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Abstract

A visual environment for defining and manipulating engineering analysis
information has been developed. This environment: (i) allows queries and
modifications of the topology and geometry that defines a geometric model
obtained from various geometric modeling systems, (ii) abstracts the modeler’s
functionality needed to associate analysis information, (iii) provides a
hierarchical attribute association model, and (iv) gives a graphical user interface
to both the geometric modeler abstraction and attribute management

system. Finally graphical issues relating to performance, portability and
flexibility of different workstation environments are discussed.



Section 1 Introduction

Today there exist many commercial modelers that are used to define the geometric domains
of engineered products. These packages can be classified into the following two groups:

1. A set of library routines which allow a programmer to construct a model and make inquires.
Examples of such libraries are SHAPES [1], Parasolid [2], and ACIS [3].

2. A modeling environment that provides an interactive graphical interface for model construc-
tion and an underlying set of geometric modeling routines. Examples of such environments
are Unigraphics [4] & CATIA [5]

The programming, user interfaces, and functionality of these modelers can vary greatly from
system to system. This variation in the interfaces makes it difficult for both users and pro-
grammers to be able to switch between different modeling systems as needed. There has been
work done to construct PDES/STEP [6], which is a standard common data description that is
modeler independent. However, access to the geometric data is not sufficient for more advanced
analysis frameworks which need to modify the geometry of the model for analysis, append
analysis attribute information, and generate numerical analysis discretizations. An abstraction of
a geometric model and allows the interrogation, analysis specification, and modification of the
model would provide an analyst or programmer a tool which is independent of any particular
modeler, thus making the transition from one modeler to the other relatively simple. A modeler
independent graphical user interface is also desirable to allow users to perform the operations
required for model modification and attribute specification. Without such an abstraction the
interface between modelers and analysis packages that use them can end up looking like figure
1, where each package has its own interface and much work must be done to port the system
to a different modeler. The abstraction, presented in this paper, simplifies the interface to the
model and the analysis atrributes as shown in figure 2.

The definition of an engineering analysis problem consists of the geometric domain and the
“analysis attributes”, consisting of loads, boundary conditions, material properties, and initial
conditions. The analysis attributes are best related to the model by associating them with
the topological entities in the model [7]. This can be done outside of the modeling package
with the information being stored in a database system [8][9]. However, in some cases, proper
specification of the analysis attributes may require additions and/or modifications of the geometric
model. Since many of the models are three dimensional, these modifications will also need to
be viewed in 3D along with the visualization of the attribute information itself. In addition, the
attributes typically have relations among themselves which need to be viewed and maintained.

This paper describes a modeler independent interface being implemented to address these
issues. In designing the interface to the modeler, an object-oriented approach is used that allows
the tight integration of both data, that represents the topological entities, and functionality, such
ag inaniries and modificatinn oaneration The ragnilfing ahofrantian 1c than manned 4 cneciBe
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modelers. The abstraction is also used in associating analysis attributes as well as designing
graphical interfaces.
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Figure 1. Combinatorics problem resulting from using different modelers and
separate attribute databases. Each package has its own interface to each modeler.

By using an object-oriented approach, an unified system that represents the various levels
of geometric models as well as the attribute information has been developed. This abstraction,
called the Attributed Geometric Model, is used by the analysis process, as well as by visual
interfaces (see figure 2).

Two user interfaces that work with the Attributed Geometric Model are discussed. The
first is the Model Graphical Interface which is a modeler independent user interface that allows
interaction with a geometric model. The interface provides basic 3D displaying controls such as
lighting, color selection, and filtering out unwanted geometry.

The second is the Attribute Graphical Interface which allows attribute specifica-
tion/modification through an intuitive graphical interface in which the user enters attributes via_

a set of visual widgets. These widgets provide initial syntax checking and can be specialized
to provide semantic checking. The current implementation uses 2D widgets for attribute
specification. With the integration of the 3D model visualizer, attributes can be visualized
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Figure 2. Unified object-oriented approach that provides a common interface to
both geometric and analysis information and eliminates the combinatorics problem.

relative to the geometric model. This includes visualizing the auxiliary geometry that maybe
associated with the attribute as well as the attribute itself.

