_TYPE.
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O child_type: ORGNCODE

/* ATATT-attribute, ATSET—set, ATGROUP-group

ATTRIBUTE *AT_rtatt ( char *attribute_id )

This routine retrieves the pointer to the attribute that has the same id as given.

O AT _rtart(): ATTRIBUTE *
/* The pointer of the desired attribute is returned here. A NULL is returned
if no attribute with the given id is found.
(0 attribute_id: char *

[* A unique identifier of the attribute being enquired.

SET *AT _rtset ( char *set_id )

This routine retrieves the pointer to the set that has the same id as given.

O AT _rtset(): SET *
/* The pointer of the desired set is returned here. A NULL is returned if no
set with the given id is found.
O set_id: char *

/* A unique identifier of the set being enquired.

GROUP *AT_rtgrp ( char *group_id )

This routine retrieves the pointer to the group that has the same id as given.

‘B--AT_rtgrp(): GROUP *
/* The pointer of the desired group is returned here. A NULL is returned if

no group with the given id is found.
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[0 group_id: char *

/* A unigue identifier of the group being enquired.

6. CASE *AT _rtcas ( char *case_id )

This routine retrieves the pointer to the case that has the same id as given.

O AT _rtcas(): CASE *
/* The pointer of the desired case is returned here. A NULL is returned if
no case with the given id is found.
O case_id: char *

/* A unique identifier of the case being enquired.

7. void AT_rtmprod ( void *node_pointer, ORGNCODE node_type,
void *child_pointer, ORGNCODE child_type,
double *multiplier_value )
This routine had not been implemented yet. When it is implemented, this routine
will return the product of all the multipliers between two given connected nodes in
the organizational structure. Hierarchically, the node must be of a type higher than

that of the child.

OO0 node_pointer: void *
/* This is a pointer to the node whose multipliers are of interest.
O node_type: ORGNCODE
/% ATSET-set, ATGROUP-group, ATCASE—case
O child-pointer: void *
/* This is a pointer to the child of the node between whose multipliers are

of interest.
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O child_type: ORGNCODE
/* ATATT-attribute, ATSET-set, ATGROUP-group
O multiplier_value: double *

/* The product of all the multipliers between the node and the child.

void AT _rtmults( void *node_pointer, ORGNCODE node_type,
void *child_pointer, ORGNCODE child_ type,
long *number_of _multipliers, char **multiplier_id,
double *multiplier_value )
This routine had not been implemented yet. When it is implemented, this
routine will return the identification and value of all the multipliers between two
given connected nodes in the organizational structure. Hierarchically, the node must

be of a type higher than that of the child.

O node_pointer: void *
/* This is a pointer to the node whose multipliers are of interest.
OO0 node_type: ORGNCODE
/% ATSET—set, ATGROUP-group, ATCASE-case
O child_pointer: void *
/* This is a pointer to the child of the npde between whose multipliers are
of interest.

child_type: ORGNCODE

O

/% ATATT—attribute, ATSET—set, ATGROUP—group

0 number_of_multipliers: long *

/¥ As input, this number indicates the maximum array size allocated for
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the multiplier_id and multiplier_value. Returned here is the actual number of
multipliers retrieved. Again, the calling routine should check to see if the number
retrieved is not greater than the maximum array size.

O multiplier_id: character string array
/* The character string identification of the multipliers found between the
given node and the child. This must be an array of size number_of_multipliérs.
O multiplier_value: double precision array
/* The value of the multiplier corresponding to the multipliers in multiplier_id.

This must be an array of size number_of_multipliers.

9. void AT_rtnodeid ( void *node_pointer, ORGNCODE node_type, char **node_id )
This routine returns the identification of a node pointed to by the given node
pointer of the given node type. For example, if node = attribute (node_type =

ATATT), node_pointer = ATTRIBUTE_POINTER.

O node_pointer: void *
/* This is a pointer to the node of interest.
O node_type: ORGNCODE
/% ATATT-attribute, ATSET-set, ATGROUP-group, ATCASE-case
O node_id: char_ *
[* The character string identification of the node. Note: the user is responsible

to free the memory after node_id is used.

4.2.3.3 Attribute Physical Information
Retrieval Operators

Listed in this section are the operators useful for retrieving physical information of
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a given attribute:

1. char *AT _rtatid ( ATTRIBUTE *attribute_pointer )
This routine retrieves the id of the attribute pointed to by the given attribute

pointer.

O AT_rtatid(): char *
/* A character string of a unique identifier for the given attribute. Note: the
user is responsible to free the memory when AT_rtatid is no longer needed.
O attribute_pointer: ATTRIBUTE *

/* This is a pointer to the attribute of interest.

2. 'void AT_rtlabels ( ATTRIBUTE *attribute_pointer, long *number_of _labels,
char **attribute_labels )
This routine returns all of the labels of the attribute pointed to by the given

attribute pointer.

O attribute_pointer: ATTRIBUTE *
/* This is a pointer to the attribute of interest.
O number_of labels: long *
/* As input, this number indicatés the maximum array size allocated for the
attribute_labels. Returned here are the actual number of labels retrieved. Again,
the calling routine should check to see if the number retrieved is not greater than

the maximum array size.

]

attribute_labels: char **
/* An array of character string labels of the given attribute. Note: the user

is responsible to free the memory when attribute_labels is no longer needed.
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char *AT_rtnxatlab (ATTRIBUTE *attribute_pointer,
Generic_List_Cells **label_pointer)
This routine retrieves the next label of the given attribute. The id of the attribute

is excluded from the definition of a “label.”

0O AT rtnxatlab: char *

/* The label is-returned here as a character string. A NULL is returned if
there are no more labels. Note: the calling routine must free bup the memory after
the information is no longer needed.

O attribute_pointer: ATTRIBUTE *
/* This is a pointer to the attribute of interest.
00 label_pointer: Generic_List_Cell2 *

/* For the first call to this routine, a NULL should be used to get the very

first label. The returned pointer should be used for the next call to this routine

to get the next label.

void AT _rtatype ( ATTRIBUTE *attribute_pointer, char **gttribute_type )

This routine retrieves the attribute type of the given attribute.

O attribute_pointer: ATTRIBUTE *
/* Pointer to the attribute
O attribute_type: char **
/* attribute type. Note: the user is responsible to free the memory when

attribute_labels-is no longer needed.

void AT rtenord ( ATTRIBUTE *attribute_pointer, long *tensor_order )

This routine returns the tensor order of the attribute pointed to by the given
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attribute pointer. The name being used now is tensord_C(). This name should be

changed in the near future to AT_rtenord() so that consistent naming convention

7may be used.

O attribute_pointer: ATTRIBUTE *

/* pointer to the attribute

O tensor_order: long *

/* order of the tensor

void AT_rtesptr( ATTRIBUTE *attribute_pointer,
COORDINATE_SYS **coord_sys_pointer )
This routine returns the pointer to the coordinate system on which the attribute,
pointed to by the given attribute pointer, is defined. The function is currently named
as coordsys_ptr(). This name should be renamed to AT_rtesptr() in the near future

so that consistent naming convention may be used.

O attribute_pointer: ATTRIBUTE *

/* pointer to the attribute

O coord_sys_pointer. COORDINATE_SYS **

/* pointer to the coordinate system

void AT_rtesinfo( COORDINATE_SYS **coord_sys_pointer,
char **coordinate_sys_id, long *coord_system_type,
long *coord_system_dimension, float **coord_origin,
struct comp_distrib **function_relation,

COORDINATE_SYS **base_coord_system_pointer )
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This routine returns the information of the coordinate system pointed to by the

coordinate system pointer.

O coord_sys_pointer: COORDINATE_SYS **
/% Pointer to the coordinate system. If the pointer is set to NULL as input,
coordinate_sys_id is used as the target of retrieval, in which case the pointer to

the coordinate system specified in coordinate_sys_id is returned here.

O coordinate_sys_id: char **

/* A character string identification of the coordinate system. If the pointer
is set to NULL as input, coord_sys_pointer is used as the target of retrieval, in
which case the character string identification of the coordinate system pointed
to by coordinate_sys_id is returned here. If both coord_sys_pointer and coordi-
nate_sys_id are non-empty, the coordinate system pointed to by coord_sys_pointer
is used and the character string stored in coordinate_sys_id is over written with
the id of the coordinate system pointed to by coord_sys_pointer.

O  coord_system_type: long *
/* I-Linear (both Cartesian and non-orthogonal) , 2—~curvilinear, 3-model

entity (tangent/ normal)

a coord_system_dimensién: long *
/* dimension of the coordinate system
O coord_origin: float *coordinate_origin[coord_system_dimension]
/¥ coordinates of the origin of the coordinate system with respect to the base
coordinate system |

O function_relation. struct comp_distrib *function_relation[coord_system_dimension]
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/* The function relations, which define the coordinate system with respect
to the coordinate system pointed to by the base_coord_system_pointer, written
as arrays of character strings with an array size equal to the dimension of
the coordinate system.

[0 base_coord_system_pointer: COORDINATE_SYS **

[* pointer to the base coordinate system

8. void AT_rtsyminfo( long retrieval_method, ATTRIBUTE *attribute_pointer,
long *symmetry_type, long ***info_array,
long *num_of_sym_retrieved, long *num_of_info_pieces )
" This routine has not yet been implemented. When it is, it will return the

symmetry information which satisfies the condition set in RETRIEVAL_METHOD.

O retrieval_method: long
/* 1: retrieve all symmetries of the given symmetry type
2: retrieve the next symmetry of the given symmetry type
3: retrieve all symmetries
4: retrieve the next symmetry
O attribute_pointer: ATTRIBUTE *
/* pointer to the attribute
O symmetry_type: long *
[* Type are: I-symmetric, 2-totally symmetric, 3—antisymmetric, 4—to-
tally antisymmetric, 5-plane symmetry, 6-line symmetry, 7-point symmetry,
8-plane-line symmetry, 9—anisotropic, 1 O—orthotropic, 11-transversely isotropic,

12-isotropic.
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When the option of getting the next symmetry is set, input of NULL = get the
first symmetry, character string = get the next available symmetry after this one,
output of NULL = no more symmelries to retrieve.
info_array: long ***
/*  The size of the 3-D array is [num_of_sym_retrieved] X
[num_of _info_pieces] x [2]. The num_of_info_pieces is different de-
pending on what the symmetry type is. For symmelry types 1 - 4, the
num_of _info_pieces corresponds to the number of symmetric indices, I.e.,
the first row of [num_of _sym_retrieved] X [num_of_info_pieces ] contains indices
for the left side of the symmetry and the second row of [num_of_sym_retrieved]
x [num_of _info_pieces] contains the indices for the right side of the symmetry.
For symmetries 5, 6, and 8, the first row contains the angle of the symmetry
and the second contains the coordinate axis/plane number that corresponds to

the particular symmetry.

num_of_sym_retrieved: long *

/* When the retrieval_method is set to get the next symmetry, the number
returned here is 1. When the retrieval_method is set to get all, the number
returned here indicates how many are returned.
num_of_info_pieces: long *

/* The num_of _info_pieces is different depending on what the symmetry type
is. For symmetry types 1 — 4, the num_of_info_pieces corresponds to the number
of symmetric indices. For symmetry types 5 and 6, the num_of_info_pieces = 1.

For symmetry type 8, the value of num_of_info_pieces = 2.
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9. void AT_rtdstcomp (long retrieval_method, ATTRIBUTE *attribute_pointer,
double mult_value, COORDINATE_SYS *coord_sys_pointer,
char **variable_character_array,
double *variable_value_array, long number_of_var,
long *number_of _components, long *components_defined,
double *component_value_array )
This routine returns the final values (in the given coordinate system and with
all the relevant multipliers taken into account) of the distribution components of the
attribute pointed to by the attribute pointer. All the variables required for evaluation

of the distribution are given as input argument in the variable arrays.

O retrieval_method: long
/* 1: retrieve the value of the distribution of all of the components
2: retrieve the value of the distribution of the next component
[0 attribute_pointer: ATTRIBUTE *
[* pointer to the attribute
O mult_value: double
/* This is the number with which all the value of the distribution of all
components are multiplied.
0 coord_sys_pointer: COORDINATE_SYS *
/* A pointer to the coordinate system in which the component distribution
is to be calculated. If a NULL is given as input, this routine uses the global
coordinate system.

0 variable_character_array: char **
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/* This array contains all the variables needed to qualify the value of the
component. For example, if the distribution is spatially dependent, the coordinate
‘variables are listed here with their corresponding values stored in the next array,

variable_value_array.

variable_value_array: double *
/* This array contains the values of all the variables needed to qualify the
value of the component distributions. The entries should correspond to the above

variable_character_array.

number_of_var: long
/% The number of variables passed in in the variable_character_array and

variable_value_array.

number_of_components: long *

/* When retrieval_method sigﬁals to get all components, this integer
indicates the total number of components passed. When the retrieval_method
is set to get the distribution of the next component, this integer indicates which
component is to be accessed, starting with 0. An increment of the number is

returned if this is not the last one. If this is the last component, a 0 is returned.

components_defined: long *

/* When the retrieval_method is set to get all components, this integer,
in binary form, indicates which component is specified and which is not, eg,
11001 means only first, second, and fifth components are specified. When the
retrieval_method is set to get only the distribution of the next component, this

integer indicates whether the returned component is specified or not (0 for no
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and 1 for yes). This flag takes care of the ambiguity of whether the components
retrieved were not specified or simply have values of zero.
[0 component_value_array: double *
/¥ When the retrieval_method signals to get all components, this array
contains the values of all the components. Each array element must be checked
against the variable, “components_defined.” When the retrieval_method is set

10 get only the distribution of the next component, this array has a size of 1.

4.2.4 Attribute Manipulation Operators

The attribute manipulation operators are used to make changes to the definition of
the attributes that had been specified using the creation operators. These operators are
especially useful as tools for a graphic user interface that allows the user to modify -
existing attribute definitions. The manipulation functions can be categorized as copy,
modify, disassociate, and delete. Only three such operators have been implementéd to

date. They are described in this section. Again, the naming convention is:

« pormal font () = operator name

« italic() = operator that returns a value
* bold = input

* italic = output

«  bold-italic = the input might be modified by the output value

1. void AT_delorgn ( ATTRIBUTE *attribute_pointer )
This routine disassociates the organizational specification from the attribute.

Because the organizational elements might be used else where, they are not deleted
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and allocated memory is not freed in this routine. This is done in another deletion

routine.

O attribute_pointer: ATTRIBUTE *
/* The pointer to the attribute whose organization specification were to be

disassociated must be given as input here.

void AT _delreln ( ATTRIBUTE *attribute_pointer )

This routine disassociates all relational specifications from the attribute.

0 attribute_pointer: ATTRIBUTE *
/* The pointer to the attribute whose relational specification were to be

disassociated must be given as input here.

ATTRIBUTE *AT_cpyatt ( char *old_name, char *new_name )
This routine copies all the components of a given attribute into a new attribute

of a new name as given and returns the pointer to the newly created attribute.

O AT _cpyart(): ATTRIBUTE *
/* The pointer to the newly created attribute is returned here.
1 old_name: char *
/* The name of the attribute that is to be copied
0 new_name: char *
/* The name of the new attribute that is to inherit all the specifications of the

attribute identified as old_name.



5 REPAS INTEGRATION

As introduced in the first chapter of this thesis, the REPAS project consists of five
major analysis modules. Together, the five modules analyze the thermal, thermomechan-
ical, and electromagnetic properties of a givén MCM. Each.of the five modules employs
a unique analysis scheme. The technical challenge of this project is that all five analyses
must be seamlessly integrated. The integration effort entails satisfying all input and output
information for, and data transfer between, the cliént analyses. In all, two physical scales
of analysis (global averaged layer-wise representation of MCM and detailed representa-
tion of particular sections of the interconnect) and three different analysis methodologies
(global variational approximation approach, fast random walk technique, and adaptive
finite element analysis) are involved.

A set of criteria guided the REPAS integration effort. The analysis models must be be
derived from a single physical definition, and the analysis model idealization and domain
discretization must be automated. Furthermore, such integration requires that the analyses
can efficiently communicate with each other without any information loss or duplication.
The information must be consistently defined and must be easily accessible. The set
of information required for the analyses must also be flexible in that new information
required can be easily integrated into the analysis process.

The SCOREC Attribute Manager (SAM) detailed in the first half of this thesis is
designed to be the framework that provides for such data coordination for the client
analyses. The previous chapters describe the design, implementation, and application
interface operators of this manager. Recall Figure 2, which is reproduced here as Figure

28, what has been discussed thus far are the necessary components shown on the right

119
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Figure 28 Schematic of of SAM as the Heart of Integration for the REPAS Project

side of the figure. An important component of this data management yet described is the
preprocessing step that interprets the physical definition of the MCM and constructs the
data models for the client analyses. The remaining portions of this thesis are dedicated
to detailing the components on the left side of Figure 28. The next chapter describes the
requirements on the formats of the three input files. Then, the three chapters following
(chapters 7-9) present the preprocessing schemes used to set-up for the data models.
Chapter 7 looks at the functional aspects of the preprocessing step from the viewpoint
of the users. Chapter 8 focuses on the approach used to interpret the physical definition
of the MCM from the input files. A physical model is built from the given physical
definitions of the MCM. This physical model is the basis upon which the global layer
model is derived. Chapter 9 describes the derivation methodologies as well as the data

structure used. Although the physical model, including the attributes defined, is also
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used as a basis to build the two local models, these are not described here. For detailed
information of the model building methodologies of the local models, please consult the

documentation for the REPAS project [4][5].



6 ANALYSIS DATA REQUIREMENTS

Before any analyses can be performed, the physical definition of the interconnect
must be preprocessed to construct appropriate discrete analysis models for the client
analyses. The MCM physical definition is defined in three files, which must be provided
at the start of the analysis process. The three files are: 1) a start-up file that specifies the
problem name, local windows, and parameters required by the global and local analyses, .
2) a CIF file containing layerwise description of the MCM to be analyzed, and 3) a
corresponding attribute file that contains processing information such as layer thickness,
material properties, and initial and boundary conditions. This chapter details the format

of each of the three input files required for the analyses.

6.1 Start-up File Specifications

At the start of an analysis, the preprocessor looks into a file in the current directory
named epii.model, to obtain start-up information. This information include the CIF model
name, window coordinates for the local analyses, temperature and position resolutions,
and reference temperatures. This section details the information required in this file.

Figure 29 shows a sample start-up file.

The first line of the start-up file specifies the name of the model to be read. This
name is used as a base name for all subsequent input/output files in the analysis process.
Given a model name of 25chip, for example, the corresponding CIF file must be' named
25chip.cif and the attribute file must be 25chip.sup. Any existing output files from

previous runs that have the same model name (in this case, 25chip) are read/overwritten.

122
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25chip model name
1e-8 conversion factor of CIF input file to unit of
meters

(-3367100, -382250, 58000) lower comer of local window
(-3353200, -366050, 69000) upper corner of local window

0.1 temperature resolution

1e-8 spatial resolution

20 reference temperature of MCM in °C
120 process temperature in °C

0 gt_mterm

0 gt_nterm

0 gt_pterm

0 gt_gterm

Figure 29 Sample Start-up File

For the sake of clarity, it is recommended that a separate directory be created for each

new analysis problem to avoid any unnecessary confusions.

