PARALLEL PARTITIONING STRATEGIES FOR THE
ADAPTIVE SOLUTION OF CONSERVATION LAWS *

KAREN D. DEVINE?, JOSEPH E. FLAHERTY!, RAYMOND M. LOY! AND
STEPHEN R. WHEAT#

Abstract. We describe and examine the performance of adaptive methods for solv-
ing hyperbolic systems of conservation laws on massively parallel computers. The differ-
ential system is approximated by a discontinuous Galerkin finite element method with a
hierarchical Legendre piecewise polynomial basis for the spatial discretization. Fluxes at
element boundaries are computed by solving an approximate Riemann problem; a pro-
jection limiter is applied to keep the average solution monotone; time discretization is
performed by Runge-Kutta integration; and a p-refinement-based error estimate is used
as an enrichment indicator. Adaptive order (p-) and mesh {h-) refinement algorithms are

_presented and demonstrated. Using an element-based dynamic load balancing algorithm
called tiling and adaptive p-refinement, parallel efficiencies of over 60% are achieved on
a 1024-processor nCUBE/2 hypercube. We also demonstrate a fast, tree-based parallel
partitioning strategy for three-dimensional octree-structured meshes. This method pro-
duces partition quality comparable to recursive spectral bisection at a greatly reduced
cost. :

Key words. Adaptive methods, hyperbolic systems of conservation laws, massively
parallel computation, Galerkin finite element method, h-refinement, p-refinement, load
balancing, tiling; domain decomposition, octree-derived meshes.

AMS(MOS) subject classifications. 65M20, 65M50, 65M60.

1. Introduction. Adaptive finite difference and finite element meth-
ods, which automatically refine or coarsen meshes and vary the order
of accuracy of the numerical solution, offer greater robustness and com-
putational efficiency than traditional methods. High-order methods and
the combination of mesh refinement and order variation (hp-refinement)
have been shown to produce effective solution techniques for elliptic [7,28]
and parabolic [2,3,10,26] problems. With few exceptions [11,16], work on

* This research was supported by the U.S. Army Research Office Contract Number
DAALO03-91-G-0215 and DAALO3-89-C-0038 with the University of Minnesota Army
High Performance Computing Research Center (AHPCRC) and the DoD Shared Re-
source Center at the AHPCRC (Flaherty, Loy); Sandia National Laboratories, operated
for the U.S. Department of Energy under contract #DE-AC04-76DP00789 (Devine,
Wheat), and Research Agreement AD-9585 (Devine); a DARPA Research Assistantship
in Parallel Processing administered by the Institute for Advanced Computer Studies,
University of Maryland (Loy); and the Grumman Corporate Research Center, Grum-
man Corporation, Bethpage, NY 11714-3580 (Loy).

! Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY
12180-3590.

! Department of Computer Science and Scientific Computation Research Center,
Rensselaer-Polytechnic Institute, Troy,-NY -12180-3590; and Applied Mathemstics and
Mechanics Section, Benét Laboratories, Watervliet Arsenal,Watervliet, NY 12189.

§ Massively Parallel Computation Research Laboratory, Sandia National Laborato
ries, Albuquerque, NM 87185-1108.

The discontinuous Galerkin method is well suited to parallelization
on massively parallel computers. The computational stencil involves only
nearest-neighbor communication regardless of the degree of the piecewise
polynomial approximation and the spatial dimension. Additional storage is
needed for only one row of “ghost” elements along each edge of a processor’s
subdomain. Thus, the size of the problem scales easily with the number of
processors. Indeed, for two-dimensional problems on rectangular domains
with periodic boundary conditions, scaled parallel efficiencies in excess of
97% are achieved [11]. :

To achieve parallel efficiency with irregular structures, parallel finite
element methods often use static load balancing [19,21] as a precursor to
obtaining a finite element solution. Parallel efficiency degrades substan-
tially due to processor load imbalances with adaptive enrichment. Even
with the lower parallel efficiency, however, execution times for comparable
accuracy are shorter with adaptive methods than for fixed-order methods.

