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Abstract—A two-dimensional, Eulerian finite element formulation for modeling isotropic, elasto-
viscoplastic, steady-state deformations which is capable of predicting residual stresses is presented in this
paper. This problem is solved in two parts, namely, solution of the boundary value problem by a mixed
finite element formulation for the velocity and pressure fields, and integration of the constitutive equations
along pathlines across the domain. In this formulation, a discontinuous pressure field is used in the finite
element formulation to reduce the system of equations to a system for only the velocity field. A new
method for integrating the constitutive equations is also presented which improves the efficiency of the

algorithm.
NOMENCLATURE
B domain of interest
0B boundary of B
D°, D? elastic and plastic rates of deformation
E logarithmic elastic strain
F deformation gradient
Fe, ¥e elastic and plastic parts of the deformation
gradient
{F} force vector resulting from finite element dis-
cretization

[G], [K], [S] block matrices resulting from finite element
discretization

{P},{V}  vectors of nodal pressures and velocities

Y4 pressure part of Cauchy stress

s internal state variable

t traction on 0B

T Cauchy stress tensor

T deviatoric part of Cauchy stress

T work conjugate stress to the logarithmic strain

v velocity

Y stream function

B coefficient in relative velocity friction law

gr effective plastic rate of deformation

u Viscosity

Wiy shape functions for interpolating the velocity
and pressure fields

G effective stress

INTRODUCTION

Metal forming processes which are approximately
steady-state, such as rolling and drawing, are
efficiently modeled using a flow formulation in an
Eulerian reference frame. Generally these processes
involve large deformations, and the elastic part
of the deformation is very small compared to
the plastic part. Therefore, in many analyses,
the elastic part of the deformation is neglected."™
These analyses have been used successfully to

predict the flow field, the evolution of the material
properties, and the stresses in the deformation
zone.

However, in order to predict residual stresses, the
elastic part of the deformation must be included. In
Eulerian flow formulations, this is difficult because
the elastic part of the deformation is very small
relative to the viscoplastic part and the elastic be-
havior is rate independent while the viscoplastic
behavior is rate dependent. Two-dimensional, Eule-
rian, elasto-viscoplastic formulations neglecting
material evolution are presented in Refs 4-6, and
an elastic-plastic rate independent analysis with
linear strain hardening is reported in Ref. 7.
In Maniatty et al.,® a two-dimensional Eulerian
elasto-viscoplastic formulation using scalar internal
variable viscoplastic constitutive laws is given. The
work presented herein is an improved algorithm for
solving the problem described in Maniatty et al.® To
be more specific, the finite element solution pro-
cedure is modified by using a discontinuous pressure
field which allows the unknown nodal pressures to
be eliminated in a computationally efficient manner
from the formulation reducing the number of de-
grees of freedom to only the unknown nodal vel-
ocities. Furthermore, the mesh is adjusted to align
with the streamlines so that the constitutive
equations can be integrated from node to along the
mesh lines. These changes improve the efficiency of
the algorithm.

PROBLEM DEFINITION

Following the definition given in Maniatity et al.,?
consider a two-dimensional domain B with bound-
ary 0B through which material is flowing steadily.
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The usual boundary value problem for equilibrium
on B neglecting body forces is

divT=0 onB M

e v==5, on 0B, @

e (Tn)=17, on 3B, 3

e, (Tn) = B (t,)(v,, —v;) on 8B, @

where T is the Cauchy stress tensor, 7, is the velocity
prescribed on 68, 1, is the traction specified on 8B,;,
n is the unit normal vector on 9B, and e, forms a
two-dimensional orthonormal basis defined on 8B for
i = 1,2. Equation (4) represents a relative slip friction
law where the tangential traction ¢, = e, (Tn) is pro-
portional to the relative tangential velocity of the tool
vy, and the workpiece v; (e, in this case must be
associated with a direction tangent to the surface of
the workpiece). In the previous analysis,® the co-
efficient § was taken to be constant. In reality; one
would expect § to depend on the normal traction in
the interface 7,. In this work, B is taken to be linearly
dependent on 1,. Finally, the boundary conditions
must be specified on the entire boundary for each
degree  of freedom  without overiap, so
0B\ 0B, 0By, = 0B and 0B,ndB,; =@ for i=1,2
and j #k.

For kinematics, a multiplicative decomposition of
the deformation gradient into elastic and plastic
components as proposed be Lee® is used giving

F=FF detFP=1 detF°>0 &)
where F is the total deformation gradient and F* and
F? are the elastic and plastic deformation gradients,
respectively. The plastic deformation is assumed to be
isochoric as represented by the second equation

above. Following Boyce et al.,' it is possible to define -

the plastic spin tensor to be zero, so let
D? =sym(L?) =17 Wr=skw(LP)=0
L = frpr-! (6)

where D is the plastic rate of deformation tensor and
W is the plastic spin tensor.