The second line specifies the conversion factor to convert the units used in the given
CIF file to unit of meters. All input references to the given interconnect dimensions
are in terms of the unit specified in the CIF file, which is not necessarily in units of
meters. For example, many CIF files have MCM designs specified in units of hundreds
of a micron. The conversién factor must then be 1078. Because the distance and length
information needed by the analyses are always in meters, the conversion factor supplied

is used to do such conversion.

The third and fourth lines specify, respectively, the lower and upper corners of
the local window. Although originally planned for the ability to specify multiple
local windows, this code is currently limited to only one window. The rectangular
parallelepiped defined by the lower left and upper right corner points are used as the
analysis domain for the two local analyses. Everything in the MCM as specified in the

CIF and attribute files inside this rectangular parallelepiped is used to build the local
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models. Note that this local window must be specified in the same units as the CIF
file. Per the above example, the local window must be specified in units of hundreds
of a micron.

The next two lines of epii.model contain information needed by the local thermal
conduction analysis. The fifth line is a percentage for the temperature resolution. Taking
the difference between the upper and lower bounds of the temperature spread, the
temperature resolution is calculated aé the difference times the percentage specified in
the start-up file. The local thermal analysis result will have an error of one standard of
deviation equal to the temperature resolution. The sixth line in the start-up file specifies
the spatial resolution, which is the smallest size dimension that the local thermal analysis
can resolve.

The next two lines of epii.model are temperature references required for the global
and local thermal elastic stress analyses. The first of the two is the averaged normal
operating temperature of the surrounding. The second is the processing temperature
of the MCM during fabrication. This is the temperature at which the interconnect is
considered to be stress free. Residual stress is expected after cool down.

The remaining four terms are used by the global thermal analysis to control the wave
lengths of the temperature function in the interconnect (gt_mterm and gt_nterm) and in
the chips (gt_pterm and gt_qgterm). These terms are used mainly for trouble shooting

purposes and should all be set to zero by the user.

6.2 CIF File Specifications

A representative picture of a typical MCM cross-section is shown in Figure 30

[12][141[7]. The MCM consists of a number of chips set on a block of interconnect
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Figure 30 Typical MCM Cross-section

consisting of signal, ground, power, and dielectric planes. A common method to describe
such layouts is the Caltech Intermediate Format (CIF), and CIF was chosen as the input
standard of the MCM specification. Basically the CIF file describing the MCM design
contains 2-D geometric information about the layers for the fabrication process (referred
here as CIF layers). Because CIF is such a general data specification format, some
requirements and naming conventions, in addition to those of standard CIF, are required
to be included in the CIF file for correct extraction of information about the MCM design.
The following is a list of assumptions on the information provided in the CIF file which

is used to drive the generation of the analysis models for the global and local analyses:

1. The CIF file is always named in the form, problemName.cif, where .cif must be added

as an extension to the problem name, problemName.
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The direction of the thickness corresponds to the z-direction of a global Cartesian
coordinate system. All the layers are described in an x-y plane. In the current REPAS
software, all the parts in the MCM must align with the axes of a global Cartesian

coordinate system, i.e., there are no slanted edges or surfaces.

A Tist of the layers of an MCM recognized by the analysis preprocessor in a CIF file
is: substrate, ground, power, signal, via, dielectric, solder_bumps, and chip. The
namés of these layers are used as naming conventions in the CIF file. As such, the
names of each of the layers specified in the CIF data file (herein called CIF layers)
must begin with one of the above keywords. For example, in the case where there
are two signal layers in the MCM, one can identify them as signal 1 énd signal_2 or
signal_x and signal_y. Note that the unique identifications, “1,7 “2,” “x,” and *y,”

are appended to the keyword with an underscore “_” This is the convention for all

the other keywords as well.

The CIF preprocessor is case insensitive, i.e., two layer names identical in every way

except for upper and lower casing are considered to be the same layer.

Layers of the same material but locate at different heights (i.e., having different z_min
and z_max) must have unique names. For example, if there are two ground layers

in the MCM, they must be specified twice in the CIF file with two different names.
The material properties and the z-min and z-max of all the layers of an MCM must
be specified in a corresponding attribute file.

The CIF file directly obtained from the router package contains only those layers '
for which masks are to be made. In addition to these CIF layers, it is assumed that

2-D geometric information of every layer (including the substrate and solder bumps
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as well as full metal layers, such as the ground and power planes) are explicitly
specified in the CIF file.

8. The centers, lengths, and widths of the chips are to be specified in dummy! CIF
layers (as boxes) named “chip_*,” where * is the unique name of the particular chip.
Each chip needs to be specified as a separate CIF layer. Each chip must be specified
as one CIF layer.

9. The vias are specified as CIF layers named “via_*,” where * is the unique name of

k219

the particular via layer. Some of the names used might be “thermal,” “signal,” or

“ground” to distinguish between the different types of vias specified.

10. The centers and nominal diameters of the solder bumps must be specified in a dummy
CIF layer with the name “solder_bumps” or “solder_bumps_*,” where * is the unique
name of the layer. The nominal height of a solder bump also needs to be specified
in the attribute file under a keyword corresponding to the name in the CIF file. The
solder bump layer in the CIF file maybe specified with boxes or circles, just like
that of all other layers.

11. Provision is made for an MCM with dielectric layers? with different material prop-
erties. The thickness and material properties of the insulation need to be specified

in the attribute file.

L Conforming to electronic packaging naming convention, this layer is called a dummy layer because it is not explicitly needed
for the manufacturing process. However, it is required for the complete definition of the MCM. The same is true for the solder bump
"layers.

2 Unless otherwise specified, a dielectric layer is defined as a rectangular slab of material. If a physical layer contains any of
the dielectric material, the x-y dimension of the substrate will be used for the size of the dielectric layer, which should be the size of
the physical layer as well. Also, the z-dimensions (thickness) of the dielectric layer (defined in the attribute file) needs to span this

particular physical layer.
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12. Only dielectric and vias may span the thickness of more than one physical layer.
The dielectrics are considered as “background” materials of the MCM, ie., the
complement of any physical layer will be the background material, which spans
the length and width of that physical layer. The default background material is the
first dielectric layer specified in the CIF file.

13. Nothing is in the substrate and that it is always the first layer from the bottom up.
This excludes those MCM designs that have ground and power planes embedded in
the substrate. This is a current limitation. The x-y dimension of the substrate is used
as the x-y-dimension of the MCM.

14. The signals and via layers must be specified before the dielectric, metal, and substrate
layers. This is required for correct processing of information for the local thermal

analysis.

The layout as described in Figure 30 is a valid MCM description according to the
assumptions specified above. Figure 31 shows an example of a partial listing of an
actual CIF file for a 25 chip MCM design. According to CIF rules [13], each layer is
specified with an L followed by the layer name. In this case, notice the layer names
follow the naming convention as set forth in assumption 3 above. Following the layer

names are the boxes that define the layout configuration of that particular layer.

6.3 Attribute File Specifications

The CIF file is limited to the specification of only 2-D MCM data. This information
is not sufficiént to describe the analysis domains required for the global and local analyses.
Additional information (such as thickness, material properties and initial conditions)

need to be specified. These additional information must be specified in a file called
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L SIGNAL_H: B 4205000 1000 -88000 -543000; B 4205000 1000 -88000 -545000 ; ...
L SIGNAL_V: B 1000 705000 2017000 -190000; B 1000 705000 2015000 -190000 ; ...
L VIA_CONTACT; B 1000 1000 -2793000 653000; B 1000 1000 -2791000 651000 ; ...
L VIA_POWER: B 5000 5000 -962570 666870; B 5000 5000 -962570 561870 ; ...

L VIA_GROUND; B 5000 5000 -962570 681870;

B 5000 5000 -962570 576870 ; ...

L VIA_THERMAL; B 5000 5000 -1878500 2166500;

L CHIP_1 ; B 1000000
L CHIP_2 ; B 1000000
L CHIP_3 ; B 1000000
L CHIP_4 ; B 1000000
L CHIP_5 ; B 1000000
L CHIP_6 ; B 1000000
L CHIP_7 ; B 1000000
L CHIP_8 ; B 1000000
L CHIP_9 ; B 1000000

L CHIP_10; B
L CHIP_11 ;B
L CHIP_12 ; B
LCHIP_13; B
L CHIP_14 ;B
L CHIP_15 ;B
L CHIP_16 ; B
L CHIP_17 ; B
L CHIP_18 ; B
L CHIP_19 ; B
L CHIP_20 ;B
L CHIP 21 ;B
L CHIP_ 22 ; B
L CHIP_23 ;B
L CHIP_24 ; B
L CHIP_25; B

B 5000 5000 -2077000 2164500, ...
1000000 -600000 -1800000 ;
1000000 600000 -1800000 ;
1000000 1800000 -1800000 ;
1000000 3000000 -1800000 ;
1000000 -600000 -600000 ;
1000000 600000 -600000 ;
1000000 3000000 -600000 ;
1000000 4200000 -600000 ;
1000000 -3000000 600000 ;
1000000 1000000 -1800000 -600000 ;
1000000 1000000 1800000 -600000 ;
7000000 1000000 -4200000 -600000 ;
1000000 1000000 -4200000 600000 ;
1000000 1000000 -4200000 1800000 ;
1000000 1000000 -3000000 -600000 ;
1000000 1000000 -3000000 -1800000 ;
1000000 1000000 -3000000 1800000 ;
1000000 1000000 -1800000 1800000 ;
1000000 1000000 -5400000 600000 ;
1000000 1000000 -1800000 600000 ;
1000000 1000000 -600000 600000 ;
1000000 1000000 600000 600000 ;
1000000 1000000 1800000 600000 ;
1000000 1000000 3000000 600000 ;
1000000 1000000 -600000 1800000 ;

L SUBSTRATE ; B 11000000 5400000 -600000 0 ;

L VDD _1 ; B 11000000 5400000 -600000 O ; ...

L VDD_2; B 11000000 5400000 -600000 0 ; ...

L GND ; B 11000000 5400000 -600000 0 ; ...

L DIELECTRIC_INS1 ; B 11000000 5400000 -600000 O ;
L DIELECTRIC_INS2 ; B 11000000 5400000 -600000 O ;

Figure 31 Partial CIF Listing of 25 Chip MCM Design
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the attribute input file.” The attribute file will always be in the form problemName.sup,
where problemName is the name of the problem to be analyzed. An example of an actual
attribute file for a 25 chip MCM analysis is shown in Appendix D. The attribute file uses a
basic block structure; each block contains information of one CIF layer. Conversely, each
layer specified in the CIF file must have a corresponding layer block in the attribute file.
Each layer information block is grouped further into sub-blocks of physical dimensions,
material properties, layout information, and boundary condition. Specific keywords are

used to identify the block as well as information within the sub-blocks.

A summary of the type of information required are:

1. the thickness dimension and material properties for all the layers,

2. material properties, and layout information of solder bumps, specified under keyword
of solder_bumps, and substrate pad information, specified under keyword of pins,

3. convective heat transfer coefficients of each chip and the substrate, specified as
boundary condition under the respective keywords of chip_* and substrate, where
“_*” is any character string that uniquely identifies the chip — if there were more
than one chip,

4. power densityvoutput of each chip specified as boundary condition, and

5. minimum wire width and wire pitch specified as layout information for each signal

layer.

The attribute file is designed to be keyword driven, with a relatively flexible format.
The specification format and options are illustrated here by ways of templates. Unless
otherwise specified, the templates are intended to be used for an actual attribute as is

written. The keywordé are all shown bold-typed. Those bold_typed words as input
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parameters are required to be written as given (e.g., “E = ” for the modulus of elasticity
that defines a stiffness tensor needs to be written explicitly in the attribute file). The
opﬁonal input are placed inside (a pair of parenthesis). Each “*” in the first column
followed by a word marks off a new unit. All lines beginning with a “#” in the first
column are comments and do not represent input. The <italicized words inside angled
brackets> should be replaced with appropriate numerical values at the time of creation
of the attribute file. All real numerical values may be written in E format. For example,
1078 may bé specified as 10e8. Unless otherwise specified, each sub-block and keyword
may be specified in any order. Additional options for input are specified inside a set of
(open and closed parentheses). All comments will be written in helvetica font with a
“#" in the first column of the line. Those comments requiring detailed descriptions$ are
specified as “....NOTE (reference),” with the corresponding reference found towards the
end of this section. All values are in metric units. Needless to say, incorrect inputs or
omission of input will result in incorrect outputs. Depending on the type of error, the first
indication of incorrect input may be from warning messages from the preprocessing/model

building routines. It is vital that the user take care to provide a correct input file.

# This data block is to specify information of the substrate pads under the
substrate
*pins
#....NOTE m1 (Please see the end of this section for detailed explanation
#  of all such notes)

matertal_properties:

Hovrrvniniecan NOTE m2
type: <material type>
Hevrnoverorenn .NOTE m3

stiffness: ( E = Y<modulus of elasticity>, ( ma = ) <Poisson’s ratio>

layout_info:

O NOTE 1



npins: <number_of_pins>

#
physical_dimensions:
Boorerrernns NOTE pf
pin_size: (<height>, <diameter>) or (<height>, <width>, <length>)
#

# This data block is to specify information of a chip. All chips are
# to be specified in the same manner. If the MCM has more than one chip,
# the user must append “_*” to the keyword chip, where “” is a
# unique specification of the chip. Please refer to item 3 of the previous
# section for a more detailed description.
*chip_*

physical_dimensions:

thickness: ( zmin =) <minimum z of layer>,
( zmax = ) <maximum z of layer>
material_properties:

Hereireniennn NOTE m2

type: <material type>
Hevveeernnnnens NOTE m4

thermal_cond: <thermal conduction coefficient(s)>
Feovererrinenns NOTE m5

thermal_expand: <thermal expansion coefficient(s)>
Heererinninenen NOTE m3

stiffness: <stiffness coefficients and/or independent variables>
#
#....NOTE b1

boundary_condition:

Hooeieeiriinnnns NOTE b2

power density: <power density value>
H#ooviirrcineenn NOTE b3

heat_trans: <boundary condition flag>, <first coefficient<,

<second coefficient>

# This data block is to specify information of a substrate layer.
*substrate
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physical_dimensions:
thickness: ( zmin = ) <minimum z of layer>,
{ zmax = ) <maximum z of layer>

material_properties:

U NOTE m2
type: <material type>
Hoeerereinn, NOTE m4
thermal_cond: <thermal conduction coefficient(s)>
H#oriiinrinnn, NOTE m5
thermal_expand: <thermal expansion coefficient(s)>
Hoeieriieeenn NOTE m3
stiffness: <stiffness coefficients and/or independent variables>
#
#.....NOTE b1
boundary_condition:
i NOTE b3

heat_trans: <boundary condition flag>, <first coefficient>,
<second coefficient>

# This data block specifies the information of a layer of power via. The other
# via layers (such as ground vias, thermal vias, and contact vias) will be
# specified in exactly the same way, substituting the string “power” with
# the appropriate string (such as “ground”, “thermal”, and “contact”).
*via_power:

physical_dimensions:

thickness: ( zmin = ) <minimum z of layer>,
( zmax = ) <maximum z of layer>
material_properties:

Horeirinenn NOTE m2

type: <material type>
T NOTE m4

thermal_cond: <thermal conduction coefficient(s)>
Hoerrereriennns NOTE m5

thermal _expand: <thermal expansion coefficient(s)>
Hoorreeerneenns NOTE m3

stiffness: <stiffness coefficients and/or independent variables>

# This data block specifies the information of a layer of ground plane. MCMs
# with more than one ground planes must append “_*” to the keyword, where
# “” gives unique identification to the particular ground plane.
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*ground:
physical_dimensions:
thickness: ( zmin = ) <minimum z of layer>,
{ zmax = ) <maximum z of layer>

material_properties:

S NOTE m2

type: <material type>
Frvrreerereannes NOTE m4

thermal_cond: <thermal conduction coefficient(s)>
Heveceeeirnenens NOTE m5

stiffness: <stiffness coefficients and/or independent variables>

# This data block specifies the information of a layer of power plane. MCMs
# with more than one power planes must append “_*” to the keyword, where
# “*¥ gives unique identification to the particular power plane.
*power:

physical_dimensions:

thickness: ( zmin = ) <minimum z of layer>,
( zmax = ) <maximum z of layer>
material_properties:

Hovreevenn NOTE m2

type: <material type>
HFoeereereanenn NOTE m4

thermal_cond: <thermal conduction coefficient(s)>
;TR NOTE m$

stiffness: <stiffness coefficients and/or independent variables>

# This data block specifies the information of a signal layer. MCMs
# with more than one signal layer must replace ”_x" with “_*", where
# “*” gives unique identification to the particular signal layer.
*signal_x:
physical_dimensions:
thickness: ( zmin = ) <minimum z of layer>,
( zmax = ) <maximum z of layer>
material_properties:
Fereerrrreeeens NOTE m2
type: <material type>
Ferrerecnenens NOTE m4
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thermal_cond: <thermal conduction coefficient(s)>

HFreviriirienns NOTE m5
thermal_expand: <thermal expansion coefficient(s)>
Feererirerennees NOTE m3
stiffness: <stiffness coefficients and/or independent variables>
layout_info:
Hovriienins NOTE 12

min_wire_width: <the minimum wire width for the interconnect>

min_wire_pitch: <the minimum wire pitch for the interconnect>

#

# NOTE b1 ...

# For the global heat conduction analysis, thermal boundary conditions
# are required and enforced exactly on the top of each chip and bottom
# of the substrate.

#

# NOTE b2 ...

#  The power density generated by the chip must be specified in units of
# I where W is watt and m is meter

#

# NOTE b3

# Essentially, the method of heat dissipation and the amount of heat
# dissipated from the top of the chips and through the bottom of the

# substrate are specified here. The three terms required as input,

# specifying in order are:

# 1) heat transfer flag: 1, if convective heat transfer

# 2, if constant temperature

# 3, if zero flux

# 2) first coefficient: 0O, if constant temperature

# <non-zero number> as convective heat transfer coeft.,
# if boundary condition is convective heat transfer

# 3) second coefficient: <reference temperature>, if the b.c. is

# convective heat transfer

# <temperature value>, if constant

# temperature

# For example, an input of heat_trans: 1, 10, 70 specifies that

# convective heat transfer is used, with the convective heat transfer

# coefficient being 10 units, and the reference temperature is 70 units.
# Notice these three terms may be deliminated by spaces or by comas.
#

#

NOTE m1 ..
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sub-block of material properties. The colon after the material_properties
keyword is optional. The spacing and indentation are also optional and
variable. At present for the material properties of pins, only the stiffness
is needed for the analyses.

NOTE m2 ...

Within this material properties sub-block, all the material properties
specified after the material type is specified inherits this type — until

a new material type is specified. The material type needs to be defined
each time a new material sub-block is declared.