We have developed an adaptive p-refinement method for two-dimen-
sional systems that uses dynamic load balancing to adjust the processor
decomposition in the presence of nonuniform and changing work loads.
Tiling [37] is a modification of a dynamic load balancing technique devel-
oped by Leiss and Reddy [24] that balances work within overlapping pro-
cessor neighborhoods to achieve a global load balance. Work is migrated
from a processor to others within the same neighborhood. We demonstrate
the improved performance obtained from a combination of p-adaptivity and
parallel computation on several examples using a 1024-processor nCUBE/2
hypercube.

For three-dimensional problems with irregular grids of tetrahedral ele-
ments and adaptive h-refinement, we have developed a tree-based mesh par-
titioning technique that exploits the properties of tree-structured meshes.
The rich, hierarchical structure of these meshes allows them to be divided
into components along boundaries of the tree structure. Qur partitioning
technique is based on two tree traversals that (i) calculate the processing
costs of all subtrees of a node, and (i) form the partitions. Our method
Is inexpensive and, thus, has an advantage relative to other global par-
titioning techniques {21,23,27]. We demonstrate the performance of the
tree-based mesh partitioning technique on a variety of three-dimensional
meshes and discuss extension of the technique for parallel implementation
and dynamic load balancing. We present results, using a Thinking Ma-
chines CM-5 computer, for the adaptive h-refinement solutions of an Euler
fiow past a cone.

2. The Discontinuous Galerkin Method. Partition the domain
Q into polygonal elements Q;, 7 =1,2,...,J, and construct a weak form
of the problem by multiplying (1.1a) by a test function v € L%(Q;) and

3

In regions where the numerical solution is smooth, the discontinuous
Galerkin method produces the O(h?+1), h = maX=12,..4d,j=1,2,..,7(Az; j),
convergence expected in, e.g., L' for a p**-degree approximation [11,14].
To prevent spurious oscillations that develop near discontinuities with high-
order methods, we have developed a projection limiter that limits solution
moments [11,14,36]. Using a one-dimensional (d = 1) scalar problem and
the Legendre polynomial basis

(2.8) Ui(§,t) = Y ep(®)Pi(8)
i=0

as an illustration, the coefficient ¢jk 1s proportional to the k** moment M,
of Uj; ie.,

2k+1
k=0,1,....p~-1, 7=1,2,...,J.

1
2
29 Mje = / U6 DPUO & = e,

Thus, to keep M, monotone, we must keep c¢;x monotone on neighboring
elements, which we do by specifying

(2k + 1)Cj,k+1 =

(2.10a) minmod((2k + 1)¢; k41, Ci41,k — Cj ks €k = Cjm1.k)s
where

minmod(a, b, ¢) =

(2.10b) {Bi,gn(a)min(lal,}bl,lcl), it sign(a) = sign(s) = sign(c)

The limiter (2.10) is applied adaptively. First, the highest-order coeffi-
cient ¢;p is limited. Then the limiter is applied to successively lower-order
coefficients whenever the next higher coefficient on the interval has been
changed by the limiting. The higher-order coefficients are re-limited using
* the updated low-order coefficients when necessary. In this way, the limit-
ing is applied only where it is needed, and accuracy is retained in smooth
regions. For two- and three-dimensional problems, the one-dimensional
limiter is applied in the direction n normal to 0Q;.

For vector systems, the scalar limiting is applied to the characteristic
fields of the system [13]. The diagonalizing matrices T(u) and T 1(u)
_(consisting of the right and left eigenvectors of the Jacobian fn,) are eval-

uated using the average values of Uy 5 =12,...,J,on 2;; the scalar
limiting is applied to each field of the characteristic vector; and the result
1s transformed back to physical space by post-multiplication by T~1(U;).

6

as ¢ increases. Then, for a two-dimensional approximation using a basis of
tensor products of Legendre polynomials on rectangular elements,

¢;11(t) P1(§) Pi(n)
+¢j10(t) Pi(€) Po(n)
+¢j01 (1) Po(€) Pi(n), if p=0

(3-4¢) K;(&n,0) = 241,041 () Rp41(€) By (1)
+Z(cjk,p+1(t)Pk (§)Rp41(n)

k=0
+65,p+1,8 (1) Rp11(€) Pe(n)), if p>0.

