AGARD-R-807

AGARD

ADVISORY GROUP FOR AEROSPACE RESEARCH & DEVELOPMENT
7 RUE ANCELLE, 92200 NEUILLY-SUR-SEINE, FRANCE

AGARD-R-807

AGARD REPORT R-807

Special Course on
Parallel Computing in CFD

- (I’ Aérodynamique numérique et le calcul en parallele)

The material assembled in this report was prepared under the combined sponsorship of the
AGARD Fluid Dynamics Panel, the Consultant and Exchange Program of AGARD, and the von
Karman Institute (VKI) for Fluid Dynamics. It was presented in an AGARD-FDP-VK] Special
Course at the VKI, Rhode-Saint-Genese, Belgium, 15-19 May 1995 and 16-20 October 1995 at
NASA Ames, United States.

l
— / \ — NORTH ATLANTIC TREATY ORGANIZATION
I

Published October 1995

Parallel Automated Adaptive Procedures for Unstructured Meshes

M.S. Shephard, J.E. Flaherty, H.L. de Cougny, C. Ozturan, C.L. Bottasso and M.W. Beall
Scientific Computation Research Center

Rensselaer Polytechnic Institute
Troy, NY 12180-3590
USA

Summary

Consideration is given to the techniques required to sup-
port adaptive analysis of automatically generated unstruc-
tured meshes on distributed memory MIMD parallel com-
puters. The key areas of new development are focused
on the support of effective parallel computations when
the structure of the numerical discretization, the mesh,
is evolving, and in fact constructed, during the compu-
tation. All the procedures presented operate in parallel
on already distributed mesh information. Starting from a
mesh definition in terms of a topological hierarchy, tech-
niques to support the distribution, redistribution and com-
munication among the mesh entities over the processors
is given, and algorithms to dynamically balance proces-
sor workload based on the migration of mesh entities are
given. A procedure to automatically generate meshes in
parallel, starting from CAD geometric models, is given.
Parallel procedures to enrich the mesh through local mesh
modifications are also given. Finally, the combination of
these techniques to produce a parallel automated finite
element analysis procedure for rotorcraft aerodynamics
calculations is discusse\d and demonstrated.

Contents
1. Introduction
2. Parallel Control of Evolving Meshes

2.1 Mesh Data Structure to Support Geometry-Based
Automated Adaptive Analysis
2.2 Partition Communication and Mesh Migration
2.2.1 Requirements of PMDB and Related Efforts
2.2.2 Distributed Mesh Model and Notation Used
2.2.3 Data Structures
2.2.4 Mesh Migration
2.2.5 Scalability of Mesh Migration and Extensions
2.3 Dynamic Load Balancing of Adaptively Evolving
Meshes

2.3.1 -Geometry-Based Dynamic Balancing
Procedures

2.3.2 Topologically-Based Dynamic Balancing
Procedures

3. Parallel Automatic Mesh Generation
3.1 Introduction
3.2 Background and Meshing Approach
3.3 Sequential Region Meshing
3.3.1 Underlying Octree
3.3.2 Template Meshing of Interior Octants
3.3.3 Face Removal

3.4 Parallel Constructs Required
3.4.1 Octree and Mesh Data Structures
3.4.2 Multiple Octant Migration
3.4.3 Dynamic Repartitioning

3.5 Parallel Region Meshing
3.5.1 Underlying Octree
3.5.2 Template Meshing of Interior Octants
3.5.3 Face Removal

4. Parallel Mesh Enrichment

4.1 Local Retriangulation Tools
4.1.1 Edge Swapping
4.1.2 Edge Removal
4.1.3 Multi-Face Removal

4.1.4 Triangulation Optimization Using Local
Retriangulation Tools

4.2 Refinement
4.2.1 Subdivision Patterns
4.2.2 Generalized Bisection
4.2.3 Alternate Bisection
4.2.4 Delaunay Insertion
425 Splitting

4.2.6 Refinement Using Full Set of Subdivision
Patterns

4.3 Derefinement
4.4 Complete Mesh Adaptation Procedure
4.5 Parallelization of Mesh Adaptation »
4.5.1 Derefinement
4.5.2 Triangulation Optimization

A5 2 Rafinaman

4.5.3 Refinement
5. Parallel Adaptive Analysis Procedures
5.1 Structure of a Parallel Adaptive Analysis Procedure
5.2 Finite Element Code for Rotorcraft Aerodynamics
5.2.1 Finite Element Formulation
5.2.2 Boundary Conditions for Hovering Rotors
5.2.3 Subsonic and Transonic Hovering Rotors

5.3 Effectiveness of Parallel Adaptive Analysis
Procedures

6. Closing Remarks
7. Acknowledgment
8. References

for parallel mesh generation. Although the mesh enrich-
ments dictated by an adaptive analysis can be satisfied
through remeshing by the automatic mesh generator, the
computational cost and need to project parameters be-
tween meshes indicates the desire to employ alternative
mesh enrichment techniques when possible. Chapter 4
presents a set of local mesh modification procedures for
the effective refinement and coarsening of meshes.

Given a set of parallel procedures for controlling mesh
partitions, for the generation and enrichment of the mesh,
the remaining ingredient of the automated adaptive analy-
sis is the adaptive solver. Consistent with the other com-
ponent procedures presented in these notes, it is assumed
that the solver operates on an unstructured mesh which
has been partitioned to the various processors of the par-
allel computer. Under this assumption, adaptive finite
volume and finite element solvers are most appropriate.
Chapter 5 presents the structure of such a solver. The
specific solver discussed is a finite element based proce-
dure which builds directly on the parallel mesh control
tools of the earlier sections.

2. Parallel Control of Evolving Meshes

Central to the parallel automated adaptive analysis proce-
dures considered here are tools to control the mesh and its
distribution among the processors as the meshes are gen-
erated and analyzed. These tools must be able to maintain
load balance as the mesh evolves during the computations
in such a manner that the interprocessor communications
are kept as small as possible. Its is also critical that these
procedures operate in parallel and scale as the problem
size grows so they do not become the bottleneck in the
parallel.computation process.

The tools required to support parallel automated adaptive
analysis include:

1. data structures and operators to support the model
representations employed

2. interprocessor communication control mechanisms

3. mechanisms to effectively move portions of the dis-
crete models generated to various processors so load
balance can be maintained

4. techniques to partition the mesh among the proces-
sors so the load is balanced and communications are
minimumized

5. techniques to up-date the mesh partitions to regain
load balance which was lost due to mesh modifica-
tions

The minimum data structures needed for an automated
adaptive analysis are (i) a problem definition, in terms of
a geometric model and analysis attributes, and (ii) a mesh,
which the discrete representation used by the analysis pro-
cedures. The next section describes a general structure,
based on boundary representations, for the problem def-
inition and the mesh. This same form of structure is
used to support the partition model used by the partition
operators, mesh migration procedures and dynamic load

6-3

balancing procedures. In additional to these data struc-
tures, several procedures described employ tree structures
to support searching and spatial enumeration. The mesh
partition procedures described in section 2.2 are designed
to effectively collect groups of mesh entities for migra-
tion and, using the interprocessor communication oper-
ators, transfer the information and update all local data
structures as needed.

A number of algorithms have been developed to partition
a given mesh to a set of processors. The interested reader
is referred to references [4, 20, 21, 56, 80] for more
information. The current document focuses on procedures
to update an existing set of mesh partitions after the
mesh has been modified by a mesh adaptation procedure.
Section 2.3 presents two classes of procedures for this
purpose.

2.1. Mesh Data Structure to Support
Geometry-Based Automated Adaptive Analysis

The classic unstructured mesh data structure of a set
of node point coordinates and element connectivities is
not sufficient for supporting automated adaptive analysis.
Richer structures are required to support adaptive mesh
enrichment procedures and to provide the links to the
original domain definition needed by critical functions,
including ensuring that the automatic mesh generator has
produced a valid discretization of the given domain. A
number of alternative mesh data structures have been
proposed for various forms of mesh adaptation. Instead
of describing and comparing these structures, a general
data structure based on a hierarchy of topological entities
is given.

The goal of an analysis process is to solve a set of par-
tial differential equations over the geometric domain of
interest, ,{2. Generalized numerical analysis procedures
employ a discretized version of this domain in terms of
a mesh. Since the mesh domain, ,_{! may not be identi-
cal to the original geometric domain, g_ﬂ, and/or various
procedures, such as automatic mesh generation, adaptive
mesh refinement and element stiffness integration need
to understand the relationship of the mesh to the geo-
metric model, it is critical to employ a representational
scheme which maintains the relationships between these
two models. Although a number of schemes are possi-
ble for defining a geometric domain [58], the most ad-
vantageous for the current purposes are boundary-based
schemes in which the geometric domain to be analyzed
is represented as

Sa{,S)a{, 1Y) o)

where g{ e } represents the information defining the
shape of the entities which define the domain and g{,T'}
represents the topological types and adjacencies! of the

'In the context of a domain representation, adjacencies
are the relationships among topological entities which
bound each other. For example, the edges that bound a
face, is a commonly used topological adjacency.

~-

and any form of adaptive analysis on conforming un-
structured meshes®, all adjacencies are either stored, or
can be quickly determined through a set of local travers-
als and sorts which are not a function of the mesh size.
One set of relationships that can effectively meet these
requirements is to maintain adjacencies between entities
one order apart. Figure 1 graphically depicts this set of
relationships as well as the classification with respect to
the geometric domain representation.

MESH GEOMETRIC DOMAIN
ADJACENCIES ENTITIES

mesh region ——— region

mesh face — region or face

mesh edge ——» region, face or
edge

mesh vertex ——» region, face,
edge, or vertex

Figure 1. Mesh topological adjacencies
and classification information

Since there are natural orderings for several of the adja-
cencies which prove useful to the operations performed,
the forms of adjacencies employed are: an unordered list
of n entities adjacent to entity ¥ signified by ﬂ{de}(n),
a linear list of n entities adjacent to entity ¥ signified
by 4|, T¢ ™) and a cyclic list of n entities adjacent to
entity 9 signified by ¥[, 7] (), Specific entities also
store directional knowledge of how that entity is used in
the specific adjacency. In these cases the left superscript,
=+, on the entity, fTid, indicates a directional use of the
topological entity vTid as defined by its ordered defini-
tion in terms of lower order entities. A + indicates use
in the same direction, while a — indicates a use in the
opposite direction.

The specific downward adjacencies stored are:

For mesh regions

which indicates the faces bounding the mesh region,
where n = 4 for a tetrahedron, n = 6 for a hexahe-
dron, etc.

3 A conforming mesh is one where all mesh entities ex-
actly match. For example, a situation where the mesh
edge bounding one mesh face has two mesh edges from
another mesh face lying exactly on top of it is not al-
lowed. Although possible to extend the procedures pre-
sented here to support those situations, they will not be
considered in the present document.

6-5

For mesh faces

nT2[ET ™ ©)
which defines the loop of edges that bound the face, where
n = 3 for a triangular face and , n = 4 for a quadrilateral

face.
For mesh edges

T 10| ©)
which indicates the two vertices that bound the edge.
The specific upward adjacencies stored are:

For mesh vertices
LT})

which indicates the edges the vertex is on the boundary
of.
For mesh edges

which indicates the faces the edge partly bounds.
For mesh faces

Ti2 [mT3_| (2) - ©)

which indicates the zero, one, or two regions the face
partly bounds.

An alternative set of adjacencies which can directly meet
the needs of many applications is to maintain the same
downward adjacencies and store only the single upward
adjacency from the vertices to the highest order entities
using them. In the case of a manifold mesh in 3-D this
upward adjacency would be

nIP{T*} (10)

m

which are the regions that the vertex bounds. In the
case of general non-manifold models, it is the upward
adjacencies form the vertices to any mesh entity it bounds
which itself is not bounded by a higher order entity. In
this case the adjacency relationship is a bit more complex
being

W I T T2 T | T2 T8 =0,
(11
T, T} = 0})

Im im=

This set includes the regions the vertex bounds, the faces
the vertex bounds which do not bound any regions, and
the edges the vertex bonds which do not bound any faces.

