A Parallel Adaptive hp-Refinement Finite Element Methods with Dyngmic
Load Balancing for the Solution of Hyperbolic Conservation Laws

Karen D. Devine and Joseph E. Flaherty§

Abstract

We describe an adaptive /p-refinement local finite element procedure for the parallel solution of
hyperbolic systems of conservation laws on rectangular domains. The local finite element
procedure utilizes spaces of piecewise-continuous polynomials of arbitrary degree and coordinated
explicit Runge-Kutta temporal integration. A solution limiting procedure produces monotonic
solutions near discontinuities while maintaining high-order accuracy near smooth extrema. A
modified tiling procedure maintains processor load balance on parallel, distributed-memory MIMD
computers by migrating finite elements between processors in overlapping neighborhoods to
produce locally balanced computations. Grids are stored in tree data structures, with finer grids
being offspring of coarser ones. Within each grid, AVL trees simplify the transfer of information
between neighboring processors and the insertion and deletion of elements as they migrate between
processors. Computations involving Burgers’ and Euler’s equations of inviscid flow demonstrate
the effectiveness of the Ap-refinement and balancing procedures relative to non-balanced adaptive
and balanced non-adaptive procedures.

1. Introduction

In recent years, adaptive methods for solving partial differential equations have been growing in
popularity [8]. With problems becoming more complex through multi-dimensional and nonlinear effects,
the automation provided by adaptivity provides, perhaps, the only reasonable way to address them. Early
adaptive techniques of mesh motion (r-refinement) have been giving way to methods that combine mesh
refinement/coarsening (h-refinement) with order variation (p-refinement) [8]. In this regard, adaptivity for
partial differential equations is following the path of similar strategies used for ordinary differential

equations [14].

As advances in computer architecture enable the solution of complex three-dimensional problems, the
efficiency, reliability, and robustness provided by adaptivity will make its use even more advantageous.
Parallel computation will be essential in these simulations. Thus, our aim is to show that sophisticated
adaptive algorithms involving hp-refinement can be developed and that they perform well in parallel
environments. Although the complex logic and localized computation used within adaptive strategies would
seem to be at odds with efficient parallel computation, several recent results demonstrate that this is not the

case. Berger [3] has developed local k-refinement finite difference procedures for conservation laws on

* This work was supported by the United States Department of Energy under Contract DE-AC04-94A1.85000,
Sandia National Laboratories under Research Agreement AD-9585, and the U.S. Army Research Office under
Contract DAAH04-95-1-0091.

1 Parallel Computing Sciences Department, Sandia National Laboratories, Albuquerque, NM 87185-1109.

§ Department of Computer Science and Scientific Computation Research Center, Rensselaer Polytechnic
Institute, Troy, NY 12180.

data-parallel computers. Biswas et al. (6] and de Cougny et al. [11] describe adaptive - and p-refinement
local finite element procedures for conservation laws on distributed-memory MIMD computers. Work is
advancing to three dimensions with Bottaso et al. [7] and Kallinderis [15] describing h-refinement

procedures for unstructured-mesh computation for Euler flows on distributed-memory MIMD computers,

Little has been done with parallel hp-refinement aside from the dissertations of Bey [5] and Devine | 12],
who both consider local finite element procedures [9, 10] for conservation laws on distributed-memory
MIMD computers. Following Devine [12], we describe a local finite element Ap-refinement procedure for
the parallel solution of conservation laws on two-dimensional rectangular domains. An adaptive limiting
procedure (Section 2) preserves monotonicity near discontinuities and serves as an indicator to determine
whether /- or p-refinement is appropriate. Generally, p-refinement is more efficient in regions where
solutions are smooth while 4-refinement is the choice near singularities [1]. The need for solution limiting
indicates the presence of solution discontinuities and, hence, the preference of h-refinement relative to
p-refinement. By using less limiting than other approaches [10], the adaptive limiting also preserves high

order near smooth extrema [6].

Our method uses explicit time integration with order and step-size keyed to the corresponding spatial
quantities. As is typical with local refinement methods [4], data structures include a tree of (uniform) grids,
with finer grids stored as offspring of the coarse grids in which they lie. Thus, time steps on grids closer to
the tree root are larger than those at deeper tree levels. The adaptive strategy uses estimates of the local
discretization error computed by p-refinement to indicate the need for enrichment or coarsening (Section

3). Order variation by unit amounts is done prior to A-refinement.

Processor load-balancing must be dynamic since frequent adaptive enrichment will upset a balanced
computation. Extending a “tiling” procedure for uniform-mesh finite difference computation [24] that was
based on a global optimization procedure of Leiss and Reddy [17, 18], balance is restored by performing a
local optimization on overlapping processor “neighborhoods” (Section 5). Each processor’s neighborhood
consists of those processors having elements sharing edges with those in the defining processor. Local
balance is achieved by migrating elements between processors in the neighborhood.

Balance is complicated by the heterogeneous method orders and by meshes at different tree levels.

Load-balancing is applied separately at each mesh level (Section 4). Thus, elements introduced by

refinement may require migration to processors other than those of their parent, increasing the amount of

communication needed between mesh levels. However, this increase in communication cost is typically
offset by an improved load balance. Tree data structures are created to simplify the insertion and deletion
of elements in grids during migration and to reduce communication overhead between neighboring
processors (Section 6). With transient problems, one iteration of the tiling procedure is performed per time
step; thus, a perfect balance is generally not achieved when adaptive refinement is used. However, since
adaptive refinement is highly localized, a fast, incremental load-redistribution strategy is preferable to a

more expensive, global strategy.

