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Abstract

We present a parallel adaptive finite element flow solver for
rotary wing applications. The code adaptively refines and
derefines the discretization for accurately resolving the dif-
ferent features of the flow, such as shocks and wakes. The
code performs all the stages of the analysis —finite element
solution, error indication, mesh adaptation— in a parallel
MIMD environment making use of efficient scalable paral-
lel algorithms. The main features of all the building blocks
of the implemented approach are detailed and discussed in
the paper. The capabilities and performance characteristics
of the parallel automated adaptive procedure are demon-
strated with regard to subsonic and transonic compressible
flow problems. In particular, different hovering rotor prob-
lems are analyzed and the results are compared with exper-
imental data showing good agreement.

Introduction

The aim of this paper is to present an adaptive procedure
that the authors have recently developed for the automated
aerodynamic analysis of helicopter rotors. Adaptive analy-
ses on unstructured discretizations procedures represent an
effective and accurate method to address complex physical
phenomena, such as those that characterize rotorcraft sys-
tems. The problem of the accurate numerical simulation
of these phenomena has recently stimulated a vigorous re-
search effort in the scientific community, certainly prompted
by the fact that rotor-body interactions, transonic effects,
wake effects and blade stall, all have a major impact on the
performance, stability and noise characteristics of helicopter
rotors.

Such numerical simulations imply massive computa-
tions. Distributed memory parallel computers have recently
been successfully employed for large-scale analysis of fluid
flows [6][8]. These computers seem to offer the potential for
satisfying the demands of high performance as well as pro-
viding large memories.

The effective use of the computational power of high per-
formance MIMD machines requires the development of suit-
able techniques and implies a major restructuring of existing
codes. It is then perfectly clear that the cost effective use
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of this new generation of computers requires the develop-
ment of software tools of general applicability. In this work
we report the development of a parallel adaptive code for
rotating wing analysis that we have completed using a num-
ber of efficient software tools and algorithms for the parallel
automated adaptive solution of PDE’s on distributed mem-
ory computers that we and our Rensselaer colleagues have
recently developed [4][15].

One of the most important characteristics and distinguish-
ing features of the software here presented is that all the dif-
ferent phases of the analysis, namely the mesh partitioning,
the finite element solution, the error indication, the mesh
adaptation and the subsequent load balancing, are realized
without leaving the parallel environment. In contrast with
other procedures that perform only part of the analysis in
parallel, as for example just the finite element solution phase,
our approach has the advantage of making a better use of the
power of a distributed memory architecture, leading to an in-
tegrated software environment, reducing the i/o and avoid-
ing the bottlenecks that are always present when one tries to
solve certain phases of the analysis in serial, especially when
very large problems are addressed.

This integrated approach to the parallel adaptive solution
of PDE’s has lead us to select the message passing paradigm
as our method of choice for the parallel programming, This
is in contrast with the trend shown by some recent publi-
cations [6][7][8], where parallel finite element methodologies
on fixed meshes have been developed based on data parallel
techniques. In fact, we believe that the software development
is more easily accomplished in a message passing program-
ming model when one has to deal with adaptive strategies
and mesh modification techniques. With the idea of develop-
ing a uniform software environment, we have used portable
message passing protocols in each stage of the analysis. The
implementation has been carried out using the message pass-
ing library standard MPI and it has been tested on IBM SP-1
and SP-2 systems.

In the first section of this work we present a stabilized finite
element formulation which is valid for forward flight and for
hovering rotor problems, as well as for general unsteady and
steady compressible flow problems. The linear algebra is
solved by means of a scalable implementation of the standard
and matrix—free GMRES algorithms. Simple techniques are:
used for estimating regions of high error with the purpose of
driving the adaptive procedures.

The second section briefly reviews the parallel mesh data




structures that we have developed, the partitioning of the
discretized computational domain and the parallel adapta-
tion of the mesh.

A third section is devoted to the discussion of the treat-
ment of the far—field and symmetry boundary conditions for
a hovering rotor, which are fundamental for an accurate and
efficient analysis of this class of problems.

