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Abstract

As a key step in developing a complete computational model of diarthrodial joint
mechanics, this thesis presents a finite element formulation and implementation for
contact between hydrated soft tissues. The biphasic theory of Mow and co-workers is
chosen as the continuum model which éov‘erns cartilage mechanics. Boundary conditions
for contact surfaces have been developed by Hou et al. by considering a surface of material
discontinuity within the continuum. These differential equations and boundary
conditions, together with inequality constraints to define the contact surface, form the
strong form of the problem. Currently, a fully linear form of the biphasic theory is used

and frictionless contact is assumed.

A weighted residual approach is used to develop a form of the equations suitable for
numerical approximation. A penalty form of the mixture continuity relation, following
Spilker and Maxian, and the momentum equations for each phase are introduced into the
weighted residual. Lagrange multipliers are defined on the contact surface and reflect the
appropriate continuity of solid and fluid normal traction. Four equations for the
multipliers and two expressing kinematic continuity are added to the weighted residual.
Standard procedures result in a weak form of the weighted residual, which is then
approximated by the finite element method. Quadratic interpolations are selected for
velocit;y and displacement within an element, as well as for the multipliers on the contact
surface. A linear interpolation for pressure, independent from element to element, is

used.

Part of the solution procedure is to determine the correct contact surface; two tools

are required to accomplish this in the finite element setting. First.is an algorithm which
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discretizes the contact surface and provides a coordinate system in which to perform the
required surface integrals. Second is an iterative scheme which recognizes regions of the
contact surface eihibiting non-physical behaviour, and modifies the surface definition.
These algorithms have been evaluated only with the present two-dimensional element, but
are readily extensible to three dimensions. Two types of example problems are presented:
those that validate the formulation of the element and those that demonstrate its

-applicability to clinically relevant geometries.
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Chapter I: Introduction

Prologue

There is no machine that can compére to the human body. As a mechanical
engineer, it is disheartening to realize thét there is no man-made pump that can function
continuously for eight decades without maintenance, as does the human heart. Or that
today's machines can not provide the amazing degree of motor control that allows our
~musculoskeletal system to perform complex tasks. ‘r:]ven modern electronics can not
simulate the feedback control mechanisms to control gnp strength or walking. When we

look to each component of the body though, we recognize the most basic mechanical or

electrical systems, evolved to perform its respective task with the utmost efficiency.

There‘ are iﬁsﬁances where thé body fails; however, and we turn to vtechnology to
return an invdividualyto a funcfional lifestyle. Successful designs are avaiiable to replace
the heart, limbs and diarthrodial joints. For engineers to create these designs, they must
first understand the biological counterpart, and how that normally functions in the body.
Recently, many researchers have turned to‘computational mod‘els to gain a greater
understanding of the biomechanics of the human body. These models can provide a wealth
of information that can not be measured with experiments. In addition, it is often more

practical to do parametric studies with cdmputational models than with animal specimens.

With our population steadily aging, more and more adults are afflicted with
osteoarthritis (OAk). This is a degenerative disease affecting the articular cartilage in
joints. When functioning normally, this cartilage provides a nearly frictionless bearing

surface for the articulating bones [85,89]. As OA progresses, the cartilage changes




mechanically, biochemically and structurally [93], compromising its performance.
Overall, its causes are not fully understood, but hypothesis have been put forth suggesting
that repeated stressing of the cartilage can eventually lead to its degeneration {102]. In
severe cases of OA, it may become necessary to replace the joint with a prosthetic to relieve

the intense pain that is caused by normal movements.

There are two problems posed to the engineers who study joint biomechanies. First
is to understand cartilage as an engineering material, and second is to use that knowledge
in designing a device which replicates the function of a normal joint. This research is
concerned with the first point; specifically with underst;ailding the mechanical response of
articular cartilage layers in contact. Numerical simulation of joint biomechanics is one
tool that can be used to evaluate cartilage mechanics. This numerical simulation has two

parts: the mathematical model of articular cartilage and the numerical solution of the

complex boundary value problein resulting from the mathematical model.
Tissue Modeling

It is not just the modern engineer who is drawn to studying the body. Aristotle,
daVinci and Galileo have written on such topics as the anatomy of muscles and their
relation to motion, and on the strength of bones [10,86]. It has not been until this century,
though, that researchers have tried to develop mathematical models for tissue mechanics.
Some of the first tissues studied were muscles and blood vessels, as described in the review

by Fung

urned to modeling articular cartilage.
Researchers recognized very early that articular cartilage played an important role in
joint lubrication (32,92]. From there it became important to quantify the material

properties, and describe the structure and mechanical response of cartilage.



Cartilage Structure

Articular cartilage is a smooth, white substance lining the contacting surfaces of
bones. It is typically rather thin, with up to about six millimeters lining some human
joints [14,135]. Cartilage is composed primarily of water, collagen, proteoglycan
molecules, cells and ions. As with most biologic materials, there is a high variability in
the relative percentages of the constituents among different subjects, joints or sites within a
~ given joint. In addition the material shows variation in composition through its

thickness, which, when cartilage is viewed as an engineering material, optimize it for its

intended funection.

Up to 85% of the wet weight of éartilage is water [84], though the méteria.l has the
general appearance of a solid. This interstitial fluid is the medium in which charged ions
are suspended, and whose flow through the tissue provides nutrients to cells [95]. Much of
the water is electrochemically bound to high-molecular-weight proteoglycans, and is not
free to flow within caftilage. The‘ charged nafure of cartilage plays significant roles in its

fuhction, ahd has motivated the use of mathematical models to describé these effects {79].

The second major constituent is collagen fibers, ranging between 60 and 70% of the
dry weight of cartilage {4,5]. There are four readily recognized zones of collagen fiber
orientation: the surface, middle, deep and calcified zones [100]. In the surface zone fibers
are oriented tangent to the surface, in a weave pattern. The middle zone of cartilage has no
preferred orientation of the fibers. Toward the bottom layers, fibers begin to orient
themselves normal to the subchondral bone, and to form larger bundles. Collagen fibers
in the calcified zone provide the attachment mechanism for cartilage to bone [95,162].
Other hydrated soft tissues, such as meniscus, have different fiber orientations. The same

surface zone fiber network is observed, but the central core of meniscus has predominantly



radial bundles of fibers. These have a significant stiffening effect on the meniscus in

vivo [1,101].

Proteoglycans (PG's) make up the majority of the remaining cartilage structure,
from 20 to 30% of the dry weight [103]. These are very large protein aggregates, bonded to an
hyaluronic acid core [54], The molecules have an overall negative charge due to the fixed
charges of carboxyl and sulfate groups on the protein chains. Alsoe, in cartilage PG's are
intertwined with themselves and the collagen fibers {103]). These charges have the effect of

trapping some of the interstitial water within the coiled PG's, and of causing a Donnan

osmotic swelling pressure {79]. As one changes the ionic concentration of the interstitial
fluid the density of unbalanced fixed charges changes, and the cartilage responds with

changes in the swelling pressure.
Mechanical Models

The first cartﬂége experiments showed that the tissue's response is time dependent.
In obsefving /fhe recovery of cartilage after indentation, Elmore and co-workers deduced
that fluid exuded during the creep phase is later imbibed through the surface [44] .1 Despite
these observations, the first attempts to quantify a 'compressive modulus' for cartilage
were based on elastic theories. Using the indentation test and Hertz's theory for contact of
infinite elastic bodies, Hirsch [60] defined a Young's modulus for cartilage. Later work by
Sokoloff [132] assumed the cartilage to be incompressible, and used the elastic punch
solution to determine a Young's modulus. Recognizing the time-dependent nature of the
indentation, both an instantaneous and an equilibrium value of the modulus were

reported. To account for the finite thickness of the cartilage, Hayes et al. [55] developed an

integral solution to the indentation of a thin cartilage layer bonded to subchondral bone.



The next major class of cartilage models assumed the material to be a viscoelastic
solid, which could account for the observed creep response. One of the first viscoelastic
models was proposed by Hayes and Mockros [56]. Using spring and dashpot models, they
were able to determine material constants from indentation data. The quasi-linear
viscoelastic theory was successful for describing’cartilage behaviour, as well as for other
tissues {48,163]. Some discrepancies were reported, however, when high-strain-rate tests

were performed.