The options of material types are:
LIM : Linear losotropic Material
LOM : Linear Orthotropic Material
LIEM : Linear losotropic Elastic Material
LOEM : Linear Orthotropic Elastic Material
LAEM : Linear Anisotropic Elastic Material
IPM : Isotropic Plastic Material, with no temperature dependencies
IPMT : Isotropic Plastic Material, with temperature dependencies

Before specifying the stiffness coefficients, be sure that the material type
is correct. One usually uses LIEM and LOEM instead of LIM and LOM.
The two components specifying stiffness, modulus of elasticity and
Poisson’s ratio, must be specified in order. They must be delimited
with a comma. For orthotropic materials, the stiffness should be
specified in terms E and v in the form of E1=E4, E2=E;, E3=E;,
nui2=v4,, NU23=vos....

For anisotropic materials, the user may directly specify the coefficients
Ci1, Cq2, Ci3, .. Cot, s Cijy ..., Cgg Note that the

order of specification for the coefficients must be as shown; they may
be deliminated by spaces or commas. Also, there must not be any
carriage returns in between any coefficients.

#
# NOTE m4 ...
# Because of the limitation of the analyses, only isotropic and orthotropic

#
#
#
#

materials are supported. Thus, the thermal conduction coefficient input
is <x> for isotropic materials and <k 14, k22, k33> for orthotropic
materials.

136



137

# NOTE m5
Allowable thermal expansion coefficients are:
<a> for isotropic materials
<aqq, o, agz> for orthotropic materials
<a1q, G12, 0113, Qo2, O23, agg> for anisotropic materials.

NOTE I1 ...
This is only for pins and is specified under npins; it is the total
number of pads found under the substrate

NOTE 2 ...

For each signal layer, the minimum wire width, defined to be the
minimum allowable width of a typical wire, must be specified.
Also, the minimum wire pitch, defined to be the minimum distance
between the center of any one wire and the center of its adjacent
wire, must be specified.

NOTE p1 ...

The pin_size is where the dimensions of the pins are specified. For
circular pads, only the nominal height and nominal diameter of the
pads need to be specified. For rectangular pads, height, width, and
length (all averaged values) must be specified.

IO e W M o A 3 3k o W o o o o o o d ¥ R



7 DATA PROCESSING (a) — REPASpre

Assuming the three input files are correctly set-up, the next step to run a complete
thermal/thermal mechanical analysis is to preprocess the given information. The prepro-
cessing routine, REPASpre, composes of three major parts: attribute data-base prepa-
ration, physical model building, and global idealized model building. Each of the three
parts is discussed in the subsequent three chapters; this chapter discusses the requirements
to correctly invoke the preprocessor. To facilitate discussion, all of the analysis modules
dependent on the data processed by REPASpre, such as the global and local thermal

analyses, are referred to as client analyses hereafter.

7.1 REPASpre Overall Functional Description

REPASpre is a data preprocessing module that reads the data from the input files,
interprets the data, builds working models with this data, associates the data with the
model, and stores the processed information with the model information for use by the
client analyses. This entire process from start to finish is transparent to the user. The
user only needs to provide three input files, and then three output files are produced when
REPASpre finishes. The basic flow of the module is as follows: after obtaining the initial
start-up information from epii.model, REPASpre reads from the CIF file to obtain the CIF
layer names. As each layer is read, all relevant data for that layer is read in from the CIF

file and the attribute file. REPASpre then creates a set of attributes from this data. A

layer of the physical model is built from this information, with the attributes of this CIF -~ -

layer associated to this layer of the physical model. When all information is read and the

physical model complete, the averaged layer information is extracted from the physical
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model to build the global idealized model. Another set of attributes are created from this
averaged information and are associated to the appropriate layer in the idealized global
model. Finally, all the attributes created in the process are written out to three output

files to be used for input for each of the client analyses.

7.2 Function Capabilities

Given the required input files, the entire data preprocessing process is automatic,
which includes CIF and attribute file parsing, attribute creation, organization, and asso-
ciation, and physical and idealized model building. The capabilities and limitations of
each of the preprocessing modules are detailed in this sectipn.

The input format is expandable and is relatively flexible. The file specification format
was detailed extensively in Chapter 6. The only restriction is that the input formats for
the three input files be conformed strictly to the format as specified in Chapter 6. Even a
misspelling of a keyword can result in an infinite loop. If there is an update of the sburce
code in the future, this deficiency should be eliminated. For now, all information must be
specified explicitly. For example, for two layers that are made of the same material, the
material properties of each layer must be specified separately. To reiterate, the correctness
of the resulting model depends heavily on the strict adhesion to the assumptions listed

in Chapter 6.

At the moment, only boxes and round flashes are recognized for the description of
CIF layers in a CIF file. Rectangleé, polygons, and wire paths are ignored. These other
options can be added in the future as the need arises.

REPASpre can process as many CIF layers as the system memory allows. Each CIF

layer may have up to one hundred material property attributes. The stiffness coefficients
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of one material are considered to be one attribute. The same limit applies to the boundary
condition, physical dimension, and layout information attributes. Generally, a level 3
data block in the attribute file (see section 8.1, Physical Model Building Approach) is
considered to be one attribute. So long as the assumptions of the CIF and attribute files
as described in Chapter 6 are satisfied, REPASpre can process any MCM configuration
with any number of signal layers and vias. The global idealized model building routine
assumes that other than vias and dielectrics, no other CIF layers of a different height

overlap one another in the z-direction.

7.3 Input Requirements

This section details the input requirements for invoking REPASpre. Three input files
must be present in the current working directory before starting REPASpre: epii.model,
modelName.cif, and modelName.sup, where modelName is the base name of the CIF file
to be read. If the start-up script were not used, any of the three SAM data files from
previous runs must first be removed from the current directory. The three SAM data files
are: modelName.lib, modelName.org, and modelName.rel. Otherwise, the SAM data-base
will be corrupted, and error messages will be echoed to the screen.

Also, the full path to the REPAS home directory must be furnished to the environment
variable, REPAS_HOME, if the start-up script were used. OtherWise, the environment
variable, ATTLIB, must be set at the prompt:

> setenv ATTLIB $REPAS HOME/sam/1ib

where SREPAS_HOME is the full path to the home directory of the REPAS code.
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7.4 Output Files

REPASpre produces three output files: modelName.lib, modelName.org, model-
Name.rel. These three files are data files for the attribute manager, SAM. The mod-
elName.lib contains a library of numerical definitions for all the attributes defined. The
modelName.org contains the organizational structure in which these attributes are defined.
The modelName.rel contains all the associations of the attributes to the relevant geomet-
ric and idealized models. For a detailed discussion of the formats of these output files,
please refer to Chapter 4 of the document on the SCOREC Attribute Manager. These
three files are required to be in the same directory where the analyses are run, as they

are the inputs for each of the client analysis.

7.5 Executing

To invoke REPASpre, type at the prompt:

> SREPAS_HOME/bin/REPASpre

7.6 Error Diagnostics

This section details some of the possible diagnostics for error messages received
during execution of REPASpre. Warning and error messages related to SAM are echoed
to the error file modelName.ATerr. Otherwise, all other REPASpre errors are echoed to
the screen. If REPASpre aborts abruptly with no messages shown on the screen, be sure
to check modelName.ATerr for any error messages. Table 1 lists diagnostics of possible

run-time errors.
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ERROR: no model name read. No epii.model in the current directory, or

there are no input files corresponding to the

name read from epii.model.

ERROR: can’t find input file Environment variable ATTLIB not set to
“attrib.keys’ in path $EPII_HOME/sam/lib, or library files in
"(null)/attrib.keys’ SEPII_HOME/sam/lib were moved.

Should only be one attribute returned, | SAM data files modelName.lib,

but have 2 modelName.org, and modelName.rel were not
removed before starting EPIIpreproc, or
duplicate definition of layer in CIF or
attribute file.

Warning messages and Notes... General information for user.

Table 1 REPASpre Diagnostics



8 DATA PROCESSING (b) — PHYSICAL
MODEL BUILDING

The building of models for client analyses requires a knowledge of the all the
information associated with the domains to be analyzed. The first model to be built is the
physical model, upon which all other domains are derived. To maintain consistency in the
information used to build the analysis domains for the global and local procedures, each
client analysis domain must be derived from the physical model domain. The physical
model is an abstract description of the layers (CIF layers) as given in the CIF file. The
Vdomain information is obtained from the CIF file supplemented with information from
the attribute file. Because this physical model is the domain based on which all other
domains for the client analyses are built, it is used solely as and must be a source of

accurate physical representation of the MCM as specified in the input files.

The overall functional description of REPASpre has already been detailed in Section
7.1, and it is not repeated here. Please refer to the previous chapter for a review on
the overall functional description of REPASpre. As the focus of the previous chapter is
from the stand-point of the user, this chapter and the next will focus at main portions of
REPASpre from the stand-point of the programmer. This chapter is devoted to detailing
the approach in the building of and the design of the data structure used for the physical

model.

8.1 REPAS Preprocessing Overall Scheme

Before discussing the physical model building process, it is necessary to describe

where this physical model building fit in the overall scheme of REPASpre. All data
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is preprocessed through one driver, which, in turns, calls different modules to build
up the information required for the various analyses. This driver first sets up the data
structure for the creation and storage of attributes for the various model domains. This
set-up utilizes the operators provided by the SCOREC Attribute Manager (SAM). The
CIF file is then ?arsed once to obtain the names of each CIF layer. The cumulative x-y
cross-sectional areas of each CIF layer is also tracked during this first parsing step. As
-each new CIF layer is encountered while parsing, a set of routines is called to build the
physical model from the corresponding supplement information specified in the attribute
file. The routines that build the analysis model for the global analyses are then invoked
to complete the preprocessing scheme. The detailed geometric and thermal models for
the local analyses are built after the preprocessing step with the -knowlédge obtained
from the physical model. Pseudo—Code 17 shows the algorithmic flow of the driver for

preprocessing the input data.

Several points about the main driver is highlighted here. The driver consists of
essentially three major parts: data-base preparation, physical model building, and global
idealized model building. Because SAM is the sole means of storing and passing domain
information to client analyses, it is an integral part of the model building process.
Therefore, SAM 1is set-up before any information is processed — thus enabling the
interface operators of SAM be used in the model building process to define and store
the domain information. Then the CIF file is parsed from top to bottom to obtain the
CIF layer information for the physical model domain. Two keywords in the CIF file
are of particular interest to the parser in this first pass — “L” and “B” standing for
layer and box, respectively. For the moment, this first pass ignores any definition with

rectangles or polygons; all CIF components, except solder_bumps, must be specified in



GTpreproc()

{

open_input_files():;
/* get the model name from “epii.model” */
get_model_name();

SAM _data_base_setup()

/* set up the organizational framework for the
* five analyses. */

SAM organization_setup();

/* get scaling factor of the CIF file specification
* from “epii.model” */

get_scaling factor();

/* start reading the CIF file for the layers */
/* have a peek at the next character in CIF file
* to look for keywords. */
Peek_at_the _next_input_character;
while (NOT_End_Of_File)
{
skip_all_blanks();
switch(next_input_character)
{
case EOF: goto done;
case 'L’: CIF_Read_Layer (CIF_layer_number);
case ‘B’: CIF_Read Box{CIF_layer number,scalling factor)
case 'E’: CIF_Parse_End(); '

/* for now, lgnore polygon or rectangle
* specifications in the CIF file */
default: Ignore_As_Comments();
}
Skip _To_Semicolon();
}
done:
build_global_model;
CIF_Read_Additional_Info{);

store_attribute_data_base();

Pseudo-Code 17 REPAS preprocessing

145



146

box form. Solder-bumps are parsed in the same pass. When a box in a particular layer
is encountered, the x-y cross-sectional area of the box is calculated based on the given
box length and width. This area is added to the accumulative x-y cross-sectional area of
the CIF layer in the physical model. As the need arises, extensions to flashes and paths
may be added simply as more parsing options. After the CIF file has been completely
parsed, the idealized global model is then built. (This building process for the idealized
model is discussed in the next chapter.) As is detailed in the next chapter, another pass
through the CIF file is made at this time to obtain information of the solder bumps and
vias under each chip. The attributes created are added to the global model. Finally, all
the attributes created, organized, and associated ére then stored in three output files to

be used for each of the five client analyses.

8.2 Physical Model Building Approach

The basic approach in building the physical model is first to read in each layer as
defined in the CIF file. When a layer is read, all relevant information of the current layer
(from the CIF file and the attribute file) is read in and appropriate attributes created and
organized. This information is then associated with the current layer. Each subsequent
layer from the CIF file is read and the appropriate attributes created — until all CIF layers
are processed. The additional layer of pins not specified in CIF are then processed in the
same way. The pseudo-code for building the physical model is shown in Pseudo—Code
18. This basic approach is relatively simple and straight forward. The challenge of
building this physical model, rather, is- in the implementation- of this -approach — in
obtaining the necessary information from input source, in accurately defining, efficiently

organizing, and storing the complex set of data in a manner usable for client analyses,
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/* As parsing CIF file from top to bottom, when encounter

* a CIF layer definition, get the CIF layer name */
while (more CIF layer available)
{

Get Next_CIF_Layer_ Namel();

if (CIF_Layer == new)

{
/* allocate space for a new CIF layer */

Create_CIF_Layer();
Assign_Number (CIF_Layer);

/* goto the correct attribute file location and
* get all attributes belonging to this CIF layer */
CIFsup (CIF_Layer);

else

{
/* 1f CIF layer had previously been read, get the

* corresponding layer number */
Get_Layer_Number (CIF_Layer);

Pseudo-Code 18 Physical Model Building

and in providing a structure for retrieval and access of the domain information stored.
The discussion in this section, then, is focused on some of the important implementation

details of the physical model building process.

The requirements as specified in Chapter 6 allow for the building for the physical
model in a structured manner. The routines that parse the supplemental information of the
attribute file take full advantage of the attribute file format as illustrated in Figure 32. All
the attributes of a CIF layer are grouped into one large data block. To aid in discussion,
this grouping is called level I division. The level 1 data blocks can be divided into

level 2 data blocks. A close examination of the attribute file specification as described
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Figure 32 Attribute File Parsing Routine Format

in section 6.3 identifies four types of level 2 data blocks: material properties, physical
dimensions, boundary conditions, and layout information. Each of the level 2 data blocks
are divided further into level 3 data blocks that contain numerical values of the attribute.
Some examples of level 3 data blocks are heat conduction and stiffness coefficients for
the material properties (level 2) data block.

Just as the attribute file format is organized into 3 level data blocks, so the parsing
routines are organized in like manner. At the top level is an overall driver named CIF-
sup(), which calls four level 2 modules of CIFReadMatl(), CIFReadPhys(), CIFReadBC(),

and CIFReadLayout() for the four respective level 2 data blocks. The pseudo-code for the
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level 2 modules are shown in Pseudo-Code 19. These modules search for and locate in
the attribute file the target level 2 data block and obtain the keywords for the level 3 data
blocks. According to the keyword (such as stiffness), the appropriate level 3 modules
are invoked to parse the level 3 data blocks. The level 3 modules all named with the
convention crt—(). The level 3 parsing routines read in the numerical information from
the attribute file and create the appropriate attributes. The SAM operators as described
in chapter 4 are utilized for the creation of proper attributes. As can be seen, the pro-
gramming structure is designed to be easily expandable. New routines (most frequently
crt—() routines) may be inserted into the current structure as new data blocks are required
for the client anélyses. All of the parsing modules assume that the rules for the attribute
file specification as described in section 6.3 are strictly followed, and the integrity of the

attributes created is strongly dependent upon the strict adhesion to the rules.

/* check the SAM organization structure to see if this portion
* of the data for the current CIF layer had been processed '
* already. The keyword that identifies the level 1 data block
* is used. Exit if yes. */

1if (keyword processed == TRUE)

exit;
else

{
/* use the layer name to set-up and build into the data

* structure of SAM. */

Attribute_Create_Organization(CIF_Layer);

/* parse the attribute file for the relevant information */
while {(within the CIF layer (level 1) data block)
{
/* skip those data level 2 data blocks that are not the
* the same as that of the target level 2 data block. */
Skip Level2 Data_Block();

Pseudo-Code 19  Attribute Processing Modules  (Continued) . . .
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/* skip the comment lines */

Skip_Comment () ;

/* if the level 2 data block is eguivalent to that of another

* CIF layer, get the attributes from that level 2 data block */
if (level 2 data block == another level 2 data block)

Grab_Level2_Data_Block(keyword) ;
else

{

/* else, parse the current level 2 data block */

switch ( level 3 data block keyword)

{
/* according to keyword, call level 3 routines to parse

* the level 3 data block */

crt—();
crt—{();
crt-—(});

Pseudo-Code 19 Attribute Processing Modules




151

8.3 Physical Model Data Structure

The data structure for storing the physical model information needs to accurately
reflect information of the CIF layers and to be easily searched and retrieved by the
subsequent model building routines. The data structure used is shown in Pseudo—Code
20. All the attributes created for a CIF layer are stored in a linked list. The handle to
this list is stored with the CIF layer. The CIF layer may be identified by name or by the
vertical position of the layer (z-min and z-max). Two indices (both are one-dimensional
integer arrays) utilize the CIF layer name and the z-mins. One index array points to the
CIF layer in alphabetical order, according to the name of the CIF layer. The other index
array points to the CIF layer in ascending numerical order, according to the z-min of the
CIF layer. Instead of manipulating the main physical model data structure (which is at

best very cumbersome and error prone), all manipulations and sortings are done through

/* The data structure to hold the CIF layers as was read in from the CIF
* and attribute files. This is used as a reference for all the other
* indices sorted in various ways. */

typedef struct attlist { /* type define for a linked 1list of */
struct attlist *next; /* attributes */
void *attPtr;

} attList;

typedef struct layerlist {

char *layerName; /* CIF layer name */

double z_min, z_max; /* z-min and z-max of the CIF layer */
double area; /* total cumulative area of the layer */
int phyLayer; /* index to the owning physical layer */

/* negative numbers are chips */
attList *attList_ptr; /* linked list of attributes applied */
/* on this layer */
} layerList;
Pseudo-Code 20 Data Structure Definition for Physical Model
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the index arrays. These arrays are maintained as the physical model is built so as to

provide fast access to a particular CIF layer.

Two other pieces of information are stored: the cumulative area of the CIF layer
and the index to the owner physical layer (from the global idealized model). These are
needed to build the global idealized model. The parsing routine allocates memory for a
new structure in the array of layerList every time a new CIF layer is encountered while
parsing the CIF file. Table 2 shows an example of the information built from a sample
25-chip MCM design. The CIF layers are listed in ascending numerical order according
to the z-mins of the layer. Notice the remaining chips have the same information as those
layers shown. Notice also when two layers have the same z-min with different z-max’s

the order between the two layers is arbitrary.