The paper is concluded by a section dedicated to the anal-
ysis of the results gathered during a number of numerical
experiments. The aim is here twofold: first, we show that
using an adaptive methodology we can accurately numer-
ically simulate complex engineering problems, such as the
development of shock waves on the blades of hovering rotors
in transonic conditions. Second, we address the problem of
giving measures of efficiency and scalability of the parallel
adaptive procedures that we have developed, making use of
a classical problem in transonic CFD.

Finite Element Formulation

The initial/boundary value problem can be expressed by
means of the Euler equations in quasi-linear form as
U,t-f—Ai-U,i:E, (i:l,...,nsd) (1)
plus well posed initial and boundary conditions. In equa-
tion (1), nsq is the number of space dimensions, while U =
p(1,u1,us,u3,e) are the conservative variables, 4; - U ; =
F; = pui(1l,u1,uz,us,€e) + p(0, 81, 82, 63i, u;) is the Euler
flux, and E = p(0, b1, b, bs, b;u; +r) is the source vector. In
the previous expressions, p is the density, u = (u1, us, us) is
the velocity vector, e is the total energy, p is the pressure,
6;; is the Kronecker delta, b = (by, b, bs) is the body force
vector per unit mass and r is the heat supply per unit mass.
The Time—Discontinuous Galerkin Least—Squares finite el-
ement method is used in this effort [12][13]. The TDG/LS
is developed starting from the symmetric form of the Eu-
ler equations expressed in terms of the entropy variables V'
and it is based upon the simultaneous discretization of the
space—time computational domain. A least-squares operator
and a discontinuity capturing term are added to the formu-
lation for improving stability without sacrificing accuracy.
The TDG/LS finite element method takes the form
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Integration is performed over the space-time slab @Q,,, the
evolving spatial domain D(t) of boundary I'(t) and the sur-
face P, described by I'(¢) as it traverses the time interval
I, =ltn,tnsal W and V" are suitable spaces for test
and trial functions, while 7 and v® are appropriate stabi-
lization parameters. Ay = OU/AV is the metric tensor of
the transformation from conservation to entropy variables.
Refer to [12] for additional details on the TDG/LS finite el-
ement formulation.

We have implemented two different three dimensional
space—time finite elements. The first is based on a con-
stant in time interpolation, and, having low order of time
accuracy but good stability properties, it is well suited for
solving steady problems using a local time stepping strategy.
The second makes use of linear—in—time basis functions and,
exhibiting a higher order temporal accuracy, is well suited
for addressing unsteady problems, such as for example for-
ward flight. In this cases, moving boundaries are handled by
means of the space-time deformed element technique [17].

For efficiently solving hover problems we have also devel-
oped a formulation starting from the Euler equations written
in a rotating frame. This allows to treat a hovering rotor as a
steady problem assuming that the unsteadiness in the wake
can be neglected, thus allowing the use of the less computa-
tionally expensive constant—in—time formulation.

Assuming that the axis of rotation is coincident with the
z axis and that the angular velocity is €2, the compressible
Euler equations in a rotating frame can be expressed in terms
of the absolute flow variables U as

U7¢+(Ai—vi1)~U’i:E—}-E(;, (3)
where v1 = —Qy, v, = Qz, v3 = 0 and E¢ can be defined as
0 0 0 0 0
0 0 2 00
Egq=CU=]0 -Q 0 0 0 |U,
0 0 0 00
6 0 0 0 0

or, in terms of entropy variables, Eq = CV, C = —pT C.
Clearly, by the nature of the gyroscopic terms, we have that
cT=—c.

We remark that the rotating frame formulation of the com-
pressible Euler equations in terms of absolute flow variables
is formally equivalent to a change of variables (modification
of the jacobians A; into A; — v;T) plus the introduction of a
source term Fg.

From the formulation expressed in equation (3), a
TDG/LS finite element formulation can be easily constructed
along the lines of equation (2). In an inertial frame, a defini-
tion of 7 that results in full upwinding on each mode of the
system [12] is given by
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and &; are the local element coordinates, g and & referring
to the time dimension. In a rotating frame, we redefine A,
as

1= (¢ 90y 98
A¢ = (C’ 8:EOAO’8;C,- " Oz

Solution to (4) can be obtained based upon the eigenproblem
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The eigenproblem is simplified by means of a similarity trans-
formation S that diagonalizes A; and A and symmetrizes
As [18]. However, the term arising from F¢ remains non—
symmetric. We have implemented both the non—-symmetric
and a symmetric form obtained by dropping the contribution
of Eg from (5) and have found that for the hovering rotors
that we have studied in our numerical simulations, the sym-
metric form gives results indistinguishable from those of the
non-symmetric form at a lower computational cost.