While many researchers recognized the importance of the internal fluid flow in
the performance of articular cartilage, they Wére slow tc; ;ncorporafe this behaﬁour into a
continuum model for tissue mechanics. A theory for soft hydrated tissues was presented by
Torzilli and Mow [151,152] and was based on an extended Hamilton's Principle.
Expressions for the internal and kinetic energy and conservative and non-conservative
 forces were developed for the ‘tissue, as well és constraints on the total kma‘ss and entropy.
Governing equations were developed from a \}ariation of the Hamiltonian. In a later
model, following principles from the analysis of mixtures [29,36], Mow and co-workers
were able to develop the Biphasic Theory. A continuum deécription of the tissue was used

for this formulation, and refinements were made to the previous mass and entropy

constraints before the theory was published by Mow and Lai {98] and Mow et al. [96].

Since then, the biphasic theory has been widely accepted as a means to model
cartilage, and has been adopted by many other researchers in biomechanics (i.e.
(15,30,46]). The theory has also been extended to include the nonlinearities observed in
_ tissue mechanics, including finite deformation ({78,971, strain-dependent permeability
[63,80,81], transversely hyperelastic solid phase mechanics [34] or viscoelastic solid phase

mechanics {87,119]. Based on the biochemical composition of cartilage, it is apparent that



the charged macromolecules contribute significantly to the deformational behaviour of the
tissue. Recently, Lai et al. have published their Triphasic Theory [79] which treats fixed

charges in the tissue as a third phase in the mixture.
Tissue Contact Modeling

Numerous models to describe contact of articular cartilage have been developed, but
each has either restricted attention to elastic models, or has not been of the geneial
applicability of the finite element formulation presented here. Among the many finite
element formulations for joint contact is the work by Schreppe:s et al. [118] and Tissakht,
Aﬁmed and co-wo’rkers {148-150]. The first group used a commercial finite element
program to solve quasi-static, elastic models of axisymmetric femur-meniscus-tibia
contact. Parametric vé.riations were conducted to evaluate the effects of cartilage stiffness,
cartﬂage surface curvature and fiber reinforcement in the meniscus. They recognized
that fluid flow within the cartilage would play an important role for dynamic simulations.
Tissakht and Ahmed developed three-dimensional, transversely isotropic, elastic finite
element modeis of the meniscus to investigate the effects of tibial rotation {149]. Loading
was distributed ‘oVer the meniscal surface in accordance with measured pressure
_distributions [3]. Later a noniinear, axisymmetric model was used, including transverse
isotropy of the vmeniscus and treating the material as incompressible [148]. In a further
refinement of the model, comparisons were made between isotropic, transversely isotropic,
composite and poroelastic (both isotropic and transversely isotropic) representations of the
meniscus [150]. These models treat cartilage as rigid and do not address its elastic or
biphasic properties. They report significant variation in the solution depending on which -
model was used, but do not comment on the importance of the cartilage layers to fluid flow

or the overall response.



.Some researchers have used analytic methods to develop models for elastic
articular contaét. Eberhardt and co-workers have a small strain model of elastic spheres
contacting to model cartilage lining the ends of bones [41-43]. Solutions are based on
elasticity theory and result in integral equations which are solved numerically. The
authors predict some stress behaviour which is consistent with failure modes in
osteoarthritis, while other results contradict experimental observations. They conclude
that nonlinear effects must be included, as well as inhomogeneity and interstitial fluid in
the tissue. Blankevoort ef al. have an unique model derived from geometry, measured
through stereophotogrammetry, and measured kinematics and kinetics of the knee [27]. A
mathematical simulation of the joint's motion was conducted where ligaments were
modeled with nonlinear properties, and cartilage waé variously described as rigid, linear
elastic or nonlinear elastic. The authors found that different material models for

cartilage did not affect joint kinematics, though differences in joint laxity were observed.

Hale, Rudert and Brown [53] augmented the lineaf Eiphasic penalty element
developed bvapilker et al. [143] with algorithms to model contact by a rigid, impermeable,
spherical indenter under displacement control. This amounts to enforcing the correct
time-dependent velocity bouﬁda.ry conditions on an increasing area of the tissue surface.
‘They assumed perfectly adhesive contact between the tissue and indenter. Results
compared favorably with experiments, and the code was used with a least-squares
~algorithm to determine material properties. Shrive et al. pi‘esented solutions from a
commercial finite element program used to model ball-in-socket contact of poroelastic
materials [124]. The authors used a free-draining, or zero pressure, boundary condition
outsider the région‘o"f‘ con/té(':t,ﬂbut ﬁseyd'ank irﬁpermééble‘ ébnditién@ithin thé contact zone.
This would preclude fluid transport across the contact surface and hydrodynamic

lubrication {40,99].




Hou et al. used their biphasic contact boundary conditions to develop an analytic
model of squeeze-film lubrication [65]. They determined that when load is transferred to a
biphasic material through a fluid film, it is distributed between the phases according to the
volume fractions. Recently Ateshian and co-workers have published analytic sclutions to
frictionless biphasic contact problems. An asymptotic solution to the problem of a rigid,
impermeable sphere indenting a thin biphasic layer was presented in 1994 [13]. The ratio
of tissue thickness to contact area was used as a small parameter for the asymptotic
expansion. Results showed that radial deformation was significantly greater than axial
deformation, and that pressure dominated elastic stress.. More recently, a solution based
on an integral transform method has been developed (73]. This has the same qualitative
results, though it is not subject to the small parameter constraint of the previous work.
Steady state solutions have also been developed for an impermeable sphere translating
with constant velocity across a biphasic layer {11]. These results are of particular

importance in understanding lubrication problems.

Numerical Solution Procedures

As the biphasic theory matures, it is applied to more and more complex problems.
There are only limited cases where the coupled, nonlinear differential equations of the
theory can be solved analytically, for example confined [96] and unconfined [8]
compression and indentation [88]. While there is tremendous insight to be gained into
cartilage mechanics from these analytic solutions, it is generally impossible to analyze
the physiological geometries presented by diarthrodial joints. This has lead researchers to
numerical solution techniques for partial differential equations, and in particular to the

finite element method.




The Finite Element Method

The finite element method is a robust technique that can be applied to any system of
differential equations. It is premised on defining the domain of interest as the union of a
finite number of geometrically regular elements, characterized by some length, £. Within
each element, a polynomial interpolation of degree p is assumed for the unknown solution
function. This interpolation is defined as the sum of unknown coefficients multiplied by
corresponding shape functions, and then substituted into a weak form derived from the

governing equations. Once the appropriate continuity is satisfied between elements by an

assembly operation, an algebraic system of bequations results for the unknown
coefficients. The finite element solution will ’be the projection of the trie solution onto the
space of polynomiéls of degree p. Furthermore, the method gﬁarantéés, with some
mathematical restrictions, that as h — O or p —>k oo the finite elemexit solui;ion will converge
to the true solution. Détails about all aspects of the method are avaﬂz;ble, for example, in the

texts by Zienkiewicz and Taylor{165], Hughes [66] or Strang and Fix [144].

Finite element formulations for mixtures began 1n the field of soil mechanics
where Biot's poroelastic theory [25,26] is used to describe thevresponse, Ghaboussi and
Wilson developed a formulation for the dynamic loadin‘g‘ of soils [50]. Simon and co-
workers have been concerned with different aépects of the numerical simulation of the
dynamic response of soils [129-131] and soft tissues {127,128]. They have evaluated a
number of displacement-based and mixed formulations, and have looked at higher-order
finite element interpolations. Prevost has developed nonlinear finite element
_formulations for‘the dynamic response of soils also based on Biot's poroelastic theory

[115,116].