The hierarchical relationship between attributes also needs to be visualized in order to allow
a user to modify association between collections of attributes. The current design is to view the
representation as a graph which represents the relations between attributes. Modifications to the
attribute relations can be made by directly modifying this graph-based representation.

The remainder of the paper describes the design of the complete system which includes the
abstractions of both the geometric model and analysis attributes, as well as, their graphical user
interfaces. Issues regarding hardware and software environments are also presented.

Section 2 System Design

The overall system is broken down into four parts: the geometric model abstraction, the
attribute abstraction, the model graphical interface, and the attribute graphical interface. The
first two parts are abstractions used to hide the implementation details of a particular modeler
and attributing system, and to provide a consistent programming interface. The second two parts
are user interfaces, that build on the abstractions, to allow users to interactively view and modify
model and attribute information.




Object-Oriented Model /Abstraction

The object-oriented abgfraction presents an unified view of an attributed geometric model
which allows a programmer to modify geometry/topology, and attribute information. In addition
the implementation of the abstraction for a given modeler may also increase the functionality
of the modeler. An example of this is enhancing a 2-manifold modeler to be able to represent
non-manifold models /.

In order to abstract the Attributed Geometric Model, both the geometric model, which is
maintained by the modelling environment, and the attribute database, which may be integrated
with the modeler or implemented by a set of external routines, must be abstracted as well as
their association with each other. The abstraction used for the modeler must be very general to
be able to encompass the functionality of any modeler that it is implemented for. For this reason
an abstraction based on the Radial-Edge Data Structure[10][11] is used. This representation has
been shown to be complete and sufficient for the representation of general non-manifold models.

For a complete description of the Radial-Edge Data Structure see references [10] and [11]. In
brief terms it is best described as a topological hierarchy consisting of regions (three dimensional
entities that are bounded by shells), shells (sets of faces that define a closed surface), faces (two
dimensional entities that are bounded by loops, loops (sets of edges that form closed curves),
edges (one dimensional entities that are bounded by vertices) and vertices (zero dimensional
entities). For the remainder of this paper the term “topent” will be used to refer to any one
of these topological entities.

The actual abstraction is done in terms of the topents that make up the model. There are
objects that represent the regions, shells, faces, loops, edges and vertices. There is also an object
that represents the model which acts as a container for the topent objects. The objects for the
topents and the model are the entire public interface for the model abstraction and completely
hide the modeler for which the interface has been implemented, as shown in Fig. 3.

The interface for the model and the topents is given below. These operators, especially the
geometric query operators, reflect a bias to the operators needed for automatic mesh generation,
as this is one of the first areas that the modeler abstraction is being used. The list of operators
is expanded as needed to fit other application areas.

1. Model Operators

a. Query

* Get_top_level() — returns a list of topents that represents the top level topology
(topents that are not connected to a higher dimension topent).

* Get_all_{ftopent_type} — returns a list of all topents in the model of that type. For
example, Get_all_vertices().

*  Get(topent_name) — returns the topent(s) that have the name “topent_name”.




Get_number_of_{topent_type} — returns the number of topents in the model of a
given type.

b. Modification

Add() — add a topent to the model

Remove() — remove a topent from the model

2. Topent Topological Operators

a. Query

Sub() — returns a list of topents that are used in the definition of that particular
topent. For example, shelll.sub() returns a list of faces that form shelll.

Sup() — creates a list of all topents that the given topent is used in the definition
of. For example, vertex1.sup() returns a list of edges that use vertex1.

Get_type() — returns the type of the topent.

Adjacent() — checks if one topent is adjacent to another, i.e. facel.adjacent(edgel)
checks if edgel is being used by facel.

b. Modification

Attach() — attach one topent to another. For example shelll.attach(facel) adds
facel to the list of faces that defines shelll.

Detach() — detach one topent from another.

3. Topent Geometric Operators

a. Query

Point evaluation function — Since all topents are associated with parameterized
geometry, the must be some way of calculating point evaluations. For example,
edgel(t0) would return a point that corresponds to edgel’s parametric function
evaluated at tO.

Closest_point() — Given a point in space, find the closest point on the given topent.
Normal() — Returns the normal space of a topent at a given point.

Tangent() — Returns the tangent space of a topent at a given point.

Tolerance() — Returns the modeler tolerance associated with a particular topent.