Discretization of the weak form implied by the TDG/LS
method leads to a non-linear discrete problem, which is
solved iteratively using a quasi-Newton approach. At each
Newton iteration, a non-symietric linear system of equa-
tions is solved using the GMRES algorithm. We have devel-
oped scalable parallel implementations of the preconditioned
GMRES algorithm and of its matrix—free version [6]. This
latter algorithm approximates the matrix—vector products
with a finite difference stencil with the advantage of avoid-
ing the storage of the tangent matrix, thus realizing a sub-
stantial saving of computer memory at the cost of additional
on-processor computations. Preconditioning is achieved by
means of a nodal block—diagonal scaling transformation.

In this work we have implemented a simple error indicator
based on the norm of the gradient of the flow variables and a
slightly more sophisticated one [10] for linear elements which
takes the basic form

_ h? | Second Derivative of ¥ |
"~ h | First Derivative of ¥ | +¢ | Mean Value of ¥ |’

(6)
where e; is the error indicated at node ¢, A is a mesh size
parameter, ¥ is the solution variable being monitored, ¢ is a
tuning parameter. The second derivative of ¥ is computed
using a variational recovery technique.

The edge values of the error indicator are computed by
averaging the corresponding two nodal values. These edge-
wise error indicator values are then used for driving the mesh
adaptation procedure. Appropriate thresholds are supplied
for the error values, so that the edge is refined if the error is
higher than the maximum threshold, while the edge is col-
lapsed if the error is the less than the minimum threshold.

Parallel Mesh Data Structures, Mesh Partitioning,
Load Balancing and Mesh Adaptive Procedures

€

The parallel mesh data structures developed at Rensselaer
for supporting the solution of PDE’s, the partitioning of the
discretized computational domain and the parallel adapta-
tion of it, have been discussed in [1}]2][4][15]. In the follow-
ing, we briefly mention the most important characteristics
and ideas behind the implemented approaches.

2 (A — vz'z:h))) :

The data structures used in a parallel adaptive finite el-
ement solver must provide fast query and update of par-
tition boundary information. Besides the queries, update
procedures must be available to the refinement/coarsening
and load balancing components of the parallel finite element
solver. Efficient computation requires updated entities be
inserted or deleted from the partition boundary within con-
stant time, or at most time proportional to the number of
adjacent processors. To implement these fast query and up-
date routines, we have made use of a topological entity hi-
erarchy data structure [1], which provides a two-way link
between the mesh entities of consecutive order, i.e. regions,
faces, edges and vertices. From this hierarchy, any entity ad-
jacency relationship can be derived by local traversals. The
entities on the partition boundary are augmented with links
which point to the location of the corresponding entity on the
neighboring processor. This data structure is shared by all
the building blocks of the code —flow solver, adaptation, bal-
ancing and partitioning algorithms— achieving in this way
a uniform software environment.

The parallel adaptive analysis begins with the partitioning
of the initial mesh which is performed using the orthogonal
RB algorithm or its variant, moment of inertia RB (IRB).
The whole mesh is first loaded into one processor and then
recursively split in half and sent to other processors in par-
allel. ‘

The mesh is then adapted based on the information pro-
vided by the error indication performed on the converged
finite element solution. The mesh adaptive algorithm com-
bines derefinement, refinement and triangulation optimiza-
tion using local retriangulations [5]. The derefinement step
is based on an edge collapsing technique. This approach
does not require storage of any history information and it is
therefore not dependent on the refinement procedure.

The implemented refinement algorithm makes use of sub-
division patterns. All possible subdivision patterns have
been considered and implemented to allow for speed and an-
nihilate possible over-refinement.

The adaptive procedure includes also a triangulation opti-
mization scheme, which is particularly important when the
snapping of refinement vertices on curved model boundaries
can potentially create invalid or poorly shaped elements. The
idea is to iteratively consider the local retriangulation of sim-
ple and well defined polyhedra.