Oomens and co-workers have applied mixture theories to the mechanics of skin
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(111.112]. Wayne et al. developed a rectangular displacement-pressure element for the
biphasic theory that included material nonlinearities [159]. This was applied to problems
in the mechanics éf cartilage healing processes. Suh et al. developed a nonlinear biphasic
element that included finite deformation, strain-dependent permeability and an
hypereiastic solid phase constitutive law [146]. This is a four-node rectanguiar element
which uses a penalty approach to treat the incompressibility constraint. Spilker and
Maxian developed a mixed-penalty element for two-dimensional, linear analysis with a
six node triangle [139]. Vermilyea and Spilker used the hybrid approach to develop two-
and three-dimensional simplex elements for the biphasic theory [156]. These elements do
not require a user-specified penalty parameter to enforce the iricompressibility constraint.
Donzelli ahd co-workers extended the mixed-penalty formulation to include an h-adaptive
mesh enrichment scheme [39]. In any physiologically relevant geometry automatic
control of the discretizatioﬁ error will be essential, as is not possible to anticipate a priori
the locaﬁon of spatial gradients. Almeida and Spilker have developed nonlinear, three-
dimensional elements based on the mixed-penalty and velocity-pressure formulations [7)].
These elements include a transversely isotropic solid phase constitutive law, which admits

anisotropic behaviour in tension and compression [6].
Contact Problems

Contact finite element formulations for linearly elastic and nbnlinear materials,
with and without friction, have been in use for nearly as long as the finite element method
itself. They fall into the more general category of constraints applied to the finite element
method, such as the constrained medial problems of incompressible- solid or fluid
mechanics. The text by Johnson [72] gives an extensive treatment of the contact problem in

solid mechanics. Aspects of the numerical solution of contact problems by the finite




element method is the subject the book by Kikuchi and Oden {75]. They give a complete
discussion of the mathematical formalism behind contact finite elements, which leads
them to a discussion of error estimates and the Babuska-Brezzi conditions for constrained

problems.

Kubomura [76] developed a contact finite element by introducing displacement and
traction constraints into the hybrid stress functional for geométrically nonlinear elastic
materials. A contact element with traction degrees of freedom was developed and utilized

to perform integrals over an assumed contact surface. Iterative procedures to determine

the ébntacﬁ region and friction conditions (i.e.v sliding or sticking fiction) were necessary.
‘Other authors have iryxvestigated'contac‘t using complimentary priﬁciples as Well. Tseng
[154] used a mixed element with two displacements And three stre_sév,es)at each node such that
the contact cohditidns can be approximated direcﬂy. Kwak [77] formulatéd a three-
dimensiohal, nonlinear cémplemkentary bpkrobylem for frictionai >contact and an

incremental analysis.

Frictional node-to-node contact was considered by Gaertner [49]. Triangular
elements with nodal unknowns corresponding to tangential and normal displacement,
rigid rotation, tangential strain, and normal and fangential stress were developed. Desai
and co-workers [38] -de;reloped thin—layer elementsfthat.: iﬁcorporated observed frictional
behaviour to analyze contact probléms iﬁ geomechanics. This element, whose constitutive
law is written in terms of increinental quantities, eliminates the need for explicit
‘constraints on the finite element equations, as théy a.fe included in fhe stress-strain law.
An n-body colitact algorithm was developed. by Cheng [33] whére imp‘éne‘trability
constraints are handled via a penailtykpar’ameter and statickcondensation is applied to

eliminate all but the displacement degrees of freedom on the interfaces.




Contact finite element formulations for metal forming [21,28] often involve an
elastic workpiece and a rigid die. In these cases contactor nodes are constrained to be on a
known surface (the die) and the process of determining the extent of contact is somewhat
simplified. Dynamic contact, or contact-impact, has been treated by several authors,
including Wriggers [164], Ayari [17] and Belytschko [24]. An added effort is made to
develop efficient computational algorithms in these strongly nonlinear, time-dependent
problems. Wriggers proposes a frictional law from which a matrix form of the virtual
work of the contact forces can be added directly to the finite eiement’equations. This leads
to a contact formulation in terms of displacement only, and no explicit constraint
equations are introduced. The authors note that for some frictional laws, the mef:hod can be
identified as a penalty method. Ayari used 'fictious forces' tp counteract any mutual
penetration between eleﬁents on thek contagt surface and Belytschko enforces
impenetrability by examining the radii of 'pinballs’ inscribed in the finite elements along
with either penalty functions or Lagrange multipliers. He also notes that for an explicit
central difference integration of the semi-descritized equations, the c’ontact surface and

Lagrange multipliers (interface tractions) can be determined without iteration.

Since the contact problem is a surface phenomenon, some researchers have turned
to the boundary element methoci (147] or mixed FEM-BEM procedures [158]. The former
authors claim a savingé in computation time as only the boundary of the domain need be
discretized, and the size of the :esulting ﬂem"bility matrix equations are dependent only on
the number of nodes in contact; In addition, iterations of the boundary element analysis
and contact analysis are ﬁot directly coupled, i.e., the two may be performed in succession.
v"I"hé‘latt‘eer éutﬁéf uses fundamentél sﬁrfacék intégrai solutikon‘s“ ithlyxe ‘reg’gi(')n of contact,
matched with finite element solutions away from this region. This is based on the premise

that the finite element solution is most accurate away from the point of loading, and cannot



capture the gradients present in that region.

Recently, researchers have embraced the method of perturbed or augmented
Lagrangians as a computationally efficient means to enforce constraints on the finite
element method. Weiss et al. [161] have developed an element for incompressible
elasticity that enforces the constraint by means of an augmented Lagrangian. Simo and
co-workers have applied the method to contact formulations. They first present the method
as a way to regularize the ill-conditioned system that results from a Lagrange multiplier
approach [126]. In the same publication, they present an unique treatment of the contact
surface kinematics by contact segments. Simo anci Laursen have extended that
formulation to include frictional effects on the contact éu;’face {125]. Laursen and Oancea
have indicated how the convergence characteristics of the augmented Lagrangian
formulation render it superior to either penalty methods or Lagraﬁge multipliers {82]. The
advantage is vt'hat with finite penalties, there is ‘nearly exact satisfaction of the constraint.
On the‘ other hand, it is not necessary to optimally choose the penalty to guarantee
convergence. Heegaard has developed a lérge displacement, ifrictional sliding contact
element for elastic materials ﬁsing the augmented Lagiangian approach [57,58]. He has
applied this element to the problem of patelldofemoral contact, and has made comparisons

of the numerical procedure to experimental results.

of the governing equations and contact continuity relations. Derivations are carried out
under the assumption of small deformations and linear constitutive laws. The contact

continuity relations are then manipulated to introduce the assumption of frictionless
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contact.

Chapter III presents alternate means of enforcing constraint equations with the
finite element method. Often this subject is treated from the viewpoint of variational
calculus and energy principles. For the biphasic equations, weighted residual methods. are
more appropriate as a means of generating the finite element equations, and the
differences between the two are presented. Before a particular method is selected to enforce
the contact conditions, finite element equations for elastic contact elements are presented.

Each has advantages and disadvantages, and can provide insight into the numerical

performance of the biphasic contact element. Various formulations for biphasic finite
elements are also evaluated to choose that which is most efficient for the present

implementation.

Chapter IV contains a éonﬁﬂete derivation of the mixed-penalty biphasic contact
finite eiement, This element ié built upon the element of Spilker and Maxian {139}, and
introducesbontact éonstrainfé with Lagrange multiplier-like variables. The weighted
residual formulation ‘is presented, and the general form of the finite element matrices is

derived. The chapter concludes by specializing the interpolations to the six-node triangle.

Contact finite element formulations are nonlinear since the surface of contact is
unknown in advance. A significant part of this research is devoted to discretizing the
contact surface and assessing whether points on that surface should be included in the

contact calculations. An iterative procedure, which modifies the contact surface during the

[y -]

solution phase, is defined to determine the correct solution to this nonlinear problem. A

@escription of these algorithms is given in Chapter V.

Results are presented in Chapter VI. Several problems with known solutions were




solved to validate the formulation. These results demonstrate that the contact continuity is
properly enforced and that the discretization algorithms are robust. Demonstrations of
clinically relevant problems are also presented. With only the two dimensional element
implemented, only plane strain or axisymmetric problems can be solved. The gleno-
humeral joint and the knee joint are chosen as axisymmetric models to demonstrate the

clinical applications of the biphasic contact finite element.

Chapter VII summarizes the contributions of this thesis to the field of computational
biomechanics. There are, of course, many ways in which the research can be extended in
the future. An indication of the necessary extensions for three-dimensvivqnal, nonlinear or

sliding contact formulations is given. There is also a discussion of the range of

applicability of the biphasic contact finite element.







Chapter II: Governing Equations for Multi-
| Body Biphasic Contact

Introduction

This research‘ is based upon the biphasic theory of Mow and co-workers [96]. A fully
linear form of the governing biphasic equations is used for this development, where small
strains ére assumed, the solid phase is governed by a linear constitutive law, tissue
pvermeébility is constant and volume fractions of the solid and fluid phase do not change
with deformation. Correlations of theoretical results :vvith one-dimensional confined
compression tests suggest that these assumptions are valid in ; wide range of problems,

including up to nearly 30% compressive strain in the solid matrix [96].