2.2. Partition Communication
and Mesh Migration

Adaptive unstructured meshes on distributed memory
computers require data structures which provide efficient
queries for various entity and processor adjacency infor-
mation as well as fast updates for changes in the mesh.
The requirements for sequential implementations of hp-
adaptive finite element methods can be satisfied by the
SCOREC mesh database just given. For parallel appli-
cations, we first enumerate the major requirements of a
distributed memory mesh environment. These require-
ments are met by the distributed mesh environment Par-
allel Mesh Database (PMDB) that is then described.

TR TR R T T O T T e S S T S 0 iR A S S

The Tiling system developed by Devine [18] is the first
distributed environment to support hp-adaptive analysis
~ and provides migration routines for regularly structured
two dimensional meshes which can be hierarchically re-
fined. Each tiling element stores pointers to neighboring
four elements with partition boundary elements pointing
to a ghost-element data which acts as a buffer during
communication. The elements are assigned a unique id
at the beginning and after refinements. The elements with
unique ids are maintained in a balanced AVL tree [68] to
allow efficient insertion and deletion during migration.
The Tiling system supports only rectangular elements
as the basic entity and the notion of shared entities like
edges is implicit.

2.2.2 Distributed Mesh Model and Notation Used

The distributed mesh is viewed analogous to the model-
ing of non-manifold geometric objects. Figure 3 shows
the hierarchical classification of the global mesh enti-
ties ,, 7’2, the processor model entities ,7 and geomet-
ric model entities ng-d”. Given the set of mesh entities
{»T'}, a partitioning at the d,,, dimension level divides
the mesh into n, parts, pTg;", each of which is assigned
to a processor with id px = 0,...,n, — 1. As a re-
sult of partitioning, some of the entities with dimension
d < d,, will be shared by more than one processor. The
dn-dimensional entity will be held by only one proces-
sor. Hence in general, partitioning with d,, > O defines a
one-to-many relation from a mesh entity ,, 72 to its uses
k Td where k < min(A(mTE),n,). Here A defines the
degree of an entity, i.e. given the dimension d of an en-
tity, A is the number of d + 1 dimensional entities which
use it.

Since the procedures in a distributed memory environ-
ment operate on private local processor address space,
we refer to each entity use £ T in the global model as
%’{’“a’“)ﬂd or in shorthand notation (pg,ax). The tuple
{px, ax) stands for the use of an entity by processor pj, at
local address ax. In the algorithm descriptions presented
later this tuple is also called a link particularly if it is
stored on a different processor than pg.

For the implementation of owner computes paradigm,
one of the processors holding a given entity ,,7¢ is
designated as the owner of that entity. In the distributed
processor address space, we distinguish the owned entities
as (Po, a,). Therefore, a partitioning in this case defines

141

inog nf n]r\ka] mach antitiag
1004ax micsn Cinils

a one-to-one and onto mapping of g
onto the owned distributed mesh entities: Note that the
inverse of this mapping exists and hence the pair (p,, a,)
can serve as a global key of a distributed entity: -

The uses of the shared entities are mapped onto the owner

entity by a many-to-one relation :
®: (pr,ax) = (Po,a0) (12)

Figure 3 shows the relationship between the geometric
model entities gTi‘i", the global mesh entities ., 7 and
the processor model. Given the uses (pg,ax) of an
entity distributed over processors pg, an agreement can

6-7

be reached among these processors on whether they hold
the identical entity by computing the ownership using the
function .

processor 0 processor 1

processor 2 processor 3

= e
. &
i » ijd - > gTi
Figure 3. The relationship between the mesh
model, processor model and the geometric model

2.2.3 Data Structures

PMDB data structures were designed to provide full variety
of adjacency information. At the micro level of a partition
boundary entity, one should be able to get all the uses
or links of an entity on other processors. Each partition
boundary entity stores all the uses on other processors as a
linked list. This is shown in Figure 4. Note that one of the
processors holding a shared entity is marked as an owner
of that entity. The bold edges and vertices indicate the
owners of the shared entities. This ownership information
can be used in the implementation of the owner computes
rule, for example, during link updates in mesh migration
or scalar product computation in an iterative linear solver.

PROCESSCR 1

PROCESSOR 0

farup

Ld
A
-
<
e

SRR

I A NI

ML A g

;

PROCESSCR 2 PROCESSCR 3

Figure 4. PMDB inter processor
links and entity ownership

Since each processor stores the uses (pg,ax) on all the
processors that hold a shared entity, the ownership can
be computed as a function of these uses. An example
of an ownership function & given in equation 12 is
to choose the processor which has the tuple (pg,ax)

procedure mesh_migrate (P,{,, 1% },P,.{,T%})
input: P,: destination processors.
{xT&} ¢ sets of regions to be migrated

output: P.: source processors

{mT&}: sets of regions received
begin
/* 1. senders and receivers to owners */
Pack the mesh {,,, 7%} to be sent.
Find the migrated boundary.
Delete migrated internal entities
Pack the owners’ uses corresponding to migrated
boundary
Send packed submeshes and uses to P,
Receive packed submeshes and uses from P,
7 Unpack the submeshes to get { md, ,‘,i}

LSNPS I ST

N W

/* 2. senders and receivers to owners */

8 Establish usage of both sent and received migrated
boundary entities.

9 Pack local uses of migrated boundary and owners
uses to be sent to owner processors P,

10 Send packed local and owner uses to owner proces-
SOrs.

11 Receive packed uses from senders and receivers.

/* 3 owners to affected */

12 Owners update use lists by inserting/deleting re-
ceived local uses into/from use lists pointed to by
owner uses and generate new ownerships.

13 Pack updated uses list of entities to be sent to af-
fected processors P,.

14 Send updated use lists and ownership to owner pro-
Cessors.

15 Receive updated uses list and ownership from owner
Pprocessors.

16 P, update use lists and ownership.

17 Delete unused sent migrated boundary entities.
end

Figure 6. Mesh Migration Algorithm

Once the packed submesh has been received, the proces-
sors unpack it and insert it into the mesh py{,, T} held
by the processor py. It is also possible that when more
than one submesh arrives from different processors, they
all might share some common entities. Figure 7 shows

of cuch a cage A nrocagenrs ()
81 SUcs

A
an example 1 a case. As shown processors 0 and

Adliipiv

2 both migrate to processor 1. Among the migrated enti-
ties are those which are shared by both 0 and 2. In such
a case, these commonly shared entities, once unpacked,
should not be unpacked for the subsequent received sub-
meshes which also contain them and comes from a differ-
ent processor. This process is achieved by inserting the
unpacked migrated boundary entities into a red-black tree
[68] which has guaranteed logarithmic access for each in-
serted entity. A key is needed to represent the entity in
the red-black tree. This key can be either a global key or
the readily available (p,,a,) tuple which was discussed
earlier. Currently, PMDB version 3.1 by default gener-

6-9

ates global numbers after mesh is refined. The global
numbers can be used for debugging and also provides
a readily available equation number for linear equation
solvers which assemble the global matrix. A future ver-
sion of PMDB will make the global number generation
optional in order to save memory for applications which
do not need it.

Senders and Receivers to Owners: These steps operate
only on the sent and received migrated boundary entities.
These entities are tested to see if they are used by 7T
on processor p. Determining the use on processor p of a
d—dimensional entity requires determining if that entity
is part of the boundary of a d + 1 dimensional entity
on processor p. The entity hierarchy data structures of
SCOREC mesh database readily provide this d to d + 1
dimensional entity adjacency relationship. If the entity is
used, its use (p, a) is packed and identified by the (p,, a,)
use to be sent to owner processor. If the entity is not used
(p, null) is packed. Once packed, this information is sent
to the owner processors. The overall complexity of these
steps is proportional to the size of the sent and received
migrated boundaries.

Owners to Affected Processors: Owners receive updates
targeting a particular entity (p,,a,) it owns. If a use
(p,a) is received, it is inserted in the list of uses of
the shared entity at address a,. If (p,null) is received,
the use (p,a) is deleted from the list of uses at address
a,. Once all the updates are completed, the ownership
of these entities are regenerated. The updated links are
then packed and sent to the affected processors. The
affected processors receive these uses and update the
corresponding local shared entities’ list of uses. At this
point, the migrated boundary entities can be deleted and
mesh migration completes.

Computing Number of Receives: The steps 5 — 6,10 —
11 and 14 — 15 implement non-blocking sends and re-
ceives. Each processor needs to know how many mes-
sages are being sent to it by other processors so that it
can post a corresponding number of receive statements.
A simple way to compute the number of receives is by
first having each processor initialize a vector r of length
np and to set rp, to 1 if a message will be sent to proces-
sor p and O otherwise. A follow-up sum scan operation
can then be executed by all the processors resulting in
each location r, containing the number of receives. This
procedure has O(nplogn,) run time complexity and re-
quires a message of length n, to be communicated dur-
ing the combine operation. Whereas this scheme will
be efficient for small n,, it is nevertheless non-scalable.
The DIME environment, for example, makes use of the
crystal_router [24] which provides a scheme for
this problem by utilizing log(n,) message exchanges
across the dimensions of the hypercube multiprocessors.

Considering the fact that each processor p usually sends
to a small number s, of processors, a scalable strategy
is desirable for large n,. We can make this scheme
scalable by making use of the radix sort routine [7].
Since the processor ids are in the range 0,...,n, — 1,

2.2.5 Scalability of Mesh Migration and Extensions

In the mesh migration procedure presented above, the
amount of communication involved is proportional to the
volume of submeshes in the first stage of the algorithm
and to the surface of submeshes during link updates
in the second and third stages.
processor migrates to a small number of processors, such
as its neighbors, then we expect that the migration will
scale as the number of processors is increased. Various
_tests have been performed to demonstrate scalability of
‘migration. The data involving the maximum number
of regions migrated by a processor, the total number of
regions migrated by all processors, the time taken, and the
throughput, that is, the number of regions sent by a single
processor per second are plotted against the number of
processors used.
Test 1: In the first test, we let each processor exchange a
slice on its partition boundary with its neighbors. This test
is a realistic representative of the migration patterns that
occur in iterative dynamic load balancers since regions
near partition boundaries are migrated in clusters to the
neighborhood of a heavily loaded processor. Another
application that performs this kind of migration is mesh
coarsening [10]. Figure 8 shows the example mesh that
was used before (a) and after migration (b). Figure 9(a)
plots the maximum number of regions sent by a processor
and (b) shows the wall time taken. From these plots, we
see that execution time is proportional to the number of
regions sent irrespective of the number of processors.
Figure 10 on the other hand plots the total number of
regions sent by all processors. As the number of pro-
cessors are increased the total number of regions at par-
tition boundaries increases. Hence even though overall
more regions have been moved, the time is proportional
to the maximum sent by a single processor. This behav-
ior demonstrates that when processors migrate to a small
number of neighbors, the migration procedure scales well.
Figure 10(b) plots the throughput attained.

(a) (b)

Figure 8. Neighborhood migration test; before
boundary exchange (a), after boundary exchange (b)

Test 2: In the second test, we let each processor hold
2500 regions corresponding to a partition of the box
mesh and migrate all its regions randomly targeted to
s processors with s = 1,...,2¢, ... yp — 1. The plots of
time taken for migration and the throughput per processor
is shown in Figure 11. The plot in (a) shows that as the
number of processors is increased, the time taken grows

As a result, if each

10000
¥ 9000
=
.S 8000
on
[}
7000}
kS
o 6000
2

5000
E
= 4000

3000

2000 1 L

2 4 8 16 32 64
number of processors s

(a)

2 4 8 16 3!2 64
number of processors

(b)

Figure 9. Neighborhood migration test
for box ; maximum number of regions
migrated by a processor (a), wall time (b)

slowly. In particular, if we look at the s = 1 case, we see
a flat curve between 32 and 64 processors. The number
of processors has been doubled, yet the execution time
remains the same. As s is increased the execution time
growth is larger as expected, since the number of total
migrations is increased. In particular, if s = n, — 1, we
have all-to-all migration. Note that, there is a pronounced
drop in the throughput as shown in Figure 11(b) between
the cases s = 1 and 2. For example, with n, = 48,
the throughput is 519 regions for s = 1 and drops to
309 regions at s = 2. The major cause of this drop
is not the mere increase in s, but rather the fact that
when regions are assigned random destination, the union
of the migrated boundary of the mesh entities being sent
becomes proportional to the number of regions sent. In
the case of s = 1, the migrated boundary is proportional
to the surface of the mesh entities sent. As a result,
since the cost-of stages 2 and 3 of the mesh migration
algorithm is dependent on the size of migrated boundary,
these stages contribute greatly to the drop in cases s > 1.
The sets of regions which are migrated in practice are
clustered locally and hence the migrated boundary size is
rarely proportional to the volume being sent. Therefore,
higher throughput rates can be attained for larger s as is
evident from Test 1 above.