Examples involving Burgers’ equation and the Euler equations of inviscid flow indicate that the
adaptive hp-refinement solutions with balancing are almost five times more efficient than fixed-mesh,
fixed-order solutions having comparable accuracy (Section 7). The experiments demonstrate the
performance of the adaptive refinement and load-balancing strategies on both the nCUBE/2

(hypercube-architecture) and Intel Paragon (mesh-architecture) parallel computers.

2. Local Finite Element Formulation

We consider systems of two-dimensional hyperbolic conservation laws in m variables having the form
ut+f(u)x+g(u)y =0, (x,y) e Q, >0, (1a)

with the initial conditions
u(x,y,0) = uo(x, y), (x,¥) € QU IQ, (1b)

and appropriate well-posed boundary conditions on dQ. The subscripts ¢, x, and y denote partial
differentiation with respect to time and the spatial coordinates, and u, uo, f, and g are m-vectors on the

problem domain Q X (¢>0).

Restrict €2 to be rectangular and partition it into rectangular elements
Q.= {(xW|x_$x<x,y, ,<y<sy},i=12,..,1,j=12,..,J.)

Construct a weak form of (1) on Qij by multiplying (1a) by a test function v e Lz(Qij), integrating the
result over Qij’ and using the divergence theorem [6]. Mapping the integrals on Qij to

Q.= { (&, m)|-1=<&,n<1}, approximating u(x, y, 7) on Q-bya bi-p'h-degree polynomial

ugnn=U &m0 = 2 2 c,,k,Pk(i)P,(n) (&) € Q. 3)
k=0l=0

testing against functions proportional to the product of Legendre polynomials Pr(ﬁ)P s(M), and using the
properties of Legendre polynomials [6, 12, 22] yields

(2k+1) 21+ 1)

G = ~—aray— Lth+l) k1 =01,...p,1>0, (4a)
=y
where

11

I = - [[[AyP) ©) PM)F(U,) +AxP &P/ ()g (U, 1 dEdn, (4b)
-1-1
1

I, = Ay; [[PADE(ULLN,0) = (D*PF(U(-1,m,0) Tan, (40)
-1
1

I = Ax; [[PUOR(ULE 1,0) - (-1)'P&)g (U & -1,) 1 &, (ad)
-1

Ax; = x;=x;_ 1> (4e)

Ay]' =Yi=Yi-1- (4f)

The initial Galerkin coordinates are determined by Lz-project_ion as

(2k+ 1) (21+1) o

¢;jx/0) = [[P®Pmu Ol S, 1 = 0,1, .. (4)
-1-1

Integrals are evaluated using (p+ 1) 2-point Gaussian quadrature, and the ordinary differential system (4)

is solved on £ by explicit Runge-Kutta integration of order p.

The boundary fluxes f(Ui](:tl, n,#)) and g(U; (é %1, #)) remain unspecified on BQ with (4) since
the approximate solution is discontinuous there. We specify them using a “numerical ﬂux- function

h(U?, U;j) dependent on solution states U;’j and UU on the inside and outside, respectively, of BQij.We

i’
have used the local L.ax-Friedrichs numerical flux

h (U, Uy = [f(U*)-&-f(U) a(U; U*)] (52)

W

= + -
o= S”}tsvfﬂ?», (F (U], U <U; <UL, (5b)

where A(f,) is an eigenvalue of the Jacobian f,- The boundary fluxes g (U; j(E_,, 11, ¥)) are approximated

similarly.
In regions where the solution of (1) is smooth, the scheme (4, 5) produces the O(#’ + 1),

h = max (Ax,Ay),
ol J
(6)

convergence expected in L! fora p’ h-degree approximation {10]. When p > 0, flux or solution limiting is

needed to prevent spurious oscillations near solution discontinuities. With flux limiting, h(UU, U;j) is
restricted in order to obtain a monotone solution [20, 21, 23]. In the local finite element method, flux limiters
preserve monotonicity of solution averages, C;i00° i=12,..1,j=12,..,J, but do not modify the

higher-order coefficients to preserve monotonicity of the finite element solution.

We have had greater success with solution limiting, where Uij, i=1,2,..1,j=12,..,J,is
restricted after each Runge-Kutta stage to eliminate oscillations. Cockbum and Shu [10] describe a
procedure for the limiting of scalar problems that prevents the approximate solution at any point within the
element from taking values outside of the range spanned by the neighboring solution averages. While
preserving monotonicity of the average numerical solution, the limiting flattens solutions near smooth
extrema so that high-order accuracy is lost there. To overcome this, we extend the one-dimensional limiting
procedure of Biswas et al. [6] to two dimensions by limiting in each coordinate direction. This procedure
[6] essentially limits derivatives of the solution within an element with respect to their approximations over

neighboring elements. Assuming a scalar problem and differentiating (3), we find

r p
agr U(& n, H= (H 2k - ”) 2 Cijrl(t)Pl(n)
) } ™)

> 20,,kz(f)Pz<n) p®. r=l2..p Emeq.

k=r+11=0

To limit the »* degree coefficients ¢ r=12,..,p,1=0,1,...,r, we examine the ** derivative

ijri>
within Qij of the r** -degree polynomial

Um0 = Y Y P &PM), r = 1,2,...,p, (§,1) € Q. ®)

k=0/=0

Applying (7) to (8), we have

r

5, 0= g "UEm, 1) = (H 2 - 11) v ¢ ADPAN). ©
k=0 I=0

We evaluate (9) at r + 1 uniformly spaced points N, =-1+2s/r,s =0,1,...,r, on the element edges,