Governing differential equations for the theory are derived from integral
stétements of balance of ﬁ.éss, momentﬁm and energy. Contact boundary conditions are
found in the same way, but with integrals performed over a volume havihg a surface
(interface) of discontinuity, as first reported for the biphasic theory by Hou ef al. [64]. This
results in the theoretically correct statement of traction continuity and relative flow across

| fhe interface. In solving a cbntact problem by the finite element method the solution
procedure is nonlinear, since the contact area is unknown in advance, and iterations must
be performed. This is true even in thé case of fully linear constitufive relations and small
strains. Additional restrictions beyond the contact boundary conditions must be imposed

to recover an unique solution to this nonlinear problem.
The Biphasic Theory

In the biphasic theory for soft hydrated tissues, materials are considered to be a

16
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continuum mixture of solid and fluid, representative of the collagen-proteoglycan matrix
and interstitial water, respectively. Based on the observed structure of cartilage, several
simplifying assumi)tions were used by Mow, et al. in their presentation of the theory [96].
First, both the solid and fluid phases are inert, and do not undergo any chemical changes
or interactions. Each phase is considered incompressible, which gives rise to mass
conservation statements for each phase, as Welly as for the mixture. For biological
materials it is reasonable to assume isothermal deformations and no heat supply. Inertial
terms are not included in this formulation and it is assumed that no energy is lost by

convection across the contact surface [64]. ..

For the binary continuum mixture, each phase simultaneously occupies the same
spatial volume. As a matter of convenience the boundary of the continuum is considered to
be the boundary of the solid phase, and relative flow of the fluid across that boundary is
allowed. The motion of each constituent is governed by a defomation function, y, defined

by the relation

xX(t) = x (t)= X X% t), o =sf, (2.1)

where the solid and fluid phases are indicated by the superscripts 's' or 'f', respectively, x
is the spatial position of both phases at time t and X% are their material positions.

Displacements for the particles are defined from the motion in the standard way,
u{(t) = x(t) - X%, a=sf (2.2)

These concepts are illustrated in Fig. 2.1, which follows material points X8 and Xf from
their reference state at t = 0 to their common spatial location, x, at t > 0. Velocities are
defined as the material time derivative of the displacement, holding the phase material

position fixed.



Fig. 2.1 Spatial and material domains for a biphasic continuum. The
spatial and material coordinate systems are chosen to coincide.

In mixture theory, two densities can be defined for each phase, the true density and

the apparent density. True density is the mass of a constituent per unit volume of that

constituent,

and apparent density is the mass per unit volume of the mixture,

o

pa:*-(ﬁ,—, o =s,f

When a phase is intrinsically incompressible, its true density is constant.

2.3)

(2.4)

Volume




fractions for each phase are defined as

dve

0% =g a=sf, (2.5)

and since the mixture is saturated, ¢S + ¢f= 1. As a result of Eq. (2.5), the true and

apparent densities are related by
o= & o - »
Pr=pp ¥, a =5t (2.6)

Derivation of the Equaﬁons

This derivation considers two continuum bodies, denoted body 'A’' and body 'B'.
Extensions to multiple-body. contact are straightforward and are treated within the
numerical procedure. The contact surface is defined by the relation T.= Q# ~ 0B and the

fact that it must satisfy I.c ERnSd-l

with 02 < %54 and QB < %54, where n is the
number of spatial dimensions in the problem. At times, to emphasize terms associated
with either body ‘A’ or body 'B', the notation Fen QA will be used, although this
intersection merely recovers the contact surface. Standard indicial notation is used, so
summation is implied kby the repeated indices i‘, J, k or m. Subscripts represent components

and range 1,2 .. ng4; superscripts 'A' and 'B' refer to the body with which a given

quantity is associated.

Figure 2.2 depicts the geometry for this derivation at some time t > 0, along with its
reference coordinate systen:;. Physical parameters of the continuum may experience
discontinuities across the surface I'.. Typically, the balance laws of continuum
mechanics are posed in integral form, then reduced to differential form through an
application of the Divergence Theorem. The resulting differential equations are valid in

the domain of the integral. Due to possible discontinuities, the integral forms of the




balance laws will result in both differential equations for the domain and jump conditions
at any interfaces between dissimilar materials. Derivations in the subsequent sections
follow the presentation by Hou ez al. [64], with material also taken from the publication on

the biphasic theory for soft hydrated tissues by Mow et al. [96].

Xi, Xi

Fig. 2.2 Spatial domain for the derivation of multi-body biphasic contact
equations.

Continuity of Solid Displacement

Continuity of solid displacement does not result from the balance laws, but does

provide a required continuity relation for well-posedness of the system of equations. A




biphasic material is defined as a continuum mixture of solid and fluid components and the
extent of this material is defined by the boundary of the solid phase. For this reason it is
reasonable to reqﬁire that points in persistent contact will have the same normal solid
displacement and normal solid velocity. Sliding parallel to the interface is allowed, so
there is no restriction on the tangential component of velocity. To allow for points that are
not in contact at the initial time, this constréint is written in terms of the initial position, X,

and the displacement, u,

[(uisA X @B xfB)] n =0, @.7)

where n is an unique"norma.l vector on the surface. By the indicial notation convention,
Eq. (2.7) is a scalar equation. The time derivative of Eq. (2.7) also implies that normal

solid velocity is continuous,

v n;=v, nj. (2.8)

Body A

Fig. 2.3 Convention for the definition of the normal and tangent vectors at
a point on the contact surface.

On the interface, tangent and normal vectors can be defined for each body in
contact, as in Fig. 2.3. With this definition, any vector quantity at the surface can be

decomposed into components in these directions, with respect to either the coordinate




system of side 'A' or of side 'B'. Figure 2.4 illustrates the decomposition for a traction

vector for the case risd =2,

Body A

Body B

(o5 A njA ni) niAex

ok njfeic

Fig. 2.4 Decomposition of the traction vector at a point on Body A with
respect to the normal and tangent vectors of Body A.

In Figs. 2.3 and 2.4, n is an unit outward normal vector, T an unit tangent vector and e}
are the sta.ﬂdard unit coordinate vectors. For the two dimensional case, 1 is defined such
thatn x1=eg and n * 1=0. In three dimensions, a triad of surface coordinates is defined
such that n is again the unit outward normal vector, n 11 =0 and n x 11 = 2. In the
dérivations that follow, vectors Will be decomposed in two-dimensional space, though
aﬁalogous derivations (with identicél results for the ﬁ'ictionless case) could be done for

three dimensions. It is apparent from Fig. 2.3 that

A_ B (2.9a)

n

and

A= 4B, (2.9b)



Hence, Eq. (2.8), can be written as either

AR LB A (2.102)
i i
or
VISA n? = viSB n?, (2.10b)
or the more convenient form
SA nA+V.SB n.B=O. | (2.11)

Balance of Mass

To begin, an integral statement of the conservation of mass for the mixture is

written,

d [ £
azgj(p%pﬁ dQ =~ "pf (v;- v?)ni dr. (2.12)

Equation (2.12) is thebm‘ixture equivalent of the familiar mass balance and states that the
time ’rate of change of mass in thé spatial volume is equal to the mass flux across all
boundaries. Observe that relative‘ flow ferms are iﬁcluded, since the ﬂm’drcan move with
respect to‘the solid. Next, any poésible discontinuities aré accounted for by separating
intégrals info portidns over eéch body, and their boundaries.

d d
& J.(pSA+pfA) dQ++ _[(pSB+pr) dQ =
QA ’ B

, fB
=- jpfA (va- vis‘%ni dr" - jpr (v. - v?B)ni dr +
rAur, rBur,




fB sB B
. J’ ofA (VifA_ ViSAmf“dra, J‘pr (v -v; mydr (2.13)
r

rC C

An application of Reynold's Transport Theorem yields

dpsA A opfA fA
fl: pat +(pSAvis )i+ pat + (pfAvi )idQ+
QA

9psB sB,  3pfB fB
+ J[_C’aT_+(pSBVi ),i-i-—%t—+(prVi )’Jdﬂ=

oB

fA sA A fB sB. B :
B .[PfA (v vi mg dr+ J},fB (v; - vy omy dr, (2.19)
Fc Fe

which is valid for an arbitrary domain, thus producing three‘equationé, o‘ne each from the
integrals in Q#, QB and on [e. In indicial notation, the comma indicates differentiation
with respect to the components which follow. The relations in square brackets in the first
two lines of Eq. (2.14) repreéent nﬁxture continuity on either side of the surface of
discontinuity. Thése may be combined as a mixture continuity relation to be satisfied in

the domain Q = QA U QB,
‘oS f A
a(p%g +(pSv; + pfvﬁi = 0. (2.152)