To compute K (x, t), let ﬁj =U;+K;,j=1,2,...,J substitute f]j into
(2.3), and solve for the coefficients of K;(x,t) with U; fixed.

To compute Ej; using (3.4), we solve 2p + 3 additional ordinary dif-
ferential equations in two dimensions; compared to an additional (p+2)*?
differential equations required for (3.3). The movement of the superconver-
gence points from the Legendre points at ¢t = 0 toward the Radau points
for t > 0 is gradual, occurring over several time steps [11]. Thus, the
effectiveness of the estimate improves as the computation progresses.

After each time step, we compute F;,7=12,...,J, and increase the
polynomial degree of U; by one if E; > TOL. The solution U; and the
error estimate are recomputed on enriched elements, and further increases
of degree occur until £; < TOL on all elements.

We reduce the need for back-tracking by predicting the degree of the
approximation needed to satisfy the accuracy requirements during the next
time step. After a time step is accepted, if E; > Hpmaz TOL, Hpmar € (0,1],
we increase the degree of Uj(x,t + At) for the next time step. If E; <
HpinTOL, Hyin € [0,1), we decrease the degree of Uj;(x,t + At) for the
next time step.

EXAMPLE 1. We demonstrate the accuracy of the error’estimate (3.4)
in terms of its effectivity index -

_ Estimated Error

(3.5) ~ Actual Error

for the two-dimensional problem

(3.6a) Urtug+uy, =0, —l<ez,y<l, t>0,
with
(3.6b) Cu(e,y) = sin(rz)sin(ry), —-1<ez,y<l1,

and periodic boundary conditions. In Table 3.1, we show the actual errors
and effectivity indices with p = 0,1, and 2. Each time the mesh is refined,

8

the time step is halved, and the number of time steps is doubled. Effectivity
indices are near unity for the entire range of computation when p = 0. For
p =1 and 2, the error estimate improves as the mesh is refined since the
superconvergence points move closer to the Radau points after each time
step.

Number of Actual
Elements Error S]
p=20 16 x 16 2.66838e —~1 | 0.967
32 x 32 1.33946e¢ -1 | 0.969
64 x 64 | 6.70306e —2 | 0.973
128 x 128 | 3.35206e — 2| 0.976
256 x 256 | 1.67605e — 2 | 0.978
p=1 16 x 16 1.45948e — 2 | 0.540
32 x 32 4.21090e — 3 | 0.805
64 x 64 1.11300e—-3 | 0.975
128 x 128 | 2.79793e—4 | 1.000
256 x 256 | 6.99557e—5 | 1.000
p=2 16 x 16 6.41413e -4 | 0.557
32 x 32 9.68358e - 5 | 0.646
64 x 64 9.68224e—6 | 1.128
128 x 128 | 1.26721e—6 | 1.009
256 x 256 | 1.58712¢e —7 | 1.000

512 512 | 1.98384e—-8 | 1.000
TaBLE 3.1
Errors and effectivity indices © at t = 0.025 using (3.4) for Ezample 1.

EXAMPLE 2. Consider

(3.7a) ur+2u; +2uy =0, O<z,y<l, t>0,

with initial and Dirichlet boundary conditions specified so that the exact
solution is :

(3.7b) u(z, y, t) = %(1 - tanh(20z - 10y — 20t +5)), 0<z,y<1.

In Figure 3.1, we show the exact solution of (3.7) at time t = 0 and the
degrees generated on a adaptive 16 x 16-element mesh to satisfy the initial
data when TOL = 10-85,

We solve (3.7) by both fixed-order and adaptive p-refinement methods
on 0.<.t < 0.1, In Figure 3.2, we show the global Ll-error. versus the
CPU time for fixed-order methods with p = 0, 1, and 2 on 8 x 8, 16 x 16,
32 x 32, and 64 x 64-element meshes, and the p-adaptive method with
Hmaz = 0.9, Hpin = 0.1, and TOL ranging from 5 x 10~° to 5 x 10~* on

9

[P] T T T T "

0.01 + i

0.001 b
g
[

.. 0.0001 F 4

p=2
1e-05 P Adaptive p-refinement 1
13'06 i 1 - b 1
1 10 1 10000 100000
CPU Time

Fi1c. 3.2. Convergence of the adaptive p-refinement method and fized-order methods
with p = 0,1, and 2 for Ezample 2.

inter-processor boundary data, and processes the boundary data. A bal-
ancing phase restores load balance following a given number of computation
phases. Each balancing phase consists of the following operations:

1. Determine work loads. Each processor determines its work load
as the time to process its local data since the previous balancing
phase less the time to exchange inter-processor boundary data dur-
ing the computation phase. Neighborhood average work loads are
also calculated.