CIF name z-min z-max Area Attributes

substrate 0 0.00060 0.00594 pointer—
gnd_1 0.00060 0.000625 6.00594 pointer—
via_ground 0.000625 0.0007222 2.75e-07 pointer—
vdd 0.000625 0.000650 0.005%4 pointer—
dielectric_insl 0.000650 0.000680 0.005%4 pointer—
via_power 0.000650 0.0007222 2.95e-07 pointer—
signal_h 0.000662 0.000668 0.000181922 pointer—
via_contact 0.000668 0.000698 3.294e-07 pointer—
gnd_2 0.000680 0.000686 0.00594 pointer—
dielectric_ins2 0.000686 0.000716 0.005%4 pointer—
signal _v 0.000698 0.000704 7.90442e-05 pointer—
gnd_3 0.000716 0.000722 0.005%94 pointer—
chip_10 0.0007222 0.0007972 0.0001 pointer—
chip_9 0.0007222 0.0007972 0.0001 pointer—
chip_2 10.0007222 1 0.0007972 0.0001 ~ pointer—

Table 2 Physical Model Information Stored in a 25-Chi MCM Design




9 DATA PROCESSING (c) — GLOBAL
IDEALIZED MODEL BUILDING

The global analysis domain is modeled from a layerwise idealization of the actual
MCM. This domain is the same for both the global thermal and thermal mechanical client
analyses. The information of the actual MCM is obtained solely from the physical model
created in the previous preprocessing step. If the physical model of the MCM were as
shown on the left of Figure 33, then the global idealized model of the physical model is
as shown on the right of that model in the same figure. With the exception of those
layers containing the interconnect signals, all other layers are modeled as homogeneous
global layers. In this preprocessing step, the layers with the interconnect signals are
idealized as 2—material heterogeneous layers, consisting of dielectrics and signals. The

corresponding volume fractions of the dielectrics and signals are calculated and later
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Figure 33 Illustration of the Global Idealized Model
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passed as attributes to the global analyses to calculate the effective material properties
of the signal layers. In the scope of the project, the averaging of material properties is
performed by the client analyses. Therefore, this set of global model building routines
only need to provide to the client analyses information of the different material layers
(member layers) contained in each global layer and the volume fraction of each member
layer. Volume fractions are used because the distribution of the different materials are
not required for the global analyses. This chapter details the approach in the building of

this global idealized model from the physical model.

9.1 Global Model Building Approach

As depicted in Figure 33 and discussed above, the model that the global client
analyses want is an “averaged-layerwise” representation of the physical model [15][21].
Whereas the physical model contains vias, signals, and dielectric layers interpenetrating
each other, these features must be decomposed and reconsolidated to create a model that
the global client analyses recognize. The general strategy of building the idealized model
from the physical model requires two major operations (Figure 34): step 1) decompose
the physical model into appropriate layers and step 2) consolidate the decomposed layers
into global idealized layers. The decomposition requires full understanding of how all
the layers given in the physical model fit together. From the knowledge of the physical
model, the layers are broken up into idealized model layers. Since one idealized layer may
contain parts of many CIF layers, all of the decomposed pieces need to be consolidated
into the appropriate idealized layers. As a final étep to complete the model for the global
client analyses, the global analysis domain needs to inherit all the appropriate attributes

from the domain as described by the physical model. The global idealized model is



155

complete when all idealized layers are consolidated and the domain information fully

defined (step 3).

As one can see from step 2 of Figure 34, the decomposition and consolidation steps

are actually iterations of steps because they are carried out one idealized layer at a

time. When all the idealized layers are consolidated, the global idealized model will be

completed with the appropriate domain information. The algorithm that implements the

global building strategy is as follows:

The CIF layers are sorted with respect to their positions in the z-direction in ascending
order.

Each CIF layer is examined, with the layers needing further processing sifted out.
The remaining CIF layers are then inserted into the global model.

The dielectrics layers, which were sifted out in the previous step, are then inserted
into the appropriate global layers.

Once the globali layers are built, the CIF file is parsed to find the area of the vias
going from each chip to each of the global layers. This information is used in global
thermal analysis to determine the amount of heat carried by the vias from the chip
to the different layers of the MCM.

The CIF file is parsed again to find the number of solder bumps and the averaged

area and the nominal height of the solder bumps under each chip.

This algorithm is illustrated in detail in Pseudo-Code 21 and some of the important

points are discussed following the pseudo-code.

/* keep an index list of the CIF layers of the physical model
* sorted by z-min. */

Pseudo-Code 21 Global Model Building Algorithm  (Continued) . . .
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Figure 34 Global Idealized Model Building Approach
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Sort_CIF Layers By. Z _min

/* initialize the counters of chips, vias, dielectric, physical, global,
* and current working global layer(s) */
Initialize Count
/* go through all the layers of the physical model from the bottom up,
* beginning with first (bottom) CIF layer, using the sorted index
* Jist */
while (layer != Total_ Number_ Of_ CIF_Layers)
{
Extract_Keyword_From_CIF_Layer Name

/* based on the keyword, sift out all the chips, substrate, via,
* and dielectric layers */

switch( keyword )

{
case “substrate”:
{ _
/* From the assumption in item 13 of section 5.2, the substrate is
* always physically the bottom-most layer of the MCM. Therefore,
* the substrate should be the first CIF layer encountered. This
* layer set to be the first (bottom) layer of the global model */
Set_Global_Layer
/* set the back pointer on the CIF layer to this first idealized
* layer */
Set_Back_Pointer
Increment_Global_Layer Count ,
; _
case “chip”:
{

/* keep count of number and keep track of chips */
Store_Chip_ Index
Increment_Chip_Count
/* set the back pointer of the CIF layer to negative of the chip */
Set_Back_Pointer
}
case “via”:
{

/* keep count of the # of and keep track of the vias encountered */

Pseudo-Code 21 Global Model Building Algorithm  (Continued) . . .



158

Store_Via_Index
Increment_Via_Count
}
case “dielectric”:
{
/* keep count of the number of and keep track of the dielectric
* Jayers encountered */
Store_Dielectric_Layer _Index
Increment_Dielectric_Layer Count
}
default:
{
/* The remaining CIF layers should fit directly into the global
* Jayer without further processing */
/* Check and set the current working global layer */
If ( Current_CIF_Layer_Higher_ Than_Previous_Global_Layer )
{
Increment_Current_Working Global_Layer
If ( Gap_Between_ Current CIF_Layer_And Previous_Global_Layer )
Increment_Current_Working Global_ Layer
} .
/* check for overlap */
If ( Current_CIF_Layer_ NOT Overlap_ Previous_Global_Layer )
{
/* increment number of CIF layers this global layer contains */

Increment_Member_layers

/* add the index of the CIF layer to the current global layer */
Set_Global_ Layer

/* set the back ptr of the CIF layer to the current global layer */
Set_Back Pointer '

}

else

{

/* two layers overlap, which violates the assumptions that other
* than via and diselecetric layers, no other CIF layers may have
* partial overlaps in the z-direction. Issue warning. */

Echo_Warning

Pseudo-Code 21  Global Model Building Algorithm  (Continued) . . .
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}
/* break up and insert each dielectric layer into the global

* idealized model structure */
Foreach ( Dielectric_Layer )

Insert_Layer

/* Now that the global analysis domain is constructed, associate the
* appropriate attributes to each idealized layer to fully define
* the domain */

Foreach ( Global_Layer )

{
/* loop through member CIF layers and retrieve the owning

* attributes */
Foreach ( Member CIF_Layer } f
{

Get_Attributes
/* loop through each attribute and associate it with the current

* current global layer */

Foreach ( attribute )
Associate_Attribute With_Global_Layer

}
/* Do the same for the chips */

Foreach ( chip )

{
Get_Attributes
/* loop through each attribute and associate it with the current

* current chip */
Foreach ( attribute )
Assoclate Attribute With Chip

Pseudo-Code 21 Global Model Building Algorithm

Several important points about the algorithm are mentioned in this section. The

success of the decomposition and consolidation steps depends heavily on the strict

adhesion of the CIF and attribute file inputs to the assumptions as detailed in Chapter 6
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Analysis Data Requirements. The strategy in building the global model is to build one
global layer at a time, starting with the bottom layer. When the bottom layer is finished,
the current working layer is incremented to the next global layer. An index array, with
z-min of each CIF layer sorted in ascending order, is used to reduce the number of
searches needed to find all the CIF layers belonging to a particular global layer. Table
2 of section 8.3 shows the CIF layers of the physical model sorted in this order of the
vertical position. Notice the first layer (i.e., the bottom-most layer) must necessarily be
the substrate according to assumption 13 of the CIF File Specifications (Section 6.2).
Error in the global model building process will occur if this assumption is not met, since

the substrate is used as the reference point for all subsequent layers.

In addition to the substrate, three other types of CIF layers from the physical model
are sifted out for further processing: chips, vias, and dielectric layers. As the chips
are sifted out, they are stored and numbered according to the order of encounter. Recall
from assumption 12 of the CIF File Specifications (section 6.2) that the via and dielectric
layers are the only two layers that may span the height of more than one CIF layer (in
the z-direction). Therefore, these two layers need to be sifted out and be broken into the
appropriate global layers. The decomposition step (Step 1) in Figﬁ're 34 illustrates the

breaking of the via and the dielectric layers.

All other types of CIF layers should fit directly into the global layer without any
further processing. Notice also from Table 2 that if the vias, chips, and dielectric layer
are taken out, of the remaining layers the z-max of one layer should never be greater than

the z-min of the next CIF layer. The CIF layer vertical positions, z-min and z-max, are

used to place the CIF layers into the appropriate global layer. This placement is always
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Figure 35 Criteria of Layer Comparison

relative to the current working global layer. As was mentioned above, the substrate is
necessarily the first CIF layer inserted into the global structure. This is the only known
position at the start of global model building. After the substrate is inserted into the first
global layer, the vertical position (z-min and z-max) of the next CIF layer is compared
to that of the current working global layer, which is the vertical position of the substrate.
Since one global layer may contain many CIF layers, this comparison determines whether
the next available CIF layer belongs to the current global layer or that the current global
layer must be incremented to the next global layer. Figure 35 illustrates the criteria
used to determine the state of a CIF layer relative to that of the current global layer.

Four cases are checked.

Case 1. (z-min)cip < (z-max)giopar  According to the assumptions set forth in section
6.2 CIF File Specifications, this case is invalid. Only the via and dielectric

layers may span the height of (overlap) more than one layer, and the via and
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dielectric layers had been sifted out previous to this decomposition step. A

warning message to check this CIF layer is issued, and this CIF layer is ignored.

Case 2. (z-min)cip = (z-max)gppe  The next CIF layer is directly above the current
global layer. Therefore, the current working global layer is incremented to the

next global layer.

Case 3. (z-min)cip > (z-max)giopar A gap implies that a background material is defined
between the next CIF layer and the current global layer. According to the
CIF file specification assumption 12 of section 6.2, the background material is a
dielectric layer — which was sifted out previous to the decomposition step. This
gap, then, is filled with the dielectric, which is a new global layer. Therefore,
the working global layer needs to be incremented twice to make room for the

dielectric layer to be inserted at a later time.

Case 4. (z-min)cip >= (z-min)giopg and (z-max)cip <= (z-max)giopq  The forth case is »
when the next CIF layer is part of the current global layer. For this case, the
vertical position (z-min and z-max) of the current global layer must bound those
of the CIF layer. If only one of the two conditions are satisfied, an invalid CIF
layer specification warning is issued and the CIF layer is ignored. This is the
same reasoning as two overlapping layers of Case 1. Since the CIF layer is
neither a via nor a dielectric layer, it cz_mnotr span the length of more than one

global layer.

At the conclusion of the comparison, the placement of the next CIF layer is deter-
mined and the CIF layer is consolidated into the current global layer. This placement

process continues until all the remaining CIF layers are consolidated into the global struc-
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ture. Finally, the layer that were sifted out earlier are now ready to be decomposed and

consolidated into the global model.

The chips do not need any further processing. Also, only selected information on
the vias need to be processed. The vias are important to the global analyses in that
they are some of the major heat carrying agents from the chips and distribute the heat
to the different layers of the MCM. Therefore, the total x-y cross-sectional area of the
vias extending from each chip to each layer of the MCM is tabulated. This tabulated
information is made into attributes and made available to the global client analyses. In
proportion to the tabulated areas, the distribution of the amount of heat of each chip
carried into the MCM is determined by the client analyses. Other than this information,
the global analyses assume that the contribution of the vias to the averaged material
properties of the global idealized layers is insignificant. Therefore vias do not need to be
incorporated into the global model (only the x-y cross-sectional attributes are needed).
Therefore, for the decomposition step, only the dielectric layers need to be decomposed
and consolidated into the global structure. The vias can be inserted easily into the global
model at a later time if they need to be taken into consideration. The solder bumps are
also tabulated for each chip and given to the global client analyses the same way as the

vias. They carry portions of heat to the very top layef of the MCM.

At this point, the basic structure of the global model is defined except for the dielectric
layers. The insertion strategy is that for eac.h of the dielectric layers, the global model is
scanned from the bottom and up. For the sake of discussion, a gap between two current
global layers is also considered to be a global layer. For each global layer that satisfies

the insertion criteria, as listed below, a new layer that is a “derivative” of the current
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dielectric layer is created. This new layer inherits all of the attributes of the dielectric

layer and spans the height of the global layer. The insertion criteria are:

1. The dielectric layer must span the complete height of the global layer, and

2. The total area of the global layer is less than that of the substrate.

The second criterion is based on assumption 13 of the CIF File Specifications
(section 6.2) that the x-y dimension of the substrate is used as the x-y dimension of
the MCM. The dielectric layers fill in gaps between two layers as well as fill into global
layers in which the total cumulative x-y cross-sectional area of all the member layers
is less than that of the MCM. This is consistent with the actual manufacturing process
because the signals are usually etched out of the dielectric block. The new CIF layers
are then consolidated to the global model. Thus the final decomposition-consolidation

step is completed.

Finally, the members of each global layer must inherit the appropriate attributes
from the physical model. The strategy here is to loop through all the global layers. The
attributes of all the member layers (obtained from the physical model) of each global
layer are retrieved. Each attribute is then associated with the global model layer. The

association is done through SAM interface operators. The global model is now complete.

9.2 Global Model Data ~Structu're

Two major points govern the structure used to store the global model information:
1) Since all the global model information is derived from the physical model, information
that do not change should not be duplicated. 2) Furthermore, each global layer is made

up of one or more of the CIF layers defined in the physical model. The number of CIF
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Figure 36 Data Structure of the Global Idealized Model

layers contained in one global layer may be different from layer to layer. A data structure
used that satisfies these two requirements is a variable length two dimension index array.
Figure 36 is a representation of the global idealized model of the 25—hip MCM design
as previously mentioned. This global model is extracted from the information of the
physical model, which is shown in Table 2. For comparison purposes, this table is
repeated here, as Table 3, along side a tabulation of the global model information (Table
4). For this example model, there are a total of 11 global layers, extracted out of 12
CIF layers, excluding chips. Notice none of the vias appear in the global layer. Also,
because the signal layers are embedded in the dielectric layers, each of the two dielectric
layers are broken into three global layers. This separation produces a middle global
layer consisting of signals and dielectrics, and a global layer of dielectrics on the top

and bottom of this middle global layer. Within a global layer, the first position of the
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CIF name z-min Z-max Area Attributes
(x 104 (x10™%) (x10™)

Table 3 Physical Model Information Stored in a 25-Chip MCM Design

global index array indicates the number of member layers the global layer contains. The
subsequent positions contain the indices to the CIF layers from the physical model. In
this way, none of the information specified in the physical model is duplicated. This
structure is also flexible enough to allow for any number of global layers as well any

number of member layers within each global layer.
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Global Z-min Z-max Area .
Layer CIF name (x 10-4) (x10%) (x 10%) Attributes

pointer—

———

Table 4 Global Model Extracted From the Physical Model




10 SUMMARY AND FUTURE WORK

The first part of this thesis described a generalized framework that provides an
environment in which analyses may define, organize, and use analysis attributes that are
associated with appropriate model entities. This framework is the foundational structure
for the SCOREC Attribute Manager (SAM) that also provides for convenient interactions
between multiple analysis modules. Three major aspects of SAM has been discussed in
detail: physical information, organizational information, and relational information.

Since the SAM information manager is a Vkey element for the REPAS project,
it must closely work with the model building efforts. The final five chapters dis-
cussed the approach in providing the modelling information for the global/local - ther-
mal/thermomechanical analyses. The format of the input files were first presented, fol-
lowed by a presentation of the entire preprocessing module from the point of view of the
user. The remaining chapters presented the approach used in building the physical and
global models. The physical model contains critical information for all four client analy-
ses. In the process of building this physical model, SAM operators are called to create
attributes from the three input files that were discussed in Chapter 6. These attributes
are then associated with the physical model entities. Another model for the two global
thermal/thermomechanical analyses is then built out of this physical model. Again, the
corresponding attributes are created and associated with the global model. In building
these two models, most of the required attributes for the client analyses are defined.
Although the model building process for the two local analyses were not discussed here,
the preprocessing step provides the foundation upon which the two local analyses models

are built. So too, the preprocessing step creates the pertinent analysis attributes, organize
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them in a manner appropriate for the five client analyses, and associate the attributes to the
correct analysis model. At the end of the preprocessing step, SAM is ready to return all

the enquiries from the client analyses, thus fulfilling the role of an information manager.

As the attribute manager is a first effort to develop a generalized framework, this
work can only provide a foundation for future refinements and evolutions to bring this
underlying structure to its fullest potential. The remaining portions of this section

describes some of the areas upon which the author feels can be improved.

10.1 General Structure Issues of SAM

The general structure of SAM that has been developed thus far provides a good
foundation upon which all the other components of the manager can be built. As much
as possible, the routines are written to be modular, extendable, and replaceable. Even
s0, there is no doubt that the data structure in general can be cieaned up and made more

efficient, specifically in the following areas:

1. As SAM is being used more frequently, it is becoming apparent that more operators
must be developed to meet the analysis needs. Work must be done to assess any
missing functionalities that are needed for the current needs. Some operators not yet
implemented are described in Section 4.2.

2. Consistency in naming conventions for routines and operators — This is needed
for purposes of maintenance and readability. Maintenance becomes an important
issue especially when the functionalities and features of SAM are expanded. A
uniform naming convention contribute towards ease of maintenance as well as ease
of use by applications. Towards the end of this work, a naming convention was

beginning to take shape. For example, operators callable by C routines begin with
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“AT_” whereas operators callable by FORTRAN routines begin with “at_". The next
two letters following the “AT_” identifies the action of the operator. For example,
creation operators use “cr”, “rt” for retrieval operators, “cp” for operators that copy
or duplicate information, and “del” for deletion operators. A good portion of the

operators that are developed use this convention, while those developed earlier on in

the development stage still have inconsistent names.

Inter-language Operators — Although increasingly more applications are being writ-
ten in C and C++ programming languages, a large percentage of applications still use
FORTRAN. Thus far, all of the interface operators are written in C and cater to be
called from C routines. Although C-wrapper routines have been written for a num-
ber of the major interface operators, there is need for a complete set of C-wrapper
routines for the entire suite of SAM operators. A wrapper routine is a function writ-
ten in C with the arguments written specifically for interface between FORTRAN
and C functions. The argument usage varies from one machine platform to another.
The discussion of these differences is beyond the scope of this thesis. For more

information regarding this, please consult the operating system users’ manuals.