The constitutive behavior for the elastic and plastic
part of the deformation must be specified as well. For
the elastic part, a linear, isotropic hyperelastic re-
lationship is used, so

T =2GE + Anr (Eo)I, 0]

where G and 1 are the Lamé parameters, E° is the
logarithmic elastic strain and T is the corresponding
work conjugate stress. A unified isotropic viscoplastic
flow theory is assumed for the plastic part of the
deformation such that

EP=[(G,50) T =ubr ®)
where

7T ©)

T=T-4DI=T+51 (10)
fl is the temperature and s is a scalar internal variable
which is related to the strength of the material. In this
work, the process is assumed to be isothermal so 6 is
held constant. Note that from Eqs (8) and ®
¢ =256/3¢". In addition, an evolution equation for
the state variable s is required, and this can be
expressed in the following form

§=g(d,s0). 1y
Now the problem is to solve Eqs (1)~(11) on the
domain B for the velocity, deformation, stress, and
state variable fields.

SOLUTION PROCEDURE

The solution procedure can be divided into two
parts, the solution of the equilibrium boundary value
problem defined in Egs (1)-(4) subject to the kin-
ematic and constitutive behavior given in Eqgs
(5)-(11), and the integration of the constitutive Eqs
(8)—(11) through the domain. Since there is coupling
between these two parts, an iterative solution
cedure is used.

In this procedure, first the boundary value problem
is solved for the velocity field using the finite element
method assuming values regarding the state of the
material throughout the domain. Then the velocity
field is used to determined the streamlines which
coincide with the particle pathlines for a steady-state
deformation, and the finite element mesh is adjusted
so that the element boundaries and nodes lie on the
streamlines. This is done because the constitutive
equations will be integrated along the pathlines
(streamlines). Furthermore, the velocity field can be
used to compute the velocity gradient which in turn
can then be integrated across the domain to obtain
the deformation gradient at the nodes. Finally, the
constitutive equations can be integrated along the
pathlines incrementing from node to node to update
the material state, i.e. the stress and the scalar internal
variable representing the hardness, at each node. The

pro-

procedure is repeated until convergence on the vel-

ocity, hardness, and stress fields. It should be noted
that the actual domain B of the problem is not known
precisely at the beginning of the problem because the:
shape of the free surfaces cannot be specified. The
shape of these free surfaces lie along streamlines, so
adjusting the mesh to coincide with the streamlines
automatically updates the geometry of the free sur-
faces.
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FINITE ELEMENT DISCRETIZATION

The finite element procedure gives two equations
for the velocity and pressure field which must be
satisfied simultaneously. One equation results from
equilibrium, and the other results from a compress-
ibility equation derived from the elastic constitutive
behavior. Briefly summarizing, the variational form
of the equilibrium boundary value problem given in
Egs (14) is

fTﬂf)dV—JpI-f)dV:f t-vdv (12)
B B 88

where D and ¥ are arbitrary kinematically admissible
variations in the rate of deformation and the velocity,
respectively. Maniatty et al.® show that

T = 2u*(D — D) (13)
where
ut =t D= symEFF) (14)
detF ’

which substituting into Eq. (12) gives an equation
relating the velocity and pressure fields. Values for u*
and D°® must be assumed for the first iteration, but are
later determined from the integration of the constitu-
tive equations. The determinant of the deformation
gradient (det F) is also assumed for the first iteration.
Both traction and friction boundary conditions, Egs
(3) and (4), are applied in the right-hand-side of Eq.
(12), and the term with the unknown velocity result-
ing from the friction law is moved to the left-hand-
side of the equation when substituting the finite
element interpolating functions.

A second equation relating the velocity and press-
ure fields is derived from the elastic constitutive
model. Specifically,

= 1
diov = 1r (B) = —p (152)

where K is the bulk modulus and where § = (detF)p,
50
b = (detF){(divyp + p). (15b)

Since the Eulerian reference is used here and the
deformation is assumed to be steady-state

SaESs
>

p= (15¢)

Substituting Egs (15b) and (15¢) into (15a) and
expressing in a variational form gives

j [divv + (ditP:)(divvp +6_p . v)]ﬁ dV =0. (16)
B K ox

The solution for the velocity and pressure fields
using Egs (12) and (16) can now be obtained by
using the finite element method. Let the
domain B be discretized into M finite elements,
and the velocity and pressure fields be interpolated by