_The third line of Eq. (2.14) yields a contact boundary condition to be satisfied on the surface

Fe,

pfA (vifA ; vf‘Av n? +pB (viiB . va) n? =0. (2.15b)

It is often more convenient to work with volume fractions rather than with

densities. To accomplish this observe that Eq. (2.15a) can also be obtained by summing the




continuity relations for each phase, obtained by applying the above principles to each phase

[96], which are

(PN
% + (paV? )i=0, a=sf. (2.16)
Substituting Eq. -(2.6) and invoking the assumption of intrinsic incompressibility for each

phase this becomes

d(p%

?T) + (O ) =0, a=s,f. (2.17)
In the linear model, volume fractions are assumed to be iridependent of deformation, so the
time derivative vanishes. Thus, for the linear model, an alternate form of the mixture

continuity relation is

(¢svis + ¢fvif),i =0. , . (2.18)

A similar reduction is performed for the contact boundary condition. Substituting
Eq. (2.6) into Eq. (2.15b), and recognizing that the true density of the fluid phase does not

experience a discontinuity across I, one arrives at

A A
¢fA (vif - v1sA) n, + q)fB (vifB - va) n? =0. (2.19)

Now employing the continuity of solid velocity, Eq. (2.11), and the condition of a saturated

mixture, Eq. (2.19) simplifies to

AA:

f
A v oA PR 0t (BB L osB By By (2.20

For points in persistent contact, this can be expressed equivalently in terms of

displacement and reference position,



A A, A
(GfA (u§A+ X;fA) + oS4 (u? + XIS ) )y +

fB B _sB B
v (o @B x®) s 0B o3P %) ) nl =0, (2.20b)
where the time derivative of Eq. (2.20b) gives Eq. (2.20a).
Balance of Linear Momentum

A similar set of steps is followed for the balance of linear momentum, which is

written as,

d s ¢f £ £ s
EEJ(pSVi+pri) dQ = —pr vi(vJ.- \f n; dI" +
£ £
+ J (ofj+ opn; dT + ﬁ[ (Ti+ TS) A + J(niJ, ) dQ, 2.21)

where 6% is the Cauchy stress tensor for the o phase, T® are external body forces and IT%
are vectors of momentum supply of one phase to the other. Since the momentum supply is
balanced bet;veen the two phase, the vectors I18 ana 1f are equal and opposite. Equation
(2.21) states that the time rate of change of momentum in the domain is balanced by the
momentum flux through the boundéry, surface tractions and body forces. Again the
integrals are separated into terms in each body and on the‘ boundaries. After applying

Reynold's Transport Theorem the mixture momentum equation,

( f + o ) =
“%55,5% Si ) =
S f
I s e S S S 3 £ ff
= Tf Ti*p % +PSViVj,J+P~at +pvivj’j, - (2.22a)

and a third contact boundary condition,




sA A sB fB. B
(Gij «-Gf?) nj +(Gij +01j>nj =

fA fA sA A fB. fB sB. B
= pfA Tyl o . By v -y :
prer v (vJ v; )nJ TPV V- )nJ ) (2.22b)
result. The momentum exchange does not appear in Eq. (2.22a), but it does appear in the

momentum equations for each phase, which are [96]

o
N S A A oo
Gij,J + Hl = - Tl + p at + pavl vj,j’ o= S,f, (2-23)

and which readily sum to Eq. (2.22a). In the absence of body forces and inertial terms, and

by invoking the assumption that no energy is lost due to convection on the contact surface,

the right hand side of each of Eqns. (2.22-23) can be set to zero.
Balance of Energy

The energy balance for the mixture is expressed as

1 off
%f(ef+§pfvivi+es psvv )dﬂ—-ff( +2vlv;}v -V, )nldl"+
Q

f f £ f £
J (vioy; + viop)n; dT + J(Tivi +Tivs) da - J(hi +h)ng dT +

,/’

*J(Hif"f* Mv;)dQ + [t + 39) aq, (2.24)
Q -

where e is the internal energy density, h® is the heat flux and 8% is the internal energy

supply for the o phase. Again, applying Reynold's Transport Theorem, the differential

form of the energy equatibn is

(s s) gf9e5 ss (f f)_ B_ef ff
chJ Rl +vie |+ 0""',1'9 x tViei )T



f ff 1 g ff f ff
£
h, Tv 29(&“ v(vv))
+hS T s+ 0 Svs+v (v (2.25a)
R (E)tJ JVJ) } eoa

and the fourth contact boundary condition is

sAsA A fAfA A sBsBB fBfBB_
O Vi N + G Vj IR TR T

f .
=(hisA+lr5fA)n?+pfA(fA L fAv.A} ?A-viSA)n‘;\+

23 J 1
B B B m/ 1 fB fB\ fB sB. B
+(hiS +bi ny +pﬂ3(ef3+2vJ v }_"i -Vis ;. (2.25b)

Using the assumptions of isothermal deformation, no body forces and no convective losses,

the right hand sides of Eqns. (2.25a,b) become zero.
Constitutive Assumptions and the Entropy Inequality

A significant parf of the effort in developing a continuum theory for tissue
mechanics has been spent in defining the correct constitutive relz_ations. One can postulate
any form for the constitutive relations, but then they must beévaluated a posteriori to
determine if they are admissible.” In particular, they must provide reasonable physical
behaviour and must be mathem'aticélly correct. There are several principles in
"~ continuum mechanics which are used for this determination. First, the solution must be
objective, that is, it must be the same when measured from different frames of reference.
Second, it must satisfy the Clausis-Duhem inequality, also known as the entropy
inequality {153]. Third, the governing equations must be well-posed when the constitutive

relation is implemented, and must not admit any non-physical behaviour.

There are three constitutive relations required for the biphasic theory: solid stress,




fluid stress and momentum exchange. For the linear theory, a set of constitutive laws
satisfying the above criteria were proposed by Mow et al. in 1980 [96]. Since this thesis is
concerned with evaluating new contact elements, the complete derivation of the
constitutive relations is not presented; they are summarized at the end of this chapter. Note
that the contact boundary conditions as they have been derived in this section are not
explicitly dependent on the constitutive laws. Thus, the present contact finite element will

be applicable when more advanced material models are used.

Current research in constitutive modeling is predominantly focused on nonlinear
relations. In particular, solid | stress is known tc; 'be nonlinearly dependent on
deformation, anisotropic with respect to orientation and anisotropic with respect to tension
and compression [7,35]. Tissue permeability, and hence momentum exchange, are
exponentially dependent on deformation [61,62]. It will be essential to model these effects

when physiological problems in diarthrodial joint mechanics are studied, but they are not

included in the present evaluation of contact finite elements.
Reduction to Frictionless Contact

While the four contact boundary conditions derived above are sufficient to define a
well-posed mathematical problem, they are not well-suited to numerical analysis by the
finite element method. In particular, Eq. (2.25b), which contains products of kinematic
and kinetic quantities, would be difficult to implement in the numerical procedure.

; 1 in cnnivalent <ot o
11 result in an equivalent set o

conditions which are similar in form to those for single phase solid mechanics. At the

same time, the assumption of frictionless contact will be introduced into the relations.