Garbage Collection and Memory Management — Currently, there are only two
deletion routines. However, there is not a garbage collection function that properly
frees the memories from the structures these deletion operators discard. This is
becoming an increasingly important issue as the applications do more dynamic

definition and allocations of new attributes and distributions — especially when a
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10.2 Symmetry

Currently, only a limited number of symmetries can be represented. These symme-
tries (as listed in Section 3.1.2) are: 1-symmetric, 2-totally symmetric, 3-antisymmetric,
4-totally antisymmetric, 5-plane symmetry, 6-line symmetry, 7-point symmetry, 8-plane-
line symmetry, 9-anisotropic, 10-orthotropic, 11-transversely isotropic, 12-isotropic.
These symmetries are initially designed to describe the material types. There is an-
other type of symmetries that has yet to be considered. One such type of symmetry is
with respect to the setup of the analysis problem. For example, a model being solved
might have some type of geometric symmetry or that the load distribution might be
symmetric with respect to some axes. What is designed cannot adequately handle such
situations. Representation of another type of symmetry in terms of “periodicity” is also
lacking. In order to accommodate these other types of symmetries, the design must be

broadened and/or completely redesigned.

With the current design, to describe the material tensor of an linear isotropic elastic
material requires the user to input all 21 of the tensor components — even if more
than half of those are zeroes. It is desirable to develop some kind of material templates
and operators to handle material definitions. Some initial work has been started for the
REPAS project. However, what is developed is very limited. The operator basically
recognizes a keyword of LIEM (for Linear Isotropic Elastic Material) and automatically
creates and fills in the tensor components. The components may be defined by a set
of independent variables, for example, E and v for modulus of elasticity and Poisson’s
ratio, respectively. Again, the material template work is incomplete. The most desirable

is that a complete material handler module be designed, with operators to define, store,
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retrieve, and manipulate the material information needed for analysis.

10.3 Coordinate System

Currently, the capability to handle coordinate systems are in place. However,
manipulation operators need to be developed. One such operator might take distributions
from one coordinate system and transforms it to another. Another operator might take
evaluated distribution results from one coordinate system and compares them to results
in another coordinate system.

Also, as specified at the end of Section 3.1.5, operators need to be developed to allow
for definitions of coordinate systems local to geometric model entities. For example, a
uniform pressure distribution on a curved surface can be defined best with respect. to
the normal of the surface. This would require point-wise evaluation of the surface in its
geometric space. As such this requires a close interface with the geometric model used.
The set of operators must be able to define a unique coordinate system with available
enquiry routines from the geometric modeler. Since the coordinate system will most
likely be defined in terms of normal and tangents, logistic need to be worked out for the

operators to define consistent directions of the tangents at every point on the surface.

10.4 Distribution

Distribution handling capabilities is one of the most important building blocks of
SAM. For the most part, it is also one of the most well developed features of SAM. Even

so, several enhancements are needed to make SAM a more robust manager.

1. The built-in function handling allows passing information from one procedure to

another through SAM. A side benefit of the design is that the built-in function
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that a distribution dependents on can perform a set of operations at the time of
evaluation. For example, the built-in function may in turn call other procedures to
generate/update some data with a specific updated piece of data returned. Thus not
only can the built-in functions pass relevant data, they can be used to perform certain
actions when evaluated. Despite these features, the information passed through the
built-in function is currently limited to returning just a 1-D array of numbers. This
may need to be expanded to accommodate multiple dimension arrays and/or tables

of date — which may include character strings and or C structures.

At the time of evaluation, the calling routine must provide the values of all the
undefined variables of the distribution. This requires that the calling routine knows
exactly what it is asking for. The evaluation will fail if just one variable is undefined.
An operator is needed to identify these undefined variables a priori to the calling
routine. Furthermore, this operator (or a separate operator) should be able to identify
whether the distribution in question is a numerical constant, a uniform distribution,

or nonuniform distribution and pass this information to the calling routine.

Provision is made for distributions to be dependent on the value of the tensor
components of another attribute. There is currently no general way to identify
the specific tensor component of an attribute. Therefore, a tensorial component
specification convention needs to be developed, alﬁng with appropriate enhancements
to the parser and related routines, before the tensor component dependency can be

used for distributions.

For those attributes not definable as a tensor (for example, composite layer orienta-

tions), the attribute components can be defined using a distribution list. A distribution
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list, as detailed in Section 3.1.4, can be used to store distribution definitions local
to the attribute. The current structure of the list is comparable to a 1-D array of
distributions. For those applications that require, say, a 2-D table of values, the list
becomes difficult to use. An expansion to this list functionality will definitely add

to the robustness of SAM.

5. Finally, all distributions are assumed to be operating from one single unit of mea-
surement, since this unit of distributions are not specified anywhere. The distribution
data structure needs to set aside space to define the units of measurement of the
distributiops. Corresponding operators need to be enhanced with checking units, and
new operators need to be developed to convert distributions from one unit to that

of another.

10.5 Organization Issues of SAM

The SAM organization structure allows the application to put the potentially large
number of attributes into manageable and reasonable orders. A suite of operators are
developed for dynamic creation of such organization structure (Section 4.2). These same
operators are used to read the user defined structure from I/O files, as described in Section
4.1.2. As such, a graphic user interface will make this definition process more interactive
and increase the ease of use of SAM. The user interface will use the same interface
operators as described in Chapter 4 to create, manipulate, store, and access the attribute
information. Not only will such a user interface greatly enhance the usability of SAM,
it will also allow for enforcing the rules of the manager and ensure correct specification

of attributes.
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10.6 Relational Issues of SAM

As detailed in the discussion on the design of the relational aspects of attributes
(Section 2.3), a complete treatment of the subject requires extensive integration with
geometric modelling systems. An initial Iiét of geometric modelling functionalities
required for augmentation is detailed in Appendix A. The functionalities can be separated
into three categories: 1) return information about specified geometric and topological
entities, 2) define and create necessary geometric and topological entities, and 3) remove,
transform, and in general manipulate existing geometric and topological entities. As
such, each one of these functionalities is dependent on the particular modelling system
being used. Some work must be done to determine and ensure that the listed set of

functionalities are sufficient for the needs of SAM.

Secondly, two issues regarding the augmentation process need to be addressed: 1)
rules must be developed to keep track of the attributes and associated auxiliary geometries
from creation through the evolution of the augmented models, and 2) rules and operators
must be developed to handle the augmentation logistics of what information to retain,
what to delete, and how to switch from one augmentation level to another. As can be
seen from the discussion from Section 2.3, these two issues are not trivial to solve. Only
a basic association of attributes to model entities has been implemented. Much effort is

still needed to develop fully the relational capabilities into a complete functional module.




Appendix A Augmentation Operators

Listed in this appendix is an initial compilation of the operators needed for the
idealization and augmentation processes. These operators are separated into categories of
1) interrogation of existing geometric and topological data base, 2) definition of geometric
entities, 3) manipulation of geometric/topological entities.

Where there are existing operators, the operators are described using the following |

naming convention:

0 BOLD-CAP = routine name
O italics = input parameter
0 bold = output parameter

0O  bold-italics = input and output parameter

A.1 Interrogation of the Existing Geometric
and Topological Data Base

Listed below is a set of operators to query the geometric modeler for topological

and geometric information.

1. Operator that calculates the mass of a given region.
2. Operator that calculates the moment of inertia of a given region.
3. Operator that calculates the mid-planes of a region.
4. CKENFC ( face_index, entity_index, entity_type, adjacency_flag )
Check if entity, entity_index, of type, entity_type, is topologically adjacent to the

specified face, face_index.
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11.
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FACUSE ( face_index, region_on_face_usel, region_on_face_use2 )

Returns the indices or pointers to the two topological regions, region_on_face_usel,
region_on_face_use2, sharing the face, face_index. | |
FCEVRT ( face_index, face_vertex )

Returns the next vertex, face_vertex, of the face, face_index, given the current

vertex, face_vertex

GETENT ( entity_type, entity_index )

Returns the next topological entity, entity_index, of type, entity_type, for the model.

SUBENT ( entity_type, entity_index, lower_order_entity )
Returns the lower order adjacency, lower_order_entity, for the given topological

entity, entity_index, of type, entity_type.

GTFCEG ( edge_index, face_index )

Returns the next face, face_index, of the given current edge, edge_index.

CLSFPT ( face_index, point_to_project, seed_point, seed_parameter,
projected_point, parameter_of_projected_point, error_flag)

Finds the closest point on the face, face_index, to a point off the face,

point_to_project.

DISFCE ( face_index, point_to_project, seed_point, seed_parameter,
distance_to_face, error_flag)

Finds the closest distance to the face, face_index, from a point off the face,

point_to_project.

FCEPRM ( face_index, point_on_face, parameter_of_point_on_entity_index,

entity_type, entity_index, parameter_on_face)
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14.

15.

16.

18.
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Calculates parameter values, parameter_on_face, on a face, face_index, of a
given point, point_on_face, which has the parameter value, parameter_of_point._

on_entity_index, on entity, entity_index, of typeentity_type.

FCENOR ( face_index, point_on_face, parameter_of_point_on_entity_index,
entity_type, entity_index, normal_to_face)

Calculates the normal vector, normal_to_face, to a face, face_index, at a given point,

point_on_face, which has the parameter value, parameter_of_point_on_entity_index,

on entity, entity_index, of type entity_type.

FDINOT ( spatial_point, max_number_of _regions, Number_of_regions_found,
list_of_regions_founds)

Finds all regions about the point spatial_point

FREEVT ( vertex_index, free_status)

Indicates whether the vertex, vertex_index, is constrained at a single location, or

merely constrained to a loci of points.

GPOINT ( entity;zype, entity_index, spatial_point, parameter_value)

Calculates the spatial coordinates, spatial_point, on an entity, entity _index, of type

entity_type which corresponds to the given parameter value(s) parameter_value.

. MODTOL ( modeler_tolerance)

Returns the tolerance, modeler_tolerance, used by the modeler.

ENTPRM ( entity_index, entity_type, spatial_point, parameter_value,

Returns the lowest, begin_parameter, and highest end_parameter, parameter values

of a given model entity, entity_index, of type, entity_type.
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SMTPRM ( face_index, spatial_point_1, parameter_spatial_point_1,
spatial_point_2, parameter_spatial_point_2, line_parameter_value,
spatial_point, parameter_value_spatial_point, error_flag)
Returns a point, spatial_point, on a given face, face_index, which is at parameter
value, line_parameter_value, on a parametric line segment which is bounded by

spatial_point_I, and spatial_point_2.

INTEPL (edge_index, begin_point, begin _pdrameter, end_point, end_parameter,
spatial_point_on_plane,normal_vector_plane,max_number_of_intersections,

spatial_intersection_points, parameter_intersection_points,
type_of_found_intersections, number_of_intersections_found)

Returns the intersection points, spatial_intersection_points, of a given model edge

T z-l, edge_index, with a plane defined by a point on the face, spatial_point_on_plane,

and a normal vector to the face, normal_vector_plane. The type of intersection points

must be also returned. The number of returned intersection points must be limited

to max_number_of_intersections.

INTFCE ( face_index, begin_point, end_point, max_number_of_intersections,
number_of_intersections_found, type_of_intersections_found,
spatial_intersection_points, parameter_intersection_points)

Returns the intersection points, spatial_intersection_points, of a given model face,

face_index, with a line segment defined by the two points begin_point and end_point.

Type of intersection points must be also returned. The number of returned intersection

points must be limited to max_number_of_intersections
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A.2 Definition of Geometric Entities

Regardless of which geometric modeler is used, the following is a list of the basic
capabilities the geometric modeler needed to be able to support and have appropriate

interface operators for applications such as SAM to use.

1. create point

2. create curves

3. create surface patches

4. create solids

5. create primitives (box, triangle, torus, etc)

6. create “features”(fillets, holes, etc)

A.3 Manipulation of Geometric/Topological Entities

Listed below is a summary of functions that operators needed to support for the

manipulation of geometric/topological entities.

1. REMOVE entity (point, curve, patch, solid, “feature”)

2. DISASSOCIATE entity from the model (such as when creating auxiliary geometries,
they should be “disassociated” from the original model.)

3. INTERSECT an entity with another entity

4. SUBTRACT an entity from anether entity of equal or higher order (-basically an
intersection and then removal of the intersection )

5. UNION of an entity with another entity
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6. SPLIT an entity with another entity ( intersect the two entities and separate the target
entity at the intersection.) An example of splitting an edge with another edge is

shown in Figure 37 below.

Y-/

Figure 37 An Edge Split at Intersection From a Second Edge

7. IMPRINT an entity on another entity of equal or higher order. An example of an

edge imprinting on another edge is shown in Figure 38 below. The actions done are

iy

Figure 38 An Edge IMPRINTed by a Second Edge

basically to project the working entity onto the target entity with respect to a certain
direction and SPLIT the target entity at the projection points.

8. MERGE two redundant entities into one single entity.



Appendix B Summary of SAM Application
Interface Operators

List in this appendix is a summary of the SAM application interface operators. The

following naming convention is used:

O normal-font() = routine name
italic() = routine that has a return value of the given type
bold = input parameter

italic = output parameter

O O o O

bold-italics = input and output parameter
B.1 Attribute Manager Set-up/Wrap-up

The required environment variable to use with SAM operators is
setenv ATT_HOME “<the full path to the attribute directory>"*

Those routines using any of the interface operators must include the following header

in the calling routine:

$ATT_HOME/attribute/include/header.h

1. void AT_setup( char *filename )

This routine allocates and initializes the variables needed by the attribute man-
ager. This operator also checks to see if filename.lib, filename.org, and filename.rel
exist. If so, the contents of the files are read into the attribute manager. If only new
attributes are intended to be created, care must be taken to first remove these files
before calling AT_setup() to avoid duplication of attributes. The present restriction

is that if one of the three files is present, then all three must be present.
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void AT_stop( char *filename )

This routine writes to file everything that the attribute manager has in memory,
including the attribute definitions, organization structure, and attribute associations.
The files to which these attributes are written are filename.lib, filename.org, and

filename.rel. Any files with the same names are overwritten.

B.2 Physical Creation Operators

1.

ATTRIBUTE *AT cratt (char *attribute_id)

This routine creates an attribute with the given id. The pointer to the newly
created attribute is returned.

MULTIPLIER *AT_crmult (char *multiplier_id, double multiplier_value)

This routine creates a multiplier with the given id and value. The pointer to the
newly created multiplier is returned.
void tensor_order (long retr_store_flag, ATTRIBUTE *attribute_pointer,

" long *tensor_order)

This routine retrieves/stores the tensor order information, dependent on what
retr_store_flag is.
void coord_sys_ptr (long retr_create_flag, ATTRIBUTE *attribute_pointer,

COORDINATE_SYS *coord_sys_ptr)

This routine retrieves the pointer to the coordinate system used by the given
attribute, pointed to by attribute_pointer. If the command is to create, a pointer is
assigned to a new coordinate system and returned to the calling routine. The calling
routine is responsible to call csys_info() and csys_func() to complete the definition

of the new coordinate system.
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void csys_func (long retr_store_flag, COORDINATE_SYS *coord_sys_pointer,
DISTRIBUTION **func_relation, long func_position,
char **func_string)

This routine retrieves or stores the pointers to the current function that defines
the coordinate system with respect to the given base coordinate system. If the retrieve
option is selected, the function returned is the next available function or a NULL
if the end of the function list is reached. If the store option is selected, the next

coordinate system function is stored to the data structure.

void csys_info (long retr_store_flag, COORDINATE_SYS **coord_sys_pointer,
long *coord_sys_type, float **coord_origin,
long *coord_sys_dimension, char **coord_sys_id,
COORDINATE_SYS **base_coord_sys_pointer,
DISTRIBUTION ***func_ptr)

Given the particular pointer to the coordinate system, this routine returns/stores
from/into the attribute data base the coordinate system type, the origin coordinates of
the current coordinate system, the dimension of the coordinate system, the coordinate
system ID, the pointer to the base coordinate system, and the pointer to an array of

distribution functions of coordinate axes

void symmetry_ptr (long retr_étore_ﬂag, ATTRIBUTE *attribute_pointer,
SYMMETRY **symmetry_pointer)
This routine retreives the pointer to the symmetry information or stores the
information into the data base. Note, this routine must be called first (before any

calls to the other symmetry related creation operators) since memory for each new
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symmetry is created here.
void symmetry_type (long retr_store_flag, SYMMETRY *symmetry_pointer,
long *symmetry_type)
This routine stores/retreives the symmetry type to/from the data base.
void symm_info (long retr_store_flag, SYMMETRY *sym_pointer, long Irflag,
SYMMETRY_INFO *[r_sym_pointer, float *Ir_sym_info)
This routine stores/retrieves the information for a single symmetry into/from the

data base. The implemented routine has not been tested.

void dist_comp (long retr_store_flag, ATTRIBUTE *attribute_pointer,
struct comp_distrib **distrib_comp_pointer)

This routine gets the pointer to the distribution of the next tensor component.

DISTRIBUTION *parser (long input_flag, void *input_source,
ATTRIBUTE *attribute_pointer, long store_flag)
Given an equation in character string form, this routine parses the equation and

returns the parsed equation as a distribution.

void AT_mktencomp (char *input_equation, ATTRIBUTE *attribute_pointer)
This routine parses the given equation and attaches the resulting distribution to

a new tensor component of the given attribute. No provision is made to distinguish

which component of the tensor is being created. The order that AT_rtdstcomp()

returns the tensor components is the order in which the input equations are given

in this routine.

void AT_mklist (ATTRIBUTE *attribute_pointer, char **equations, int num_eqns)

Given an array of equations, this routine parses each equation and attaches
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the parsed distribution to a list, which is attached to the attribute given in at-

tribute_pointer.

void AT_mktmplat (ATTRIBUTE *attribute_pointer, char **equations,
int num_eqns)

Given a pointer to an attribute and a set of defining equations, this routine
creates and assigns distributions, tensor order, and symmetries using a previously
defined template. The appropriate template is selected based on the specific label
and attribute type on the given attribute. This implies that the appropriate labels
(and coordinate system)‘and type are assigned prior to the calling of this routine.
What has been implemented as of this writting is only a set of stiffnesses for the
following materials: LOEM for Linear Orthotropic Elastic Material and LIEM for
Linear Isotropic Elastic Material. To use this template operator, the first label of the
attribute must be one of the two keywords just mentioned. Also, the attribute type

must be stiffness.

B.3 Organizational Creation Operators

1.

2.

SET *AT_crset (char *set_id)

This routine creates a set with the given id. The pointer to the newly created
set is returned.
GROUP *AT _crgrp (char *group_id)

This routine creates a group with the given id. The pointer to the newly created

group is returned.
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3. CASE *AT_crcas (char *case_id)
This routine creates a case with the given id. The pointer to the newly created
case is returned.
4. void AT _bultorgn (char *parent_id, ORGNCODE parent_type, char *child_id,
ORGNCODE child_type, char **multitplier_id,
double *multiplier_values, int num_mults)
This routine builds a segment of the organizational structure with the given

parent, child, and the multipliers to the child.