€ = %1, and compare the result with approximations over neighboring elements obtained by taking the

differences of the average values of the (7 — 1) **-derivative with respect to & in Q. i+l Qij’ and Q, _ 1)

Using (7) and the properties of Legendre polynomials [22], the average derivative in Qij is

Ay =7 j j agr 9"y (&, ddn = (kI_'[Otzk—u)c,.,-,,_l,om. (10)

-1-1

We limit (9) with respect to differences of (10) as
, 1 1
S,](nsa t) = mland(Sij(nS’ t)) E (Aa’ i+ 1,]_A§i]) > E (Aél} —Aé’ i 1,])), S = 0, 1, ey Iy (lla)

where

sgn (a) min(lal, |bl, Icl), if sgn(a) = sgn(b) = sgn(c),

} (11b)
0, otherwise,

minmod(a, b, ¢) = {

and redetermine ¢.. ,, I = 0,1, ..., r,using (9) with | = N, s = 01,..r

ijrl’
This procedure is applied analogously in the n-direction to limit ¢; ik =12, .,p,k=0,1,...,r
The coefficient c; ir is uniquely specified by limiting (11) in both the & - and 1 -directions and using

Ci(0) = minmod(cS, (9), ch (), (110)

where c,-gj" and c;‘-}rr are the values of Cijrr determined by the limiting (11) in the &- and n- directions,
respectively.
The two-dimensional limiting procedure is applied adaptively. First, Ciipk and Ciikp k=0,1,..,p,

are limited. If they are changed by the limiter, Cijp— ijk, p—

Lower-order coefficients are successively limited when the next higher terms are changed by the limiter.

1rand ¢ 1 k=0,1,...,p—1, are limited.
The high-order coefficients are limited again using the updated lower-order terms. In this way, the limiting

is applied only where it is needed, and high-order accuracy is retained in smooth regions.

For vector systems, the scalar limiting function can be applied component-wise; however, Cockburn et
al. [9] showed that this simple extension of the limiting does not have a Total Variational Bounded (TVB)
theory even for linear systems. Indeed, they observed small oscillations in their computational examples.
To improve accuracy at the price of additional computation, we apply the limiter to the characteristic fields
of (1a) [9, 16]. The diagonalizing matrices T (u) and T! (u) (consisting of the right and left eigenvectors
of the Jacobian fu) are evaluated using the average values of Uij, i=12,..,1,j=12,..J. The
scalar projection limiter is applied in the & -direction to each field of the characteristic vector. The result is
then projected back to the physical space by post-multiplication by T (U ij) . Similar projections using the

eigenvectors of g, are applied for limiting in the n-direction.

3. Adaptive hAp-Refinement

Adaptive hp-refinement yields improved computational efficiency by using high-order approximations
in regions of the domain where solutions are smooth and refined meshes near solution discontinuities. A
spatial error estimate is used to control order variation procedures that attempt to keep the global L'-error

less than a specified tolerance € by maintaining

maximum loca

2 22338522

where E .. is the
i
experiments, we use a p-refinement-based spatial error estimate where the local error is taken to be the

difference between two approximations of differihg degrees; thus,

yi=12,..,1,j=12,..,J, (13)

o0

E N =

Qf fUI;J.* lx, 1) — U2 (x, n|dx
ij

where the superscript identifies the degree of the approximation (3). For a two-dimensional problems, the
estimate requires the solution of an additional (p +2) 2 ordinary differential equations (ODEs) per element.
While this estimate is computationally expensive, it is less expensive than Richardson’s extrapolation-
(h-refinement-) based estimates [19], which require the solution of 4 (p + 1) Z additional ODEs per
element. In addition, it can be used to reduce the effort involved in recomputing Uij and its error estimate

when p-refinement is needed. Other less expensive error estimation procedures are possible [5, 12, 13].

The adaptive hp-refinement strategy relies on the projection limiter to determine whether to perform
h- or p-refinement in high-error regions. In regions where the high-order terms of the approximation are
changed by the limiter, raising the degree of the approximation yields no benefit, and the mesh should be
refined if greater accuracy is needed. In smooth-solution regions where little limiting is done, the degree of
the approximation should be increased to benefit from the higher convergence rate of high-order methods.
Following [1], in low-error regions, we coarsen the mesh if the solution is smooth and decrease the

polynomial degree if it is not smooth.

Elements created by adaptive s-refinement are stored in a hierarchical tree of meshes {4]. The coarse
base mesh is the root of the tree, and refined meshes are children in the tree. The local finite element method
and adaptive hp-refinement strategy are applied recursively to each level of the tree of meshes. Refinement

is performed in both space and time to maintain the ratio of the time-step size to the mesh spacing.

The adaptive hp-refinement algorithm is described in Figure 1. The solution and error estimate for the
time step from ¢ to ¢+ At are calculated on a base mesh. When enrichment is necessary, we first enrich the
degree of the approximation on high-error elements in smooth regions by replacing U‘i’](x, y, t+ At) by
Uf}’L 1(x, ¥, t+At),the (p + 1) -degree approximation computed from the error estimate (13). We initialize
the new error estimate U{.’j+ Xz, y, 1) as Uf;*’ L(x, y,) with the coefficients of the (p +2) -degree terms set
to zero, and recompute only U{.’j+ 2 over the time step. Enrichment is repeated until no further p-refinement
is needed.