As all the other building blocks of the code here discussed,
also the mesh adaptation algorithm has been completely par-
allelized [15].

In a parallel distributed memory environment, adaptivity
performed on the mesh in general destroys load balancing.
Therefore procedures are needed to redistribute the mesh in
order to achieve a balanced situation. With regard to this
problem, we have implemented two techniques. The first per-
forms a parallel repartition of an already distributed mesh
using the IRB algorithm [15]. The second is a load balanc-
ing scheme that iteratively migrates elements from heavily
loaded to less loaded processors [4]. To decide which proces-
sors should be involved in load migration, we use a heuristic
based on the Leiss and Reddy approach [9] of letting each




processor request load from a heavily loaded neighbor to even
out the load imbalance. Once the directions of load migration
have been calculated, the elements on the partition bound-
ary are migrated slice by slice, each slice of elements forming
a peeling of the partition boundary.

Both these techniques present interesting characteristics
and each one has its own advantages and disadvantages.
We are currently in the process of evaluating these two ap-
proaches, as well as implementing improved migration tech-
niques for achieving better quality of the partitions.

Boundary Conditions for Hovering Rotors

The imposition of the correct far—field boundary conditions
is a critical issue in the analysis of hovering rotors, when
one wants to give an accurate representation of the hover-
ing conditions within a finite computational domain. For
determining the inflow/outflow far—field conditions we have
adopted the methodology suggested by Srinivasan et al. [16],
where the 1-D helicopter momentum theory is used for de-
termining the outflow velocity due to the rotor wake system.
The inflow velocities at the remaining portion of the far—field
are determined considering the rotor as a point sink of mass,
for achieving conservation of mass and momentum within
the computational domain.

Another important condition that must be considered for
the efficient simulation of hovering rotors is the periodicity
of the flowfield. This allows to consider a reduced computa-
tional domain given by the angle of periodicity ¥ = 27 /n;,
np being the number of rotor blades.

The introduction of the periodicity conditions in the ro-
tating wing flow solver has been implemented treating them
as linear 2—point constraints applied via transformation as
part of the assembly process. This approach has the double
advantage of being easily parallelizable and of avoiding the
introduction of Lagrange multipliers. On the other hand, it
requires the mesh discretizations on the two symmetric faces
of the computational domain to match on a vertex by vertex
basis. Since this is not directly obtainable with the cur-
rently used unstructured mesh generator, a mesh matching
technique has been developed for appropriately modifying an
existing discretization.

In order to simplify the discussion, define one of the sym-
metric model faces as “master” and the other as “slave”. The
face discretization of the slave model face is deleted from the
mesh, together with all the mesh entities connected to it.
The mesh discretization of the master model face is then ro-
tated of the symmetry angle ¢ about the axis of rotation
and copied onto the slave model face, yielding the required
matching face discretizations. The matching procedure is
then completed filling the gap between the new discretized
slave face and the rest of the mesh using a face removal tech-
nique followed by smoothing and mesh optimization.

The imposition of the constraints can be formalized in the
following manner. Consider the partition of the unknowns
V' in internal (V;), master (V,;,) and slave (V), as

V= (VZ-, Vo, Vs).

The slave unknowns V', can be expressed symbolically as
functions of the master unknowns V,, as

Vi=G-V,

or, for the j—th master—slave pair of nodes as

Vi=Gi VI,
where
' 1 0 0
G=|0 R 0],
0 0 1

R being the rotation tensor associated with the rotation of
the symmetry angle @ about the axis of rotation.

The minimal set of unknowns V' = (V;, V) is related to
the redundant set V' by

V=IV=|0 I1|. V.
0 G

The unconstrained linearized discrete equations of motion

read
J AV =r,

where J is the tangent matrix and = is the residual vector.
Applying the transformation I' to the unconstrained system
yields the constrained reduced system

r'yr-Av =r7.r. (7)
Refer to [14] for implementational details of this technique.

Numerical Experiments

In this section we present results gathered during a number of
numerical experiments. The goal is to show the effectiveness
of the proposed parallel adaptive automated procedure, both
in terms of quality of the aerodynamic data and in terms of
numerical performance.