B.4 Relational Creation Operators

void AT _astopat (ATTRIBUTE *attribute_pointer, long model_entity_number,
char *model_éntity_string, long model_entity_type,
char *model._name)
This function associates a given model entity with the attribute to which the
given pointer points. It takes as input a pointer to the attribute, the entity identification

in numerical or string form, the entity type, and the model identification.

B.5 Attribute Retrieval Operator

void AT_rtatts ( long retrieval_method, char *case, char *group, char *set,
char *geom_model_name, long model_entity_type,
long model_entity_integer, char *model_entity_string,
char *attribute_type, long array_size,
ATTRIBUTE **attribute_pointer, double *mult_value,

long *number_retrieved )
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This routine returns pointers to attributes which satisfy the organizational and
relational condition specified in the input. Any information specified in the input
(arguments third through tenth) are used to narrow down the selection of available
attributes. The third, fourth, and fifth arguments are used to restrict the search to the
given branches in the organizational structure. The sixth through tenth arguments are used
to pin-point the desired attributes in the already shrunken selection of qualified attributes.

At the time of writing, this routine has not been tested. However, another
routine named attptr_C() had been used extensively for attribute retrieval. AT _rtatts()
and attptr_C() are essentially the same with one major difference: attptr_C() returns
geom_model_name, model_entity_type, model_entity_integer, model_entity_string, and
attribute_type) in addition to (attribute_pointer and mult_value). This added feature is
desirable if not for one important flaw in the return logic. When an attribute is associated
with more than one model entity, only one model entity is returned. The same flaw
occurs for both the geom_model_name and model_entity_type. Because of this flaw,
another operator, AT_rtatts(), is developed that returns only the attribute_pointers and

mult_value.

B.6 Organization Retrieval Operators

1. void AT_rtnxorgn ( ORGNCODE node_type, void **node_pointer )
This routine returns the next organizational element in the organizational structure
with the given organizational element type, such as a case, group, set, or attribute.
2. void AT _rtnxchild ( void *node_pointer, ORGNCODE node_type,

void **child_pointer, ORGNCODE child_type )
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This routine returns the next child pointer and child type of a given node pointer

and node type.

ATTRIBUTE *AT _rtart ( char *attribute_id )

This routine retrieves the pointer to the attribute that has the same id as given.

SET *AT rtset ( char *set_id )

This routine retrieves the pointer to the set that has the same id as given.

GROUP *AT_rtgrp ( char *group_id )

This routine retrieves the pointer to the group that has the same id as given.

CASE *AT_rtcas ( char *case_id )

This routine retrieves the pointer to the case that has the same id as given.

void AT_rtmprod ( void *node_pointer, ORGNCODE node_type,
void *child_pointer, ORGNCODE child_type,
double *multiplier_value )
This routine had not been implemented yet. When it is implemented, this routine
will return the product of all the multipliers between two given connected nodes in
the organizational structure. Hierarchically, the node must be of a type higher than

that of the child.

void AT_rtmults( void *node_pointer, ORGNCODE node_type,
void *child_pointer, ORGNCODE child_ type,
long *number_of_multipliers, char **multiplier_id,
double *multiplier_value )
This routine had not been implemented yet. When it is implemented, this

routine will return the identification and value of all the multipliers between two
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given connected nodes in the organizational structure. Hierarchically, the node rﬁust
be of a type higher than that of the child.
9. void AT_rtnodeid ( void *node_pointer, ORGNCODE node_type, char **node_id )
This routine returns the identiﬁcation of a node pointed to by the given node
pointer of the given node type. For example, if node = attribute (node_type =

ATATT), node_pointer = ATTRIBUTE_POINTER.

B.7 Attribute Physical Information Retrieval Operators -

1. char *AT_rtatid ( ATTRIBUTE *attribute_pointer )
This routine retrieves the id of the attribute pointed to by the given attribute
pointer.
2. void AT _rtlabels ( ATTRIBUTE *attribute_pointer, long *number_of labels,
char **attribute_labels )
This routine returns all of the labels of the attribute pointed to by the given
attribute pointer.
3. char *AT_rtnxatlab (ATTRIBUTE *attribute_pointer,
Generic_List_Cells **label_pointer)
This routine retrieves the next label of the given attribute. The id of the attribute
is excluded from the definition of a “label.”
4. void AT _rtatype ( ATTRIBUTE *attribute_pointer, char **attribute_type )
This routine retrieves the attribute type of the given attribute.
5. void AT_rtenord ( ATTRIBUTE *attribute_pointer, long *tensor_order )
This routine returns the tensor order of the attribute pointed to by the given

attribute pointer. The name being used now is tensord_C(). This name should be
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changed in the near future to AT_rtenord() so that consistent naming convention

may be used.

void AT _rtesptr( ATTRIBUTE *attribute_pointer,
COORDINATE_SYS **coord_sys_pointer )
This routine returns the pointer to the coordinate system on which the attribute,
pointed to by the given attribute pointer, is defined. The function is currently named
as coordsys_ptr(). This name should be renamed to AT_rtesptr() in the near future

so that consistent naming convention may be used.

void AT_rtcsinfo( COORDINATE_SYS **coord_sys_pointer,
char **coordinate_sys_id, long *coord_system_type,
long *coord_system_dimension, float **coord_origin,
struct comp_distrib **function_relation,
COORDINATE_SYS **base_coord_system_pointer )
This routine returns the information of the coordinate system pointed to by the
coordinate system pointer.
void AT_rtsyminfo( long retrieval_method, ATTRIBUTE *attribute_pointer,
long *symmetry_type, long ***info_array,
long *num_of_sym_retrieved, long *num_of_info_pieces )
This routine has not yet been implemented. When it is, it will return the

symmetry information which satisfies the condition set in RETRIEVAL_METHOD.

void AT_rtdstcomp (long retrieval_method, ATTRIBUTE *attribute_pointer,
double mult_value, COORDINATE_SYS *coord_sys_pointer,

char **variable_character_array,
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double *variable_value_array, long number_of_var,
long *number_of _components, long *components_defined,
double *component_value_array )
This routine returns the final values (in the given coordinate system and with
all the relevant multipliers taken into account) of the distribution components of the
attribute pointed to by the attribute pointer. All the variables required for evaluation

of the distribution are given as input argument in the variable arrays.

B.8 Attribute Manipulation Operators

void AT_delorgn ( ATTRIBUTE *attribute_pointer )

This routine disassociates the organizational specification from the attribute.
Because the organizational elements might be used else where, they are not deleted
and allocated memory is not freed in this routine. This is done in another deletion
routine.
void AT_delreln ( ATTRIBUTE *attribute_pointer )

This routine disassociates all relational specifications from the attribute.
ATTRIBUTE *AT_cpyart ( char *old_name, char *new_name )

This routine copies all the components of a given attribute into a new attribute

of a new name as given and returns the pointer to the newly created attribute.



Appendix C Example REPAS Output Files

This appendix presents some excerpts of sample output files from the REPAS project.
The sample is taken from a 25 chip MCM design. These three output files correspond
to the three input files needed by the SCOREC Attribute Manager and are used as input
files for SAM at the start of each of the four global/local client analyses. The first file
presented, 25¢chip.lib, contains a partial listing of the physical information of the aftributes
defined for a typical run of the 25—chip example. The second file, 25chip.org, contains
a partial description of the organization structure used for the example run. Finally, the
third file, 25chip.rel, contains a partial listing of the relational information associating

the defined attributes to the appropriate model entities.

C.1 25chip.lib

*distribution distribution: component: E*(1-
ZERO = 0 component : nu})/(l-nu-2*nu-2)
component: ZERO
*Multiplier *pin_size@pins component: ZERO
label: sFactor labels: component: ZERC
value: le-08 type: pin_size component :
tensor_order: -1 E/(2*(1+nu)})
*Multiplier list: 500000, 40000, component: ZERQO
label: Mdefault 40000 component: ZERO
value: 1 component:
*stiffness@solder_bumps E/{(2*(1+nu))
*Coordinate System labels: LIEM component: ZERO
id: global type: stiffness component:
dimension: 3 tensor_order: 4 E/(2*(1+nu))
type: 1 list: E = 310, nu = :
origin: (0, 0, 0) 0.2 *thermal_ expand@solder bumps
function: S$1=]1 coord_sys: global labels: LIM
function: $2=1 Symmetry: type: thermal_expand
function: $3=1 distribution: tensor_order: 2
component: E*(I1- coord_sys: global
*npins@pins nu)/(1-nu-2*nu’2) symmetry:
labels: compenent: E*nu/(1- distribution:
type: npins nu-2*nu”2) component: 1.0e-5
tensor_order: 0 component: E*nu/(1-
Symmetry: nu-2*nu’2) *thermal_cond@solder_bumps
distribution: component: ZERO labels: LIM
component: 168 component: ZERO type: thermal_cond
component: ZERO tensor_order:. 2
*stiffness@pins component: E*(1- coord_sys: global
labels: LIEM nu}/(1-nu-2*nu’2) symmetry:
type: stiffness_pins component: E*nu/{(I- distribution:
tensor._crder: 0 : nu-2%nu”2) component: 36
list: E = 1.3ell, nu component: ZERO
= 0.34 component: ZERO *s0l_diam@solder bumps
symmetry: component: ZERO labels:
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type: sol_diam
tensor_order: 0
symmetyy:
distribution:
component: 14000

*sol_height@solder_bumps

labels:

type: sol_height

tensor._order: 0

Symmetry:

distribution:
component: 8500

*GT_amp
labels:
type: temp_expand
tensor_order: 0
symmetry:
distribution:

component:
GT. amp ($1,$2,$3)

*GS_disp
labels:
type: displacement
tensor_order: 1
coord_sys: global
symmetry:
distribution:
component :
GS_disp($1,$2,53)
component :
GS_disp($1,82,$3)
component:
GS_disp($1,$2,53)

*LT_temp

labels:

type: temperature
tensor_order: 0
symmetry:
distribution:
component:

LT _temp($1,$2,53)

*GT__temp
labels:
type: temperature
tensor_order: 0
symmetry:
distribution:
component :
GT_temp($1,52,53)

*majorDir@layerl
labels:

type: maj_dir
tensor_order: 0
symmetry:
distribution:
component: 0

*geomInfo@layerl
labels:

type: averages

tensor_order: -1
list: 0, 0, 0

*numQfPhyLayers
labels:
type: nlayers
tensor_order: 0
symmetry:
distribution:

component: 11

*number0fChips

labels:

type: nchips
tensor_order: 0

symmetry:
distribution:
component: 25

*thickness@DIELECTRIC_INS1YYY2
labels:

type: thickness
tensor_order: -1

list: 66200, 66800

*thickness@DIELECTRIC _INSIYYY1
labels:

type: thickness
tensor_order: -1

‘list: 65000, 66200

*thermal _cond@DIELECTRIC_INSI
labels: LIM
type: thermal_cond
tensor_order: 2
coord_sys: global
symmetry:
distribution:
component: 0.2

*thickness@DIELECTRIC_INSI1
labels:

type: thickness
tensor_order: -1

list: zmin = 65000,

zmax = 68000

*stiffness@GND_1
labels: LIEM

type: stiffness
tensor_order: 4
list: E = 1.3ell, nu

= 0.34
coord_sys: global
symmetry:
distribution:

component: E*(1-
nu)/(l-nu-2*nu”2)
component: E*nu/{(1-
nu-2*nu”2)
component: E*nu/(1-
nu-2*nu”2)
component: ZERO
component: ZERO
component: ZERQO
component: E*{1-
nu)/(l-nu-2*nu~2)
component: E*nu/(l-
nu-2*nu”2)
component: ZERO
component: ZERO
component: ZERO
component: E*{l-
nu)/(1-nu-2*nu’2)
component: ZERQ
component: ZERO
component: ZERO
component :
E/(2*%(1+nu))
component: ZERO
component: ZERO
component :
E/(2*(1+nu)})
component: ZERO

component:
E/(2*(1+nu))

*thermal expand@GND_1
labels: LIM
type: thermal_expand
tensor_order: 2
coord_sys: global
symmetry:
distribution:
component: 1.7e~5

*thermal_cond@GND_1
labels: LIM
type: thermal_ cond
tensor_order: 2
coord_sys: global
symmetry:
distribution:
component: 398

*thickness@GND_1
labels:

type: thickness
tensor_order: -1
list: zmin = 60000,
zmax = 62500

*offset@gs

labels:

type: org_offset
tensor_order: 1
coord_sys: global
symmetry:
distribution:
component: =-0.006
component: 0
component: 0

*offset@gt
labels:

type: org_offset
tensor_order: 1
coord_sys: global

Symmetry:
distribution:
component: -0.061
component: -0,027

component: 0

*layer width
labels:

type: layer_width
tensor_order: 0
symmetry:
distribution:
component: 0.054

*layer_length
labels:

type: layer_length
tensor_order: 0
symmetry:
distribution:
component: 0.11

*heat_transfer@SUBSTRATE

labels:
type: .heat_trans
tensor_order: -1

list: 1, 1300, 25

*stiffness@SUBSTRATE
labels: LIEM

type: stiffnegs
tensor_order: 4
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list: E=1.92ell, nu =
0.22
coord_sys: global
symmetry:
distribution:
component: E*({1-
nu)/(l-nu-2*nu”2)
component: E*nu/(1-
nu-2*nu”2)
component: E*nu/(1-
nu-2*nu’2)
component: ZERO
component: ZERO
component: ZERO
component: E*(1-
nu) /(1-nu-2*nu’2)
compeonent: E*nu/(1-
nu-2*nu”2)
component: ZERO
component: ZERC
component: ZERO
component: E*(1-
nu)/{l-nu-2*nu”2)
component: ZERO
component: ZERO
component: ZERO
component:
E/(2*(1+nu)})
component: ZERO
component: ZERO
component:
E/(2%{1+nu))
component: ZERO
component :
E/(2*(1+nu))

*thermal_expand@SUBSTRATE
labels: LIM
type: thermal_expand
tensor_order: 2
coord_sys: global
symmetry:
distribution:

component: 3.l4e-6

*thermal_cond@SUBSTRATE
labels: LIM

type: thermal_cond
tensor_order: 2
coord_sys: global
symmetry:
distribution:
component: B84

*thickness@SUBSTRATE
labels:

type: thickness
tensor_order: -1
list: zmin = 0, zZmax
= 60000

*center@CHIP_25
labels:

type: chip_center
tensor_order: 1
coord_sys: global
sSymmetry:
distribution:
component:- =0.006
component: 0.018

component: 7.222e-12

*chip length@CHIP_25
labels:

type: chip_length
tensor_order: 0

symmetry:
distribution:
component: 0.01

*chip_width@CHIF_25
labels:
type: chip width
tensor_order: 0
symmetry:
distribution:
component: (.01

*nsold_bmp@CHIP 25
labels:
type: nsold_bmp
tensor_order: 0
symmetry:
distribution:
component: 0

*pwr_via_area@CHIP_25
labels:

type: pwr_via_area
tensor_order: 0
symmetry:
distribution:
component: 5e8

*sig_via_area@CHIP_25
Jabels:
type: sig_via_area
tensor _order: 0
symmetry:
distribution:
component: 1.25e9

*gnd_via_area@CHIP_25
labels:
type: gnd_via_area
tensor_order: 0
symmetry:
distribution:
component: 5e8

*therm_ via_area@CHIFP_25

labels:

type: therm_via_area

tensor_order: 0

symmetry:

distribution:
component: 0

*nth_vias@CHIP_25
labels:
type: nth_vias
tensor_order: 0
symmetry:
distribution:
component: 0

*heat_transfer@CHIP_25

labels:

type: heat_trans
tensor_order: -1
list: 1, 10, 70

*power._density@CHIP_25

labels:

type: power_density
tensor_order: 0
symmetry:
distribution:

component: 5ed

*stiffness@CHIP_25
labels: LIEM
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type: stiffness
tenscr_order: 4
list: E=8.47elC, nu =

0.22
coord_sys: global
symmetry:
distribution:

component: E*(1-
nu)/(l-nu-2*nu~2)
component: E*nu/(l-
nu-2*nu”2)
component: E*nu/(Il-
nu-2*nu”2)
component: ZERO
component: ZERO
component: ZERO
component: E*{(1-
nu)/(l-nu-2*nu”2)
component: E*nu/(1-
nu-2*nu”2)
component: ZERO
component: ZERO
component: ZERC
component: E*(1-
nu)/(l-nu-2*nu”2}
component: ZERO
component: ZERO
component: ZERO
component :
E/(2*(1+nu))
component: ZERO
component: ZERO
component :
E/(2*(1+nu))
component: ZERO
component:
E/(2*{1+nu))

*thermal_expand@CHIP_25
labels: LIM
type: thermal expand
tensor_crder: 2
coord_sys: global
symmetry:
distribution:

component: 5.7e-6

*thermal_cond@CHIP_25
labels: LIM

type: thermal_cond
tensor_order: 2
coord_sys: global
symmetry:
distribution:
component: 58

*thickness@CHIP_25
labels:

type: thickness
tensor_order: -1
list: zmin = 72220,
zmax = 79720

*thermal expand@VIA_CONTACT
labels: LIM
type: thermal_expand
tensor_order: 2
coord_sys: global
Symmetry:
distribution:

component: 1.7e-5

*thermal_ cond@VIA_CONTACT
labels: LIM

type: thermal_cond
tensor._order: 2




coord_sys: global

symmetry:

distribution:
component: 398

*thickness@VIA_CONTACT
labels:

type: thickness
tensor_order: -1
list: zmin = 66800,
zmax = 69800

*min_wire_pitch@SIGNAL_V
labels:
type: min_wire_pitch
tensor_order: 0
symmetry:
distribution:
component: 40

*min_wire_width@SIGNAL_V
labels:
type: min_wire_width
tensor_order: 0
symmetry:
distribution:
component: 20

*stiffness@SIGNAL_V
labels: LIEM
type: stiffness
tensor_order: 4
list: E = 1.3ell, nu
= 0.34
coord_sys: global
symmetry:
distribution:
component: E*(1-
nu)/(l-nu-2*nu”2)
component: E*nu/(1-
nu-2*nu”2)
component: E*nu/(l1-
nu-2*nu”2)
component: ZERO
component: ZERO
component: ZERO
component: E¥*(1-
nu}/{l-nu-2*nu’2)
component: E*nu/{1-
nu-2*nu”2)
component: ZERO
component: ZERC
component: ZERO
component: E*(1-
nu) /(l-nu-2*nu’2)
component: ZERO
component: ZERO
component: ZERO
component :
E/(2*(1+nu)})
component: ZERC
component: ZERO
component :
E/(2*(1+nu)})
component: ZERC
component :
E/(2*(1+nu))

*thermal_expand@SIGNAL V
labels: LIM
type: thermal_expand
tensor_order: 2
coord-_sys: global
symmetry:
distribution:

component: 1.7e-5

*thermal_cond@SIGNAL_V

labels: LIM

type: thermal_cond

tensor_order: 2

coord_sys: global

symmetry:

distribution:
component: 398

*thickness@SIGNAL_V
labels:

type: thickness
tensor_order: -1
ligt: zmin = 69800,
zmax = 70400

*min_wire_pitch@SIGNAL_H
labels:
type: min_wire_pitch
tensor_order: 0
symmetry:
distribution:
component: 40