High-error elements Q ; in non-smooth regions are then divided into uz fine elements, Qn,
n=12, .. ”2. Elements sharing edges or vertices with high-error elements are also refined as a buffer
between high- and low-error regions and to maintain a difference of at most one mesh level across edges of

refined regions. Solution values on the refined elements at time ¢ are obtained by L? -projection of the

solution on Q ! to Qn; thus,

void adaptive_hp_refinement(mesh, tyapp, tings At, TOL)
{
1= tyars
while (£ < tg4)) {
perform_runge_kutta_time_step(mesh);
do {
Solution_Accepted = TRUE;
for each element of mesh {
error_estimate = calculate_estimate(element);
if (error_estimate > TOL) {

if (smooth_region(element)) {
P_mark_element_for_p_enrichment(element);
Solution_Accepted = FALSE;

} else {
H_mark_element_for_h_refinement(element);
add_new_elements(fine_mesh);

}

} else if (error_estimate < H,,,;,, * TOL) {
if (element_already refined & & smooth_region(element))
mark_element_for_coarsening(element),
}
} /* end for statement */
if (!Solution_Accepted) {
for each element of mesh
correct_one_degree_differences(element);
increase_polynomial_degree_on_P_marked_elements();
recalculate_solution_on_p_enriched_elements();
}
} while (!Solution_Accepted),
if (mesh is refined) {
buffer_H_marked_elements(fine_mesh);
project_coarse_data_for_newly_refined_elements(mesh, fine_mesh);
coarsen_marked_elements_and_remove_underlying_fine_elements();
adaptive_hp_refinement(fine_mesh, t, t + At, At / W, TOL /),
interpolate_fine_solution_to_coarse_mesh(fine_mesh, mesh);
}
accept_solution(mesh);
predict_degrees_for_next_time_step(mesh);
t=1t+ A
} /* end while loop */

Figure 1. Algorithm for adaptive hp-refinement.

| [P &P oMU, v, ndydx
Q

n

I8 = 09 19 -u,P, n= 1’2""’“'2’ (14)

cnrs(t) =) 2
[[PAenPimonayax
Q

n

The time step is also refined on the finer mesh, so that p time steps of size At ine = At/ are taken on the
fine mesh to arrive at time ¢+ Az. High-order temporal interpolation on coarse elements is used to compute
numerical fluxes across coarse/fine mesh interfaces at intermediate Runge-Kutta stages on the fine mesh
[12]. The adaptive hp-refinement algorithm is then recursively applied to the refined mesh level with time
step Atﬁn .- After | time steps on a fine mesh level, solutions from fine elements Q,n=12.. uz, are

interpolated to their coarse parent element 2 ; using L2-pr0jection; thus,

2

B
Y [[PP monU, iy, 1+ 1Ay, Jdydx
n=1Q,

clrs(t +uAz ine) =

| [PAeenpimonaydx

2,

Simplification of the integrals in (14) and (15) is achieved using the properties of Legendre polynomials
(12, 22].

To reduce the overhead of creating new refined elements at each base mesh time step, we retain the
refined meshes from previous steps, since high-error regions in the next time step will coincide to a large
degree with high-error regions in the previous time step. Thus, when a refined element’s error falls below
a user-defined percentage H, ; € [0,1) of the tolerance, we explicitly coarsen the element by deleting
its underlying fine elements. Low-error elements are not coarsened, however, if a difference of more than
one level of refinement at coarse/fine mesh interfaces would result from the deletion of the underlying fine

elements.

We then predict the polynomial degrees needed for the next time step, with the restriction that an
element’s degree is increased by one only if it is in a smooth region. After a time step is accepted, if
Eij>Hmax8/I‘] for H_..€(01], we increase the degree of Uij(x, y,t+At) and define

U{?j+ 2(x, ¥, t+ At) as previously described. If E i< H _..&e/l] for H . e [0, 1), we decrease the degree

10

of Uij(x, ¥, t+At) and Uf-;.’L 1(x, ¥, t+Atf) by unity by setting the coefficients of the p- and

(p +1) -degree terms, respectively, to zero.

Example 1. Consider the two-dimensional inviscid Burgers’ equation
1 2 12
ut+ (zu°) +Gu) =0,-1<xy<1,r>0, (16a)
x y

with

+3sinm(x+y),-1<x,y<1, (16b)

N -
[+ R

WO, y) =

and periodic boundary conditions. We solve (16) using adaptive 4p-refinement with a local error tolerance
2.5x 107> ona 16 x 16-element base mesh with p = 0 initially. In Figure 2, we show the exact solution
(left) and the adaptive hp-refinement mesh (right) generated at three different times. The solution of (16)
steepens and develops discontinuities at ¢ = 0.45. At ¢ = 0.0625 (20 base-mesh time steps), the solution
is still smooth, and the adaptive hp-refinement method has performed only p-refinement (see the top of
Figure 2) with polynomials of degrees p = 0, 1, and 2. At t+ = 0.1875 (60 base-mesh time steps), the
solution is beginning to steepen along two fronts (see the middle of Figure 2), and the adaptive
hp-refinement method has used one level of mesh refinement in the steep-solution regions, but has
maintained high-order polynomials where the solution is smooth. At ¢ = 0.5 (160 base-mesh time steps),
shocks have developed (see the bottom of Figure 2), and the adaptive method has used two levels of mesh
refinement near the shocks, while at most piecewise linear approximations satisfy the error tolerance in

smooth-solution regions.