2. Determine processor work requests. FEach processor com-
pares its work load to the work load of the other processors in its
neighborhiood and determines those processors having loads greater
than its own. If any are found, it selects the one with the greatest
work load (ties are broken arbitrarily) and sends a request for work
to that processor. Each processor may send only one work request,
but a single processor may receive several work requests.

3. Select elements to satisfy work requests. Each processor pri-
oritizes the work requests it receives based on the request size, and
determines which elements to export to the requesting processor.
Elemental processing costs are used so that the minimum num-
ber of elements satisfying the work request are exported. (This
approach differs from Wheat [37], where the average cost-per-ele-
ment is used to determine the number of export elements). Details
of the selection algorithm follow.

4. Notify and transfer elements. Once elements to be exported

11

and one neighbor in some other processor (-2). Elements 6 and 9 share
the highest priority, but element 6 is selected because it has a greater work
load. Element 5 becomes eligible for export, but its priority is low since
1t has three local neighbors. The priorities are adjusted, and element 9 is
selected, making element 8 a candidate. The priorities are again updated,
and the selection process continues with elements 3 and 12 being selected.
Although the work request is not completely satisfied, no other elements
are exported, since the work loads of the elements with the highest priority,
5 and 8, are greater than the remaining work request.

ExaMPLE 3. We solve (3.7) with a fixed-order method (p=3)ona
32 x 32-element mesh and tiling on 16 processors of the nCUBE/2 hyper-
cube. In Figure 4.3 (left), we show the processor domain decomposition
after 20 time steps. The tiling algorithm redistributes the work so that pro-
cessors containing elements on the domain boundary have fewer elements
than those in the interior of the domain. The global error of the numerical
solution is 4.76766 x 10~3. The total processing time was reduced by 5.18%
from 128.86 seconds to 122.18 seconds by balancing once each time step.
The average/maximum processor work ratio without balancing is 0.858;
with balancing, it is 0.942. Parallel efficiency is increased from 90.80%
without balancing to 95.58% with tiling.

We then solve (3.7) using the adaptive p-refinement method on a
32 x 32-element mesh with TOL = 3.5 x 10~% and tiling on 16 proces-
sors. In Figure 4.3 (right), we show the processor domain decomposition
after 20 time steps. The shaded elements have higher-degree approxima-
tions and, thus, higher work loads. The tiling algorithm redistributes the
work so that processors with high-order elements have fewer elements than
those processors with low-order elements. The global error of the adaptive
solution is 4.44426 x 1073, less than the fixed-order method above. The
total processing time for the adaptive method was reduced 41.98% from
63.94 seconds to 37.10 seconds by balancing once each time step. The av-
erage/maximum processor work ratio without balancing is 0.362, and with
balancing, it is 0.695. Parallel efficiency is increased from 35.10% without
balancing to 60.51% with tiling.

EXAMPLE 4. We solve (3.7) for 225 time steps on all 1024 processors of
the nCUBE/2 without balancing and with balancing once each time step.
A fixed-order method with p = 2 produces a solution with global error
6.40644 x 10~%. Using the tiling algorithm reduced the total execution
time 6.25% from 1601.96 seconds without balancing to 1501.90 seconds
with balancing (see Table 4.1). Parallel efficiency without balancing was
82.7%; with balancing, it was 88.2%. -

The adaptive p-refinement method produced a solution with global
error 6.32205 x 1072, comparable to the fixed-order solution. With bal-
ancing, the maximum computation time (not including communication or
balancing time) was reduced by 49.8% (see Table 4.1). The irregular sub-
domain boundaries created by the tiling algorithm increased the average

13

Br=1 BWp=2

F1c. 4.3. Processor domain decompositions after 20 time steps for Example 3 using
fized-order (left) and adaptive order (right) methods. Dark lines represent processor
subdomain boundaries.

communication time by 2.5%. Despite the extra communication time and
the load balancing time, however, we see a 36.3% improvement in the total
execution time.