*min_wire_width@SIGNAL_H
labels:
type: min_wire_width
tensor_order: 0
symmetzry:
distribution:
component: 20

*stiffness@SIGNAL_H
labels: LIEM
type: stiffness
tensor_order: 4
1list: E = 1,3ell, nu
= 0.34
coord_sys: global
symmetry:
distribution:
component: E*(1-
nu)/(l-nu-2*nu”2)
compeonent: E*nu/{1-
nu-2*nu”2}
component: E*nu/(1-
nu-2*nu”2)
component: ZERO
component: ZERO
component: ZERO
component: E*(I1-
nu)/(l-nu-2*nu’2)
component: E*nu/{l-
nu-2*nu”2)
component: ZERO
component: ZERO
component: ZERO
component: E*(1-
nu)/(l-nu-2*nu’2)
component: ZERQO
component: 'ZERO
component: ZEROC
component :
E/(2%(1+nu))}
component: ZERO
component: ZERO
component :
E/(2*(1+nu))
componrent: ZERO
component :
E/(2*(1+nu))

*thermal_expand@SIGNAL _H
labels: LIM

type: thermal_expand
tensor_order: 2
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coord_sys: global
symmetry:
distribution:
component: 1.7e-5

*thermal_cond@SIGNAL_H
labels: LIM
type: thermal_cond
tensor. order: 2
coord_sys: global
symmetry:
distribution:
component: 398

*thickness@SIGNAL_H
labels:
type: thickness
tensor_order: -1
list: zmin = 66200,
zmax = 66800

*elem_type

labels: SolidTetl0
type: element
tensor_order: -1

*initial_stress

labels:

type: initial_stress

tensor_order: 2

coord_sys: global

symmetry:

distribution:
component: 10
component: 10
component: 10
component: 0
component: 0
component: 0

*initial_temp
labels:

type: initial_temp
tensor_order: 0
symmetry:
distribution:
component: 20

*position_resolution
labels:

type: position_res
tensor_order: 0
symmetry:
distribution:
component: le-8

*temperature_resolution
labels:

type: temp _res
tensor_order: O
symmetry:
distribution:
component: 0.1

*local_window

labels:
type: local_wind
tensor, _order: -1

dist: -3367100;
-382250, 58000, -
3353200, -366050, 68000




C.2 25chip.org

*Case: local_stress
attribute:
elem_type
group: ini-
tial_condition@ls
group: tempera-
ture_distribution@ls
group: bound-
ary_condition@ls
group: mate-
rial_properties@ls
group: prob-
lem_definition@ls

*Case: local_thermal
group: accu-
racy_constants@lt
group: bound-
ary_condition@lt
group: mate-
rial_properties@lt
group: physi-
cal_dimensions@lt
group: prob-
lem definition@lt

*Case: global_stress
group: ini-
tial_condition@gs
group: bound-
ary_condition@gs
group: lay-

out_info@gs
group: mate-

rial_properties@gs
group: physi-

cal_dimensions@gs

*Case: global_thermal
group: bound-
ary_condition@gt
group: lay-
out_info@gt
group: mate-
rial_properties@gt
group: physi-
cal_dimensions@gt

*Group: ini-
tial_condition@ls
attribute: ini-
tial_stress
attribute: ini-
tial_temp

*Group: tempera-
ture_distribution@ls
attribute: LT temp

*Group: bound-
ary_condition@ls
attribute: GS_disp

*Group: accu-

racy. constants@lt
attribute: posi-

tion resolution

attribute: tempera-

ture_resolution

*Group: bound-
ary_condition@lt

set: bound-
ary_condition@pins
set: bound-
ary_condition@solder _bumps
attribute: GT_temp
set: bound-
ary_condition@DIELECTRIC_INS2
set: bound-
ary_condition@DIELECTRIC _INS1
set: bound-
ary_condition@GND_3
set: bound-
ary_condition@GND_2
set: bound-
ary_condition@GND_1
set: bound-
ary._condition@VDD
set: bound-
ary_condition@SUBSTRATE
set: bound-
ary_condition@CHIP_25
set: bound-
ary_condition@CHIP 24
set: bound-
ary_condition@CHIP_23
set: bound-
ary_condition@CHIP_22
set: bound-
ary_condition@CHIP 21
set: bound-
ary_condition@CHIP_20
set: bound-
ary_condition@CHIP_19
set: bound-
ary_condition@CHIP_18
set: bound-
ary_condition@CHIP_17
set: bound-
ary_condition@CHIP_ 16
set: bound-
ary_condition@CHIP_15
set: bound-
ary_condition@CHIP_14
set: bound-
ary_condition@CHIP 13
set: bound-
ary_condition@CHIP_12
set: bound-
ary_condition@CHIP 11
set: bound-
ary_condition@CHIP_10
set: bound-
ary._condition@CHIP_9
set: bound-
ary_condition@CHIP_8
set: bound-
ary._condition@CHIP_7
set: bound-
ary_condition@CHIP_6
set: bound-
ary_condition@CHIP_5
set: bound-
ary_condition@CHIP_4
set: bound-
ary.condition@CHIP_ 3
set: bound-
ary_condition@CHIP._ 2
set: bound-
ary._condition@CHIP_1
set: bound-
ary_condition@VIA_GROUND
set: bound-
ary_condition@VIA_POWER
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set: bound-
ary._condition@VIA_CONTACT

set: bound-
ary_condition@SIGNAL_V

set: bound-
ary_condition@SIGNAL_H

*Group: prob-
lem definition@lt
attribute: lo-
cal_window
multiplier:
sFactor

*Group: ini-
tial_condition@gs
attribute: ini-
tial_stress
attribute: ini-
tial_temp

*Group: layout_info@gs

set: lay-
out_info@pins
set: lay-

out_info@solder_bumps
attribute: ma-
JjorDir@layerll
attribute: ma-
JjorDir@layerl0
attribute: ma-
JjorDir@layer9
attribute: ma-
JjorDir@layers8
attribute: ma-
jorDir@layer?7
attribute: ma-
jorDir@layers
attribute: ma-
jorDir@layer5
attribute: ma-
jorDir@layerd
attribute: ma-
jorDir@layer3
attribute: ma-
jorDir@layer2
attribute: ma-
jorDir@layerl
attribute: numOf-
PhyLayers
attribute: num-
berOfChips
set: lay-
out_info@DIELECTRIC_INS2
set: lay-
out_info@DIELECTRIC_INS1
set: lay-
out_info@GND_3
set: lay-
out_info@GND_2
set: lay-
out_info@GND_1
set: lay-
out_info@VDD
attribute: off-

setégs
set: lay-
out_info@SUBSTRATE
set: lay-
out_info@CHIP_ 25
set: lay-

out_info@CHIP_24




set: lay-
out_info@CHIP_23
set: lay-
out_info@CHIP_22
set: lay-
out_info@CHIFP 21
set: lay-
out_info@CHIP_20
set: lay-
out_info@CHIP_19
set: lay-
out_info@CHIP_ 18
set: lay-
out_info@CHIP_17
set: lay-
out_info@CHIP_16
set: lay-
out_info@CHIP 15
set: lay-
out_info@CHIP_14
set: lay-
out_info@CHIP_13
set: lay-
out_1info@CHIP 12
set: lay-
out_info@CHIP_11
set: lay-
out_info@CHIP_10
set: lay-
out_info@CHIP_9
set: lay-
out_info@CHIP_8
set: lay-
out_info@CHIP_ 7
set: lay-
out_info@CHIP 6
set: lay-
out_info@CHIP_ 5
set: lay-
out_info@CHIP_4
set: lay-
out_1info@CHIP_3
set: lay-
out_info@CHIP 2
set: lay-
out_info@CHIP_I
set: lay-
out_info@VIA_GROUND
set: lay-
out_info@VIA_POWER
set: lay-
out_info@VIA_ CONTACT
set: lay-
out_info@SIGNAL .V
set: lay-

out_info@SIGNAL_H

*Group: physi-
cal_dimensions@gs

set: physi-
cal_dimensions@pins
set: physi-
cal_dimensions@solder_bumps
attribute: geom-
Info@layerll
attribute: geom-
Info@layerl(O
attribute: geom-
Info@layer$
attribute: geom-
Infodlayer8
attribute: geom-
Info@layer7
attribute: geom-
Info@layeré

attribute: geom-
Info@layer5s
attribute: geom-
Info@layerd
attribute: geom-
Info@layer3
attribute: geom-
Info@layer2
attribute: geom-
Info@layerl
attribute: thick-
ness@DIELECTRIC_INS2YYY6
multiplier:
sFactor
attribute: thick-
ness@DIELECTRIC_INS2YYYS
multiplier:
sFactor
attribute: thick-
ness@DIELECTRIC_INS2YYY4
multiplier:
sFactor
attribute: thick-
ness@DIELECTRIC_INSIYYY3
multiplier:
sFactor
attribute: thick-
nessS@DIELECTRIC_INS1IYYYZ2
multiplier:
sFactor
attribute: thick-
ness@DIELECTRIC_INS1YYY1
multiplier:
sFactor
set: physi-
cal_dimensions@DIELECTRIC_INSZ2
set: physi-
cal_dimensions@DIELECTRIC_INS1
set: physi-
cal_dimensions@GND_3
set: physi-
cal_dimensions@GND_2
set: physi-
cal_dimensions@GND_1
set: physi-
cal_dimensions@vDD
attribute:
layer width
attribute:
layer length
set: physi-
cal_dimensions@SUBSTRATE
set: physi-
cal_dimensions@CHIP_25
set: physi-
cal_dimensions@CHIP_24
set: physi-
cal_dimensions@CHIP_23
set: physi-
cal_dimensions@CHIP 22
set: physi-
cal_dimensions@CHIP_21
set: physi-
cal_dimensions@CHIP_20
set: physi-
cal_dimensions@CHIP_19
set: physi-
cal_dimensions@CHIP 18
set: physi-
cal-dimensions@CHIP_17
set: physi-

cal_dimensions@CHIP_16

set: physi-
cal_dimensions@CHIP_15
set: physi-

cal_dimensions@CHIP_14
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set: physi-
cal_dimensions@CHIP_13

set: physi-
cal_dimensions@CHIP_12
set: physi-
cal_dimensions@CHIP_11
set: physi-
cal_dimensions@CHIP_10
set: physi-
cal_dimensions@CHIP_S
set: physi-
cal_dimensions@CHIP_8
set: physi-
cal_dimensions@CHIP_7
set: physi-
cal_dimensions@CHIP_ 6
set: physi-
cal_dimensions@CHIP_5
set: physi-
cal_dimensions@CHIP 4
set: physi-
cal_dimensions@CHIP_3
set: physi-
cal_dimensions@CHIP_2
set: physi-
cal_dimensions@CHIP_ 1
set: physi-
cal_dimensions@VIA_GROUND
set: physi-
cal_dimensions@VIA POWER
set: physi-
cal_dimensions@VIA_CONTACT
set: physi-

cal_dimensions@SIGNAL_V
set: physi-
cal_dimensions@SIGNAL_H

*Group: layout_info@gt

set: lay-
out_info@pins
set: lay-

out_info@solder_bumps
attribute: ma-
jorDir@layeril
attribute: ma-
JorDir@layeriQ
attribute: ma-
JjorDir@layer$
attribute: ma-
jorDir@layer8
attribute: ma-
JjorDir@layer7
attribute: ma-
jorDir@layert
attribute: ma-
JjorDir@layer5
attribute: ma-
JorDir@layer4
attribute: ma-
JjorDir@layer3
attribute: ma-
JjorDir@layer2
attribute: ma-
jorDir@layerl
attribute: nwnOf-
PhyLayers
attribute: num-
berOfChips
set: lay-
out_Iinfo@DIELECTRIC_INS2
set: lay-
out_info@DIELECTRIC_INS1
set: lay-
out_info@GND_3
set: lay-
out_info@GND_2




set: lay-
out_info@GND_1
set: lay-

out_info@VDD
attribute: off-

set@gt
set: lay-
out_info@SUBSTRATE
set: lay-
out_info@CHIP_ 25
set: lay-
out_info@CHIP_24
set: lay-
out_info@CHIP_23
set: lay-
out_info@CHIP 22
set: lay-
out_info@CHIP_21
set: lay-
out_info@CHIP_20
set: lay-
out_info@CHIP_19
set: lay-
out_info@CHIP_18
set: lay-
out_info@CHIP_17
set: lay-
out_1info@CHIP_ 16
set: lay-
out_info@CHIP_15
set: lay-
out_info@CHIP_14
set: lay-
out_info@CHIP_13
set: lay-
out_info@CHIP 12
set: lay-
out_info@CHIP_11
set: lay-
out_info@CHIP_10
set: lay-
out_info@CHIP_9
set: lay-
out_info@CHIP_8
set: lay-
out_info@CHIP_ 7
set: lay-
out_info@CHIP_6
set: lay-
out_info@CHIP_5
set: lay-
out_info@CHIP_4
set: lay-
out_infc@CHIP_3
set: lay-
out_info@CHIP_2
set: lay-
out_info@CHIP_ 1
set: lay-
out_info@VIA_GROUND
set: lay-
out_1info@VIA_POWER
set: lay-
out_info@VIA_CONTACT
set: lay-
out_info@SIGNAL V
set: lay-

out_info@SIGNAL_H

*Set: bound=-

ary_condition@SUBSTRATE

attribute:

heat_transfer@SUBSTRATE

*Set: bound-
ary_condition@CHIP 2

attribute:
heat_transfer@CHIP_2

attribute:
power_density@CHIP_2

*Set: bound-
ary_condition@CHIP_ 1
attribute:
heat_transfer@CHIP_1
attribute:
power_density@CHIP_ 1

*Set: mate-
rial_properties@pins

attribute: stiff-
ness@pins

*Set: mate-

rial properties@sclder bumps
attribute: stiff-

ness@solder_ bumps
attribute: ther-

mal_expand@solder_bumps
attribute: ther-

mal_cond@solder _bumps

*Set: mate-
rial properties@DIELECTRIC_INSI1
attribute: stiff-
ness@DIELECTRIC_INS1
attribute: ther-
mal_expand@DIELECTRIC_INS1
attribute: ther-
mal_cond@DIELECTRIC_INSI1

*Set: mate-
rial_properties@GND_1
attribute: stiff-
ness@GND_1
attribute: ther-
mal_expand@GND_1
att¥ribute: ther-
mal_cond@GND_1

*Set: mate-

rial properties@VDD
attribute: stiff-
ness@vDD

attribute: ther-
mal_expand@VDD

attribute: ther-
mal_cond@vDD

*Set: mate-
rial_properties@SUBSTRATE
attribute: stiff-
ness@SUBSTRATE
attribute: ther-
mal_eipand@SUBSTRATE
attribute: ther-
mal_cond@SUBSTRATE

*Set: mate-
rial_properties@CHIP_2
attribute: stiff-

ness@CHIP .2
attribute: ther-

mal_expand@CHIP_2
attribute: ther-

mal.cond@CHIP 2

*Set: mate-

rial _properties@CHIP_1
attribute: stiff-

ness@CHIP_1

attribute: ther-
mal_expand@CHIP_1

attribute: ther-
mal_cond@CHIP_1

*Set: mate-
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rial_properties@VIA_GROUND

attribute: stiff-
ness@VIA_GROUND
attribute: ther-

mal_expand@VIA_GROUND

attribute: ther-
mal_cond@VIA_GROUND

*Set: mate-

rial_properties@SIGNAL_V

attribute: stiff-
ness@SIGNAL V

attribute: ther-
mal_expand@SIGNAL _V

attribute: ther-
mal_cond@SIGNAL_V

*Set: mate-

rial_properties@SIGNAL_H

attribute: stiff-
ness@SIGNAL_H

attribute: ther-
mal_expand@SIGNAL_H

attribute: ther-
mal_cond@SIGNAL_H

*Set: layout_info@pins

attribute:
npins@pins

*Set: lay-
out_info@CHIP 1
attribute: cen-
ter@CHIP 1
attribute:
nsold _bmp@CHIP 1
attribute:
pwr_via_area@CHIP_ 1
multiplier:
sFactor
multiplier:
sFactor
attribute:
sig_via_area@CHIP 1
multiplier:
SFactor
nultiplier:
sFactor
attribute:
gnd_via_area@CHIP_1
multiplier:
sFgactor
multiplier:
sFactor
attribute:

therm_via_area@CHIP_1

multiplier:
SFactor
multiplier:
sFactor
attribute:
nth_vias@CHIP_1

*Set: lay-
out_info@SIGNAL_V
attribute:

min_wire_pitch@SIGNAL_V

multiplier:
SFactor




attribute:
min_wire width@SIGNAL_V
multiplier:
SFactor

*Set: lay-
out_info@SIGNAL _H
attribute:
min_wire_pitch@SIGNAL_H
multiplier:
SsFactor
attribute:
min_wire width@SIGNAL_H
multiplier:
sFactor

*Set:; physi-
cal_dimensions@pins
attribute:
pin_size@pins
multiplier:
sFactor

*Set: physi-
cal_dimensions@solder bumps
attribute:
sol_diam@solder_bumps
multiplier:
sFactor
attribute:
sol_height@solder_bumps
multiplier:
SsFactor

*Set: physi-
cal_dimensions@DIELECTRIC_INS2
attribute: thick-
ness@DIELECTRIC _INS2
multiplier:
sFactor

C.3 25chip.rel

*model_name = PhysicalLayers

*attribute = npins@pins
model_entity_number: 0

model_entity_string: layer(

model_entity type: 3

*model_name = PhysicallLayers

*attribute = stiffness@pins

model_entity_number: 0

model_entity string: layer(

model_entity type: 3

*model_name = PhysicalLayers

*attribute = pin_size@pins
model_entity number: 0

model_entity_string: layer0

model_entity type: 3

*model_name = Physicallayers

*Set: physi-
cal_dimensions@DIELECTRIC_INSL
attribute: thick-
ness@DIELECTRIC_INS1
multiplier:
sFactor

*Set: physi-
cal_dimensions@GND_1
attribute: thick-
ness@GND_1
multiplier:
sFactor

*Set: physi-
cal_dimensions@VDD
attribute: thick-
ness@vVDD
multiplier:
sFactor

*Set: physi-
cal_dimensions@SUBSTRATE
attribute: thick-
ness@SUBSTRATE
multiplier:
sFactor

*Set: physi-
cal_dimensions@CHIP_ 1

attribute:
chip_length@CHIP_1

attribute:
chip_width@CHIP_1

attribute: thick-
ness@CHIP 1

multiplier:

sFactor

*model_name

*attribute =
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*Set: physi-
cal_dimensions@VIA_GROUND
attribute: thick-
ness@VIA_GROUND
multiplier:
sFactor

*Set: physi-
cal_dimensions@VIA_POWER
attribute: thick-
ness@VIA_POWER
multiplier:
SFactor