4. Dynamic Load Balancing via Tiling

Wheat’s [24] tiling load-balancing system is a modification of the global load-balancing technique of
Leiss and Reddy [17, 18] that is applicable to a wide class of two-dimensional, uniform-grid applications.
Global balance is achieved by performing local balancing within overlapping processor neighborhoods,
where each processor is defined to be the center of a neighborhood. Local balance involves element

migrations to processors in the same neighborhood that have elements sharing edges.

Some modification of the original tiling system [24] is required by the adaptive hp-refinement
algorithm. Because elemental work loads may vary due to p-refinement, the tiling algorithm must account

for elemental work loads when performing local load balancing. In addition, because of the local

11

20 time steps

0.0625

t

(\

60 time steps

=0.1875

t

sarsavsaN ANYE
CirlcresIncaRg
3vravesuen

RB/ER
XL

DRamaans

eary
P

RRYR
BRBRER

mEai CRERERERE

ACIRLIALIALIRTY

BEZ/R

CaaEsaLIIAIAN
Seesaciarares

RRBRE

AT RCOISUIRDAT

BB L arenae
BBVABV

]

Hpr

The intensity of

=1
wise polynomials.

Br

Op=0

.

ht) for Example 1

8
1ece

I3

hp-refinement mesh (ri
ith the degree of the p

e

Exact solution (left) and adapt

lncreases w

the shading (right)

Figure 2

12

time-stepping strategy used for 4-refinement and the synchronous nature of the explicit Runge-Kutta
methods, all processors must compute on the same mesh level at the same time. Localized refinement, then,
would cause processors in refined regions to be busy while processors without refinement are idle. Thus,
load balancing must be applied individually at each mesh level. Refined elements may then be migrated to
different processors from their coarse parent elements, resulting in additional communication when
fine-mesh solutions are interpolated to the coarse mesh. The cost of this additional communication,

however, is outweighed by the improved execution time resulting from better load balancing.

Example 2. In Figure 3, we show the influence of tiling on an adaptive hp-refinement computation that
has been distributed over four processors. The solution is shown in the upper left of Figure 3. The adaptive
hp-refinement algorithm uses piecewise polynomial approximations with p = 0, 1, and 2, and places one
level of mesh refinement along the front, as shown in the upper right of Figure 3. If the original
decomposition of the domain were uniform, only processors 0 and 2 would have any refined elements.
However, tiling is applied to each mesh level to produce the resulting distribution shown at the bottom of
Figure 3. On the refined mesh, elements are redistributed to all four processors. At each level, processors

with high-order elements have far fewer elements than processors with low-order elements.

5. The Tiling Algorithm

Intiling, a processor neighborhood includes a center processor and all other processors having elements
that share edges with the center processor (see Figure 4). Processors that do not have any local elements on
the mesh level being balanced use Leiss and Reddy’s [17] definition of a neighborhood as processors within

a given (unit) radius of the center processor.

Load balancing is performed after each local time step on each mesh level. Only one iteration of the

tiling algorithm is performed; thus, the system is not iterated to global balance in a balancing phase.

In the tiling algorithm, each processor determines its work load as the time to process its local data since
the previous balancing phase less the time for any interprocessor communication performed during the
computation phase. Neighborhood average work loads are also calculated. Each processor then compares
its work load to the work load of the other processors in its neighborhood and determines which processors
have greater work loads than its own. If any are found, it selects the one with the greatest work load (ties
are broken arbitrarily) and sends a request for work to that processor. Each processor may send only one

work request, but a single processor may receive several work requests.

13

p=0 O

p=1
p=2 E

Exact Solution Adaptive hp-Refinement Mesh

Decomposition of Adaptive Mesh on 4 Processors

Figure 3. Adaptive hp-refinement (upper right) for the solution (upper left) of Example 2 and the
decomposition generated by tiling on four processors (bottom).

Processors that received work requests prioritize them based on the request size. To prevent
over-satisfaction of work requests when individual elements’ processing costs vary widely due to
p-refinement, we compute individual processing costs and use them to restrict the amount of actual work

exported. Thus,
work_available = proc_work_load — nborhd_avg_work_load, (17a)

and

14

-- processor subdomain

Figure 4. Example of 12 processors in 12 neighborhoods using the tiling definition of a neighborhood.

work_migrated = elemental_cost,<min(work_available, work_request). (17b)
e € selected elts
In this way, a processor’s work load cannot fall below its neighborhood average work load, preventing the

development of oscillations of work between neighboring processors.

Each exporting processor selects a number of elements to migrate to satisfy (17). Elements along the
boundary with the requesting processor are assigned priorities (initially zero) based upon the locality of their
element neighbors. A priority scheme is used that emphasizes exporting elements that have neighbors on
the same mesh level in the importing processor since the majority of communication is done within a level,
but it attempts to reduce the number of elements migrated away from their parents so that inter-mesh
communications are decreased. For each neighboring element on the same mesh level in the importing
processor, the priority is increased by 3. For each neighboring element on the same mesh level in the
exporting processor, the priority is decreased by 3. The priority is incremented for each coarse neighbor and
parent element in the importing processor, and decremented for each coarse neighbor and parent element in
the exporting processor. When an element has no neighboring elements in its local processer, it is
advantageous to export it to any processor having its neighbors. Thus, “orphaned” elements are given the
highest export priority. When two or more elements have the same priority, the processor selects the
element with the largest work load that does not cause the exported work to exceed the work request or the
work available for export (17). For exports to non-loaded processors, the exporting processor gives priority

to elements closest to the neighboring processor; e.g., a request from a processor to the east would be

15

satisfied with the east-most elements in the exporting processor’s subdomain. This technique for selecting
elements results in a “peeling” of elements off the processor boundary, preventing the creation of “narrow,

deep holes” in the element structures.