Range() — Returns the range of the topents parametric space.
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* Geomerty() — returns a geometric representation of the topent suitable for visual-
ization purposes.

b. Modification — This is only a partial list.
* Create() — create topents
* Delete() — delete topent
* Intersect() — return the intersection of two topents
*  Union() — return the union of two topents

*  Split() — split topent with another topent (intersect the two topents and separate the
target topent at the intersection)

* Imprint() — imprint topent on another topent (project one topent onto another of
equal or higher order and split at the boundary of the projection)

* Merge() — merge two topents into a single topent

Modeler Library

(Shapes, Parasolids, etc.)

Modeling
Related Functionality

All AGM Related
Functionality

Application

Topent Related Object
Functionality

Figure 3. Approach to the Attributed Geometric Model / modeler relationship problem

Implementation The amount of work that needs to be done to implement the interface for any
given modeler depends greatly on the capabilities of the modeler and on whether is it necessary
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to expand those capabilities. For a modeler that is capable of representing nonmanifold models,
the job is much more straightforward than for one that is not capable of such a representation
assuming one of the goals is to be able to represent nonmanifold models using that modeler.
Our initial implementation uses Shapes from XOX Corp. [1] as the modeler since it matches
up well to the abstraction that has been selected for the modeler. In this case it is often just a
matter of matching up application programming interface calls in Shapes to the corresponding
Attributed Geometric Model routines.

The next modeler that has been interfaced to the Attributed Geometric Model is Parasolid
from Shape Data [2]. The current version of Parasolid is not capable of representing nonmanifold
models. However, Parasolid has been used as a nonmanifold modeler by utilizing an interface
on top of Parasolid that keeps a Radial Edge representation of the topology of the model that is
independent of the representation stored by Parasolid itself.

Analysis Attribute Model Abstraction

An analysis attribute is any information in addition to the geometric model that is needed
to specify a particular problem for analysis [8]. Many attributes, such as loads and material
properties, are tensorial in nature. Other attributes may be best described using a character string.
Every model entity may have one or more attributes associated with it. Using this association
of the attributes with the geometric model and information which gives the classification of the
finite element mesh with respect to the geometric model (what entity of the model a mesh entity
is associated with), it is possible to determine which attributes apply to what entities in the finite
element mesh. This methodology has been found to be very powerful when dealing with an
adaptive finite element environment.

In addition to the association of the attributes to model entities, attribute information is also
grouped into a “part of” hierarchy consisting of the following classifications:

1. Case — a collection of one or more Groups, Sets or Attributes
2. Group — a collection of one or more Sets or Attributes

3. Set — a collection of Attributes of the same type

4. Attribute

Attribute groupings form acyclic directed graphs with cases at the root and individual attributes
at the leaves of the graph. In addition, the arcs in the graph may contain a multiplier that is
applied to all descendent nodes connected by that arc (Fig. 4).

The information stored in an attribute consists of a tensor, where each component may be
an arbitrary function, a list of associated topents, and an unique identifier. The tensor may also
have symmetry properties that reduce the number of independent components.

The proper evaluation of an attribute may require access to the definition of the geometry
of the topent that it is associated with. An example of this would be a load that is defined to
be normal to the surfaces on which it is applied. To evaluate the vector that represents this load
requires finding the normal to the surface at each point it is to be evaluated at.




Figure 4. Sample Attribute directed acyclic graph

In some cases it may be necessary to modify the topology of the geometric model to properly

reflect the application of an attribute. An example of this situation is when an essential boundary
condition is applied over a portion of a topent. In this case, to properly analyze the situation
it is necessary that the boundaries of the elements that descretize the topent properly reflect the
boundary of the essential boundary condition. The only way to ensure this is to split the topent
along the boundary of where the attribute is applied.

Both of ‘the cases above require access to the modelers functionality to properly deal with

analysis attributes. It is easy to see how a generic interface to the modelers functionality reduces
the effort of implementing such a functionality with multiple modelers.