This section discussed the data structures and the migra-
tion routines used in the PMDB library. PMDB library cur-

and conquer approach to pair processors and uses connec-
tivity as well as coordinate information to decide which
elements to migrate.

A disadvantage of the common implementations RB
methods is they start with the entire mesh on a single
processor and partition from there. Two problems with
this approach in a parallel adaptive calculation are (i) the
time required to gather the distributed mesh together on
a single processor, and (ii) the fact that after the mesh
has been adapted, it may have grown to the point that it
can not fit on a single processor. These problems can be
alleviated it the mesh remains distributed during the repar-
titioning process. The next subsection discusses a parallel
implementation of Inertial Recursive Bisection that oper-
ates on a distributed mesh.

RB methods operate on the whole mesh and compute the
direct destination for each element. Because of this, it is
possible that RB methods may require complete remap-
ping of the elements at the end. On the other hand, it-
erative local migration techniques propagate the excess
load by local transfers to other processors. A disadvan-
tage of iterative local migration techniques is that many
iterations may be required to regain global balance and
hence elements reach their final destination after many
local transfers rather than directly. In particular, when
elements are migrated, the full element data involving
connectivity and local attached data are communicated.
For parallel repartitioners based on coordinate bisection,
only the centroids and region pointers need to be com-
municated during a parallel sorting phase. As a result
this class of repartitioners may have better performance
on machines in which the communication between any
pair of processors is distance-independent.

Subsection 2.3.2 presents an iterative load balancing pro-
cedure based on the Leiss/Reddy heuristic of requesting
load from the most heavily loaded neighbor. The perfor-
mance of this procedure is compared with repartitioning
by the parallel distributed inertia recursive bisection al-
gorithm.

2.3.1 Geometry-Based Dynamic
Balancing Procedures

Geometry-based dynamic balancing (or repartitioning) re-
lies here on the Inertial Recursive Bisection (IRB) method
[50] which is a variation of the more classic Orthogo-
nal Recursive Bisection (ORB) [4]. ORB is a recursive
process that bisects a set of entities by considering the me-
dian of the set of corresponding centroids with respect to
a given coordinate axis. As ORB is recursively called, the
choice of coordinate axis is circularly permuted (x,y,z,x,
etc). Unlike ORB, IRB considers the inertial coordinate
system (origin is at the center of gravity and the three axes
are the principal axes of inertia) for the set of entities to
be bisected. In three dimensions, the determination of the
three principal axes of inertia is an eigenvalue problem of
order 3. Once the inertial coordinate system is defined,
the coordinates of the centroids are transformed and the
cut is made at the median with respect to the first coor-

6-13

dinate. This first coordinate is the “key” that the sorting
algorithm described later in this section works on.

The main assumption for performing repartitioning in
parallel is that the entities are distributed. It is also
assumed that there is no reason for the number of entities
stored on processor to be uniform across processors. The
result of this repartitioning will be an equal number of
entities per processor. It should be noted that, in this
context, the goal of repartitioning is equivalent to the
goal of dynamic load balancing [15, 55, 73, 54, 43, 85].
The key algorithm in IRB (and ORB) is the determination
of the median for a given set of doubles (referred to as
“keys”) [68]. With respect to this paper, the “keys™ are
the first coordinates, in the inertial frame, of the entities
to be bisected. The method used here is to sort the “keys”
and then pick the entry at the middle of the sorted list.
In this case, efficiently performing IRB in parallel can be
reduced to efficiently sorting in parallel [34]. From the
conclusions of the paper by Blelloch et al. [8] which
compares different parallel sorting algorithms (Batcher’s
bitonic sort, radix sort, and sample sort), it appears that
the sample sort algorithm is the fastest of the three for
large data sets. Therefore, a parallel sample sort algorithm
has been implemented in order to efficiently support IRB.

Given a set of n “keys” distributed on p processors (n >>
p), a sample sort algorithm consists of three main steps:

1. p-1 splitters (or pivots) are chosen among the n
“keys”

2. Each key is routed to the processor corresponding to
the bucket the “key” is in

3. Keys are sorted within each bucket (no communi-
cation)

The goal of step 1 is to split the set of “keys” into p
parts (buckets) as evenly as possible and as efficiently
as possible. The p-1 splitters which are implicitly sorted
(say with respect to increasing value) are labeled from
1 to p-1. All distributed “keys” below splitter 7 belong
to bucket 0, all distributed “keys” between splitter i (0
< i < p-1) and splitter i+] belong to bucket i, and all
distributed “keys” above splitter p-I belong to bucket p-
1. Processor i (0 < i < p) is responsible for the bucket
labeled i. In step 2, assuming the p-7 splitters have been
found and broadcasted to all processors, any distributed
“key” can tell in which bucket it belongs and is rerouted
to the processor that is responsible for that bucket. At
this point, any processor has knowledge of all “keys”
that belong to the bucket it has been assigned to. Step
3 can be performed using any efficient sequential sorting
algorithm, like quicksort [68]. It is clear that the parallel
efficiency of the sample sort algorithm depends on the
sizes of the buckets. Parallel efficiency is maximal when
the sizes of the buckets are near equal. A sampling
method is used to obtain “good” splitters. Given the n
input “keys”, ps “keys” (s is an integer > I called the over
sampling ratio) are selected at random and sorted typically
sequentially. The entries in the sorted list of ranks s, 2s,
.. , (p-D)s are the p-1 splitters. The bound for bucket
expansion (ratio of maximum bucket size to average) is

Randomly partitioned mesh
8 processors

Dynamically repartitioned mesh
8 processors

Figure 13. Dynamic repartitioning
on a randomly distributed mesh

50 T T

40 Total |
L
2
E L
:g" 30
[
E
%
<!
© 20 Migration
= $
ES 4

Processor assignment

-
(=]
T

0 L 1
2 4 8 16

Number of processors

Figure 14. Timings for dynamic repartitioning

To incorporate more global information and to direct load
transfers, we view the processor requests for load from
heavily loaded processors as forming a forest of trees.

6-15

Figure 15(a) shows an example of requests that can be
formed. Given this hierarchical arrangement of proces-
sors as the nodes of trees, we balance the trees as shown
in Figure 15(b) and iteratively repeat the process until the
load distribution converges to optimal load balance within
a user supplied tolerance. The full algorithm is given in
Figure 16. The procedure details are given as follows.

load=3 |load=4| load=6 load=3 |load=1
proc=2 |proc=1 proc=0 proc=4 | Pproc=5
load=3 load=1
proc=3 proc=6

load=3 load=3 load=1 load=1
(b)

Figure 15. Load balancing example; load
request (a) load migration on the tree (b)

procedure tree_load _balance(tolj,uq, matiier)
in tol,,gimbalance load tolerance

in maz;ie, : maximum number of iterations

begin

1 dter =0

2 while (max. load difference > tol;oqq) and
(iter < maw;e,) do

3 iter = iter + 1
4 Compute neighboring load differences.
5 Request load from neighbor processor having

largest load difference (creates processor trees).
6 Linearize processor trees.
7 Compute amounts of load migration.
8 Select and migrate load.
9 endwhile
end

Figure 16. Tree based dynamic load balancing procedure

Steps of the procedure The steps of balancing the for-
est of trees are repeated until convergence is achieved.
Assuming that load transfer occurs when there is a load
difference of at least two units, Leiss/Reddy’s algorithm

high frequency of load imbalances, the load balancer will
have better performance. The repartitioner bypasses the
effects of distance by directly sending load from heavily
loaded to lightly loaded processors. On an architecture
such as the IBM-SP2, in which communication cost
is independent of the distance between the processors
and hence the same between any pair of processors, the
repartitioner will be advantageous since it directly sends
the load to its final destination. The load balancer will
be disadvantageous since it will incur expensive latency
cost during many local transfers it performs.

30

25

“pat_time.dat®-—
“pat_time.dat"—+ -
“pat_time.dat™a -

bisection

8 20}
b
@
@
£ 15¢
10l load bala‘n’cga/’)
5 __,.__--—---;;;-4’_:______~
[e parallel repartition
ol -
2 4 8 16

number of processors

Figure 19. Time taken for load balance,
parallel repartitioning and bisection

Finally, Figure 20 shows the quality of the partitions
produced in terms of maximum and total percentage of
faces cut. The load balancer’s element selection criteria
for migration dictates the quality of the partitions. The
criteria currently used can be improved by incorporating
coordinate information to selection decision.

25

“pat_jrb.dat" e Lo

"pat_irb.dat" —+ — .
e
pat_ioad.dat" =~

£ 20 ¢ ’

o

(&

Q

o 15 F

«

<]

g

< 10t

[

5

a 51} 5

0

2 4 8 16
number of processors

Figure 20. The total and maximum
number of cut faces for each method

Test 2: In this test, various statistics are reported for the
adaptively refined onera-mé6 wing mesh during an ac-
tual CFD analysis on 32 processors. At the beginning
the mesh has 85567 tetrahedrons. Three stages of adap-
tive refinements are performed during which the number

" maximum

6-17

of tetrahedrons increase to 131000, 223501 and finally
to 388837. Figure 21 shows the convergence history of
the iterative load balancer. In all cases of load balanc-
ing after refinement, the imbalance reduces to less than
4% during the first 8 iterations and takes far more num-
ber of iterations to reduce this imbalance further to 0%
imbalance. One need not run the tree_balance to
full convergence. It can be stopped when a reasonable
imbalance is achieved.

2000

" "onera_conv.dat'——

18000L "onera_conv.dat"-+- |

16000
14000}

load

12000)

10000
8000

6000

4000

2000

0 10 20 30 40 50 60 70 80 90 100
number of iterations
Figure 21. The convergence history for load

balance during three stages of refinement

Table 2 shows the execution time comparisons between
the tree_load_balance and the parallel moment of
inertia partitioner. In all cases, moment of inertia out-
performs tree_load_balance for the same reasons
which was explained in Test 1.

refinement 1st 2nd 3rd

percent imbalance 1.7 0 | 381 0 J19] 0

tree_balance (sec) 73185 }127]210] 189} 283

inertia partition (sec) 21 48 128

Table 2 Execution times (in seconds) for
tree_load_ balance and inertia partitioner

Finally, Table 3 shows partition quality comparisons be-
tween the tree_load balance and the moment of
inertia partitioner. The percentage of maximum num-
ber and the total number of cut faces are given for both
tree_load_balance and the inertia partitioner.

refinement Ist 2nd 3rd
percent cuts max | total] max | total] max | total
tree_balance 241101261 11]25] 10

inertia partition | 26 | 7 25 7 19 6

Table 3 Maximum and total percentage of cut faces for
tree_load balance and inertia partitioner

Face removal

5 ——

1

H

H

H

i

i S 3) 3
:

H

H

1,

or more edges is enforced during this process to con-
trol smoothness of the mesh gradations. Once the octree
is generated, the octants are classified as interior, out-
side, or boundary. Those classified as outside receive
no further consideration. Some interior octants are re-
classified boundary if they are too close to mesh entities
classified on the boundary of the model region (boundary-
interior). The purpose of this reclassification is to avoid
the complexities caused when interior octant mesh enti-
ties (coming from the application of templates) are too
close to the boundary and may lead to the creation of
poorly shaped elements in that neighborhood. Interior
octants are meshed using templates. Face removal proce-
dures are then used to connect the boundary triangulation
to the interior octants. Figure 23 graphically describes a
face removal in a two-dimensional setting.

BB R
& B B B
ﬁ BI
BJB |1
£ 1 1 B
IEE
Bl 1
R i BI B
BB | B
Sy
4
B BI B / B
N o
B B B I - interior quadrant
BI - boundary like interior quadrant
B - boundary quadrant

Quadtree with boundary edges Unsmoothed mesh

Figure 22. Graphical depiction of the
basics of the presented mesh generator

]
&
’
4
’
s,

. ~,
g Vay, ., >,

~.