Once elements to be exported have been selected, the importing processors and those processors sharing
edges with the migrating elements are notified. The neighboring processors update pointers in elements
neighboring the migrating elements. Importing processors allocate space for the incoming elements, and the

elements are transferred.

6. Data Structures and Interprocessor Communication

Elements are managed by data structures that maintain element connectivity and data position
information, as shown in Figure 5. Since tiling is applied to each mesh level individually, these data
structures are duplicated for each mesh level. Each tiling element contains pointers to its four neighboring
elements, to its coarse parent element, and to its fine child elements.

—————— Ghost Element

Ghost Data
Element \
Local
Elements

Local Element
Data

Element
Figure 5. Element interconnection diagram [24].

Local elements are elements on which the processor performs the finite element computation. They are

stored in a height-balanced, binary tree (AVL tree [2]) to allow efficient insertion and deletion during

16

migration. During the computation phase, local elements are accessed by an in-order traversal of this tree.
Space for local element application data is allocated at the beginning of the computation and as needed for

imported or fine-mesh elements.

On each mesh level, the ghost element tree contains the neighboring elements on the same mesh level
that are local to other processors. The ghost element data of an individual mesh are communicated at each
stage of the Runge-Kutta method on that mesh. Since the ghost elements needed for the finite element
computation can change when elements are migrated, they are also stored in an AVL tree for easy insertion
and deletion. Ghost-element data are stored contiguously, so a processor can receive the data in a single
message from each neighbor and read the messages directly into the ghost element data space (i.e., without

buffering the data and then moving it into the ghost element data space).

Data gather operations are needed to send boundary element data to neighboring processors. Thus,
boundary elements are maintained in binary trees, one for each neighboring processor, facilitating proper

ordering of the boundary element data during gather operations.

Elements along the edge of a refined mesh have neighboring elements in the coarse mesh. If the coarse
neighbor is in the same processor as the fine element, the fine element simply sets its neighbor pointer to
. the coarse element. For coarse 4neighbors local to other processors, the fine mesh level maintains a separate
tree to store the data associated with the coarse neighbor. The coarse mesh level also tracks those elements
that are neighbors to fine mesh elements on other processors so that it can communicate the values to the
fine mesh’s processors at the end of the coarse mesh time step. These elements are maintained in trees
analogous to the boundary element trees; however, since the coarse neighbor elements are not necessarily
on the processor’s subdomain boundary, constructing these trees is generally more costly than constructing

the boundary element trees.

Resetting neighbor pointers after mesh refinement is complicated because child elements can migrate
from their parents’ processors. The child and parent pointers and element IDs stored in the local elements
are used to reset the pointers. The element IDs of parent and child elements are communicated along
processor subdomain boundaries. Newly created fine elements’ neighbor pointers are set by following
pointers through their parents (which are local) to their parents’ neighbors (which may or may not be local)

to the element IDs of the parents’ neighbors’ children. Neighbor pointers of old fine elements are reset after

17

additional refinement by following pointers through their coarse neighbors (which may or may not be local)

to the element IDs of the coarse neighbors’ children.

Communication between the fine and coarse mesh levels is needed to allow interpolation of the fine
mesh values to the coarse mesh elements when parent and child elements are on different processors. Trees
are constructed at both the coarse and fine mesh levels to mark those elements that will receive and send
data, respectively, for interpolation. This communication is generally more expensive than the boundary
exchanges and the coarse neighbor communications since many more element values must be

communicated, but it is performed less frequently.

Communication is also needed from the coarse to the fine mesh levels. When elements of the fine mesh
should be coalesced to decrease the amount of refinement in a particular region, parent elements must
indicate this condition to their child elements. Flags in the coarse element tell the fine elements whether to
coalesce. The flags are communicated to non-local child elements in the same way the fine-to-coarse-mesh

communication is done.

7. Adaptive hp-Refinement Examples with Tiling

Example 3. We solve (16) on a 16 X 16-element base mesh with p = 1 initially using adaptive
hp-refinement with a local error tolerance of 5.0 x 107 on 256 processors of the nCUBE/2. InTable 1, we
examine the total execution time and the total maximum communication, computation, and load-balancing
times of the method without balancing and with balancing performed once each local time step. The total

maximum time is defined as

No. of time steps
TotMax(time) = 2 max (time used by processor P intimestep i) . (18)
i=1 all processors P

With balancing, the total maximum computation time (18) is reduced by 76.3% relative to the adaptive
method without balancing. The total maximum communication time is increased 43.9% by balancing. The
total maximum balancing overhead is 40.99 seconds. Despite the tiling overhead and additional
communication time, however, the total execution time of the adaptive method is reduced 55.8% using

tiling.

18

In Table 1, we also show the performance of the fixed-mesh, fixed-order method on a
112 x 112-element mesh with p = 2. The non-adaptive method attains high parallel efficiency and
nearly-perfect load balance. However, the total execution time required to compute a solution with
comparable accuracy is more than 4.5 times greater with the non-adaptive method than with the adaptive

hp-refinement method and tiling.