The abstraction of the attribute database is relatively straight forward. Attribute entities (or

atents), such as cases, groups, sets, and attributes, have interface calls which include:
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Add(atent, multiplier) — adds an atent and zero or more multipliers to a grouping. For
example casel.add(attributel, multl)

Remove(atent) — removes an atent from a grouping

Get_children() — get the children atents along with their multipliers.
Get_parents() — get the parent atents along with their multipliers.
Add(topent) — adds a topent to an attribute

Remove(topent) — removes a topent fromﬂan attribute

Evaluate() —returns the evaluated tensor which describes that attribute at a particular location
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Figure 5. Approach to the Attributed Geometric Model / attribute relationship problem

Model Graphical Interface

Some modelers are only accessible via a routine library and do not provide direct visual
feedback to the user. Other environments provide graphical interfaces; however, they tend
not to provide a uniform “look & feel” across different modelers. By providing a “modeler
independent” 3D graphical user interface, users are able to view and interact with models without
the need to learn multiple systems. In addition, when the system is “integrated” with the Attribute
Graphical Interface, discussed in the next section, users are able to select topological entities in
3D and inspect the associated attributes as well as select attributes and examine the associated
topological elements. 4

The Model Graphical Interface provides a means of spatially viewing the geometric represen-
tation of the model. Based on the degree of 3D graphics acceleration available on the workstation,
the types of renderings produced by the Model Graphical Interface include the following:

1. Wireframe
2. Gouraud shaded surfaces [12]

3. Texture-mapped surfaces [13]

Texture mapping is a rendering technique that visualizes additional information associated with
surface geometry and is useful when visualizing attribute information. For example, a pressure
distribution can be use to texture a surface.

In addition to producing smooth shaded, hidden surface/hidden line images, the Model
Graphical Interface also provides a more realistic visualization of the model in terms of depth.
perception by providing stereo viewing. Stereoscopic viewing involves rendering two different
images which correspond to the different views seen by the right and left eye of the viewer [14].
These images are presented to the viewer using a device that allows each eye to see the image
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created for it. The device currently being used is a liquid shutter system that alternately “black-
out” one of the eyes, and is sychronized with the display’s refresh rate. The speed at which this
done is fast enough to produce images with no perceived flicker. The two images are then fused
by the viewer’s cognitive system into a spatially perceived 3D scene. When used in conjunction
with a head tracking system, the viewer has the illusion of a solid 3D object suspended in space.

The Model Graphical Interface can render surfaces, curves, and points. The mechanism
used to extract a topent’s geometry to be visualized is via the Geometry() member function.
Traditionally in the case of curve and surface geometry, the modeler would generate a discretized
first order approximation (polylines and polygons). Current graphics libraries often contain higher
order primitives such as non-uniform rational B-Spline (NURBS) curves and surfaces [15], as
well as, quadrilateral and triangular meshes [16][17][18][19]. The Model Graphical Interface
has been designed to make use of these higher-order primitives by passing them directly to the
graphics engine when appropriate. These primitives allow the application to exactly specify (or
at least better approximate) the geometry. In addition, the use of these higher-level primitives
can dramatically improve the time required to visualize the geometry. For example, to transform
a bi-cubic surface requires the transformation of only 16 control points instead of 100 triangles
typically used to approximate it for display by polygons. In addition, some of these primitives are
accelerated in hardware. For example, almost all 3D accelerators are very efficient at processing
triangle strips, and some of the latest accelerators such as SUN Microsystems’ ZX [20] can
process NURBS curves and surfaces in hardware.

In terms of the user interface, the Model Graphical Interface provides the following:

1. The ability to interactively change a viewer’s position and orientation in space as well as
allowing multiple views. The mechanisms of specifying the view include:

a. A virtual trackball to specify the orientation of the viewer [21].

b. Use of a 6D tracking system that can determine the position and orientation of the
user’s head [22].

c. Selecting specific topents and tell the system to “look at them” [23].

2. Control over several light sources to provide better spatial perception as well as obtaining
a better feel for the shape of the geometry.

3. The ability to specify color / optical (such as shininess) attributes to different topents,
including back-facing attributes.

4. The ability to control transparency of topents. This could is useful when dealing with model
that have internal structure such as regions.

5. The ability to hide different topents in order to view internal geometric structure.
6. In addition to the original model geometry, the Model Graphical Interface is able to display

the following representations:
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a. Augmented geometry that results from the application of different cases of analysis
attributes.
b. Simplified or idealized geometry

7. Control topent selection based on the following criteria:

Spatially

Name of the topent

Type of the topent

Association with another topent.

o oo

8. An interface to model modification functions such as solid modeling intersection and union
operators.

9. A graph-based representation of the model’s topology and allow selection / modification
operations by interacting with the graph.