(17

v[:Uizwl 121’2 fx—:l,n

14 =P51ﬁﬁ B = l’np

where ¥, and 5 are the element shape functions for
interpolating the velocity and pressure fields, and n
and 7, are the number of nodes for the velocity and
pressure fields, respectively. Summation is assumed
on repeated indices. Substituting Eqs (17) into (12)
and (16) gives the following system

K G v F
o Sl
where {V} and {P} are the assembled vectors of
nodal velocities and pressures. The exact form of
the matrices [K], [G] and [S] and of the force
vector {F} can be found in Maniatty et al®

It has been found that when finite element
interpolation functions are substituted into the above
equation for the velocity and pressure fields, the
coefficient matrix for the pressure field is close to
singular and causes stability problems in the solution.
This is actually not surprising. Consider a case where
Eq. (16) is to be used to solve for the pressure field
given a velocity field. A boundary condition would be
needed on the pressure fleld in order to obtain a
unique solution. Such a boundary condition may not
be known in the problems of interest here since the
pressure field actually should be determined by the
velocity and traction boundary conditions and the
resistance of the material to deformations. Further-
more, the pressure field depends very strongly on the
divergence of the velocity field since K is generally
very large, so small errors that normally result in the
velocity field, would generate very large errors in the
pressure field. In Maniatty et al® regularization
parameters were introduced into the resulting system
of equations to stabilize the solution. This resulted in
a system of equations for the velocity and pressure
field that was not sparse, and therefore required a
large number of computations.

In this formulation, a discontinuous pressure field
is used and Eq. (16) is satisfied approximately on each
element rather than on the whole domain. First, an
approximation to the pressure field is obtained by.
assuming that the material is approximately incom-
pressible and using a consistent penalty method like
that given in Engelman er al.'! which is well known.
Specifically Eq. (16) is replaced with

. P\
di — dV =90,
L( zvv+A>p

(18)
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where A is a penalty parameter. Then using a discon-
tinuous pressure field, this equation is substituted
back into the discretized form of (12) giving an
equation for the nodal velocities which is solved.
Then the nodal pressure for the incompressible case
{P™}¢ can be computed in each element e from the
velocity field. This will be used as a constraint in
solving the problem with elastic compressibility. To
be more specific, instead of global boundary con-
ditions on the global domain, a condition is applied
on each element that forces the pressure to be close
to the pressure computed for the incompressible case,
{P™}°. So the following function is minimized with
respect to the pressure field on each element holding
the velocity field fixed

(GI{V}* + [SF{P})(GIT{V} + [SI{P}*)
+a({Py— {Pm})({P} — {P"})

where « is regularization parameter enforcing {P}* to
be close to {P™}¢. Performing the minimization gives

(SFTISF + «[ID{P}* = —[SI[GF{V}® + a {P™}e,
(19)

Solving Eq. (19) for the pressure in each element,
assembling and substituting back in for the pressure
in the top row of Eq. (18) then gives

(K] + [GIA]'[STTIGT)){V}

= {f} —«[G][A]'{P"}, (20)

where
[A] = [S]'[S] + 1]

and where [A] can be inverted on the element level
since a discontinuous pressure field was used. This is
a significantly reduced system and is preferred since
the pressure will not be required until the end of the
solution and can be recovered using

{P} = —[AF[SFTGFT(V}* +alAF (P} (21)

on each element. It is reasonable to assume that the
pressure field is close to that for the incompressible
case since K'is large compared to the viscosity u*, so
the total deformation is relatively incompressible.

INTEGRATION OF CONSTITUTIVE EQUATIONS

The constitutive equations are integrated along the
pathlines of the particles flowing through the domain
so the pathlines must be determined. As mentioned
before, the pathlines coincide with the streamlines
since steady-state deformations are assumed. The

streamlines can be determined from the velocity field
by solving the streamline equation

VY -v=0 22)
for Y, the stream function which is constant along

any streamlines. The values of Y at the nodes are
determined by applying the finite element method to

J(VYW)YdV:O (23)

where Y is any kinematically admissible test function.
A boundary condition must be applied to the above
equation as well to obtain a unique solution. This is
taken as Y =y on the entrance and Y = constant
along one surface where the streamline is known (a
symmetric boundary, for example). The contours of
Y are the streamlines. The mesh is then adjusted so
that the streamlines follow inter-element boundaries
passing through the nodes. This has the added feature
of properly adjusting the free surfaces to coincide
with the streamlines.