In Figure 4.4, we show the maximum processing costs per time step, in-
cluding the computation and balancing times, for the adaptive p-refinement
method. The dashed and solid lines represent the maximum cost without
and with balancing, respectively. The balanced computation’s maximum
cost per time step is significantly lower than without balancing. The spikes
in both curves occur when the error tolerance was not satisfied on some
elements and the adaptive p-refinement method back-tracked to compute
a more accurate solution. In Figure 4.5, we show the cumulative maxi-
mum processing times with and without balancing. The immediate and
sustained improvement of the application’s performance is shown. A

15

Fixed-Order (p=2) Adaptive p-refinement
Global Error: 0.06406 | Global Error: 0.06322
Without With Without With
Tiling Tiling Tiling Tiling
Total Execution
Time (seconds) 1601.96 1501.90 858.50 546.75
Max. Computation
Time (seconds) 1549.77 1429.24 782.93 393.32
Average/Maximum
Work Ratio 0.855 0.927 0.427 0.851
Avg. Communication
Time (seconds) 59.09 59.09 70.85 72.65
Max. Balancing '
Time (seconds) 0.0 20.88 0.0 23.46
Parallel
Efficiency 82.7% 88.2% 38.98% 61.21%
TABLE 4.1

Performance comparison for Ezample 4 using fized-order and adaptive methods without
and with balancing ot each time step.

5. Three-Dimensional Mesh Partitioning. We describe a -tree-
based partitioning technique which utilizes the hierarchical structure of
octree-derived unstructured meshes to distribute elemental data across pro-
cessors’ memories while reducing the amount of data that must be ex-
changed between processors. An octree-based mesh generator [30] recur-
sively subdivides an embedding of the problem domain in a cubic universe
into eight octants wherever more resolution is required. Octant bisection
i1s initially based on geometric features of the domain but solution-based
criteria are introduced during an adaptive h-refinement process. Finite
element meshes of tetrahedral elements are generated from the octree by
subdividing terminal octants. ,

In Figure 5.1, we illustrate the tree and mesh for a two-dimensional
flow domain containing a small object. The roct of the tree represents
the entire domain (Figure 5.1c). The domain is recursively quartered until
an adequate resolution of the object is obtained (Figure 5.1a). A smooth
gradation is maintained by enforcing a one-level maximum difference be-
tween adjacent quadrants. After appropriate resolution is obtained, leaf
quadrants are subdivided into triangular elements that are pointed to by
leaf nodes of the tree (Figures 5.1b,c). The leaf quadrant containing the
object must be decomposed into triangles based on the geometry of the
_object boundary. Smoothing, which normally follows element creation, is

not shown. ‘

Our tree-based based partitioning algorithm creates a one-dimensional
ordering of the octree and divides it into nearly equal-sized segments based

17

subtrees are accumulated into successive partitions. The subtree rooted
at the visited node is added to the current partition if it fits. If it would
exceed the optimal size of the current partition, a decision must be made
as to whether it should be added, or whether the traversal should examine
it further. In the latter case, the traversal continues with the offspring of
the node and the subtree may be divided among two or more partitions.
The decision on whether to add the subtree or examine it further is based
on the amount by which the optimal partition size is exceeded. A small
excess may not justify an extensive search and may be used to balance
some other partition which is slightly undersized. When the excess at a
node is too large to justify inclusion in the current partition, and the node
Is either terminal or sufficiently deep in the tree, the partition is closed and
subsequent nodes are added to the next partition. -

This partitioning method requires storage for nonterminal nodes of the
tree which would normally not be necessary since they contain no solution
data. However, only minimal storage costs are incurred since information
is only required for tree connectivity and the cost metric. For this modest
investment, we have a partitioning algorithm that only requires O(J) serial
steps. ’

Partitions formed by this procedure do not necessarily form a single
connected component; however, the octree decomposition and the orderly
tree traversal tend to group neighboring subtrees together. Furthermore, a
single connected component is added to the partition whenever a subtree
fits within the partition.