“a,

~
e,
p%

Partially Fully

connected connected

face face
Figure 23. Face removal (2-D setting)

3.3. Sequential Region Meshing

As indicated above, the starting point for the region
meshing process is a completely triangulated surface.
The surface triangulation must satisfy the conditions of
topological compatibility and geometric similarity [67]
with respect to the model faces. The region meshing
process consists of the three steps of (i) generation of
the underlying octree, (ii) template meshing of interior
octants, and (iii) face removal to connect the given surface
triangulation to the interior octants.

6-19

Mesh faces to which tetrahedral elements will eventually
be connected are referred to as partially connected faces.
They are basically missing one connected tetrahedron
in the manifold case, and one or two in non-manifold
situations. Initially, the mesh faces classified on the
model boundary are the partially connected mesh faces.
Once templates have been applied, that is, at the start of
face removal, the interior mesh faces connected to exactly
one tetrahedron are also partially connected mesh faces.
In the remainder of this discussion, the current set of
partially connected mesh faces will be referred to as the
front. During face removal, tetrahedra are connected to
these faces, therefore eliminating them. Any non-existing
face of a newly created tetrahedra, referred to as a new
face, is a partially connected face until it is eliminated.
The face removal process is complete when there are no
partially connected mesh faces remaining.

3.3.1 Underlying Octree

The octree is built over the given surface mesh to (i) help

in localizing the mesh entities of interest, and (ii) pro-

vide support for the use of fast octant meshing templates.
Proper localization is achieved by having each terminal
octant reference any partially connected mesh face which
is either totaily or partially inside its volume. This infor-
mation is used to efficiently guarantee the correctness of
the face removal technique. The octree building process
can be decomposed into: (i) root octant building, (ii) oc-
tree building, (iii) level adjustment, (iv) assignment of
partially connected mesh faces to terminal octants, and
(v) terminal octant classification.

The root octant is such that the given surface mesh is
contained within it. It is cubic in order to avoid the
creation of unnecessary stretched tetrahedra coming from

the application of meshing templates on stretched octants

(assuming isotropy is desirable in the resulting mesh).

The terminal octants are constructed to be approximately
the same size as any partially connected mesh face asso-
ciated with them in order to ensure appropriate element
sizes and gradations. This is done by visiting each mesh
vertex in the initial surface mesh, computing the average
size of the connected mesh edges, and refining the oc-
tree until any terminal octant around that vertex is at a

level corresponding to that average size. The level of the

octant is given by:

] . [rootlength\ o
octlev = logy | ——— (16)
size

where rootlength is the length of the root octant and
size is the size of the mesh entity (defined here as the
average length of the bounding edges). It should be noted
that this procedure does not theoretically ensure a match
in size between every terminal octant and the partially

connected mesh faces it knows about.

To ensure a smooth gradation between octant levels, no
more than one level of difference is allowed between
terminal octants that share an octant edge. Application
of this rule can possibly lead to refinement of some

4. for each potential target vertex vert {

a. Perform preliminary check on acceptability. If
not acceptable, continue

b. If the new element contains any mesh vertex
belonging to the front, continue

c. [If the new element intersects any existing mesh
entity, continue

d. Evaluate how close the new element is to exist-
ing mesh entities (compute relative minimum
distance min_dist)

e. if (min_dist > dist_lim) {

. target_vert = vert
. max_min_dist= min_dist
¢ break

}

f. else if (min_dist > max_min_dist) {

s target_vert = vert
. max_min_dist = min_dist

}
}

5. if (max_min_dist > dist_lim) retarn
6. if target_vert == 0 {

a. Create a new vertex vert at the best position for
the partially connected mesh face to be removed
b. target_vert = vert

7. else { /* Consider creating a new vertex */

a. Create a new vertex vert at the best position for
the partially connected mesh face to be removed

b. Evaluate closeness of new element to existing
mesh entities (min_dist)

c. if (min_dist > max_min_dist) target_vert =
vert /* Better to create a new vertex */

}

The neighborhood of an entity is defined as a tree neigh-
borhood of a given order. Given a mesh eniity, a tree
neighborhood of order O consists of all terminal octants
that know about the entity (have the entity or part of
it within their volumes). A tree neighborhood of order

n (n > 0) consists of a tree neighborhood of order n-I1

to which is added all terminal octants that neighbor any
octant corner of any terminal octant in the tree neigh-
borhood of level n-1. The set of potential target vertices
is obtained via the partially connected mesh-faces in the
tree neighborhood of the appropriate order for the face in
consideration. The set of potential target vertices should

be as small as possible (for efficiency reasons) but should .

not be missing the best target (with respect to both shape
of new element and closeness to nearby existing mesh en-
tities) assuming all mesh vertices of the front were con-
sidered. A tree neighborhood of order 0 is clearly not
enough while a tree neighborhood of order 1 is adequate
when the terminal octants have approximately the same

~

6-21

sizes as the partially connected mesh faces they know
about.

It is of interest to be able to discard potential target
vertices as early as possible for purpose of efficiency.
A potential target is kept only if it satisfies one of the
three following conditions (types):

1. connects to a bounding vertex of the face to be
removed through a mesh edge of the front. This
allows for the removal of partially connected mesh
faces other than the face in consideration (not in all
cases) and therefore leads to a reduction of the size of
the front (guaranteeing convergence of the method)

2. is positioned inside the sphere centered at the best
position (with respect to shape) for the fourth vertex
of the face to be removed with a radius the size of
the face to be removed. This avoids the creation
of a stretched element with respect to the face in
consideration.

3. any of the three bounding vertices of the face to
be removed are positioned inside the sphere of any
of the partially connected mesh faces connected to
the target vertex. This allows for the creation of a
stretched element with respect to the face in consid-
eration which is not stretched with respect to par-
tially connected mesh faces connected to the target.

Figure 25 shows potential target vertices of type 1, 2,
and 3 for the face to remove.

-

. \\& Face to remove

Figure 25. The three types of
potential target vertices (2—d setting)

Given a potential target vertex, one has to make sure that

any new mesh entity (resulting from the creation of the
new mesh region) does not intersect an existing mesh

-entity.- “The creation of a new mesh region may result

in the creation of a new mesh vertex, up to three new
mesh edges, and up to three new mesh faces. New mesh
edges are checked for intersection against nearby partially
connected mesh faces. Given a virtual new mesh edge,
the nearby partially connected mesh faces are obtained
through the tree neighborhood of order 0 (of the new
edge). If no intersection is detected, new mesh faces are
checked for intersection against nearby front mesh edges.
Given a virtual new mesh face, nearby front mesh edges

request, which certainly can degrade the overall perfor-
mance if not done carefully. An easy solution is to make
sure that all processors participate in the request (soft
synchronization).On a sequential machine, performing
tree traversals to obtain neighboring information, typi-
cally, getting all terminal octants that neighbor an octant
entity (face, edge, or corner) can be avoided if octant
face neighboring terminal octants are stored. The lim-
ited increase in data storage is well worth the constant
time complexity for getting neighboring information. In
a parallel setting, it is difficult to conceive such a scheme
without having to communicate between processors.

3.4.2 Multiple Octant Migration

When the mesh generation process comes to a point when
no face removal can be applied (face removals are not
applied when needed tree neighborhoods are not fully
on processor), the tree and associated mesh is reparti-
tioned. The migration of octants is key to repartitioning
once decisions concerning new destinations of terminal
octants (classified boundary) have been made. Multiple
octant migration itself relies on the multiple migration of
partially connected mesh faces and/or mesh regions (de-
scribed above). Note that multiple mesh region migration
is also used in the final repartitioning at the region level
once the mesh has been fully generated.

Any processor can send any number of terminal octants
to another processor. When a terminal octant is migrated
from one processor to another, the partially connected
mesh faces not connected to any mesh region (these are
the mesh faces remaining from the given surface triangu-
lation) owned by the octant and/or the mesh regions that
are bounded by at least one partially connected mesh face
owned by the octant are migrated as well. An octant owns
a mesh entity when it knows about it (has it within its
volume) and has its centroid within its volume. Note that
a partially connected mesh face not known by the octant
may be migrated as part of a mesh region if that region is
bounded by another partially connected mesh face whose
owner is the octant. Also, if a mesh region is bounded
by more than one partially connected mesh face known
to the octant to be migrated (up to four), the ownership is
arbitrarily dictated by the first partially connected mesh
face to be processed (from the list of partially connected
mesh faces known to the octant). Figure 28 shows a two-
dimensional example of the mesh regions to be migrated
within an octant. When the multiple octant migration
completes, the processor is informed of the octants it has
received. For each received octant, a list of associated
mesh entities is also given, basically the partially con-
nected mesh faces and/or mesh regions that were sent.

The primary complexity that arises when migrating oc-
tants and associated mesh information is the -absence of
a global labeling system for the mesh entities. Each pro-
cessor employs a local labeling for the hierarchy of mesh
entities that it is assigned. The interprocessor mesh adja-
cency links maintain the required knowledge of the adja-
cent mesh entities on neighboring processors. Although
the mesh data for a partially connected face is on one

6-23

‘aces to be migrated with octant

N
\/\

)

i— Pc faces owned by octant

Regions to be migrated with octant

Figure 28. Octant migration

processor, the octants which refer to that face may be on
multiple processors. Since the face removal procedure
must perform geometric checks on all partially connected
faces known to that octant, the time required to perform
these operations would be greatly increased if the required
information had to be fetched from neighboring proces-
sors. To eliminate this requirement, each partially con-
nected face known to an octant will either be a pointer to
face, when the face is actually on-processor, or a set of
three coordinates when the face is stored off-processor.
Although this approach avoids interprocessor communi-
cations, it complicates the process of updating references
to partially connected mesh faces on and off-processor
when octants are migrated. Concerning the update of
processor assignment at the octant level, since the tree
structure is currently stored on all processors, a broad-
cast is performed to all processors indicating the fact that
octants have been relocated.

3.4.3 Dynamic Repartitioning

Dynamic repartitioning enables redistribution of the load
among processors as evenly as possible at key stages of
the mesh generation process. These key stages are:

1. at the beginning of template meshing,
2. at the beginning of each face removal step, and
3. at completion of the mesh generation process.

Repartitioning for stages 1 and 2 is done at the terminal
octant level (1 with respect to terminal octants classified
interior and 2 with respect to terminal octants classified
boundary). Repartitioning for stage 3 is performed at
the mesh region level. The strategy is identical for
both cases, only the process of migrating differs. The
methods used here are geometry-based dynamic balancing
(repartitioning) procedures which are described in section
23.1.

3.5. Parallel Region Meshing
3.5.1 Underlying Octree

At this point in time, the octree is built sequentially on
a single processor (processor 0). Since a sequential oc-
tree building can become a bottleneck when dealing with

Iteration 1
4/ 4 procs

lteration 3
4/ 4 procs

Iteration 5
2/4 procs

&

iteration 7
2/ 4 procs

Iteration 2
4/4 procs

Iteration 4
4 /4 procs

Iteration 6
2/4 procs

"

Iteration 8
1/4 procs

Final mesh

Figure 30. Successive face removal iterations
and final repartitioned mesh for chicklet

6-25

Procs 1 2 4
Iterations 1 ‘ 5 7
Face 1.0 1.9 33
removal

speedup ;

Total 1.0 1.8 129
speedup

Table 4 Face removal statistics for
connecting rod (35,000 mesh regions
created by face removals — 70,000 total)

Figure 31. Final repartitioned mesh
for connecting rod (4 processors)

Procs 1 2 4
Iterations | 1 5

Face 1.0 2.0 32
removal

speedup

Total 1.0 1.9 2.8
speedup

Table 5 Face removal staﬁstics for blade (60,000 mesh
regions created by face removals — 90,000 total)

not include template meshing. Face removal speed-up in-
dicates speed-up for step 2 of the parallel face removal
procedure. Total speed-up indicates speed-up for all steps
(1, 2, and 3). In that case, the first repartitioning (itera-
tion 1) is not counted since it can be considered an initial
partitioning step. Note that the time taken to perform the
first repartitioning depends on the size of the problem and
not the number of processors. The speed-up is by defi-
nition set to 1.0 for the run with the smallest number of
processors. The results show good speed-ups as long as
the size of the problem is adequate with the number of
processors on hand.