Subsonic and Transonic Hovering Rotors

Caradonna and Tung [3] have experimentally investigated
a model helicopter rotor in several subsonic and transonic
hovering conditions. These experimental tests have been ex-
tensively used for validating CFD codes for rotating wing
analysis. The experimental setup was composed of a two—
bladed rotor mounted on a tall column containing the drive
shaft. The blades had rectangular planform, square tips and
no twist or taper, made use of NACAO0012 airfoil sections
and had an aspect ratio equal to six.

Figure (1) shows the experimental and numerical values of
the pressure coeflicients at different span locations for three
subsonic test cases investigated by Caradonna and Tung,
namely . = 0° and My = 0.520, §. = 5° and M; = 0.434,
. = 8% and M; = 0.439. The agreement, with the experimen-
tal data is good at all locations, included the section close
to the tip. Only two pressure distributions are presented for
each case for space limitations, however similar correlation




with the experimental data was observed at all the avail-
able locations. Relatively crude meshes have been employed
for all the three test cases, with the coarsest mesh of only
101,000 tetrahedra being used for the . = 0° case, and the
finest of 152,867 tetrahedra for the 8, = 8° test problem.

Mt =0.520, Theta = 0 deg.
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Mt = 0.434, Theta = 5 deg.

Figure (2) shows the experimental and numerical values
of the pressure coefficients for a transonic case denoted by
¢ = 8° and M; = 0.877. The first two plots of Figure (2)
present the pressure distributions obtained using an initial
crude grid consisting of 142,193 tetrahedra. Three levels
of adaptivity were applied to this grid in order to obtain
a sharper resolution of the tip shock, yielding a final mesh
characterized by 262,556 tetrahedra. The pressure distribu-
tions obtained with the adapted grid are shown in the third
and fourth plots of the same picture. Note that the smear-
ing present in the first two plots and due to the numerical
viscosity introduced in the formulation with the purpose of
stabilizing it, has disappeared. Consistently with the nature
of the Euler equations, the shocks appear as jumps and are
resolved in only one or two elements. Note also the appear-
ance of the analytically predicted overshoot just aft of the
shock which is typical of the transonic Euler solutions.
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Figure 1: Computed and experimental pressure coeflicients
on the blade at different span locations, for the three subsonic
cases 0, = 0°, M; = 0.520; 8, = 5°, M; = 0.434; 6. = 8°,
M, = 0.439.

The analysis was performed on 32 processing nodes of an
IBM SP-2. Reduced integration was used for the interior ele-
ments for lowering the computational cost, while full integra-
tion was used at the boundary elements for better resolution
of the airloads, especially at the trailing edge of the blade.
The GMRES algorithm with block—diagonal preconditioning
was employed, yielding an average number of GMRES itera-
tions to convergence of about 10. The analysis was advanced
in time using one single Newton iteration per time step and a
local time stepping strategy denoted by CFL numbers rang-
ing from 10 at the beginning of the simulation to 20 towards
convergence, yielding a reduction in the energy norm of the
residual of almost four orders of magnitude in 50 to 60 time
steps. The symmetric form of the least—squares stabilization
was ernployed, and the discontinuity capturing operator was
not activated.
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Figure 2: Computed and experimental pressure coefficients
on the blade, at two different span locations close to the tip,
0. = 8%, M; = 0.877. Top two plots: initial coarse 142,193
tetrahedron grid. Bottom two plots: adapted (three levels)
final 262,556 tetrahedron grid.

The effect of the adaptation of the mesh on the resolution
of the shock is clearly demonstrated in Figure (3), where
the density isocontour plots at the upper tip surface are pre-
sented for the initial and adapted meshes. The effect noted
in Figure (2) can be more fully appreciated here.

The parallel adaptive analysis was conducted on 32 pro-
cessing nodes with the GMRES algorithm, using once again
reduced integration for the interior elements and full inte-
gration at the boundary elements. The symmetric form of
the least—squares stabilization was employed, together with
the discontinuity capturing term for improved shock confine-
ment. After partitioning of the initial coarse mesh using the
IRB algorithm, the simulation was performed for 60 implicit
time steps with CFL condition equal to 10 in the initial 20
steps and equal to 15 for the remaining steps. The results




Figure 3: Density isocontour plots on the upper surface of
the blade tip, 8, = 8%, M; = 0.877. At left: initial coarse
grid. At right: final adapted grid.

gathered at convergence were used for computing an error
indicator based on density and Mach number, which was
employed for driving the parallel adaptation of the mesh.
For the new vertices created by the adaptation process, the
solution was projected from the coarser mesh using simple
edge interpolation. The solution obtained in this way was
used for restarting the analysis, which was advanced for 60
time steps with a CFL number of 15. Similarly, a second
adaptation was performed, yielding the final mesh for which
other 40 time steps were performed at a CFL of 20, until
convergence in the energy norm of the residual. The aver-
age number of GMRES cycles per time step throughout the
analysis was 8.