The deformation field is the last quantity required
for integrating the constitutive equations along the
streamlines. There are several ways to compute the
deformation gradient on the domain, see for example
Agrawal and Dawson."” In this work, the velocity
gradient is computed at the Gauss quadrature points
from the velocity field, and then is interpolated at the
nodal points using second-order local smoothing.
Then ¥ = LF is integrated along the mesh lines from
node to node for F subject to the constraint F = F, on
the part of the boundary coinciding with the en-
trance. The fourth-order Runge-Kutta integration
algorithm given in Maniatty et al® is used for the
integration.

Now the constitutive equations can be integrated
along the streamlines following the integration for the
deformation gradient at each node. The integration
procedure given in Weber and Anand?® is used herein
for this purpose. A summary of the algorithm is given
in Appendix A.

In Maniatty e al® the mesh was held fixed every-
where, except at the free surfaces which were adjusted
to coincide with streamlines. The streamlines passing
through the quadrature points were found in each
element and traced back to the previous element or
the entrance, where the material state was already
known. Then the constitutive equations were inte-
grated along each streamline in the element from the
element boundary to the associated quadrature point.
The deformation gradient was determined along the
streamline by integrating the velocity gradient along
the streamline. The procedure starts at the elements
along the entrance, and then continues element by
element to the exit. Inaccuracies were introduced in
that algorithm by the evaluation of the velocity
gradient at locations other than the quadrature points
in the elements. Furthermore, many more calcu-
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Fig. 1. The final mesh geometry used in the rolling example.

lations were required in tracking the streamlines in
each element and integrating at all those points inside
each element. While in the new algorithm the ad-
ditional step of solving for the streamlines and updat-
ing the mesh is added, since the mesh generally does
not change significantly between iterations, it does
not need to be updated at each iteration, but only
periodically.

NUMERICAL EXAMPLE

The results from a rolling simulation are presented.
The final mesh geometry is shown in Fig. 1 where
symmetry is assumed about the x-axis, so only half
of the geometry is modeled. Nine-node elements are
used to interpolate the velocity field and four-node
elements are used to interpolate the pressure field.
Plane strain conditions are assumed. The roll radius
of 10 cm, the initial and final half-thicknesses of the
sheet are 2cm and 1.4 cm (actually, the exit half
thickness is slightly greater than 1.4 cm due to spring-
back), respectively, for a reduction of 30%, and the
roll velocity at the surface is 1 m s~!. The constitutive
model used is a hyperbolic sine law presented in
Brown et al'* for 1100-Aluminum at 400°C. The
initial value of the state variable is taken as
Sg =29.7MPa. The shear modulus is G =20.1 GPa
and the bulk modulus is K = 66.5 GPa. The friction
parameter S is taken to be a linear function of the
normal traction, B = (100 sm™!)z,. For the first five
iterations to start the algorithm, § was held constant
as B =10GPasm™! and after that it was evaluated
using the linear relation at each node in the interface.

The problem was solved using first a purely vis-
coplastic formulation that neglects the elastic part of
the deformation and then with the elasto—viscoplastic
formulation presented herein. In the first five iter-
ations of the elasto—viscoplastic analysis, the elastic
part of the deformation was neglected to get an initial
guess- for the velocity field. In iterations 5-27, the
solution for the elasto—viscoplastic case enforcing
incompressibility is computed with the consistent
penalty method, and then subsequent to iteration 27,
the complete elasto—viscoplastic analysis is used. The
parameter o normalized by K is taken to be
o /K =107*m?s!. The mesh is updated to follow the
streamlines every fourth iteration. The algorithm

converges with a tolerance of 0.05% on the velocities
and stresses in iteration 60, where the convergence
criteria is on the variance in the nodal velocities and
on the stresses at the quadrature points.

In Figs 2 and 3, the value of the internal state
variable s is plotted along the rolling direction from
the entrance to the exit for the streamlines along the
centerline and top of the workpiece, respectively.
There is very little difference between the viscoplastic
and elasto—viscoplastic cases which is expected since
the state variable does not depend on the elastic
deformations. The state variable evolves earlier along
the top streamline since deformation occurs there
earlier as the material is pulled into the roll by the
frictional forces.