Figure 35. Final repartitioned mesh
for mechanical part 2 (8 processors)

A few definitions related to triangulation quality relevant
to local retriangulation tools are now given:
Triangulation quality: If each mesh entity mTid’ of a tri-
angulation ,,$} is associated with a quality measure g;,
the quality of the triangulation is defined as () = min (¢:)
Triangulation acceptability: Given a quality threshold g,
a triangulation) is acceptable with respect to triangu-
lation quality if Q > q. :

Triangulation comparison: A triangulation . $}; of a set
of points is considered better with respect to triangulation
quality than another triangulation ,(}; of the same set of

points if Qi > Q.
4.1.1 Edge Swapping

In two and three dimensions, a swapping step is per-
formed after inserting a new node into the triangulation
to transform a locally non-Delaunay triangulation into a
Delaunay one. Aside from the refinement issue, it is a
method to incrementally build a Delaunay triangulation
of a set of points.

Swapping relies on the general result given by Lawson
which states that a set of n+2 points in ™ may be
triangulated in at most two ways [42]. In two dimen-
sions, theré are two ways to triangulate a sirictly con-
vex quadrilateral. Edge swapping consists of switching
diagonals for the quadrilateral resulting from the union
of the two connected triangles (if convex). In three di-
mensions, there are two ways to triangulate a strictly
convex triangular hexahedron containing five and only
five points (the five apices of the triangular hexahedron).
Joe provided a set of workable swappable configura-
tions for the three-dimensional case [35]. If a mesh face
T? is not locally optimal (does not satisfy the Delau-
nay criterion) and corresponds to one of the two situ-
ations on the left side of figure 36, it is swapped. If
[nTd, W I0) N, T2 # 0 ([T, wT2] being the line seg-

6-27

ment spanning from ,, 7} to ., 7%), the triangular hexahe-
dron initially containing two tetrahedra is retriangulated
with three. If [, 77, ,,79] N (51U Sy U S3) # @ (where
the S;’s are plane sectors appearing shaded in figure 36)
and 3 T | {nT8 T2, T8, T8} € B(TF), the
triangular hexahedron initially containing three tetrahe-
dra is retriangulated with two.

[LTo - pTo 1N (S,US,US,y) 8

Region bounded by
0 0
{uT2 ,M'rg mTa ,MTg } exists

0
MTs

Figure 36. 2-t0-3 and 3—to-2 swaps in three dimensions
These swaps, commonly referred to as 2-to-3 and

3—to-2, are suited for Delaunay triangulations and by
extension for regular triangulations [19]. Referring

to Fig. 36, if [mng?mT‘é‘O] N (51U52U53) # 0
and V, 7% {19,709, .10, T} & 0(,T2) or

[ng,ng] N (mT12 USiuUS, US3) = @, there is
no possible swap. When dealing with Delaunay tri-
angulations (or regular triangulations), theoretical re-
sults indicate that non swappable faces (in Joe’s
sense) are not critical. However, when dealing with
any other criterion, non swappable faces (in Joe’s
sense) may be critical. The other non swappable
configuration from figure 36 which corresponds to
(T8, mTe] N (T US1US; U S3) = @ consists of
four tetrahedra bounded by {79,719, .7%, .15},
(T8, T8 T3, T8 b T8, 8 I8 T8 and
{0, T8, mT3, T3 }, respectively [35]. It is clear
that there is no other way of triangulating this convex
hull. The ideas presented by Briére de I'Isle and George
[17] about edge removal enable the extension of the
classic 3-to-2 swap [35, 19].

4.1.2 Edge Removal

Briére de I'Isle and George [17] have proposed an edge
removal technique as part of an algorithm to optimize the
quality of a given mesh. It can also be used as part of a
scheme to recover the faceted boundary of a model [28].
A mesh edge , T{ © ,/T7 which is bounded by vertices
TP and ,, 19 can be eliminated by retriangulating the
polyhedron of all connected tetrahedrons. The polyhe-
dron is retriangulated by: (i) triangulating the polygon

.

One loop
touches itself

Vertex

disconnection Two loops

Figure 38. Cases when the topological state of the set
of mesh faces {,, 77} prevents multi-face removal

{nT?} (as well as any mesh face in the set) is said to
be topologically removable.

Since the goal of the presented optimization algorithm is
to get rid of undesirable mesh regions, the input to the
multi-face removal procedure is a mesh region ,,, 77 and
a bounding mesh face ,,7# from which the simply con-
nected set of mesh faces is constructed. The description
of the algorithm follows:

_Get vertex ,, T opposite ,, 7% in ,,, T7 (Fig 39.a)

Get region ,,, 75 on other side of ,, T?

Get the vertex ,, T opposite ,, 7?2 in ,,,T% (Fig 39.b)

Gather all pairs of face-connected mesh regions such

that one mesh region connects to ,,, 7 and the other

connects to ,,7%. Keep track of the mesh faces in-

between pairs of mesh regions ({,,77}). The set

of gathered mesh regions defines pol({,,17}) (Fig

39.¢)

5. If retriangulation would créate invalid elements, do
not perform removal

6. Compute quality of initial triangulation Qorg

7. Compute quality Qe of triangulation that would
result from connecting all boundary faces of
pol({nT7}) to 1Y

8. If Qpew < Qorg, do not perform removal

9. Delete the mesh regions in pol({,,T?}) to form a
polyhedral cavity

10. Connect all faces of polyhedral cavity to ,,, 77 (Fig

39.d)

bl

The initial triangulation of the polyhedron (Fig 39.c) is
such that there are:

1. m mesh regions (note that m is an even number),

2. 3m/2-2 interior (with respect to the polyhedron)
mesh faces, and

3. m/2-] interior mesh edges each connected to 4 mesh

regions.

The resulting triangulation (Fig 39.d) is such that there
are:

1. m/2+2 mesh regions,

2. m/2+2 interior mesh faces, and

3. I interior mesh edge connected to m/2+2 mesh re-
gions.

b) [3
0 T
Ml M2

c)

m tets m/2 + 2 tets
3m/2 - 2 int. faces m/2 + 2 int. faces
m/2 - 1 int. edges 1 int. edge

Figure 39. Multi-face removal in three dimensions

4.1.4 Triangulation Optimization Using
Local Retriangulation Tools

The goal of the optimization algorithm is to improve
the quality of Geometric triangulations with respect to
a given criterion (e.g., element shape). The optimization
procedure described here makes use of the local retri-
angulation tools described above, namely edge removal
and multi-face removal. Other local retriangulation tools
which change the number of mesh vertices like mesh en-
tity splitting, edge collapsing, and even local remeshing
are not incorporated into this specific optimization proce-
dure. Also, smoothing techniques (vertex repositioning)
{23, 14] are not addressed. In this discussion, triangula-
tion optimization can be used over the whole triangulation
or locally over a sub-triangulation resulting from adaptive
enrichments such as refinement and derefinement.

The optimization procedure is region based, that is, it
looks for mesh regions that are not acceptable (quality
below g;) and attempts to remove them from the trian-
gulation with local retriangulation tools. Given a non
acceptable mesh region ,,, 1%, one can potentially remove
that mesh region from the triangulation by considering
edge removal with respect to any of its four bounding
edges or multi-face removal with respect to any of its
four bounding faces. The optimization algorithm is de-
scribed as follows:

1. - Initialize queue Qu of non acceptable mesh regions
(quality below gq;)

2. If (Qu empty) or (there is no edge removal or multi-
face removal that can successfully be applied to any
mesh region in Qu), end

3. Pop a region from Qu

4. Consider which edge removal (with respect to any
bounding edge) or multi-face removal (with respect
to any bounding face) gives the best quality improve-
ment of the corresponding polyhedron

AN

Reinstatement
of parent

e
Regular \
subdivision r
Figure 42. Reinstatement of parent element
followed by regular subdivision in two dimensions

K9S

Figure 43. Classic element subdivision
patterns in three dimensions

at the centroid of the element and the element is split
accordingly. If a marking pattern does not correspond to
a predefined configuration, it is upgraded to the closest
one. The process terminates in a finite number of steps.
It has been shown that the regular 1:8 subdivision scheme
is stable as long as the proper (shortest) inner diagonal
is chiosen [29, 5]. Algorithms based on subdivision pat-
terns are stable if irregular child elements (not resulting
from regular subdivision) are never further subdivided,
in other words, parents of those are reinstated and subdi-
vided with the 1:8 subdivision scheme prior to any further
subdivision [57, 48, 9]. Note that ,,2; is always nested
into ,,,{21 but ;7 may not be nested into ., 2; due
to the possible reinstatement of parents (2 > 2). Any
refinement scheme based on subdivision patterns which
does not have all possible subdivision patterns and/or re-
instates some parent elements prior to further subdivision
will in general over-refine, that is, produce more refine-
ment than requested by the adaptive procedure. Also,
using subdivision patterns which add a centroidal vertex
when not actually needed will over-refine as well.

4.2.2 Generalized Bisection

In two dimensions, an element is refined by bisecting
its longest edge (two-triangle algorithm) [59]. Elements
with non-conforming edges are subdivided following the
patterns of Figure 44. The process terminates in a finite
number of steps. Following the results of Rosenberg and
Stenger [61] and Stynes [82] about longest edge bisection,
the scheme is stable, furthermore, interior angles are
always greater than one half of the lowest angle in the
initial triangulation ,€2; [59].

6-31

o Non-conforming
vertex on face’s
edge

Longest edge

/<l\/<D\/<l%

1 non-conf. vert. 2 non-conf, vert. 3 non-conf. vert.

Figure 44. Non-conforming elements and
their triangulations in two dimensions

This method of subdivision along the longest edge has
been extended to three dimensions [60]. Elements
to be refined are bisected along their longest edges.
Non-conforming elements are subdivided along their
longest edges in a recursive fashion. Unlike the two-
dimensional case, an element that needs refinement or is
nen-confoming must be bisected at its longest edge.

This scheme guarantees nesting. In two dimensions,
following the longest edge bisection results of Rosenberg
and Stenger [61] and Stynes [82], the scheme is stable,
furthermore, interior angles are always greater than one
half of the lowest angle in the initial triangulation €24
[59]. 1In three dimensions, to this point in time, no
one has yet presented a proof of the stability of the
scheme probably because (i) the longest edge in a mesh
region is not necessarily opposite the largest dihedral
angle and (i) the sum of all dihedral angles of a mesh
region is not constant. However, the scheme seems to be
“experimentally” stable. Because the non-conformity can
propagate, this scheme will in general over-refine.

Joe [45] has proven that the infinite bisection of a tetra-
hedron is stable using generalized bisection on a mapped
special tetrahedron. Note that this result does not prove
that generalized bisection in the real space is stable. Liu
and Joe [44] have presented a stable refinement algorithm
that makes use of this result. In ,,{2;, for each element,
a bisected edge is uniquely chosen (this does not mean

_ that all elements will be subdivided). Elements that need

to be subdivided are bisected along their bisected edges.
When an element is subdivided into two elements, the
bisected edges for the two-new elements are imposed ac-
cording to rules given in [44]. Once all elements that need
refinement have been subdivided, there may be some non-
conforming elements in the triangulation. The process of
subdividing elements continues -until -there- are no more
non-conforming elements in the mesh. At this point, the
scheme guarantees nesting, is stable, and will in general
over-refine. After all levels of refinement have been ap-
plied, local transformations [35] are applied to further im-
prove the quality of the final mesh. It should be noted that
if local transformations are applied after each refinement
iteration, a priori control of stability is lost. From ex-
perimental results given in [44], this scheme over-refines
less than the scheme by Rivara and Levin [60] especially
as the number of refinement levels becomes high. As a

Muthukrishnan et al. [53] sort mesh regions that are
to be refined with respect to increasing length of their
longest edges. The first region to be refined is the one
at the end of the list. Before splitting the longest edge,
the regions connected to the edge are examined. If a
connected region has a longest edge different from the
edge to be split, it is put in the list of regions to be
refined at the appropriate rank. After the split, the list
is updated. This refinement scheme is actually identical
to the scheme described by Rivara and Levin [60] and
therefore has the same properties. It is followed by a
node repositioning procedure (nesting is lost).