*Set: physi-

cal_dimensions@VIA_CONTACT
attribute: thick-

ness@VIA_CONTACT

multiplier:
sFactor
*Set: physi-

cal_dimensions@SIGNAL_V
attribute: thick-
ness@SIGNAL_V
multiplier:
sFactor

*Set: physi-
cal_dimensions@SIGNAL_H
attribute: thick-

ness@SIGNAL_H
multiplier:
sFactor

= PhysicalLavyers

ther-

mal_expand@solder_bumps

model_entity_number: 0

model_entity_string: layer0
model_entity_type: 3

*model_name

*attribute =
mal_cond@sol

= PhysicalLayers

ther-
der_bumps

model_entity _number: 0
model_entity_string: layer(
model_entity type: 3

*model_name

*attribute =

= PhysicalLayers

sol_diam@soclder _bumps

model_entity_number: 0
model_entity_string: layer0
model_entity_type: 3

*attribute = stiffness@solder_bumps

model_entity_number: 0

*model_name

model_entity_string: layer(

model_entity_type: 3

*attribute =

= PhysicalLayers

GT_amp



model_entity_number: 0
model_entity_string: layer2
model_entity_type: 3

*model_name = Physicallavers

*attribute = GT_amp
model_entity_number: 0
model_entity_string: layerl
model_entity type: 3

*model_name = PhysicalLayers

*attribute = power density@CHIP_ 2
model_entity_number: 0
model_entity_string: chip0
model_entity_type: 3

*model_name = PhysicalLayers

*attribute = stiffness@CHIP 2
model_entity number: 0
model_entity string: chip3
model_entity_type: 3

*model_name = CIFlayer

*arttribute = stiffness@CHIP_2
model_entity number: 0
model_entity. string: CHIP. 2
model_entity type: 3

*model_name = PhysicalLayers

*attribute = thermal_expand@CHIP_2
model_entity_number: 0
model_entity string: chip3
model_entity_type: 3

*model_name = CIFlayer

*attribute = thermal_ expand@CHIP_2
model_entity _number: 0
model_entity_string: CHIP 2
model_entity_type: 3

*model_name = PhysicalLayers

*attribute = thermal_cond@CHIP 2
model_entity_number: 0
model_entity_string: chip3
model_entity type: 3

*model_name = CIFlayer

*attribute = thermal_cond@CHIP 2
model_entity_number: 0
model_entity_string: CHIP_2
model_entity_ type: 3

*model_name = PhysicalLayers

*attribute = thickness@CHIP_2
model_entity number: 0
model_entity_string: chip3
model_entity type: 3
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*model_name = CIFlayer

*attribute = thickness@CHIP 2
model_entity_number: 0
model_entity_string: CHIP 2
model_entity_ type: 3

*model_name = PhysicallLayers

*attribute = center@CHIP_ 1
model_entity_number: 0
model_entity_string: chip7
model_entity_type: 3

*model _name = CIFlayer

*attribute = center@CHIP_1
model_entity_number: 0
model_entity string: CHIP_1
model_entity_type: 3

*model_name = PhysicalLayers

*attribute = pwr_via_area@CHIP 1
model_entity number: 0
model_entity _string: chip7
model_entity_type: 3

*model_name = CIFlayer

*attribute = pwr_via_area@CHIP 1
model_entity number: 0
model_entity_string: CHIP_1
model_entity type: 3

*model_name = PhysicalLavyers

*attribute = pwr_via_area@CHIP 1
model_entity_number: 0
model_entity_string: chipl
model_entity_type: 3

*model_name = Physicallayers

*attribute = sig_via_area@CHIP 1
model_entity number: 0
model_entity_string: chip7
model_entity type: 3

*model _name = CIFlayer

*attribute = therm via_area@CHIP_1
model_entity_number: 0
model_entity_string: CHIP_1
model_entity._type: 3

*model_name = PhysicalLayers

*attribute = therm via_area@CHIP 1
model_entity number: O
model_entity_string: chip0
model_entity type: 3

*model_name = PhysicallLayers

*attribute = nth_vias@CHIP_ 1
model_entity _number: 0




model_entity_string: chip7
model_entity_type: 3

*model_name = CIFlayer

*attribute = nth_vias@CHIP_1
model_entity _number: 0
model_entity_string: CHIP 1
model_entity type: 3

*model_name = PhysicallLayers

*attribute = nth_vias@CHIP_ 1
model_entity number: 0
model_entity string: chip0
model _entity_type: 3

*model _name = Physicallayers

*attribute = heat_transfer@CHIP 1
model_entity_number: 0
model_entity_string: chip7
model_entity type: 3

*model _name = CIFlayer

*attribute = heat_transfer@CHIP_1
model_entity _number: 0
model_entity_string: CHIP 1
model__entity_type: 3

*model_name = PhysicalLayers

*attribute = heat_transfer@CHIP 1
model_entity number: 0
model_entity _string: chipl
model_entity_type: 3

*model _name = CIFlayer

*attribute = thermal_expand@CHIP 1
model_entity_number: 0
model_entity string: CHIP_1
model_entity_type: 3

*model_name = CIFlayer

*attribute = thickness@CHIP 1
model_entity number: 0
model_entity string: CHIP_1
model_entity_type: 3
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*model_name = 25chip

*attribute = initial_stress
model_entity _number: 3394
model_entity_type: 3

*model_name = 25chip

*attribute = initial_ stress
model_entity number: 2643
model_entity_type: 3

*model_name = 25chip

*attribute = initial_stress .
model_entity_number: 1973
model_entity_type: 3

*model_name = 25chip

*attribute = initial_stress
model_entity number: 1384
model_entity type: 3

*model_name = PhysicalLayers

*attribute = initial_stress
model_entity number: 0
model_entity_string: layer(
model _entity type: 3

*model_name = 25chip

*attribute = initial_stress
model_entity_number: 19
model_entity_string: layer0
model_entity_type: 3

*model_name = 25chip

*attribute = initial_temp
model_entity_number: 20706
model_entity type: 3

*model_name = 25chip

*attribute = initial_temp

model_entity_number: 20065
model_entity type: 3



Appendix D Example REPAS Attribute File

This appendix presents a sample attribute file required as one of the three input files

for the REPAS preprocessing. The file specification format is specified in Section 6.3.

The sample file presented below is taken out of a run for a 25 chip MCM design and

is presented in two columns.

*pins
material_properties:
type: LIEM

stiffness: E = 1.3ell, nu = 0.34
layout_info:
npins: 168
physical_dimensions:
pin_size: 500000, 40000,
40000

*solder _bumps
physical_dimensions:
sol_height: 8500
sol_diam: 14000

material_properties:

type: LIM

thermal_cond: 36
thermal_expand: 1.0e-5

type: LIEM

stiffness: E = 3el0, nu = 0.2

*chip 1
physical_dimensions:
thickness: zmin = 72220,
zmax = 79720
material_properties:
type: LIM
thermal_cond: 58
thermal_expand: 5.7e-6
type: LIEM
stiffness: E=8.47el0, nu = (.22
boundary. condition:
power_density: 7e4
heat_trans: 1, 10, 70
layout_info:
nsold _bmp: 0

*chip_2
physical_dimensions:
thickness: zmin = 72220,
zmax = 79720
material properties:

type: LIM
thermal_cond: "58
thermal_expand: 5.7e-6
type: LIEM

stiffness: E=8.47el0, nu = 0.22
boundary_condition:
power_density: 7e4

heat_trans: 1, 10, 70 ]
Jayout_info:
nsold _bmp: 0

*chip_3
physical_dimensions:
thickness: zmin = 72220,
zmax = 79720
material_properties:
type: LIM
thermal_cond: 58
thermal:_expand: 5.7e-6
type: LIEM
stiffness: E=8.47el0, nu = (0.22
boundary_condition:
power_density: 7ed
heat_trans: 1, 10, 70
layout_info:
nsold _bmp: 0

*chip 4
physical _dimensions:
thickness: zmin = 72220,
zmax = 79720
material_properties:
type: LIM
thermal_cond: 58
thermal_expand: 5.7e-6
type: LIEM
stiffness: E=8.47el0, nu = 0.22
boundary. _condition:
power_density: 7e4d
heat_trans: 1, 10, 70
layout_info:
nseld _bmp: 0

*chip_ 5
physical_dimensions:
thickness: zmin = 72220,
zmax = 79720
material properties:
type: LIM
thermal_cond: 58
thermal_expand: 5.7e-6
- typer LIEM- -
stiffness: E=8.47el0, nu = 0.22
boundary_condition:
power_density: 7ed
heat_trans: 1, 10, 70
layout_info:



nsold bmp: 0

*chip_ 6
physical_dimensions:
thickness: zmin = 72220,
zmax = 79720
material_properties:
type: LIM
thermal_cond: 58
thermal_expand: 5.7e-6
type: LIEM
stiffness: E=8.47e¢l0, nu = 0.22
boundary_condition:
power_density: 7ed
heat_trans: 1, 10, 70
Jayout_info:
nsold_bmp: 0

*chip 7 )
physical_dimensions:
thickness: zmin = 72220,
zmax = 79720
material_properties:
type: LIM
thermal_cond: 58
thermal_expand: 5.7e-6
type: LIEM
stiffness: E=8.47el0, nu = 0.22
boundary _condition:
power_density: 7e4
heat_trans: 1, 10, 70
layout_info:
nsold_bmp: 0

*chip_8
physical_dimensions:
thickness: zmin = 72220,
zmax = 79720
material_properties:
type: LIM
thermal_ cond: 58
thermal_expand: 5.7e-6
type: LIEM
stiffness: E=8.47el0, nu = 0.22
boundary._condition:
power_density: 7e4
heat_trans: 1, 10, 70
layout_info:
nsold _bmp: 0

*chip 9
physical_dimensions:
thickness: zmin = 72220,
zmax = 79720
material_ properties:
type: LIM
thermal_cond: 58
thermal_expand: 5.7e-6
type: LIEM
stiffness: E=8.47el0, nu = 0.22
boundary._condition:
power_density: 8ed
heat_trans: 1, 10, 70
layout_info:
nsold bmp: 0

*chip_10
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physical_dimensions:
thickness: zmin = 72220,

zmax = 78720
material_properties:

type: LIM

thermal_cond: 58
thermal_expand: 5.7e-6

type: LIEM

stiffness: E=8.47el0, nu = 0.22
boundary._condition:
power_density: 8ed
heat_trans: 1, 10, 70

layout_info:

nsold_bmp: O

*chip 11
physical_dimensions:
thickness: zmin = 72220,
zmax = 79720
material_properties:
type: LIM
thermal_cond: 58
thermal_expand: 5.7e-6
type: LIEM
stiffness: E=8.47el10, nu = 0.22
boundary_condition:
power_density: 7ed
heat_trans: 1, 10, 70
layout_info:
nsold_bmp: 0

*chip 12
physical_dimensions:
thickness: zmin = 72220,
zmax = 79720
material_properties:
type: LIM
thermal_cond: 58
thermal_expand: 5.7e-6
type: LIEM
stiffness: E=8.47el0, nu = 0.22
boundary_condition:
power_density: 7e4
heat_trans: 1, 10, 70
layout_info:
nsold _bmp: 0

*chip 13
physical_dimensions:
thickness: zmin = 72220,
zmax = 79720
material_properties:
type: LIM
thermal cond: 58
thermal_expand: 5.7e-6
type: LIEM
stiffness: E=8.47el0, nu = 0.22
boundary_condition:
power_density: 7e4
heat_trans: 1, 10, 70
layout_info:
nsold_bmp: 0

*chip_14
physical_dimensions:
thickness: zmin = 72220,
zmax = 79720
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thermal_ expand: 5.7e-6

material properties:
type: LIM type: LIEM
thermal_cond: 58 stiffness: E=8.47el0, nu = 0.22
thermal_ expand: 5.7e-6 boundary_condition:
type: LIEM power_density: 7e4
heat_trans: 1, 10, 70

stiffness: E=8.47el0, nu = 0.22
boundary_condition:
power_density: 7e4

layout_info:
nsold_bmp: 0

heat_trans: 1, 10, 70
layout_info: *chip 19
nsold_bmp: 0 physical_dimensions:
thickness: zmin = 72220,
*chip_15 zmax = 79720
material properties:

physical_dimensions:

thickness: zmin = 72220, type: LIM
zmax = 739720 thermal_cond: 58
material_properties: thermal expand: 5.7e-6
type: LIM type: LIEM
thermal_cond: 58 stiffness: E=8.47el0, nu = 0.22
thermal expand: 5.7e-6 boundary_condition:
type: LIEM power_density: 7ed
stiffness: E=8.47el0, nu = 0.22 heat trans: 1, 10, 70
layout_info:

boundary _condition:
power_density: 7e4 nsold_bmp: 0

heat_trans: 1, 10, 70
layout_info: *chip 20
nsold_bmp: O physical_dimensions:
thickness: zmin = 72220,
*chip_16 zmax = 79720
physical_dimensions: material_properties:
thickness: zmin = 72220, type: LIM
zmax = 79720 thermal_cond: 58
material_properties: thermal_expand: 5.7e-6
type: LIM type: LIEM
thermal_cond: 58 stiffness: E=8.47el0, nu = 0.22 :
thermal_expand: 5.7e-6 boundary_condition: . )
type: LIEM power_density: 11.5ed
Stiffness: E=8.47el0, nu = 0.22 heat_trans: 1, 10, 70
boundary_condition: layout_info: i
power_density: 7ed nsold_bmp: 0 '
heat_trans: 1, 10, 70
layout_info: *chip 21
nsold _bmp: 0 physical_dimensions:
thickness: zmin = 72220,
*chip 17 zmax = 79720
physical_dimensions: material_properties:
thickness: zmin = 72220, type: LIM
zmax = 79720 thermal_cond: 58
material_ properties: thermal_expand: 5.7e-~6
type: LIM type: LIEM
thermal_cond: 58 stiffness: E=8.47el0, nu = 0.22
thermal_expand: 5.7e-6 boundary_condition:
type: LIEM power_density: 1lled
stiffness: E=8.47€l10, nu = 0.22 ’ heat_trans: 1, 10, 70
boundary_condition: layout_info:
power_density: 7e4 nsold bmp: 0
heat_trans: 1, 10, 70
layout_info: *chip 22
nsold _bmp: 0 physical_dimensions:
thickness: zmin = 72220,
*chip_18 zmax = 79720
physical_dimensions: material_properties:
thickness: zmin = 72220, type: LIM
zmax = 79720 thermal_cond: 58
material_ properties: thermal_expand: 5.7e-6
type: LIM type: LIEM
stiffness: E=8.47el0, nu = 0.22

thermal_cond: 58




boundary_condition:
power_density: lled
heat_trans: 1, 10, 70
layout_info:
nsold_bmp: 0

*chip_23
physical dimensions:
thickness: zmin = 72220,
zmax = 79720
material_properties:
type: LIM
thermal_cond: 58
thermal_expand: 5.7e-6
type: LIEM
stiffness: E=8.47el0, nu = 0.22
boundary_condition:
power_density: 1led
heat_trans: 1, 10, 70
layout_info:
nsold _bmp: 0

*chip_24
physical_dimensions:
thickness: zmin = 72220,
zmax = 78720
material properties:
type: LIM
thermal cond: 58
thermal_expand: 5.7e-6
type: LIEM
stiffness: E=8.47el0, nu = 0.22
boundary_condition:
power_density: lle4d
heat_trans: 1, 10, 70
layout_info:
nsold bmp: 0

*chip 25
physical_dimensions:
thickness: zmin = 72220,

zmax = 79720
material_properties:

type: LIM

thermal_cond: 58
thermal_expand: 5.7e-6

type: LIEM

stiffness: E=8.47el0, nu = 0.22
boundary _condition:
power_density: 5ed

heat_trans: 1, 10, 70
layout_info:

nsold_bmp: 0

*dielectric_ins2

physical_dimensions:

thickness: zmin = 68600,

zmax = 71600

material properties:

type: LIM

thermal_cond: 0.2

thermal_ expand: 3.5e-5

type: LIEM

stiffness: E = 2.5e9, nu = 0.45

*dielectric_insl
physical_dimensions:

thickness: zmin = 65000,

zmax = 68000

material_properties:

type: LIM

thermal_ cond: 0.2
thermal_expand: 3.5e-5

type: LIEM

stiffness: E = 2.5e9, nu = 0.45

*gnd_1

physical_dimensions:

thickness: zmin = 60000,

zmax = 62500

material_properties:

type: LIM

thermal_cond: 398
thermal_expand: 1.7e-5

type: LIEM

stiffness: E = 1.3ell, nu = 0.34

*agnd_2

physical_dimensions:

thickness: zmin = 68000,

zmax = 68600

material_properties:

type: LIM

thermal_cond: 398

thermal_expand: 1.7e-5

type: LIEM

stiffness: E = 1.3ell, nu = 0.34

*gnd_3
physical_dimensions:
thickness: zmin = 71600,
zmax = 72200
material_properties:
type: LIM
thermal_cond: 398
thermal_expand: 1.7e-5
type: LIEM
stiffness: E = 1.3ell, nu = 0.34
boundary._condition:
heat_trans: 1, 10, 70

*vdd

physical_dimensions:

thickness: zmin = 62500,

zmax = 65000

material_properties:

type: LIM

thermal_cond: 398

thermal_expand: 1.7e-5

type: LIEM

stiffness: E = 1.3ell, nu = 0.34

*substrate
physical_dimensions:
thickness: zmin = 0, zmax =

60000
material_properties:
type: LIM

thermal cond: 84
thermal_expand: 3.14e-6

type: LIEM

stiffness: E=1.92ell, nu = 0.22
boundary_condition:
heat_trans: 1, 1300, 25
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*via_ground

physical_dimensions:

thickness: zmin = 62500,

zmax = 72200

material_properties:

type: LIM

thermal_cond: 398

thermal_expand: 1.7e-5

type: LIEM

stiffness: E = 1.3ell, nu = 0.34

*via_power

physical_dimensions:

thickness: zmin = 65000,

zmax = 72200

material_ properties:

type: LIM

thermal_cond: 398

thermal_expand: 1.7e-5

type: LIEM

stiffness: E = 1.3ell, nu = (0.34

*yia_contact
physical_dimensions:
thickness: zmin = 66800,
zmax = 69800
material_properties:
type: LIM
thermal_cond: 398
thermal_expand: 1.7e-5
type: LIEM

stiffness: E = 1.3ell, nu = 0.34

*signal_v

physical_dimensions:
thickness: zmin = 69800,

zmax = 70400

material_ properties:

type: LIM

thermal_cond: 398

thermal _expand: 1.7e-5

type: LIEM

stiffness: E = 1.3ell, nu = 0.34
layout_info:

min_wire_width: 20

min wire pitch: 40

*signal_h
physical_dimensions:
thickness: zmin = 66200,
zmax = 66800
material_properties:
type: LIM
thermal_ cond: 398
thermal_expand: 1.7e-5
type: LIEM
stiffness: E = 1.3ell, nu = 0.34
layout_info:
min _wire width: 20
min_wire_pitch: 40
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