Experimental studies with articular cartilage indicate that the coefficient of



friction is extremely low [85,89], thus the present formulation will include this assumption
in the contact boundary conditions. For frictionless contact, the tangential components of
traction will be zero. Beginning with the momentum jump condition, Eq. (2.22b), the right
hand side is set to zero by invoking the modeling assumptions presented with that equation,
then the total stress, cg-, is defined to be the sum of the solid and fluid stresses. Now the

vector equation is written in terms of its components in the normal and tangential

directions:
TA A A A TA A A A TB B B. B TB B B. B
(cij n; ny )ny + (c;lj ns T )‘t:k + (cij 0y n; ) n + (csij n; T )‘Ck= 0. (2.26)

Using the relation between the normal and tangent vectors on opposite sides of the interface

this becomes,

y-(o., n.n. 1. )-(c

[TAAA TBBB)] A [TAAA
(05 mymy)-(ogy nyn) oy + |(ogs nyry iy

TB B 5)] {‘:o. .27

Eliminating the tangential components of traction, one obtains a scalar equation relating

the normal components,

sA A A sB B BB
(Gij +<5§&) n; n; '(Gij +Gij)n- n;

5 =Q. (2.28)

Similar reductions are performed in the energy jump equation, Eq. (2.25b), after
having set the right hand side to zero. Now expand the traction and velocity vectors in
terms of components in the normal and tangential directions. For just the first term, this

takes the form:

SA A sA [ sA A A A SA A A A sA A
.. .Vj = o (v m

) ( A SAA_A
O’IJ n. ki g nj + (o) ;1 ‘tk)‘tj m P nj

+ (v 1t )T ] (2.29)

m ‘m’j

)

Note that the terms in parentheses are scalar magnitudes and recall that the inner product

nfend = 1, while nfetd oo, Performing the multiplication on the right hand side of
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Eq. (2.29) results in a scalar equation,

A A sA A A A sA A sA A A AA
cfj n; vjS (cfnn ny) (v no)+ o 1) (vS Tl (2.30)
Tangential components of traction on the interface are assumed to be zero, so similar

manipulations for the three remaining terms in Eq. (2.25b) yields,

sA A A sAA fA A A fA A
(ck1 n nk)(v (cskl n. nk)(vm nm)+

sB B fB B

+ (ols(i niB nf:) (vIn )+ (ck1 n, nk) (v n )— (2.31)

From the above, Eqns. (2.7) or (2.11), (2.20), (2.2_8; and (2.31) form a set of interface
conditions for biphasic-biphasic, frictionless contact, and are valid in the limiting cases of
solid or fluid on either side of the interfz;ce. These derivations apply when the fluid (either
the fluid phase of a biphasic tiséue or a pure fluid material) is inviscid, since any inertia
terms have been neglected. These equations can be further manipulated before they are
used in the numerical procedure. Apply Eq. (2.11) to Eq. (2.31), and note the change in the
dummy indices,

sAA[sAAA sBBB]
(o7 By ny)-(Oj 0y np)|+

fA A A fA fB B B fB B

+{o. kD nk) (v nA) + (o1k n, nk) (vm m) = 0. (2.32)

Equation (2.28) can be used to eliminate the solid stress, and after multiplying by

(¢SA—¢SB), Eq. (2.19) is used to eliminate solid velocity,

o % nt) + o8 B D) | [rof n 1) - 0B nB)] +

1

+ (58 . 08By [(cfA A A /B B fB i)]:(). (2.33)

n; k)(vm m) (Gi n; nk)(v

Expanding this equation and using the relation ¢S =1 - ¢f results in




fA A A, fB B B
(6. 0. myp) (G 0 nk) .
d;)fA - OfB = M (234)

Nofe that in the case of a pure solid this equation is not applicable. In the final finite
element matrix equations, though, one observes that there is no division by either ¢° or ¢>f.
Also, for anA = dpSB , this equation is consistent with the interface conditions, namely that
normal solid velocity, normal fluid velocity, normal solid traction and normal fluid .
traction are continuous. These are trivially obtained from Eqns. (2.11), (2.20), (2.28) and

(2.31) when the solid volume fractions are equal.

A second reduced kinetic interface condition can also be obtained by using Egq.

(2.34) in Eq. (2.32),

£A sAA[sAAA‘ sBBB]'
O Oy n) [ (G5 By By - (O3 By M) [+

fA A A fA A fB B :
+ (Gik n; nk) [¢fA (Vi n, )+ ¢fB (vi n; )] = 0. (2.35)

Substituting from Eq. (2.19) then Eq. (2.32) the following will result,

SA A A sBBB ¢ fA A A B BB B
(Cik ni nk)-(cik D.i nk)-¢fA (le ni nk)+¢fB (le ni nk)=0. (2.36)

Summary

The system of differential equations to which the finite element method will be

applied are the continuity relation for the mixture,

((bsvis + ¢fvf),i =0, (2.37)

and the momentum equations for the solid and fluid phases,
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o

' a_ -—
GUJ ha Hl = O, o= S,f. (2,38)

There are three constitutive laws to govern the momentum exchange and stress-strain

behaviour:
I} = 'Hif =poj + K(Yif -, (2.39a)
=-0°p 8jj + Dlemekm’ ' | (2.39b)
f =0T p & + lekaelf{m, (2.39¢)

where K = %— {81], x is the tissue permeability, p is the interstitial pressure, €5 is solid
strain and &f is fluid strain rate. These are derived with the previously stated assumptions
on small deformations, constant permeability and volume fractions constant in time. The
fourth rank tensors D® admit orthotropic behaviour, but are not dependent on deformation.
By ignoring viscous effects of the fluid when deriving the contact conditions, non-zero

values of Df are precluded. The four frictionless contact continuity relations are

(qu + )gSA> n? + (uiSB + )gSB) n? =0, (2.40a)
o | S
(o5 Ao 8 )
+ (65 @B xB) 4 4B w5+ x5 ) nl <o, (2.40b)

fA A A fB. B B
(le . nk) (Gk n. nk)

, =0, (2.40c)
oA ¢fB .

A A A BBB SA fA A A 4B B
(o5} m; )~ (o5, np ny) - ;L(Gkn nk)+§—-(crkn N =0, (2.40d)

Interpreted with respect to the linear constitutive relations, Eqns. (2.39), the above represent

continuity of normal solid velocity, continuity of normal relative fluid flow, continuity of



pressure and continuity of normal elastic traction. There are two kinematic, or essential,

boundary conditions

viS = ‘-IiS on I"viS, (2.41a)

f .f
vi=v, on I'V_f, (2.41b)

1
1

and two kinetie, or natural, boundary conditions

s s -8
f f .f
ojmj = t;=t; on I'tf. (2.42b)

1

Initial conditions are also required for this first order differential system in time, and so
displacement and velocity are chosen to be zero at t =0. There are three additional
relations required to uniquely determine the correct contact area. The Kuhn-Tucker
conditions of optimality [52] for a contact problem state that anywhere on the material

boundary:

lig(s)ll 20, (2.43a)
tT(s) e n(s) < 0, (2.43b)
lg(s)ll ti(s) » n (s) = O, (2.c43)

where g(s) is closest point projection to an opposing surface, tT(s) is the total traction vector
and s is a surface coordinate. These are also the familiar boundary inequalities that
result from the Signorini problem for linear elasticity, as reported by Kikuchi and Oden

{75]. These relations are intuitive, since a free surface must be traction-free and have a



positive distance to an opposing surface, and since bodies in contact must experience a

compressive surface traction.



Chapter III: Alternate Contact Formulations
Introduction

Contact problems in elasticity are posed as differential equations subject to
constraints. Often the constraints are inequalities, as in the case of the Signorini problem
* (see Eqgns. (2.43)). In general, the resulting system of equations is very complex, and there
are few problems for which analytic solutions exist {72]. One of the common approaches for
- analytic solution is to define the action of one body on the‘other as an unknown distribution
of traction. The Boussinesq solution can be applied to fmd‘the displacement field, and then
the integral of traction is equated to the applied load to comple?e the solution. This was the

approach taken by Hertz when he published the first contact solutmns [59]. For a numerical

solution by the ﬁmte element method, this approach is not feas1ble

The alternative is to develop an épproximaticn of the governing differential
" equations tbgether with their constraints. Often there are complications when solving
constrained problems by the finite element method, as is the case with elements for
incompressible elasticity (see, for example, [19,90,109]). Before choosing a biphasic contact
finite element, it is instructive to look at contact elements for single phase elasticity. This
chapter presents a brief overview of the common methods of applying constraints in the
finite element method, and evaluates the resulting contact elements for accuracy and
computational efficiency. With an understanding of these toolsk and a knowledge of the
existing biphasiq elements, a choice is made for the biphasic contact finite element

- formulation. - - O




Methods of Applying Constraints

The interface boundary conditions, Eqns. (2.40), derived in the previcus chapter
are constraints to be applied to the governing equations. For the biphasic theory these are
equality constraints that relate the primary variables (velocity and displacement), or their
derivatives (stresses), to one another. In the finite element method, relations among the
primary variables can be treated by special assembly operations for elements on the
contact surface when there is node-to-node contact. It would be an unusually restrictive
assumption, however, to have node-to-node contact at all times. Furthermore, conditions

on the stresses can not be treated in this manner for a displacement-based element.