Lo [46] sorts (in an approximate way) the mesh edges
marked for refinement with respect to increasing length.
The mesh edge at the end of the list is split and the list
is updated. This scheme is different from the one by Ri-
vara and Levin [60] and Muthukrishnan et al. [53] since
only edges marked for refinement will be split. At this
point, the scheme guarantees nesting, is not stable, and
does not artificially refine. It is followed by a triangu-
lation optimization procedure which makes use of node
repositioning and local transformations (nesting is lost).
These local transformations are:

1. 2-to-3,
. 3-to-2, and
3. 4-to-4 which is an edge removal when there are four
mesh regions connected to an edge.

4,2.6 Refinement Using Full Set
of Subdivision Patterns

Refinement is performed by marking appropriate mesh
edges for refinement and applying subdivision patterns to
each mesh region. Each mesh region has from zero to
six marked edges. Subdivision patterns for each possible
configuration of marked edges have been developed in
order to annihilate any over-refinement. There are ten
possible patterns which are as follows (Fig. 48):

1. l-edge: this is the classic 1:2 subdivision pattern
(one template)
2. 2—edge (this is also the Green II in [9]):

a. One face has two marked edges (two templates)
b. All faces have one marked edge (one template)

3. 3—edge:

a. One face has three marked edges: this is the
classic 1:4 subdivision pattern (one template)
b. Two faces have two marked edges (four tem-

plates)

c. Three faces have two marked edges (eight tem-
plates)

4. 4-edge:

a. One face has three marked edges (four tem-
plates)

b. All faces have two marked edges (sixteen tem-
plates)

6-33
5. 5-edge (four templates)

6. ©6-edge: this is the classic 1:8 subdivision pattern
(one template)

1-edge

Figure 48. Subdivision patterns in three dimensions

When only the 1:2, 1:4, and 1:8 subdivision patterns are
used, there is no possible triangulation incompatibility at
the face level, in other words, the subdivision patterns
on both sides of a face with either one or three marked
edges will always match (at the face level). Inclusion of
all the refinement types requires explicit consideration of
triangulation compatibility at the face level. If a face with
two and only two marked edges has been triangulated
due to the subdivision of one region using that face, the
template used to subdivide the other region must match
the face triangulation. Since there are a priori two ways
to triangulate a face with two marked edges (Fig. 49),
any pattern which has N faces with two and only two
marked edges needs 2V templates.

N

Figure 49. The two ways to triangulate
a mesh face with two marked edges

As is, this refinement scheme is not stable since it is pos-
sible, and likely, that an angle (solid) will be bisected
more than once when multiple refinements are applied in
the same areas. However, it can be made stable at the
price of some over-refinement. Assuming the quality of
the initial triangulation ,{2; is @)1, stability requires that
for any subsequent triangulation ,,Q; (¢ > 1) its quality
Qi is such that Q); > ¢ with ¢; = a); where « is some
constant. Given a mesh region with at least one marked
edge but fewer than six, the template corresponding to the
number of marked edges is applied and the optimization
procedure (with ¢; as the threshold) is applied locally to
the subdivided mesh region. If the optimization procedure
is successful, nothing else has to be done for that mesh

m:m-m
m = nbr of tets
connected toyT¢
m’ = nbr of tets

connected toyT. 1

Figure 52. Edge collapsing in three dimensions

if the mesh edge can be collapsed (FALSE otherwise).
Figure 54 illustrates graphically some of the cases where
edge collapsing is not possible which are pointed out in
the pseudo-code.

Before physically collapsing the edge, the geometry of the

mesh regions to be created can be predicted exactly (this

check refers to step 2 of the algorithm). The volumes of
the new mesh regions can be computed by considering
all mesh regions which are connected to ,,,77 but not
connected to .77 and virtually moving 77 to ,,7%.
Since the computation of the volume of a mesh region
always consider the bounding vertices in a certain order,
the (virtual) movement of one of its bounding vertices
is valid only if the new volume is positive. Therefore,
one can always tell beforehand if the to-be created mesh
regions are invalid. The quality of the to-be created mesh
regions can be predicted as well. If the quality of the to
be created elements is not good enough with respect to
some predetermined threshold, the derefinement of the
edge need not be performed. This is important in order
to guarantee the stability of the refinement/derefinement
scheme. Also, assuming both end vertices are candidates
to be the target vertex, the target vertex that would create
the “better” triangulation of the two is chosen.

4.4. Complete Mesh Adaptation Procedure

The actual implementation of the mesh adaptation scheme
uses the following steps:

1. Derefinement using edge collapsing as described

above
2. Global optimization with ¢; = (1
3. Refinement using full set of subdivision patterns
without consideration for stability
4. Refinement vertex snapping (to the model boundary)
5. Global optimization with ¢; = @1

So far, problems due to the non-stability of the imple-
mented refinement scheme have not appeared. If they
happen, the refinement-can be made stable as described
above at the price of some over-refinement.

4.5. Parallelization of Mesh Adaptation

Today’s CFD computations are costly both in CPU time
and memory. For big enough problems, the flow solver
cannot be run on a classic scalar workstation for which
performance and memory are limited. For large-scale
analysis of fluid flows, it is necessary to use a parallel
flow solver. Since the mesh adaptation is an integral part

6-35

. . d() d“ .
Get bounding vertices (,,7¥ C 771,15 C ,;T5%)

41
of estge mOTll C ngl
if df = dy
{} d()
ig T - TS
if dJ = 3 return TRUE (ok to collapse)
else return FALSE (cannot collapse) (Fig.
54.a) -

else

if d = 3 or d} = 3 return TRUE (target
vertex is the one classified on lower
order model entity)

At this point, the two mesh vertices are
classified on model boundary

if d} = 3 returm FALSE

Switch (if necessary) ., TP and ., 79 so that
d(lJ > d9 (from now on, target vertex will
be .7, if collapsing is possible)

! 0 i
if ngl # ngl return FALSE (Fig. 54.b)

At this point, the two vertices are classified
on model boundary and the edge is classified
on the model entity of higher order

: dal
for each pair of mesh edges (mTr_} C gT22 rngl C

41
oT5°) that connect to ,7{ and ,,7§ respec-
tively and connect to each other

if df = 3 or di = 3 continue
if dl = d}

. d3 di

if T,° # ,T3° return FALSE

else if d} = 1 return FALSE
At this point, the two edges are classi-
fied on same model face or one is clas-
sified on model face and the other is
classified on the model face’s boundary
Switch (if necessary) ,,73 and ,,7i so
that di > d}

2

. d
Find face ,T¢ C ,Iy!

1 1 1
{n Ty Ty T3}
if 77 does not exist, return FALSE
. d2 di .
if Tyt # 1,7 return FALSE (Fig. 54.c)

bounded by

. d?
for each pair of mesh faces (mT12 g 1 ,ng |

42
,T5%) that comnect to ,T{ and ,T¢ respec-
tively and connect to each other by a mesh
edge

if d? = 2 and d2 = 2 return FALSE ({Fig.
54.4)

if (,,72.,,72) do not bound a mesh region,
return FALSE

return TRUE

Figure 53. Pseudo-code for checking

ical validity for edge collapsing
of the flow solver, it must be running in parallel as well
in erder not to become a bottleneck.

4.5.1 Derefinement

If a mesh edge ,,, T} is marked for derefinement, it is at-
tempted to be collapsed. If the polyhedron pol(,,T7) is
on processor p;, the edge collapsing is performed on p;.
If pol (mTlo) is not fully on p;, the missing mesh regions
are requested from the appropriate processors. When all
processors are done traversing their lists of mesh edges,
the processors that have received requests send (migrate)

6 T
4
41 4
Q
3
T
[
o
.
7]
2} -
1 L i
2 . 4 8
Number of processors
Figure 57. Speed-ups for the
optimization procedure (85,000 elements)
4 5 4
(] . 10 10 ¥ 1
3 3 , 3

Figure 58. Subdivision patterns at the mesh face level

Once all mesh faces on the partition boundary are subdi-
vided, links for all new mesh entities are updated. Then,
each processor can apply the three-dimensional templates
on any mesh region with at least one marked edge (as
described above) without any communication.

Once all appropriate mesh regions have been subdivided,
the refinement vertices which are classified on the model
boundary need to be snapped to the corresponding model
entity. Since snapping makes use of the local retrian-
gulation tools, the technique to parallelize that process
is similar to the one used to parallelize the derefinement
and optimization steps. All processors iterate on a two
step process: (i) (sequential) vertex snapping along with
requests for missing mesh regions, and (ii) sending of re-
quests and migration of requested mesh regions until all
refinement vertices have been attempted to be snapped.
At the end of the refinement step, the processors may
not be well balanced for two reasons: (i) refinement is
selective, and (ii) mesh regions have been migrated (due
to snapping). Therefore, a load balancing step is applied
before going further. Figure 59 shows speed-ups for the
refinement procedure on 36,000 elements when 20% of
the mesh edges are refined (resulting triangulation has
88,000 elements). '

5. Parallel Adaptive Analysis Procedures

5.1. Structure of a Parallel Adaptive
Analysis Procedure
Although the most computationally intensive operations

in an adaptive analysis are of the same type as those
of a fixed mesh analysis, an adaptive analysis must use

6-37

Speed-up

1 2 4 8
Number of processors

Figure 59. Speed-ups for parallel refinement

Mesh Generation

v

Mesh Migration
Load Balance

| Element Formation

v

Equatioh Solution

Y

Error Estimation

Y

Mesh Enrichment
Mesh Migration

!

Load Balance

Figure 60. Components of a
parallel adaptive analysis procedure

more general structures which effectively account for
the evolution of the discretization. The structure of a
parallel adaptive analysis procedure follows directly from
the procedures used for the parallel control of evolving
meshes presented in the previous sections. Figure 60
presents an overall flow chart of a parallel automated
adaptive analysis procedure.

Krylov space solvers. However, they can complicate their
parallelization, leading to increased data communications
or the need for a global ordering. However, depend-
ing upon the underlying problem, local preconditioners
may prove adequate to assure convergence in a reason-
able number of iterations, or the preconditioner may be
calculated one time, stored, and used repeatedly.

5.2. Finite Element Code for
Rotorcraft Aerodynamics

This section presents an parallel adaptive procedure for
the automated aerodynamic analysis of helicopter rotors
based on the procedures discussed in this paper. Adaptive
analyses on unstructured discretizations represent an ef-
fective and accurate method to address the complex phys-
ical phenomena that characterize rotorcraft systems. The
problem of the accurate numerical simulation of these
phenomena has recently stimulated a vigorous research
effort in the scientific community, certainly prompted by
the fact that rotor-body interactions, transonic effects,
wake effects and blade stall, all have a major impact on
the performance, stability and noise characteristics of he-
licopter rotors.

One of the most important characteristics and distinguish-
ing features of the software presented here is that all the
different phases .of the analysis, namely the mesh parti-
tioning, the finite element solution, the error indication,
the mesh adaptation and the subsequent load balancing,
are realized without leaving the parallel environment. In
contrast with other procedures that perform only part of
the analysis in parallel, as for example just the finite el-
ement solution phase, our approach has the advantage of
making better use of the power of a distributed memory
architecture, leading to an integrated software environ-
ment, reducing the i/o and avoiding the bottlenecks that
are always present when one tries to solve certain phases
of the analysis in serial, especially when very large prob-
lems are addressed.

This integrated approach to the parallel adaptive solu-
tion of PDE’s has lead us to select the message passing
paradigm as our method of choice for the parailel pro-
gramming. This is in contrast with the trend shown by
some recent publications [36, 39, 52], where parallel finite
element methodologies on fixed meshes have been devel-
oped based on data parallel techniques. In fact, we be-
lieve that the software development is more easily accom-
plished in a message passing programming model when
one has to deal with adaptive strategies and mesh mod-
ification techniques. With the idea of developing a uni-
form software environment, we have useéd portable mes-
sage passing protocols in each stage of the analysis. The
implementation has been carried out using the message
passing library standard MPI [1] and it has been tested
on IBM SP-1 and SP-2 systems.