Adaptive hp-Refinement Method Fixed-Mesh, Fixed-Order
Method
No Balancing With Tiling No Balancing
TotMax(Computation Time) 2474 .40 secs. 585.80 secs. 5291.71 secs.
Avg. / Max. Work Ratio 0.208 0.878 0.994
TotMax(Communication Time) 319.49 secs. 459.73 secs. 583.65 secs.
TotMax(Balancing Time) 0.0 secs. 40.99 secs. 0.0 secs.

Table 1. Performance comparison for Example 3 using a fixed-mesh, fixed-order method on a 112x112-element mesh
with p = 2 and the adaptive hp-refinement method without balancing and with balancing once for each local time step.

Example 4. We solve the two-dimensional Euler equations for a problem involving a Mach 10 shock

in air (y=1.4) moving down a channel containing a wedge oriented at a 30° angle to the channel [25].

The Euler equations have the form (1) with

p pu pv
2 puv
u= pu , f = P+pu , and g = 2 | (19a)
Py puv P+pv
e u(P+e) v(P+e)

where p, ¢, and P are the density, energy and pressure, and u and v are the velocity components in the x-

and y-directions, respectively. The system is completed by the equation of state

P = (y-1) (e=3p (2 +7%). (19b)

| RN

The eigenvectors and eigenvalues used in the projection of (19) to characteristic space are explicitly known

[20].

19

Following Woodward and Colella [25], we solve the problem on a rectangular domain ~0.3 < x< 3.7,
0<y<1, with the wedge oriented so that it lies along the bottom boundary of the domain, y = 0,

1/6 £x<3.7. The initial conditions

p
4 [8.0,4.125./3,-4.125,1165] T, if y<J3(x-1),
= 6 (19¢)

v [14,0,0,1.017, otherwise,

represent a Mach 10 shock making a 60° angle with the reflecting edge. Along the left boundary
(x = —0.3) and the bottom boundary (y = 0) where x < 1/6, Dirichlet boundary conditions representing
the initial post-shock flow (19c¢) are prescribed. Values which describe the undisturbed motion of the initial
Mach 10 shock are applied along the upper boundary (y = 1). Normal derivatives of the solution variables
are set to zero along the right boundary (x = 3.7). Reflecting boundary conditions are used along the wedge
(y =0,1/6<x<3.7).

We solve (19) using the adaptive hp-refinement method with a 32 x 16-element base meshand p = 1
initially. In Figure 6, we show the numerical solution for density (middle) and the adaptive Ap-refinement
mesh (bottom) at time ¢ = 0.2. We also show a density profile (top) computed with a fixed-order,
fixed-mesh method with p = 2 and 128 x 64-element mesh. The non-adaptive computation took 14,896
seconds on 128 processors of an Intel Paragon computer; the adaptive computation without load balancing

required only 9411 seconds.

In Table 2, we show the performance of the tiling algoritﬁm with the adaptive hp-refinement method
for solving (19) on 128 processors of the Intel Paragon. Tiling was applied once on each mesh level for each
local time step. With balancing, the total maximum computation time (18) is reduced 74.0% relative to the
adaptive method without balancing. Average total communication time increases when load balancing is
used; however, the total maximum communication time (18) decreases slightly for this example. The total
execution time is reduced 66.9% by using tiling. The total maximum tiling overhead is 34.37 seconds, only

1.1% of the total execution time.

8. Conclusion
We have developed an adaptive parallel hp-refinement local finite element procedure for solving vector
systems of conservation laws on rectangular domains. The solution strategy utilizes a local finite element

procedure [9, 10] with solution limiting that preserves high-order accuracy near smooth extrema.- Load

20

-]
H =]
34
==
rmoma TIT - =a 34—
1 R TR E ==
T e S
mmosiE T <
- S SSSSsooiissascasoesscimm 222 :
o= :w mae
B $IIasss e 22
== =+ =2
==2232 T om
-4 - El! +‘

p=0 [pl=1

Figure 6. Density contours at t=0.2 for Example 4 using a fixed-mesh, fixed-order method (top) and
adaptive hp-refinement (middle) with the orders and mesh shown at the bottom.

21

Adaptive Ap-Refinement Method Fixed-Mesh, Fixed-Order
Method

No Balancing With Tiling No Balancing
TotMax(Computation Time) 4796.29 secs 1248.52 secs 14,500.63 secs.
Avg. / Max. Work Ratio 0.238 0915 0.983
Avg. Total Communication Time 324.56 secs. 860.01 secs. 299.11 secs.
TotMax(Communication Time) 1202.76 secs. 1173.78 secs. 357.74 secs.
TotMax(Balancing Time) 0 secs. 34.37 secs. 0 secs.

Table 2. Performance comparison for Example 4 using a fixed-mesh, fixed-order method on a 128x64-element mesh
withp = 2 and the adaptive hp-refinement method without balancing and with balancing once for each local time step.

balancing, performed by an extension of Wheat’s [24] tiling procedure, appears to be efficient as it requires
only 1-3% of the total solution time (Section 7). It is also effective by restoring the average-to-maximum

processor work ratio to approximately 90% of ideal.

Efficient data structures used for adaptive refinement and tiling include trees of grids with finer grids
regarded as offspring of coarser ones. Within each grid, AVL tree structures permit easy insertion and
deletion of elements as they migrate between processors. Similar tree structures at inter-processor

boundaries facilitate the transfer of data between neighboring processors.

Error estimates computed by p-refinement are robust and reliable but somewhat expensive. Simpler
procedures using local computations [5, 12, 13] will provide improved performance, but their reliability
must be examined. Additionally, Bey’s procedure [5] is the only one known to apply on unstructured

meshes.