There are numerous ways in which to enforce constraints én the finite element
equations, but the two most common would be Lagrange multipliers and penalty function
methods. Each of those methods hés its advantages and disadvantages. The method of
augmented Lagrangians combines their best features into a single, robust algorithm.
Because of the close association between finite element methods and variational calculus,
it is natural to describe the constraint process in terms of energy functionals, though the
conclusions reached in this chapter can be extrapolated directly to the weighted residual
method applied to a system of differential equations. For a more complete discussion of
finite element formulations for variational principles, and the constraint operations, the

reader is referred to chapter nine of the text by Zienkiewicz and Taylor [165].
Penalty Methods

A penalty method approximates the constraint, without increasing the number of

unknowns in the problem. For example, given a functional,




I(x) = JE(f,fX) dQ, (3.12)
aQ

and a scalar-valued, algebraic constraint to be enforced pointwise on the surface [,

Gfy)=0 onT, (3.1b)
the penalized functional can be written as

Jpa) = [E(ffp) da+ BJG(f,fX)z dr, (3.2)
Q

where § is a known, user-specified penalty paramete:r'. Both the function f and its
derivative, f;, are free to vary, and in the limit § — o, the ’constraint on G is satisfied in the
integral sense. The penalty parameter must be chosen to adequately constrain the
problem, but not numerically overwhelm terms coming from the integral of E. There is
often a wide range of values in which the penalty parameter can be chosen such that the
constraints are satisfied without causing ill-conditioning. If the constraint were posed as

either an integral or differential relation, the same principle applies.

A simple example will illustrate the approximate nature of the constraint
satisfaction. Take as the functional a parabola I(x) = x2, subject to the trivial, algebraic

constraint that x = 1. The variation of the unconstrained functional yields
81(x)=2x5x= 0, | (3.3)
which has the obvious solution of a minimum at zero. The éonstrained functional is
IJpx) =x2+ B (x-1)%, o (3.4)

and its variation is



SJpx)=2x3x+ 2B (x-1)8x =0, (3.5a)
yvielding
=B
X= 16 (3.5b)

Graphically, Fig. 3.1 illustrates that the solution of Eq. (3.5b) approaches the true value as

the penalty number grows larger.
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F1g 3.1 Solution to a single-variable constrained problem by the penalty
method.

Note that the solution converges to the correct answer from below. In the case of an
inequality constraint, for example x > 1, an additional relation is necessary to define the
region of feasible solutions. To see how the penalty function modifies the original
functional, Fig. 3.2 plots the penalty functional, Eq. (3.4), verses x for two different values

of B. One observes that the penalty method creates a convex function whose minimum is



approximately at the desired location. As the penalty number increases, the minimum
shifts toward the true value and the convexity increases. This illustrates how ill-
conditioning can result when the penalty number is too large, since minimizing a highly

convex function can be numerically unstable.

Fig. 3.2 Penalty functional for a single-variable constrained problem and
two different values of the penalty parameter, B.

Lagrange Multipﬁers

Lagrange multipliers introduce additional variables to enforce constraints on a set

vvvvvvvvvv

= [EEf) da - Jx G(f,fg) dT. - (3.6)
S |



The variation of J set equal to zero is the stationary condition of a modified functional,
where f, f_ and A azle free to vary. (For readers familiar with Lagrange muitipliers, the
choice of a negativé sign preceding the constraint term may seem inappropriate, though
still mathematically correct. This choice provides continuity of the discussion for the
augmented Lagrangian method, described below.) This method will exactly enforce the
integral form of the constraint, at the cost of an additional variable for each constraint
equation. Often one can find a relation between the multipliers and physically relevant
variables in the formulation. Returning to the single-variable example in the previous

section, the Lagrange functional is -
JLX) =x2 - A (x-1), (3.7a)
and its variation is
- 8J(x) = 2 x 8x - A (x-1) - ABx. (3.7b)

The stationary condition results in a system of two equations:

x-1=0, (3.8a)
2x-A=0. . (3.8b)

Equation (3.8a) gives the correct value for x, and Eq. (3.8b) identifies A as the slope of the
unconstrained functional. As with the penalty method, Lagrange multipliers can be used
with inequality constraints provided there is some limiting relation tb define the feasible
region. The advantage of Lagrange multipliers is that an exact solution can be had, but at

the cost of one additidnél v'aLriabIAé’for éach constraint.



Similar to penalty methods, there is some numerical ill-conditioning that can
result; the system of equations is semi-definite. For a physical understanding of the
indefinite nature of the equations, observe that the Lagrange multiplier approach
transforms the minimization of a convex system with a constraint to a saddle point
problem with a stationary point and no constraints. Graphically, this is depicted in Fig 3.3
which shows the Lagraﬂge functional, J1,, in the region of the solution. When discretized
with the finite element method, this type of stationary solution can cause some finite
elements to fail. The study of this problem has lead to the Babuska-Brezzi condition {18],

for which a concise discussion of the mathematics is given.by Oden and Kikuchi {108].

Fig. 3.3 Lagrange functional, J1,, plotted in the region of the solution.




Augmented Lagrangians

Augmented Lagrangians include the best features of both the penalty and Lagrange
multiplier methods. The augmented Lagrangian functional is created by including both a

multiplier term and a penalty term,

JAL(X) = jE(f,fx) dQ - ljx G(f,fg) dT" + B J G(£,£)2 dT. (3.9)
Q

As f tends to infinity, this functional will approximate the penalty functional, independent
of the value of the multiplier. Thus, unlike the Lagrange multiplier formulation, the
muitiplier in Eq. (3.9) can be considered known, and not free to vary, without adversely

effecting the solution. Applying this method to the model convex equation results in

JAL®) = x2 - A (x-1) + B (x-1)2, (3.10a)

whose variation with respect to x gives

SJAr(x) =2x8x-[A -2B (x- 1)]8x. (3.10b)
The equation for x is then
A+28
'X~2+2B' R (3.11)

This hasfthe gdvantage that there are Aﬁ'o‘; additional variables introduced into the
formulation, though some methddology' to chédée A is required. Observe that in the limit
B — «~ Eg. (3.11) gives the con_?ect solutiqn for x, independent of A. Also, when A has the
value indicated by Eq. (3.8b), the splution for x is correct, independent of B. This implies

that even a poor choice of the penalty or multiplier will lead to the correct solution. The



power in augmented Lagrangian formulations is to use an iterative scheme to choose the

multiplier. Comparing Eq. (3.7b) with Eq. (3.10b) suggests this iterative update for A [52]:

Ak+D) 22 -2 g (x(K) . 1), (3.12a)

A (K9 B
(k) & T &P
X = 94+9 B s (3.12b)

where k is the iteration counter.

The iterative solution pro¢ess is dépicted graphically in Figs. 3.4 and 3.5. The
system of Eqns (3.12) Waé solved usking the MAPLE syinbolic algebra package [31]. Ten
iterations were performed for each of ten ‘penalties in the rénge one through ten. An initial
value of zero was used for the multipliet for each penalfy. ‘Note that this choice of penalty is

significantly lower than those dembnsytrat‘,éd in Fig. 3.1 to gi\'fé accurate solutions.

10

6
2 5 4 Iteration

Fig. 3.4 Convergence of the augmented Lagrange functional with iteration
for a range of penalties.
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Figure 3.4 shows the solution value x(X) plotted for the indicated range of penalties.
With a penalty of one, the augmented Lagrange method will converge to within 1% of the
correct solution in seven iterations, and for a penalty of ten this level of accuracy is
achieved in just two iterations. For comparison, the penalty method is in error by 10% with

a penalty of 10. A similar convergence is observed in Fig. 3.5 for the multiplier, A(K),

1.57T

5 8
2 0 o 4 Iteration

Fig. 3.5 Convergence ef the augmented Lagrange multiplier with iteration

for a range of penalties.

There are several theories 'that govern the convergence criteria for iterations of the
augmented Lagrange method. Since the muitipliers should approach the values of a pure
Lagrange multiplier method, one could use them for the convergence check.
Alternatively; -an assessment-of constraintr violation is also possible. A third possibility is
to examine the solution itself. Any’ of these criteria can be formulated as pointwise

assessments, or in terms of some norm [82].