The procedure developed employs a stabilized finite ele-
ment formulation which is valid for forward flight and for
hovering rotor problems, as well as for general unsteady
and steady compressible flow problems. The linear alge-

6-39

bra is solved by means of a scalable implementation of
the standard and matrix—free GMRES algorithms. Simple
techniques are used for estimating regions of high error
with the purpose of driving the adaptive procedures.
Techniques to effectively handle the far-field and symme-
try boundary conditions for a hovering rotor are consid-
ered. Results are presented to demonstrate the ability of
the parallel adaptive procedures to solve rotorcraft aero-
dynamics problems. ~
Consideration is also given to measures of efficiency and
scalability of the parallel adaptive procedures that have
been developed. The importance of these measures are
demonstrated.

5.2.1 Finite Element Formulation

The initial/boundary value problem can be expressed by
means of the Euler equations in quasi—linear form as
U71+Ai 'U,,' =E, (ZI 1,...,7Lsd) an
plus well posed initial and boundary conditions. In
equation (17), mnsq is the number of space dimen-
sions, while U = p(1,u1,us,us,e) are the con-
servative variables, A; - U; = F,; where F;, =
pui(l, Uy, U, U3, 6) + p (0, 611'7 522', (531;, ’M,’) is the Eu-
ler flux, and E = p (0, by,b2, b3, b;u; + 7) is the source
vector. In the previous expressions, p is the density,
u = (uy,us,uz) is the velocity vector, e is the total
energy, p is the pressure, 6,; is the Kronecker delta,
b = (b1,b2,b3) is the body force vector per unit mass
and r is the heat supply per unit mass.
The Time-Discontinuous Galerkin Least-Squares finite
element method is used in this effort [70, 71]. .The
TDG/LS is developed starting from the symmetric form
of the Euler equations expressed in terms of the entropy
variables V and it is based upon the simultaneous dis-
cretization of the space~time computational domain. A
least—squares operator and a discontinuity capturing term
are added. to the formulation for improving stability with-
out sacrificing accuracy. The TDG/LS finite element
method takes the form

/ (-Wh-TVh - Wh RV + W E(V"))dQ

n

+ W UV)dD - WUVt dp

D{tp1) D(tn)
+/ W"F, (V") . aP
Py

(netin

+ ; / (EW”) -T(ﬁvh>dQ

(nep)n

+ Z/ VWP diag [Ao]VeVPdQ = 0. (18)
e=1 %

Integration is performed over the space-time slab @,
the evolving spatial domain D(t) of boundary I'(¢) and
the surface F,, described by I'(¢) as it traverses the time
interval I,, =Jt,, tpi1[. W" and V* are suitable spaces

5.2.2 Boundary Conditions for Hovering Rotors

The imposition of the correct far—field boundary condi-
tions is a critical issue in the analysis of hovering rotors,
when one wants to give an accurate representation of the
hovering conditions within a finite computational domain.
For determining the inflow/outflow far—field conditions
we have adopted the methodology suggested by Srini-
vasan et al. [81], where the 1-D helicopter momentum
theory is used for determining the outflow velocity due
to the rotor wake system. The inflow velocities at the
remaining portion of the far-field are determined con-
sidering the rotor as a point sink of mass, for achieving
conservation of mass and momentum within the compu-
tational domain.

Another important condition that must be considered for
the efficient simulation of hovering rotors is the period-
icity of the flow field. This allows consideration of a
reduced computational domain given by the angle of peri-
odicity 3 = 27 /ny, np being the number of rotor blades.

The introduction of the periodicity conditions in the ro-
tating wing flow solver has been implemented treating
them as linear 2—point constraints applied via transforma-
tion as part of the assembly process. This approach has
the double advantage of being easily parallelizable and of
avoiding the introduction of Lagrange multipliers. On the
other hand, it requires the mesh discretizations on the two
symmetric faces of the computational domain to match on
a vertex by vertex basis. Since this is not directly obtain-
able with the currently used unstructured mesh generator,
a mesh matching technique has been developed for ap-
propriately modifying an existing discretization.

In order to simplify the discussion, define one of the
symmetric model faces as “master” and the other as
“slave”. The face discretization of the slave model face
is deleted from the mesh, together with all the mesh
entities connected to it. The mesh discretization of the
master model face is then rotated of the symmetry angle ¢
about the axis of rotation and copied onto the slave model
face, yielding the required matching face discretizations.
The matching procedure is then completed filling the gap
between the new discretized slave face and the rest of
the mesh using a face removal technique followed by
smoothing and mesh optimization.

The imposition of the constraints can be formalized in

the following manner. Consider the partition of the un-

knowns V in internal (V;), master (V,,,) and slave (V),

as
V= (V;,V,, V).

The slave unknowns V, can be expressed symbolically
as functions of the master unknown V,, as

Vi=G-V,,
or, for the j—th master—slave pair of nodes as

- Vi=Gl. VI,

6-41
where

Gl = (23)

SO -
- o O

0
R
0

R being the rotation tensor associated with the rotation
of the symmetry angle v/ about the axis of rotation.

The minimal set of unknowns V = (V;, V..) is related
to the redundant set V by

V=I.-V= (24)

O O -
D=
<

The unconstrained linearized discrete equations of motion

read
J-AV =r,

where J is the tangent matrix and r is the residual vec-
tor. Applying the transformation I' to the unconstrained
system yields the constrained reduced system

r’Jr-Av=r7T.r. (25)

Refer to [74] for implementation details of this technique.
5.2.3 Subsonic and Transonic Hovering Rotors

Caradonna and Tung [12] have experimentally investi-
gated a model helicopter rotor in several subsonic and
transonic hovering conditions. These experimental tests
have been extensively used for validating CFD codes for
rotating wing analysis. The experimental setup was com-
posed of a two-bladed rotor mounted on a tall column
containing the drive shaft. The blades had rectangular
planform, square tips and no twist or taper, made use of
NACAOQO012 airfoil sections and had an aspect ratio equal
to six.

Figure 61 shows the experimental and numerical values
of the pressure coefficients at different span locations for
three subsonic test cases investigated by Caradonna and
Tung, namely 8, = 0° and M; = 0.520, 8, = 5° and
M; = 0.434, 6. = 8° and M, = 0.439. The agreement
with the experimental data is good at all locations, in-
cluding the section close to the tip. Only two pressure
distributions are presented for each case for space limita-
tions, however similar correlation with the experimental
data was observed at all the available locations. Rela-
tively crude meshes have been employed for all the three
test cases, with the coarsest mesh of only 101,000 tetra-
hedra being used for the #. = 0° case, and the finest of
152,867 tetrahedra. for the 8, = 8° test problem.

The analysis was performed on 32 processing nodes of an
IBM SP-2. Reduced integration was used for the interior
elements for lowering the computational cost, while full
integration was used at the boundary elements for better
resolution of the airloads, especially at the trailing edge
of the blade. The GMRES algorithm with block—diagonal
preconditioning was employed, yielding an average num-
ber of GMRES iterations to convergence of about 10. The
analysis was advanced in time using one single Newton

sity and Mach number, which was employed for driving
the parallel adaptation of the mesh. For the new ver-
tices created by the adaptation process, the solution was
projected from the coarser mesh using simple edge in-
terpolation. The solution obtained in this way was used
for restarting the analysis, which was advanced for 60
time steps with a CFL number of 15. Similarly, a sec-
ond adaptation was performed, yielding the final mesh for
which another 40 time steps were performed at a CFL of
20, until convergence in the energy norm of the resid-
ual. The average number of GMRES cycles per time
step throughout the analysis was 8.

Figure 64 shows the mesh at the upper face of the blade
tip, before and after refinement. The different grey levels
indicate the different subdomains, i.e. elements assigned
to the same processing node are denoted by the same level
of grey. Note the change in the shape of the partitions
from the initial to the final mesh, change generated by the
mesh migration procedure for re-balancing the load after
the refinement procedure has modified the discretization.
Note also how the mesh nicely follows the shock.

Figure 64. Meshes with partitions on the upper surface
of the blade tip, 8, = 8°, M, = 0.877. At left: initial
coarse grid with IRB partitions. At right: final
adapted grid with partitions obtained by migration.

5.3. Effectiveness of Parallel Adaptive
Analysis Procedures

The evaluation of the efficiency and performance of a
parallel adaptive analysis is a task complicated by the
namerous aspects that must be considered. In the follow-
ing we will try to address at least some of them with the
help of a classical problem in CFD, namely that of the
Onera M6 wing in transonic flight, that we have used in
the early stages of development of our code for validation
purposes. This wing has been studied experimentally by
Schmitt and Charpin {65] and it has been employed by
numerous researchers for validating both structured and
unstructured flow solvers. The wing is characterized by
an aspect ratio of 3.8, a leading edge sweep angle of

6-43

30°, and a taper ratio of 0.56. The airfoil section is an
Onera D symmetric section with 10% maximum thick-
ness—to—cord ratio.

We consider a steady flow problem characterized by an
angle of attack a = 3.06° and a value of M = 0.8395 for
the freestream Mach number. In such conditions, the flow
pattern around the wing is characterized by a complicated
double-lambda shock on the upper surface of the wing
with two triple points.

We first address the scalability of the parallel solver on
a fixed mesh, i.e. we analyze the speed—-ups attained by

‘the code using one single mesh and varying the num-

ber of processing nodes. This is a classical measure of
efficiency, and it is important to show that the imple-
mented procedure performs well with respect to it before
measuring other properties that are more pertinent to an
adaptive analysis.

The simulation was performed using a mesh consisting of
128,172 tetrahedra, using the matrix—free GMRES algo-
rithm with reduced integration of the interior elements and
full integration of the boundary elements. A local time
stepping strategy was employed with one single Newton
iteration per time step, using a CFL condition of 5 in the
first 20 time steps and a CFL equal to 10 for another 80
time steps, attaining a drop in the residual of three orders
of magnitude. The mesh was partitioned using a paral-
lel implementation of the IRB algorithm. The time for
partitioning, even if small when compared with the time
needed for achieving convergence in the finite element
analysis, is not considered in the following. The analysis
was run on 4, 8, 16, 32, 64, 128 processors of an IBM
SP-2 and the results are presented in Figure 65 in terms
of the inverse of the wall clock time versus the number
of processing nodes. The highly linear behavior of the
parallel algorithm shows the excellent characteristics of
scalability of the code.

10e-1 ;
~
S 1062 | e -
L
Q
T |]
E 10e-3
D
£
£ 1064 - / -
T~
0
10e+0 10e+1 10e+2 10e+3
procs

Figure 65. Parallel efficiency evaluated at
fixed mesh for the Onera M6 wing in transonic
flight. 128,172 tetrahedra, IRB partitions.

The same problem was then adaptively solved in order to
more accurately resolve the complicated features of the
flow. An initial coarse mesh of 85,567 tetrahedra was par-
titioned with the IRB algorithm on 32 processing nodes

Figure 67. Onera M6 wing in transonic flight,
a = 3.06°, M = 0.8395. Initial and final meshes.
Grey levels indicate processor assignment.

gorithm that can then operate on balanced or nearly bal-
anced meshes. This “incremental” rebalancing capability
represents a nice advantage of the iterative load balancing
scheme over other algorithms. The paralle!l repartitioning
algorithm was instead activated just once at the end of
each ‘adaptive step.

The meshes obtained during the two previously men-
tioned parallel adaptive simulations of the Onera M6 wing
were analyzed for gathering data on the overall perfor-
mance of the analysis. Figure 68 reports plots of the
boundary faces and neighbor statistics. The quantities
plotted are defined as:

(i) Surface—to-volume measures:

Smax = max (Boundary Faces,/ Facesi), .

6-45

Sglob = Boundary Faces/Faces.

(if) Neighbor measures:

Nmax = max (Neighbors, /(Procs — 1)),
Navrg = (Z Neighbors;/(Procs — 1))/Procs.

All these quantities are reported in Figure 68 versus the
number of tetrahedra in the mesh at a certain adaptive
level normalized by the number of tetrahedra in the initial
mesh. The solid line represents the values of the parame-
ters obtained for the parallel adaptive analysis where the
iterative mesh migration procedures were employed. The
dashed line corresponds to the parallel adaptive analysis
where the refined meshes were repartitioned after each
adaptive step using the parallel IRB algorithm.