A tree-partitioning example is illustrated in Figure 5.2. All subtree
costs are determined by a post order traversal of the tree. The partition
creation traversal starts at the root, Node 0 (Figure 5.2a). The node cur-
rently under investigation is identified by a double circle. The cost of the
root exceeds the optimal partition cost, so the traversal descends to Node
1 (Figure 5.2b). As shown, the cost of the subtree rooted at node 1 is
smaller than the optimal partition size and, hence, this subtree is added
to the current partition, p0, and the traversal continues at Node 2 (Fig-
ure 5.2c). The cost of the subtree rooted at Node 2 is too large to add
to p0, so the algorithm descends to an offspring of Node 2 (Figure 5.2d).
Assuming Node 4 fits in p0, the traversal continues with the next offspring
of Node 2 (Figure 5.2e). Node 5 is a terminal node whose cost is larger
than the available space in p0, so the decision is made to close p0 and begin
a new partition, p1. As shown (Figure 5.2f), Node 5 is very expensive, and
when the traversal is continued at Node 3, pl must be closed and work
continues with partition p2.

The tree-traversal partitioning algorithm may easily be extended for
_ use with a parallel adaptive environment. An initial partitioning-is- made
using the serial algorithm described above. As the numerical solution ad-
vances in time, h- and/or p-refinement introduces a load imbalance. To
obtain a new partitioning, let each processor compute its subtree costs us-

19

'FIG. 5.3. Ierative rebalancing of tree-based partitions. The subtree rooted at Node 4
(a) has been shifted from p0 to pi (8) to relieve a load imbalance. The new root of pI
is Node 2, the common parent of Nodes 4 and 5.

data movement is likely to be high and it would be desirable to amor-

tize this by tolerating small imbalances. A strategy to delay the need for

complete repartitioning would simply shift partition boundaries, thus, mi-

grating subtrees from a processor P, to its neighbors P,y and Ph4p. If,

for example, processor P, seeks to transfer cost m to Pn_1, it simply tra-

verses its subtrees accumulating their costs until it reaches m. The nodes

visited comprise a subtree which may be transferred to P,_; and which is -
contiguous with the subtrees in P,_;. Likewise, if P, desires to transfer

work to Pn41, the reverse traversal could remove a subtree from the trail-

ing part of P,. Consider, as an example, the subtree rooted at Node 4 of
Figure 5.3a and suppose that its cost has increased through refinement. In

Figure 5.3b, we show how the partition boundary may be shifted to move

the subtree rooted at Node 4 to partition pl. The amount of data to be

moved from processor to processor may utilize a relaxation algorithm or

the tiling procedure discussed in Section 4.

EXAMPLE 5. Performance results obtained by applying the tree-based
mesh partitioning algorithm to various three-dimensional irregular meshes
are presented in Figure 5.4. The meshes were generated by the Finite Oc-
tree mesh generator [30]. “Airplane” is a 182K-element mesh of the volume
surrounding a simple airplane [17]. “Copter” is a 242K-element mesh of
the body of a helicopter [17]. “Onera,” “Onera2,” and “Onera3” are 16K-,
70K-, and 293K-element meshes, respectively, of the space surrounding a
swept, untwisted Onera-M6 wing which has been refined to resolve a bow
shock [18]. “Cone” is a 139K-element mesh of the space around a cone hav-
ing a 10° half-angle and which also has been refined to resolve a shock.

The quality of a partition has been measured as the percent of element
faces lying on inter-partition boundaries relative to the total number of
faces of the mesh. Graphs in Figure 5.4 display these percentages as a
function of the optimal partition size. In all cases the cost variance between
the partitions is very small (about as small as the maximum cost of a leaf
octant). The proportion in Figure 5.4 is, in a sense, the total surface area

21

that partitions hold in common. Smaller ratios require less communication
relative to the amount of local data access. This measure is closely related
to the number of “cuts” that the partition creates [23,20,32]; however, we
have chosen to normalize by the total number of faces in order to compare
partition quality over a wide range of mesh sizes and number of partitions.