10. A textual representation of the model using 2D window-based widgets.

The Model Graphical Interface provides the user with backface functionality in order to
better distinguish the orientation of faces and shells. In terms of a polygon, the backface refers
to the side of the polygon in which the surface normal points away from the viewer. By allowing
the backface to have different properties from the frontface (the side whose surface normal points
towards the viewer), the user can determine relative orientation. It can also be used to determine
inconsistencies in the specification of the geometry. In addition, the user can remove all pieces
of geometry that are currently backfacing. This functionality is referred to as backface culling
[16] and in the case of viewing closed surface objects, this can increase system performance
dramatically.

Backface Culling is one way of reducing the load placed on the graphics subsystem and
can be very important when dealing with lower-end systems. In order to further reduce
graphics complexity the Model Graphical Interface provides alternative representations of the
geometric model such as a graph-based representation of the model’s topology as well as a
textual representation. In addition to being less graphics intensive, the textual form can be more
intuitive in terms of modifying model information. For example, it may be much easier to type
in a vertex’s coordinates than it is to try to precisely pick it with the mouse.

Besides efficiency, another important issue is how topents can be selected by the user. The
most intuitive method is spatially by either selecting a particular topent or by defining a region
in space and thereby selecting all topents that lie within that region. Since topents are spatially
connected, it may be very difficult to select a particular topent without accidently choosing it’s
spatially neighbor. For example, how does a user select a vertex without choosing the edge or
face that is connected to it. The solution used in the Model Graphical Interface is to provide
filtering in the selection process. Topents can be filtered out based on their name, type, or
association with another topent. For example, a user can specify that all topents associated with
the named “Regionl” are not selectable. In addition to spatial selection, topents can be selected
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based on their name. This mechanism has been extended so that users can specify text patterns
which can include “wildcards” in order to select several topents at the same time. A user can
also select topents based on topological associativity. For example, a user can select all vertices
that are associated with a particular face. Finally, a user can select topents via their association
with attribute information by using the Attribute Graphical Interface.

Examples of Model Visualization The first commercial modeler that has been integrated
into the Attributed Geometric Model Abstraction has been the SHAPES modeler from XOX
Corporationf1]. Figure 6 shows a surface rendering of a SHAPES model of an oil platform that
was being viewed via the Model Graphical Interface. Figure 7 was the result of hiding all of the
faces of the model. This figure shows all of the edge contours of the model as well as the model
vertices. Figure 8 shows a surface rendering of a Parasolid model of an electrical part from PDA.

Figure 6. Model Graphical Interface display of a model of an oil platform using the
SHAPES geometric modeler. Note the nonmanifold edges that represent the guy wires
and the non-manifold faces that represent the rudders. Model courtesy of XOX Corp.

To show the flexibility of both the model abstraction and the graphical interface, a finite
element modeler, which was developed by the Scientific Computation Research Center at RPI,
was also abstracted and visualized by the interface. Figures 9 and 10 show two different views
of a mechanical part.  The first figure shows all of the faces and vertices in the model, while
the second figure shows the edges of the model. Figure 11 shows a zoomed in view of the
part’s faces and edges.

One of the important features of the interface is the ease of which it can be customized. In
the case of the finite element modeler, functionality was added to view the octree representation
in addition to the model itself, as shown in figure 12. As in the case of viewing topents, the
display of the octree can be controlled interactively. In figure 13 only‘,the octree structure is
being viewed . As previously mentioned, the ability to control the display of the model is an
important feature of the interface, as shown in figure 14. This figure shows the same view as
figure 11, but also displays the octree model.

13




Figure 8. Model Graphical Interface display of an electrical part
using the Parasolid geometric modeler. Model supplied by PDA

Figure 9. Finite element mesh showing faces
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Figure 11. A magnified view of the part

Another importan the interface was

1 I8 O
the ability to the execute the interface from a program in order to use it as a debugging tool for
automatic mesh generation code. Figure 15 shows the control panel to the debugger version.
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Figure 14. A magnified view of the part and it’s associated octree.