7 Y

0.8 Mesh rigration 0.8
IRB repartitioning _ _ _
{

gas 3 0.6}
« o4 w04

0.4 eI I 0.2

emmommreeemeemiiaooll
7 2 3 4 5 7 2 3 4 2
tetsitets 0 tetsitets 0

5 7 2 3 4 5

7 2 3 4
tetstets 0 letshets 0

Figure 68. Boundary faces and neighbor statistics for
the parallel-adaptive analysis of the Onera
M6 wing in transonic flight using the mesh
migration and IRB rebalancing schemes.

From the analysis of the first two plots at the top of
Figure 68, it is clear that the migration procedures im-
plemented in this work control very effectively the sur-
face—to—volume ratios, which in fact remain constant and
fairly similar to the ones obtained with the IRB parti-
tioning for the whole simulation. On the other hand, the
second two plots of the same figure show that the num-
ber of neighbors of each subdomain tends to increase with
the number of adaptive steps performed. A more detailed
analysis shows that in general each subdomain is con-
nected by a significant amount of mesh entities (vertices,
faces, edges) only with a reduced number of neighbors,
while it shares a very limited number of mesh entities
with the other neighbors. We are currently investigating
ways of removing such small contact area interconnec-
tions, in order to achieve a better control on the number
of neighbors.

The different partition statistics provided by the two re-
balancing algorithms and shown in the previous figure

[13] S. D. Connell and D. G. Holmes. 3-dimensional
unstructured adaptive multigrid scheme for the euler
equations. AIAA J., 32:1626-1632, 1994,

[14] H. L. de Cougny. Automatic generation of geometric
triangulations based on octree/Delaunay techniques.
Master’s thesis, Civil and Environmental Engineer-
ing, Scientific Computation Research Center, Rens-
selaer Polytechnic Institute,Troy, NY 12180-3590,
May 1992. SCOREC Report # 6-1992.

[15] H. L. de Cougny, K. D. Devine, J. E. Flaherty, R. M.
Loy, C. Ozturan, and M. S. Shephard. Load bal-
ancing for the parallel solution of partial differential
equations. Applied Numerical Mathematics, 16:157—
182, 1994.

(16] H. L. de Cougny, M. S. Shephard, and C. Ozturan.
Parallel three-dimensional mesh generation on dis-
tributed memory mimd computers. Engineering with
Computers, 1995. submitted.

[17] B. E. de I'Isle and P. L. George. Optimization of
tetrahedral meshes. INRIA, Domaine de Voluceau,
Rocquencourt BP 105 Le Chesnay France, 1993.

[18]1 K. M. Devine. An adaptive HP-finite element method
with dynamic load balancing for the solution of
hyperbolic conservation laws on massively parallel
computers. PhD thesis, Computer Science Dept,
Rensselaer Polytechnic Institute, Troy, New York,
1994.

[19] H. Edelsbrunner and N. R. Shah. Incremental topo-
logical flipping works for regular triangulations. In
8th Annual Comp. Geometry, pages 643, 1992,

[20] C. Farhat. A simple and efficient automatic FEM
domain decomposer. Computers and Structures,
28:579-602, 1988.

{21] C. Farhat and M. Lesoinne. Automatic partitioning
of unstructured meshes for the parallel solution of
problems in computational mechanics. Inz. J. Numer.
Meth. Engng., 36:745-764, 1993,

[22] M. Fiedler. Algebraic connectivity of graphs.
Czechoslovak Math. J., 23:298-305, 1973.

[23] D. A. Field. Laplacian smoothing and Delaunay
triangulations. Comm. Appl. Num. Meth., 4:709-712,
1987.

{24] G. C. Fox and W. Furmanski. Communication algo-
rithms for regular convolutions and matrix problems
on the hypercube. In M. T. Heath, editor, Confer-
ence on Hypercube Multiprocessors, pages 223-238,
Philadelphia, 1986. SIAM.

[251 W. H. Frey and D. A. Field. Mesh relaxation: A

new technique for improving triangulations. Int. J.
Numer. Meth. Engng., 31:1121-1133, 1991.

[26] P. L. George. Automatic Mesh Generation. John
Wiley and Sons, Ltd, Chichester, 1991.

{271 P. L. George. Generation de maillages par une meth-
ode de type voronoi partie 2: Le cas tridimensionnel.
Technical Report INRIA 1664, INRIA, Domaine de

6-47

Voluceau, Rocquencourt BP 105 Le Chesnay France,
1992,

[28] P. L. George, F. Hecht, and E. Saltel. Fully automatic
mesh generator for 3d domains of any shape. Impact
of Comp. in Sc. and Engng., 2:187-218, 1990.

[29]1 M. E. Go Ong. Hierarchical Basis Preconditioners
for Second Order Elliptic Problems in Three Dimen-
sions. PhD thesis, Univ. of California, Los Angeles
CA, 1989.

[30] N. Golias and T. Tsiboukis. An approach to refining
three-dimensional tetrahedral meshes based on de-
launay transformations. Int. J. Numer. Meth. Engng.,
37:793-812, 1994,

[31] W. Gropp. Simplified linear equation solvers users
manual. Technical Report ANL-98/8-REV 1, Math-
ematics and Computer Science Division, Argonne
National Laboratory, 1993.

[321 E. L. Gursoz, Y. Choi, and F. B. Prinz. Vertex-
based representation of non-manifold boundaries. In
M. J. Wozny, J. U. Turner, and K. Priess, editors,
Geometric Modeling Product Engineering, pages
107-130. North Holland, 1990.

[33] S. W. Hammond. Mapping Unstructured Grid Com-
putations to Massively Parallel Computers. PhD the-
sis, Computer Science Dept., Rensselaer Polytechnic
Institue, Troy, 1991.

[34] 1. JaJa. An introduction to Parallel Algorithms.
Addison Wesley, Reading Mass., 1992.

[35] B. Joe. Three-diménsional triangulations from lo-
cal transformations. SIAM J. Sci. Stat. Comp.,
10(4):718-741, 1989.

[36] Z. Johan. Data Parallel Finite Element Technigues
Jor Large-Scale Computational Fluid Dynamics. PhD
thesis, Stanford University, July 1992,

[37] Z. Johan, T. J. R. Hughes, K. K. Mathur, and
S. L. Johnsson. A data parallel finite element method
for computational fluid dynamics on the connection
machine system. Comp. Meth. Appl. Mech. Engng.,
99:113-134, 1992.

[38] Y. Kallinderis and P. Vijayan. Adaptive refinement-
coarsening scheme for three-dimensional unstruc-
tured meshes. AIAA J., 31(8):1440-1447, August

1007

1995,

[39] J. G. Kennedy, M. Behr, V. Kalro, and T. E.
Tezduyar. Implementation of implicit finite element
methods for incompressible flows on the cm-5.
In Army High-Performance Computing Research
Center, number 94-017, University of Minnesota,
1994.

[40] B. W. Kernigham and D. M. Ritchie. The C pro-
gramming Language. Prentice Hall, Inc., 1990.

[41] C. P. Kruskal, L. Rudolph, and M. Snir. Efficient par-
allel algorithms for graph problems. Algorithmica,
5:43-64, 1990.

[72] M. S. Shephard. The specification of physical at-
tribute information for engineering analysis. Engi-
neering with Computers, 4:145-155, 1988.

[73] M. S. Shephard, C. L. Bottasso, H. L. de Cougny,
and C. Ozturan. Parallel adaptive finite element anal-
ysis of fluid flows on distributed memory computers.
In Recent Developments in Finite Element Analysis,
pages 205-214. Int. Center for Num. Meth. in En-
gng., Barcelona, Spain, 1994.

[74] M. S. Shephard, S. Dey, and M. K. Georges. Auto-
matic meshing of curved three-dimensional domains:
Curving finite elements and curvature-based mesh
control. In Proceedings of the IMA Summer Program
Modeling Mesh Generation and Adaptive Numerical
Methods for Partial Differential Equations, July 6-
23, 1993. Springer Verlag, 1994.

[75] M. S. Shephard and P. M. Finnigan. Toward auto-
matic model generation. In A. K. Noor and J. T.
Oden, editors, State-of-the-Art Surveys on Computa-
tional Mechanics, pages 335-366. ASME, 1989.

[76] M. S. Shephard and M. K. Georges. Automatic three-
dimensional mesh generation by the Finite Octree
technique. Int. J. Numer. Meth. Engng., 32(4):709—
749, 1991.

[77] M. S. Shephard and M. K. Georges. Reliability of
automatic 3-D mesh generation. Comp. Meth. Appl.
Mech. Engng., 101:443-462, 1992.

[781 M. S. Shephard and N. P. Weatherill, editors.
Int. J. Numer. Meth. Engng., volume 32. Wiley-
Interscience, Chichester, England, 1991.

[79] A. Shostko and R. Lohner. Three-dimensional paral-
lel unstructured grid generation. Int. J. Numer. Meth.
Engng., 38:905-925, 1995.

[80] H. D. Simon. Partitioning of unstructured meshes
for parallel processing. Comput. Sys. Engng., 2:135-
148, 1991.

[81] G. Srinivasan, V. Raghavan, and E. Duque. Flow-
field analysis of modern helicopter rotors in hover
by Navier-Stokes method. In International Techni-
cal Specialist Meeting on Rotorcraft Acoustics and
Rotor Fluid Dynamics, Philadelphia, PA, 1991.

[82] M. Stynes. On faster convergence of the bisection
method for all triangles. Math. of Computation,
35(152):1195-1201, October 1980.

[83] B. K. Szymanski and A. Minczuk. A representation
of a distribution power network graph. Archiwum
Elektrotechniki, 27(2):367-380, 1978.

6-49

[84] T. E. Tezduyar, M. Behr, S. Mittal, and J. Liou.
A new strategy for finite element computations
involving moving boundaries and interfaces - the
deforming-spatial-domain/space time procedure: I.
the concept and preliminary tests. Comp. Meth. Appl.
Mech. Engng., 94:339-351, 1992.

[85] A. Vidwans, Y. Kallinderis, and Venkatakrishnan.
Parallel dynamic load-balancing algorithm for three-
dimensional adaptive unstructured grids. AIAA Jour-
nal, 32(3):497-505, March 1994,

[86] R. F. Warming, R. M. Beam, and B. J. Hyett.
Diagonalization and simultaneous symmetrization of
the gas-dynamic matrices. Math. of Comp, 29:1037—
1045, 1975.

[87] D. F. Watson. Computing the n-dimensional Delau-
nay tessellation with application to Voronoi poly-
topes. The Computer J., 24(2), 1981.

[88] N. P. Weatherill and O. Hassan. Efficient three-
dimensional delaunay triangulation with automatic
point creation and imposed boundary constraints. Int.
J. Numer. Meth. Engng., 37:2005-2039, 1994.

[89] K. J. Weiler. The radial-edge structure: A topological
representation for non-manifold geometric boundary
representations. In M. J. Wozny, H. W. McLaughlin,
and J. L. Encarnacao, editors, Geometric Modeling
for CAD Applications, pages 3-36. North Holland,
1988.

[90] R. Williams. DIME: Distributed Irregular Mesh
Environment. Supercomputing Facility, California
Institute of Technology, 1990.

[91] R. D. Williams. Performance of dynamic load bal-
ancing algorithms for unstructured grid calculations.
Technical Report C3P913, Pasadena, 1990.

[92] R. D. Williams. Voxel databases: A paradigm for par-
allelism with spatial structure. Concurrency, 4:619—
636, 1992.

(93] R. D. Williams. Dime++: A parallel language
for indirect addressing. Technical Report CCSF-
34, Caltech Concurrent Supercomputing Facilities,
Pasadena, June 1993.

[94] M. A. Yerry and M. S. Shephard. Automatic three-
dimensional mesh generation by the modified-octree
technique. Int. J. Numer. Meth. Engng., 20:1965—
1990, 1984,

(5] H. Zima and B. M. Chapman. Compiling for
distributed memory systems. Technical Report
ACPC/TR 92-17, Austrian Center for Parallel Com-
putation, University of Vienna, 1992.