Figure (4) shows the mesh at the upper face of the blade
tip, before and after refinement. The different grey levels
indicate the different subdomains, i.e. elements assigned to
the same processing node are denoted by the same level of
grey. Note the change in the shape of the partitions from
the initial to the final mesh, change generated by the mesh
migration procedure for re-balancing the load after the re-
finement procedure has modified the discretization. Note
also how the mesh nicely follows the shock.

Parallel-Adaptive Performance Results

The evaluation of the efficiency and performance of a paral-
lel adaptive analysis 1s a task complicated by the numerous
aspects that must be considered. In the following we will try
to address at least some of them with the help of a classi-
cal problem in CFD, namely that of the ONERA M6 wing
in transonic flight, that we have used in the early stages of
development of our code for validation purposes. This wing
has been studied experimentally by Schmitt and Charpin [11]
and it has been employed by numerous researchers for vali-
dating both structured and unstructured flow solvers. The
wing is characterized by an aspect ratio of 3.8, a leading edge
sweep angle of 30°, and a taper ratio of 0.56. The airfoil sec-
tion is an ONERA D symmetric section with 10% maximum

Figure 4: Meshes with partitions on the upper surface of
the blade tip, 8, = 8°, M; = 0.877. Af left: initial coarse
grid with IRB partitions. At right: final adapted grid with
partitions obtained by migration.

thickness-to—cord ratio.

We consider a steady flow problem characterized by an
angle of attack o = 3.06° and a value of M = 0.8395 for
the freestream Mach number. In such conditions, the flow
pattern around the wing is characterized by a complicated
double-lambda shock on the upper surface of the wing with
two triple points.

We first address the scalability of the parallel solver on
a fixed mesh, i.e. we analyze the speed—ups attained by
the code using one single mesh and varying the number of
processing nodes. This is a classical measure of efficiency,
and it is important to show that the implemented proce-
dure performs well with respect to it before measuring other
properties that are more pertinent to an adaptive analysis.

The simulation was performed using a mesh consisting of
128,172 tetrahedra, using the matrix—free GMRES algorithm
with reduced integration of the interior elements and full in-
tegration of the boundary elements. A local time stepping
strategy was employed with one single Newton iteration per
time step, using a CFL condition of 5 in the first 20 time
steps and a CFL equal to 10 for other 80 time steps, attain-
ing a drop in the residual of three orders of magnitude. The
mesh was partitioned using a parallel implementation of the
IRB algorithm. The time for partitioning, even if small when
compared with the time needed for achieving convergence in
the finite element analysis, is not considered in the following.
The analysis was run on 4, 8, 16, 32, 64, 128 processors of
an IBM SP-2 and the results are presented in Figure (5) in
terms of the inverse of the wall clock time versus the number
of processing nodes. The highly linear behavior of the paral-
lel algorithm shows the excellent characteristics of scalability
of the code.

The same problem was then adaptively solved in order to
more accurately resolve the complicated features of the flow.
An initial coarse mesh of 85 567 tetrahedra was partitioned
with the IRB algorithm on 32 processing nodes and the anal-
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Figure 5: Parallel efficiency evaluated at fixed mesh for the
ONERA M6 wing in transonic flight. 128,172 tetrahedra,
IRB partitions.

ysis was carried on to convergence as previously explained.
The results obtained were then used for computing an error
indicator based on density and Mach number, which was em-
ployed for performing a first level of refinement, bringing the
mesh to 131,000 tetrahedra. The solution was projected on
the new vertices using a simple edge interpolation technique,
and the analysis was then performed on the refined mesh for
80 time steps at a CFL number of 10. Similarly, other two
levels of refinement followed by subsequent analysis were per-
formed, obtaining an intermediate 223,499 tetrahedron mesh
and a final 388,837 tetrahedron mesh.