The continue button, located in the upper right of the panel, allows the developer to transfer
control back to the program while still viewing the model.

Analysis Attribute Graphical Interface

The Attribute Graphical Interface serves as a graphical interface used to define, view, and
modify analysis attributes and their association with topents in the geometric model. = The
Attribute Graphical Interface also addresses the clustering of attributes into the hierarchical
structure. Unlike the Model Graphical Interface, the Attribute Graphical Interface involves more
use of 2D visualization techniques such as icons and text since the information tends to be
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Figure 15. Mesh Debugger Version of the Model Graphical
Interface’s Main Control Panel (for high performance 3D platforms)

more mathematical or relation oriented. However, the attribute/topent relationship as well as
physical ramifications of the attribute do have spatial components that need to be visualized in
3D. In those cases, there is less distinction between the Model Graphical Interface and Attribute
Graphical Interface.

As with the Model Graphical Interface, one of the most important issues is controlling the
selection process. In the case of attributes, one approach to doing this is via a list, see figure
16. Since the number of choices may be very large, filtering mechanisms had been added to
help structure the information. For example, the choice list can be filtered based on the type of
attribute entity (atent) or the specific type of an attribute. While building attribute hierarchies,
atents will not always be “properly associated”, which refers to atents which do not have a case
as an ancestor and/or an attribute that is associated with a topent as a descendant. The Attribute
Graphical Interface can provide a list of such entities as well as what association is missing.
An atent can also be selected by entering it’s name or a pattern which then selects all atents
that match. Another way in which atents can be selected is via a graph representation of the
hierarchy with the nodes representing the atent and arcs showing the associativity (see figure
17). This form is very useful in changing atent associations. An atent can also be selected via
its relationship with another atent (see figure 18).  Finally, an attribute can be selected by it’s

association with a topent that has been selected via the Model Graphical Interface.

In addition to modifying an atent’s association via a graph representation, a user can change
the hierarchy via a selection panel as shown in figures 19 and 20. In this method, a user is
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Figure 16. Attribute Graphical Interface’s Main Attribute Manager Panel. The buttons
on the left side which control filtering based on type as well as association.

Figure 17. A graphical representation of an attribute hierarchy show all of the associations
between attributes:” A user can modify associations by changing the arcs between attributes.

presented with a list of possible children for a specific atent, as well as it’s current children list.
The user can then modify the multiplier values between the associations.
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Figure 18. Attribute Graphical Interface’s Attribute Collector
Panel (In this example, the collector is a Attribute Group)

A 42

Figure 19. Attribute Graphical Interface’s Attribute Collector Panel for Editing Children

Figures 21 and 22 show similar panels for the creation and modification of attributes. Since
most of the analysis information is tensorial in nature, the user is presented with a spreadsheet
like interface for entering the distribution function for each element in the tensor. This method

can be very tedious when dealing with tensors whose order is greater than 2. For example,
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Figure 20. Attribute Graphical Interface’s Multiplier Editing Panel

Figure 21. Attribute Graphical Interface’s New Attribute Panel

Figure 22. Attribute Graphical Interface’s Attribute Editing Panel

a compliance tensor is 4" order which results in 81 entries (assuming than the space is 3
dimensional). Fortunately many tensors can be completely defined by a reduced set of parameters
due to symmetry. For example, liner isotropic material, which is a 4™ order tensor, can be
completely defined by specifying the Young’s Modulus and Poisson’s Ratio. The Attribute
Graphical Interface allows designers to add these specialized types of attributes that can result
in simplified attribute specification as well as providing semantic checking such as specifying
bounds on an entry’s value.
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In addition to textual and 2D iconic representations of attribute information, the Attribute
Graphical Interface, in conjunction with the Model Graphical Interface, can visualize the
information in the same space as the geometric model. For example, 3D first order tensors,
such as forces, can be visualized using 3D arrow glyphs, while scalar fields such as temperature
can be texture mapped onto the surface of the model.