In large scale (top) the data of Figure 5.4 show the expected behaviour
that the interface proportion approaches zero as the partition size increases
(due to the number of partitions approaching unity). Conversely, as the
optimal partition size approaches unity (due to number of partitions ap-
proaching the number of elements), the interface proportion goes to unity.
Examination of the small scale (bottom) results reveals that the interface
proportion is less than 12% when the partition size exceeds 1000 for these
meshes. Interfaces drop to below 9% and 8%, respectively, for partition
sizes of 2000 and 3000. This performance is comparable to recursive spec-
tral bisection [22] but requires much less computation (O(J) as opposed to
O(J?) [27)). '

The best performance occurred with the helicopter mesh, which was
the only mesh of a solid object (as opposed to a flow field surrounding
an object). The solid can easily be cut along its major axis to produce
partitions with small inter-partition boundaries, and was included for gen-
erality. The lowest performance occurred with the cone mesh. This is most
likely due to the model and shock region being conically shaped, which
is somewhat at odds with the rectangular decomposition imposed by the
octree.

In general, inter-partition boundaries should be less than 10%, indi-
cating partition sizes of 2000 or more. This minimum partition size is not
an excessive constraint, since a typical three-dimensional problem employ-
ing a two million-element mesh being solved on a 1024-processor computer
would have about 2000 elements per processing element.

Another measure of partition quality is the percent of a partition’s ele-
ment faces lying on inter-partition boundaries relative to the total number
of faces in that partition. This number is, in a sense, the ratio of surface
area to volume of a partition. For our example meshes, this measure was
below 22% and 18%, respectively, for partition sizes of 1000 and 1500.

EXAMPLE 6. In Figure 5.5 we show partitions of several meshes from
Example 5. The partitions exhibit a blocked structure; however, several
partitions of the airplane mesh appear to be made up of disconnected com-
ponents. While this is possible, although unlikely, in this case the partitions
appear to be disconnected because the display is a two-dimensional slice
through the three-dimensional domain.

EXaMPLE 7. In Figure 5.6 we show the pressure contours of a Mach 2
Euler flow (1.1,2.6) past the “Cone” mesh of Example 5. The solution em-
ploys van Leer’s flux vector splitting (2.7) and was computed on a Thinking
Machines CM-5 with 128 processors. Several iterations of h-refinement were
required to yield this mesh. At each iteration, elements were marked with

23

Fic. 5.5. The airplane mesh, and three refinements of the Onera M6 wing mesh, all
divided into 32 partitions. Each color represents o different partition.

24

Fic. 5.6. Shock surface and pressure contours found when computing the Mach 2 flow
past a cone having o half-angle of 10° (fop). Partitions of the mesh into 16 (left) and
32 (right) pieces (bottom). Each color represents o different partition.

25

the desired tree level (either larger for refinement, or smaller for coarsen-
ing), and a new global mesh created to satisfy these constraints. The shock
surface and pressure contours are shown above; below are examples of how
the mesh may be partitioned for 16 and 32 processor machines. Each color
represents membership in.a different partition (and, hence, residence on a
different processor).

. 6. Conclusion. We have demonstrated the effectiveness of adaptive
methods for solving systems of hyperbolic conservation laws on massively
parallel computers. Using a discontinuous Galerkin finite element method
with projection limiting of moments of the solution within an element, we
can model problems with discontinuities sharply without spurious oscil-
lations. The discontinuous Galerkin method. has a small computational
stencil, enabling its efficient implementation on massively parallel comput-
ers. Adaptive p- and A-refinement methods provide faster convergence than
traditional methods, but their nonuniform work loads create load imbal-
ance on parallel computers, reducing the parallel efficiency of the methods.
We correct the load imbalance by using a dynamic load balancing technique
called tiling that produces a global balance by performing local balancing
within overlapping neighborhoods of processors. Using tiling and adaptive
p-refinement, computation of a two-dimensional example required approxi-
mately one-third as much time as a fixed-order computation with the same
global accuracy. In three dimensions, we have demonstrated the effec-
tiveness of a tree-based mesh partitioning algorithm for reducing parallel
communication costs. This algorithm performs almost as well as recursive
spectral bisection, but requires much less work to compute a partitioning.