Figure (6) shows the density isocontour plots on the upper
surface of the wing corresponding to the initial and the final
mesh discretizations. Note that the forward shock is barely
visible in the results obtained with the initial coarse mesh,
the aft shock presents significant smearing and the lambda
shock located at the tip of the wing is not resolved. As
expected, considerable improvement in the resolution of the
shocks can be observed when mesh adaptation is employed.

Figure (7) shows the initial and final meshes. Once again,
elements assigned to the same subdomains are denoted by
the same grey level. For the final mesh, the partitions shown
are those obtained with the iterative load balancing algo-
rithm.

The fact that the analysis is conducted in parallel doesn’t
modify the convergence characteristics of a classical & refine-
ment technique, such as the one here considered. However,
while in a serial environment essentially only the accuracy of
the solution versus the size of the problem and its computa-
tional cost enter into the picture, in a parallel environment
other factors must be considered. In particular, we consider
here the evolution during the analysis of two fundamensal
parameters: (%) the surface-to—volume ratio for the subdo-
mains, (4) the number of neighbors of each subdomain. The
first of these two parameters essentially dominates the vol-
ume of communication in terms of the size of the messages to
exchange, while the second parameter dominates the number

Figure 6: ONERA M6 wing in transonic flight, o = 3.06°,
M = 0.8395. Density isocontour plots for the initial and
final meshes.

Figure 7: ONERA M6 wing in transonic flight, a = 3.06°,
M = 0.8395. Initial and final meshes. Different grey lev-
els indicate processor assignment (iterative load balancing
partitions).

of messages that each processor must send and receive.

In a parallel adaptive environment, the issue is then: given
certain repartitioning algorithms, which is the quality of
the partitions that they produce compared to their relative
cost? It is well known that certain classes of partitioning
algorithms, such as the Spectral Bisection method, produce
very high quality partitions. However, the cost associated
with spectrally bisecting increasingly larger meshes during
an adaptive analysis would be prohibitive. Therefore in this
work we consider two relatively low cost approaches to the
problem, the previously mentioned parallel IRB repartition-
ing and the iterative load migration scheme.

Two distinct runs were made, the only difference between
them being the repartitioning strategy adopted. In both
cases, all the stages of the analysis —initial IRB partitioning,
flow solution, error sensing, adaptation and load balancing—
were performed automatically in parallel on 32 processing
nodes, i.e. without ever leaving the parallel environment.
The load balancing algorithm was activated three times dur-




ing the adaptation of each of the meshes, after the refine-
ment, after the snapping of the newly generated vertices
to the curved boundaries of the model and after the local
retriangulation®. At every call, the algorithm was requested
to perform only approximately eight migration iterations,
yielding a maximum out of balance number of elements per
processing node equal to one at the end of each refinement
level. This strategy allows better efficiency of the various
stages of the adaptive algorithm that can then operate on
balanced or nearly balanced meshes. This “incremental” re-
balancing capability represents an advantage of the iterative
load balancing scheme over other algorithms. The parallel
repartitioning algorithm was instead activated just once at
the end of each adaptive step.

The meshes obtained during the two previously mentioned
parallel adaptive simulations of the ONERA M6 wing were
analyzed for gathering data on the overall performance of
the analysis. Figure (8) reports plots of the boundary faces
and neighbor statistics. The quantities plotted are defined
as:

(i) Surface-to-volume measures:

Smax = max; (Boundary Faces;/Faces;),
Sglob = Boundary Faces/Faces.

(%) Neighbor measures:

Nmax = max; (Neighbors; /(Procs — 1)),
Navzg = (3_,; Neighbors, /(Procs — 1))/Procs.

All these quantities are reported in Figure (8) versus the
number of tetrahedra in the mesh at a certain adaptive level
normalized by the number of tetrahedra in the initial mesh.
The solid line represents the values of the parameters ob-
tained for the parallel adaptive analysis where the iterative
mesh migration procedures were employed. The dashed line
corresponds to the parallel adaptive analysis where the re-
fined meshes were repartitioned after each adaptive step us-
ing the parallel IRB algorithm.