In Figs 4 and 35, the deviatoric T';, component of
the stress is plotted along the centerline and top of the
workpiece. Only the deviatoric part is plotted to
subtract out the significant effects of the mean stress
in the roll gap. In both cases, T, is primarily tensile
in the roll gap as the material is elongated along the
tensile axis. As expected, after the material has exited
the roll gap, the stress in the purely viscoplastic case
drops to zero, while a residual stress remains in the
elasto—viscoplastic case. The residual stress in the
elasto—viscoplastic case continues to relax, but very
slowly, because in the viscoplastic constitutive model,
there is plastic flow whenever there is a non-zero
stress. Along the top surface, there is an oscillation in
the elasto-viscoplastic curve for T, as the material

80 1 i [ | I
—<o— elasto-viscoplastic
70- — % -viscoplastic =

60 s

roll gap

state variable, s (MPa)
w
(o]
1.
T

20 T T T T

x (cm)

Fig. 2. State variable, s, at the centerline (y = 0) plotted
along the rolling direction for the elasto—viscoplastic and
purely viscoplastic cases.
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80 ! { | | !
—o— elasto-viscoplastic
70~ — > -viscoplastic

60~
50+
40+ roll gap -

30 -

state variable, s (MPa)

20 T T T ¥
0 2 4 6 8 10 12

x {cm)
Fig. 3. State variable, s, at the top surface of the workpiece

plotted along the rolling direction for the elasto—viscoplastic
and purely viscoplastic cases.

exits the roll gap. This may be due to the sudden
decrease in the hydrostatic stress.

The predicted residual stresses in the rolling direc-
tion through the half thickness are plotted in Fig. 6.
No local smoothing was applied to the deviatoric
part of the stress (which was computed at the nodes
in the integration along the streamlines), and sec-
ond-order local smoothing was applied to compute
the nodal pressures from the discontinuous pressure
field computed in the finite element procedure. The
residual stresses are compressive along the centerline
and tensile on the surface. Similar patterns have
been observed experimentally, for example Bruce
et al®

An improved algorithm for solving Eulerian,
isotropic, elasto-viscoplastic, steady-state forming
processes has been presented. The efficiency of
the algorithm is improved by using a discontinuous
pressure field in the finite element implementation
and reducing the system of equations to just a
system for the velocity field. The integration algor-
ithm was also modified by adjusting the mesh

30 . ’ .
204 -
i
10 - 1 L
a 0 / ;
S o4 ! }
< S W >
X X>é~><x>( X
~ =104 X x -
roll gap “
-20 -
—o— elasto-viscoplastic
-304 — % -viscoplastic r
i T T i

0 2 4 6 8 10 12
x (cm)

Fig. 4. The deviatoric component T, of the Cauchy stress
at the centerline (y = 0) plotted along the rolling direction
for the elasto—viscoplastic and purely viscoplastic cases.

40 ; L ! L
304 X L
204 Y L

10+ 7
-10+4 roll gap V -

-20_ o
—— elasto-viscoplastic
30 e - viscoplastic
'40 T T T T T
0 2 4 6 8 10 12

x {(cm)

T’ (MPa)
o
X
xX
%
o
7
T

Fig. 5. The deviatoric component T/, of the Cauchy stress

at the top surface of the workpiece plotted along the rolling

direction for the elasto-viscoplastic and purely viscoplastic
cases.

boundaries to align with the streamlines so that
the constitutive equations can be integrated along
the mesh lines from node to node. This has
worked well in the few cases that the algorithm
has been tested with, but it is uncertain how well
it will work with more severe geometries such as
a square extrusion die. It should still work, but
if there is a deadmetal zone, something extra
may need to be done to handle it. In some test
cases, that are not presented here, the algorithm
was found to be approximately four times quicker
than that presented in Maniatty et al,® primarily
due to the reduction in the size of the system of
equations which needed to be solved in the finite
element procedure. To demonstrate the algorithm a
simulation of a rolling process was presented. The
residual stresses computed with the algorithm were
found to be consistent with what has been observed
in experiments.
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Fig. 6. The T, component of the residual stress plotted
through the thickness in the exit region.
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APPENDIX

The algonthm for integrating the constitutive equations
follows that given in Weber and Anand.” Summarizing
Compute a trial elastic deformation gradient:

Fe=F, F~.

Compute the corresponding trial elastic strain:
E¢ = InUs.

Compute the trial elastic stress:
T*, , =2GE: + A (rEL

Decompose the trial elastic stress into its deviatoric and
volumetric components:

T:‘-/i—l =T:‘+I+ﬁn+11'

Compute the modulus and direction of the trial elastic
stress:

3 T*/

a+1

3T,

N — 4
1

" 2 6n+1

Solve the following system simultaneously:

3GAY (Grit Sus1Ons) —

=k —
Oyt = Tn+l7

G +6,,=0

y=0.

— ¢ —AtolF 2]
180t i55ns Pne t)

s
Snel T on

Obtain the updated stress:

n+l
T;:+l"- Tn+l’
Jn+l

T2+1 =T;:+1 =Pl

Compute the Cauchy stress:
i
detF
Update the plastic deformation gradient:

F’ZH = exp(ArDf, OFY,

n+l \/8n+!

— K Tn+lFe l

n+l

e