Integrating the Analysis Process

By having the modeler and attribute abstraction provided by the Attributed Geometric Model
available it is more straight forward to provide adaptive procedures access to the geometry based
problem definition information required for properly updating the discrete models as they are
adaptively enriched. Specifying attributes on a model in the manner described here, as opposed
to specifying them on a finite element mesh, allows everything after the specification of the
problem to be solved, to obtaining the solution to a prespecified accuracy to be automated.
Steps such as creation of an analysis model, where the geometry may be an idealization of the
actual geometry, generation of a finite element mesh, running an analysis, and refinement of both
the mesh and the model idealizations based on error estimates, can all be integrated together
and be done automatically.

Section 3 Hardware/Software Environments

The previous sections have discussed the design and functionality of the abstraction of the
Attributed Geometric Model, as well as the graphical interfaces, that allow users to visually
interact with it. Since the graphical interfaces are designed to be interactive, the graphics
capabilities of the workstation are extremely important and may force the deactivation of certain
functionality. For example, not all workstations are capable of stereoscopic displays. This
section discusses the types of hardware platforms that the graphical interfaces are design to run
on as well as trade-offs in terms of functionality. In addition, the types of graphics environments
that were available for implementing the graphical interfaces are addressed.

Hardware Environments

The Model Graphical Interface and Attribute Graphical Interface are designed to run on a
variety of UNIX platforms independent of their 3D graphics capabilities, which include rendering
speed, and special graphics functionalities such as transparency and texture mapping. Though
3D graphics acceleration is preferable it is not a requirement. As a result of using a “2D”
system, some of the more advance visual capabilities (such as interactively viewing smooth
shaded geometry) may not be available. The reason for supporting the 2D platforms is due to
the number of these types of workstations that exist in the engineering environment. As the cost
of 3D accelerators continues to drop and PEX-stations (graphics terminals that have hardware
to support PEX [19], a 3D extension to the X windowing system) become more available, it is
expected that within the next couple years, the typical workstation will have basic 3D support
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such as built in hidden line/hidden surface support in hardware. The major issue that results
from support a range of graphics workstations is maintaining a level of system response time
that will not frustrate the user. In order to do this, the interfaces need to determine the type of
3D acceleration that is available and customize themselves in the following manner:

1.

Remove functionality that is not supported on that specific platform. For example, stereo
viewing requires a head tracking system, stereo glasses, etc... If they do not exist on the
workstation, then all of the controls pertaining to it are removed or deactivated.

Changing the default behavior. For example, on systems that do not have any 3D accelerator,
the geometry is displayed using a wireframe model without hidden line / hidden surfacing
enabled. The behavior can also change based on the model complexity. For example, on
a 3D system that rendering at 30,000 triangles/sec., the default behavior maybe smooth
shaded geometry for model that have < 1,000 planar faces (assuming an update rate of 30
frames/sec) and wireframed geometry for more complicated models.

The breakdown of features on various platforms is as follows:

1.

“2D” Systems — no 3D accelerator (such as SPARC/GX)

a. Ability to enter/view attribute information via Attribute Graphical Interface.

b. Ability to view interactively wireframe representation of geometry and select topents
spatially from the wireframe and text labels.

c. Allow the user to view static smooth surface representation.

d. Ability to “overlay” analysis information onto surface geometry.

Basic 3D Systems — graphics accelerators which support hidden line/hidden surface and
have performance < 80,000 triangles/sec (such as SPARC/GS). The interfaces on these system
support all functionality supported in “2D” systems; however, the default is to view smooth
shaded geometry. The main restrictions on these systems are:

a. The lack of special features such as hardware supported transparency.
b. The limit to the model complexity that can be viewed as smooth shaded geometry (<
4,000 faces).

High Performance 3D Systems — graphics accelerators which support advance functionality
such as transparency and anti-aliasing [16][13] with a performance <= 600,000 triangles/sec
(such as SPARC/ZX and Indigo2 Extreme)

All functionality supported in Basic 3D Systems

b. Ability to view smooth surface representations of complex geometry (<= 30,000 trian-
gles).

c. Advanced viewing operations such as making topents transparent in order to see internal

detail.

&
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4. Advanced 3D Systems — graphics accelerators which support texture mapping and have
performance > 600,000 triangles/sec (such as Onyx Reality Engine2 [24])

a. All functionality supported in High Performance 3D Systems

b. Ability to deal with models which are represented by more than 30,000 triangles.

c. Ability to use more advanced visualization techniques for overlaying analysis information
onto the geometry.