In future work, we will combine the adaptive h- and p-refinement tech-
niques to obtain an adaptive Ap-refinement method that can optimize com-
putational effort in both smooth and discontinuous solution regions. We
will extend the tiling algorithm to incorporate the changing data structures
required for A-refinement, and experiment with load balancing strategies for
adaptive hp-refinement meshes. The tree-based partitioning algorithm will
be extended to operate in parallel, and we will experiment with dynamic

~ tebalancing strategies. : : :

7. Acknowledgements. We wish to thank Thinking Machines Cor-
_poration, and in particular Zdenék Johan and Kapil Mathur, for their as-
sistance with the CM-5. ‘

REFERENCES
(1] 'S. ApsErID, M. A1FFa, AND J. E. FLAHERTY, Adaptive Finite Element Methods
for Singularly Perturbed Elliptic and Parabolic Systems;submitted for publi-
cation, 1993.
[2] S. ADJERID AND J. E. FLAHERTY, Second-Order Finite Element Approximations
and A Posteriori Error Estimation for Two-Dimensional Parabolic Systems,
Numer. Math., Vol. 53, 1988, pp. 183-198.

26

and Octree Grids, Computers and Structures, Vol. 30, 1988, pp. 327-336.

[26] P. K. MOORE AND J. E. FLAHERTY, A Local Refinement Finite-Element Method
for One-Dimensional Parabolic Systems, SIAM J. Numer. Anal., Vol. 27, 1990,
pp. 1422-1444.

[27] A. PoTuEen, H. Sivon, aND K.-P. Lioy, Partitioning Sparse Matrices with Eigen-
vectors of Graphs, SIAM J. Matrix Analysis and Applications, Vol. 11, 1990,
pp. 430-452.

[28] E. RANK AND 1. BABUSKA, An Expert System for the Optimal Mesh Design in the
hp-Version of the Finite Element Method, Int. J. Numer. Meths. Engng., Vol.
24, 1987, pp. 2087-2106.

[29] H. N. RepDY, On Load Balancing, Ph.D. Dissertation, Dept. Comp. Sci., Univ. of
Houston, Houston, TX, 1989.

[30] M. S. SHEPHARD AND M. K. GEORGES, Automatic Three-Dimensional Mesh Gen-
eration by the Finite Octree Technique, Int. J. Numer. Meths. Engng., Vol.
32, No. 4, 1991, pp. 709-749.

[31] C.-W. Suu anD S. OsHeR, Efficient Implementation of Essentially Non-Oscillatory
Shock-Capturing Schemes, II, J. of Comput. Phys., Vol. 27, 1978, pp. 1~31.

[32] H. D. Smmon, Partitioning of Unstructured Problems for Parallel Processing, Com-
put. Systs. Engng., Vol. 2, 1991, pp. 135-148,

[33] P. K. Swesy, High Resolution Schemes Using Flux Limiters for Hyperbolic Con-
servation Laws, SIAM J. Numer. Anal., Vol. 21, 1984, pp. 995-1011.

[34] B. SzaBo anD 1. BaBUskaA, Introduction to Finite Element Analysis, J. Wiley and
Sons, New York, 1990.

{35] B. VAN LEER, Flux Vector Splitting for the Euler Equations, ICASE Report. No.
82-30, Inst. Comp. Applics. Sci. Engng., NASA Langley Research Center,
Hampton, 1982.

[36] B. VAN LeER, Towards the Ultimate Conservative Difference Scheme. IV. A New
Approach to Numerical Convection, J. Comput. Phys., Vol. 23, 1977, pp. 276—
299

[37] S. R. WHEAT, A Fine Grained Data Migration Approach to Application Load
Balancing on MP MIMD Machines, Ph.D. Dissertation, Dept. Comp. Sci.,
Univ. of New Mexico, Albuquerque, 1992.

[38] S. R. WHEAT, K. D. DEVINE, AND A. B. MACCABE, Experience with Automatic,
Dynamic Load Balancing and Adaptive Finite Element Computation, Proc.
Hawaii Int. Conf. System Sciences, 1994, to appear.

28