From the analysis of the first two plots at the top of Fig-
ure (8), it is clear that the migration procedures implemented
in this work control very effectively the surface—to-volume
ratios, which in fact remain constant and fairly similar to
the ones obtained with the IRB partitioning for the whole
simulation. On the other hand, the second two plots of the
same figure show that the number of neighbors of each sub-
domain tends to increase with the number of adaptive steps
performed. A more detailed analysis shows that in general
each subdomain is connected by a significant amount of mesh
entities (vertices, faces, edges) only with a reduced number
of neighbors, while it shares a very limited numbers of mesh
entities with the other neighbors. We are investigating ways
of removing such small contact area interconnections, in or-
der to achieve a better control on the number of neighbors.

The different partition statistics provided by the two re-
balancing algorithms and shown in the previous figure clearly

§We remark that in the current implementation, also snapping can
cause load imbalance since it makes use of local triangulation.

1 1
0.8 Mesh migration  ___ 0.8
IRB repartitioning _ _ _
%06 . 806
g 5
v 0.4 ® 04
I
g2t Tl 0.2
et
0
% P 4 5 1 2 4 5

3
tetsftets. 0

3
tets/tets O

% 0.6
30
El
Z04
0.2 0.2
0 0
1 2 3 4 5 1 2 3 4 5

tets/tets_0 tets/tets_0

Figure 8: Boundary faces and neighbor statistics for the
parallel-adaptive analysis of the ONERA M6 wing in tran-
sonic flight using the mesh migration and IRB rebalancing
schemes.

have an impact on the performance of the flow solver. For
example, the ratio of the wall clock timings for the flow solu-
tions performed on the final adapted mesh was found to be
0.83, in favor of the repartitioning algorithm. It should be
pointed out that this is not an objective measure of efficiency
of the rebalancing strategy, in the sense that it depends on
the algorithm used for the flow solution. On the contrary,
Smax, Sglob, Nmax and Nayrg are objective measures.

The two approaches were also compared in terms of rel-
ative wall clock timing cost. The repartitioning algorithm
outperformed the migration scheme at each adaptive step.
The ratio of the iterative migration to the rebalancing wall
clock timings was found to be 4.07 at the first level (131,000
tetrahedron mesh), 4.41 at the second (223,499 tetrahedron
mesh) and 2.21 at the third (388,837 tetrahedron mesh).

These preliminary test results seem to indicate that the
iterative load migration scheme tends to be more computa-
tionally expensive than the parallel IRB algorithm, and at
the same time does not yield the same quality of the par-
titions, at least with the currently implemented heuristics.
However, it must not be forgotten that these tests are cer-
tainly not as exhaustive as one might desire for ruling in
favor of one approach over the other. Moreover, it is clear
that this result is partially due to the low cost of the IRB
partitioning, and comparing the migration scheme with other
more expensive partitioning algorithms might lead to oppo-
site conclusions. For example, if an algorithm with better
control over the number of neighbors could be devised, then
the migration scheme used in conjunction with a high qual-
ity initial partition (such as the one provided by a spectral
partitioning) could yield an overall better performance than
a repartitioning scheme. A more complete analysis of the
relative merits of the two approaches will be the subject of
future work.




Conlusions

The major motivation for the development of automated
adaptive techniques is their ability to effectively and accu-
rately resolve intricate features of the solution, such as those
that characterize the flow around rotors in hover and for-
ward flight. Although the idea of using such techniques for
improving the simulation capabilities of rotary wing codes is
certainly not new, our contribution is original in its effort to
bridge adaptivity with parallelism on MIMD machines.

We have developed a methodology that, due to its gen-
erality, is not restricted to the problems or the examples
discussed in this work. We have shown that not only can
we accurately determine the airloads of hovering rotors in
a variety of situations, but also that we can do it with effi-
cient scalable parallel algorithms. The final aim of our efforts
is the analysis of more complex rotary wing problems, such
as forward flight with strong blade-vortex interactions and
aeroelastic coupled systems. We are confident that the adap-
tive capabilities of the code will provide a viable tool for the
accurate numerical simulation of those effects, while the par-
allel algorithms that support the analysis in all its phases will
make this computations feasible with the resources offered by
the current generation of parallel computers.
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