Software Environments

The Model Graphical Interface and Attribute Graphical Interface were designed to be
platform independent in terms of the brand of workstation that can be used with the interfaces.
This is primarily a software environment issue concerning the graphics libraries that the interfaces
use.

2D Software Environments The Attribute Graphical Interface is implemented using X11 in
order that it will run both distributively and on the most number of platforms; however, a
decision had to be made regarding which library to use. The following is a list of libraries that
are generally available:

1. XLIB [25] — A set of C routines that directly manage the X11 protocol

2. MOTIF 1.2 Toolkit [26] — A C-based library that implements the MOTIF look & feel via
a set of X widgets

3. TCL/TK [27] — a language developed by the University of California that can be integrated
into an application by source code modification.

4. Interviews [28] — a C++ toolkit developed by Stanford
5. Fresco [29] — A C++ interface that is included with the current release of X11 (X11R6).

6. NextStep (or OpenStep) [16] — a C++ interface designed by Next Corporation

In addition to the above, the MOTIF 2.0 Toolkit which will include a C++ interface will be
available in the fourth quarter of 1994.

The major problem with using XLIB, MOTIF 1.2, or TCL is that these are C or C-like
systems that are designed to work well with structure-based designs but not necessarily with
designs using object-oriented languages such as C++. Interviews is a relatively old interface
that is being used in the design of Fresco and will be probably replaced by the new interface.
Interviews also has its own look and feel in terms of user interaction. The problem with Fresco
is that it currently lacks certain critical functionality such as menus. NextStep is currently
only available on a small number of platforms but will soon be available on several platforms
including SUNs (aka OpenStep). -

In the long term the software will support the MOTIF look & feel in order to be compliant to
the de facto standard as well as using a true C++ library in order to facilitate code development.
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Therefore, the Attribute Graphical Interface will be eventually implemented in either MOTIEF
2.0, Fresco, or possibly OpenStep; however, in order to have a working prototype, the initial
Attribute Graphical Interface is implemented in an interface library that was developed at RPI
called the Modular Interface Library Kit (MILK). MILK is a C++ interface toolkit built on top
of XView, which currently supports the OPENLOOK [30] look and feel, and currently runs on
SUN, IBM, and SGI platforms.

3D Software Environments In terms of available 3D graphics libraries that are currently
available, the list includes:

1. PHIGS[17] — ANSI/ISO Standard that includes a C interface

2. PEXLIB[19] — A set of C routines that directly manage the PEX protocol (3D extensions
to X)

3. GL[18] — a proprietary C library developed by SGI
4. Inventor[31] — a proprietary C++ library developed by SGI
5. XGL[32] — a proprietary C library developed by SUN.

The problem with using C-based routines for the 3D development are the same as those
for the 2D. One of the major requirements for the library is that it be dynamically extensible
and allow a designer to be able to add new primitives and new functionality. For example, the
Model Graphical Interface requires graphical primitives that can be associated with a topent’s
geometry that is produced via the Geometry member function call. The only commercial C++
library that is currently available is Inventor which currently only runs on SGIL.

The researchers at RPI have developed a C++ library called BAGEL which is written on top
of GL and XGL and runs on SUN, SGI, and IBM platforms. The current prototype of the Model
Graphical Interface is implemented using the BAGEL library. It should be possible to port the
library’s device driver to the PEXIlib platform and thus be able to develop on any PEX-based
machine such as the HP. In addition, the library should be ported to the new OPENGL library
developed by SGIL

Section 4 Closing Remarks

A modeler independent abstraction that encompasses the necessary functionality for querying
and manipulating a geometric model has been developed. Using this abstraction, and an
abstraction for the specification of analysis attributes, a system has been developed that allows
programmers to access model and attribute information in a consistent and intuitive manner. The
- initial implementation of the system has been done with the commercial modeler Shapes from
the XOX Corporation. In addition, graphical user interfaces have been implemented to allow
visualization of model and specification of analysis attribute information. The same system
was used to develop an interactive visual tool to view finite element meshes for the purpose of
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debugging automatic mesh generators. The graphical interfaces were designed to be platform
independent and to be usable on workstations with a large range of graphics performance.

Further work is being done to integrate other modelers into the system. This process is very
straightforward due to the object-oriented abstraction selected for the model.
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