The use of the limiting to indicate a preference for h- or p-refinement is effective in locating
discontinuities and applying /-refinement there. However, when solving the Euler equations of Example 4,
the procedure placed too great an emphasis on A-refinement (see Figure 6). Modification is necessary to

ensure a more rapid transition from 4- to p-refinement as the distance from a discontinuity increases.

Portions of this effort have been extended to three dimensions [7] and work in this direction will
continue. Current methods on unstructured meshes of tetrahedral elements [7] use the local finite element

method with piecewise constant approximations and adaptive A-refinement [11]. Future efforts will explore

22

extensions of the limiting procedures and data structures to unstructured-mesh environments with local

time-stepping and order variation.

9. References

(11 S. Adjerid, J. E. Flaherty, P. K. Moore, and Y. Wang. “High-Order Adaptive Methods for Parabolic Systems.”
Physica-D, 60 (1992), 94-111.

[21 A.V.Aho,]J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer Algorithms. Addison-Wesley,
Reading, 1974.

[3] M.Bergerand J.S. Saltzman, “AMR on the CM-2.” Appl. Numer. Maths., 14 (1994), 239-253.

4] M.J.Bergerand]J. Oliger. “Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations.” J. Comp.
Phys., 53 (1984), 484-512.

[51 K. Bey. An hp-Adaptive Discontinuous Galerkin Method for Hyperbolic Conservation Laws. Ph.D.
Dissertation, University of Texas, Austin, 1994,

[6] R. Biswas, K. Devine, and J. Flaherty. “Parallel, Adaptive Finite Element Methods for Conservation Laws.”
Appl. Numer. Maths., 14 (1994), 255-283.

[71 C.L. Bottasso, HL. deCougny, M. Dindar, J.E. Flaherty, C. Ozturan, Z. Rusak, and M.S. Shephard,
“Compressible Aerodynamics Using a Parallel Adaptive Time-Discontinuous Galerkin Least-Squares Finite
Element Method.” AIAA Paper 94-1888, 12th AIAA Appl. Aerodyn. Conf., June 20-22, 1994, Colorado Springs.

[8] K. Clark, J.E. Flaherty, and M.S. Shephard, Eds., Appi. Numer. Maths., 14 (1994), special issue on Adaptive
Methods for Partial Differential Equations.

[91 B. Cockburn, S.-Y. Lin, and C.-W. Shu. “TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite
Element Method for Conservation Laws III: One-Dimensional Systems.” J. Comp. Phys., 84 (1989), 90-113.

[10] B. Cockburn and C.-W. Shu. “TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element
Method for Conservation Laws II: General Framework.” Math. Comp., 52 (1989), 411-435.

[11] H.L. deCougny, K.D. Devine, J.E. Flaherty, R M. Loy, C. Ozturan, and M.S. Shephard, “Load Balancing for
the Parallel Adaptive Solution of Partial Differential Equations.” Appl. Numer. Maths., 16 (1994), 157-182.

[12] K. Devine. An Adaptive hp-Refinement Finite Element Method with Dynamic Load Balancing for the Solution
of Hyperbolic Conservation Laws on Massively Parallel Computers. Ph.D. Dissertation, Rensselaer
Polytechnic Institute, Troy, 1994,

[13] K. Devine, J. Flaherty, R. Loy, and S. Wheat. “Parallel Partitioning Strategies for the Adaptive Solution of
Conservation Laws.” Proceedings of the Workshop on Modeling, Mesh Generation, and Adaptive Numerical
Methods for Partial Differential Equations, IMA, University of Minnesota, July, 1993.

[14] C.W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood
Cliffs, 1971.

[15] Y. Kallinderis and A. Vidwans, “Generic Parallel Adaptive-Grid Navier-Stokes Algorithm.” AIAA J., 32
(1994), 54-61.

[16] F.Lafon and S. Osher. “High-Order Filtering Methods for Approximating Hyperbolic Systems of Conservation
Laws.” ICASE Report No. 90-25, ICASE, NASA Langley Res, Ctr., Hampton, 1990.

23

(17]

(18]
[19]

(20]

(21]

[22]
[23]

[24]

[25]

E.Leiss and H. Reddy. “Distributed Load Balancing: Design and Performance Analysis.” W. M. Keck Research
Computation Laboratory, § (1989) 205-270.

H.N. Reddy. On Load Balancing. Ph.D. Dissertation, University of Houston, Houston, 1989,

R.D. Richtmyer, and K. W. Morton. Difference Methods for Initial Value Problems, Interscience, New York,
1967.

P.L. Roe. “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes.” J. Comp. Phys., 43
(1981), 357-372.

P.K. Sweby. “High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws.” SIAM J.
Numer. Anal., 21 (1984), 995-1011.

B. Szabo and I. Babuska. Introduction to Finite Element Analysis, Wiley, New York, 1990.

B. Van Leer. “Towards the Ultimate Conservative Difference Scheme. IV. A New Approach to Numerical
Convection.” Jral. of Comp. Phys., 23 (1977), 276-299.

S. Wheat. A Fine Grained Data Migration Approach to Application Load Balancing on MP MIMD Machines.
Ph.D. Dissertation, University of New Mexico, Albuquerque, 1992.

P. Woodward and P. Colella. “The Numerical Simulation of Two-Dimensional Fluid Flow with Strong
Shocks.” J. Comp. Phys., 54 (1984), 115-173.

24