Finite Element Equations for Elastic Contact

Using the concepts of the previous section, it is instructive to examine the finite
element equations that result by applying contact constraints to the governing equations of
linear elasticity. The biphasic contact finite element formulation will be selected by
examining each of these formulations for computational efficiency and constraint
satisfaction in the context of the linear biphasic theory. These formulations will begin
with the statement of the potential energy for an elastic continuum,

1 -
Mw=3 |eTDedQ- JuT tdr, (3.13)
Q t
and the Principal of Minimum Potential Energy which states that the desired

displacement solution is the one which minimizes II(u). This variational formulation is

equivalent to the following system of equations:

Vo=0 inQ : (8.14a)

on=1t onTy, (3.14b)

where the constitutive relation, strain-displacement law and displacement boundary
condition are aséumed satisfied a priori. In addition, this section will consider the case of
perfectly bonded contact, where there is no tangential motion on the contact surface. This
condition would describe a solid, inhomogeneous body subjected to boundary tractions
and/or displacements, or quasi-static indentation of a flat layer by a spherical punch, for
example. Zienkiewicz and Taylor treat this problem for various mixed and hybrid

formulations in chapter thirteen of their text [165]. For this case, the boundary conditions to

satisfy on the surface I', are
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ud+ XA B+ xBy=0 onr, (3.15a)
cAnA+oBnB=o onTg, (3.15b)

where Eq. (3.15a) indicates that there is no relative motion once points have come into

contact and Eq. (3.15b) represents continuity of the traction vector.
Penalty Element

A penalty contact formulation follows from Eqns. (3.2), (3.13) and (3.15a). As is
common in variational formulations, the kinematic portion of the contact boundary
conditions, Eq. (3.15a), isintroduced into the functional, and the traction condition, Eq.
(3.15b), results as a natural condition. The constrained functional is

Tp(u) = % J(—ZTD £dQ - ljuT tdr+
Q t

+P Jr(uA + XA (uB+ XB))T(uA +XA - (uB+ XB))dI‘, (3.16)
T

c
which has as Euler equations Eqns. (3.14) and

cAnA = oB nB=-ZB(uA+XA-(uB +XB)) onTI. 3.17)

Note that as B — « the kinematic constraint from Eq. (3.15a) is satisfied, providing the
stresses remain bounded. For finite values of the penalty number the contact traction is

of the constraint, that is, the g

proportional to the viclation

surfaces.

Introducing the strain-displacement relation, constitutive relation and a global

displacement interpolation of the form
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u=S"Naqq (3.18)

into Eq. (3.16), and then taking the variation with respect to displacement, results in the

following matrix equations

L 8 T

-23QBA - KB.opQBBl|qB] " B .QBAQBB | |xB (3.19)

The matrices K and vectors f are the familiar stiffness and force terms from linear
elastostatics, while the contact matrices are given by
QY= fNYF N® dQ, v, 8 = AB. (3.20)
Ie

The additional forcing term arises from the initial separation of degrees of freedom on

opposite sides of the contact surface.

It is important to recognize that the contact matrices are very sparse, since only a
small fractic;n of the degrees of freedom lie on the contact surface. Because of this sparsity,
and the contribution of the penalty number to diagonal elements in the left hand side
matrix, numerical ill-conditioning can result’ in this formulation. A static condensation
step, or an intelligent ordering of the degrees of freedom, would group the penalty
contributions and provide a more efficient form of the matrix equations. Iterations must be
performed to determine the correct contact surface, thus the system of equations will be
solved repeatedly, updating the contact surface each time ﬁntil the Kuhn-Tucker relations,
Eqns. (2.43), are satisfied. While this formulation does not increase the number of
unknowns in the problem, when a linear problem is considered with a direct solver, there
is considerable additional effort in the solution step This is in part due to the increased
bandwidth profile introduced by the contact matrices, and also due fo repeated formation

and solution of the stiffness and contact matrices for each contact iteration.



Lagrange Multiplier Element

In a similar fashion, the Lagrange multiplier contact formulation follows from
Eqns. (3.7a), (3.13) and (3.15a). The constrained functional is

Mp(u) = -12~ _"STD £dQ - FJ.uT tdr- jKT(uA + XA (uB+ XB))dI‘, (3.21)
Q t r
¢

where A is a vector of Lagrange multipliers of length ngg: Rendering the functional

stationary results in Eqns. (3.14) and

ub+XA. B +xB)=¢, onT,, (3.22a)
ohnh= .6BnB= A onT c (3.22b)

as Euler equations. This formulation requires interpolations for displacement in the
domain Q and for the multiplier, A, on the surface r‘c. These interpolations lead to the

following system of equations:

KA 0 Q (qh fA
0 KB.q {qB = . B 4 (3.23)
QT.QTo |l r QTxA.XB)

where r is the vector of degrees of freedom‘ associated with the interpolation for A and the
contact matrix has the form
Q= j MTN 4Q. (3.24)
Fe
-The matrix M is the interpolation for the multiplier on [ ¢» and should be chosen to have as
many independent coefficients as the interpolation of the constraint, Eq. (3.15a). With

fewer coefficients, the constraint would not be adequately enforced. For example, in the



case of quadratic displacement elements this would dictate quadratic multipliers as well.
This is perhaps counter-intuitive, since the Euler equations identified the multiplier as a
traction, which, if computed from the displacement interpolation, would be piecewise

linear for this element.

As with the penalty method, fhere is an additional forcing term in the final matrix
equations. The systém in Eq. (3.23) is larger than Eq. (3.19), however, by the number of
interpolation coefficients required for the multipliér. Observe also that the system of
equations is semi-definite, due to the zero matrix on the diagonal. For direct equation
solvers, this can bé accommodated thrmig’h the use of thevdréut factorization [66]. Again, an
intelligent equation numbering will reduce the bandwidth of the contact matrices. In
contrast to the penalty method, though, the contact contributions to the left hand side matrix
can be updated without modifying the stiffness contributions. For linear problems this can

result in a savings of CPU time, since a large portion of the left hand side can be factored in

advance and retained throughout the calculations.
‘Augmented Lagrangian Element

Applying the canonical augmented Lagrangian functional, Eq. (3.9), to this linear
elastic contact problem gives the following functional

HAL(u)-'—-% jeTDedQ-JuT"tdr- fxT(uA+XA-(uB +XB))dr+
Q 't T ;
c

+8 j'(uA +XA . B+ XB))T(uA + XA uB + XB))dr, (3.25)-
FC

which has as Euler equations Eqns. (3.14) and
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oAnt=i -25(uA+XA- uB+XB)) onT, (3.262)
BnB=i+28(uA XA @B .xB)) onr, (3.26b)

Recall that the multiplier is considered a known vector of length ngg, and will be iterated to
convergence. In the limit B — « the displacement constraint will be satisfied. The Euler
equations also indicate thaf, for finite B, as the degree of constraint satisfa{:tion increases,
the multipliers can be identiﬁed as contact traction, and that the traction will be continuous

on .. Interpolating the displacements leads to the following mz_atrix equations,

¥ s ) o oo S )

28QBA KB.2pqBB]|qB/ =B . rB| 2P| qBA QBB ||xB (3.27)
where the current multipliers appear as part of a forcing term on the right hand side,
R'= [NTadr y=aB | (3.28)
r

c

These equations are nearly identical in form to those of the penalty formulation,
with the addition of the vectors RY. Because of this similarity, implementation details
relating to computational efficiency are also the same. Recall from the one degree of
freedom example that the choice of penalty in the augmented Lagrangian can be
significantly smaller than that in the penalty method. ‘Thus, one would expect that the

performance of the augmented Lagrangian would be much better than the penalty method,

because of the better numerical conditioning.

One of the advantages of the iterative scheme is that it restores a quadratic
convergence rate to the solution (58,83]. This implies that the usual iterative procedure to

determine the correct contact surface will now converge with a guaranteed quadratic rate.




In nonlinear problems, where a nonlinear iteration procedure is nested within the contact

iterations, both loops will have this property, greatly reducing the computational effort.
Hybrid Contact Elements

An assumed stress hybrid approach to generating finite element equations often
results in an element more efficient than the éorrespo;lding displacément-based
formulation {16,106,140]. When beginning from a variational principle, the displacement
elements WiH use the potential energy, Eq. (3.13), while the hybrid elements use the
complementary energy.. As the name implies, the assumred stress element interpolates the
stress field Within the elemené, as well as the displacement on the boundary of the element.
While the methods used to derive each element are different, the matrix form of the

stiffness equations is the same.

In the same way that a penalty term or Lagrange multiplier is appended to the
potential energy to énforce the contact boundary conditions, the complementary energy
functional canc be modified to enforce constraints on the field variables. Any of the three
methods deséribed above could be imiﬂemented with the hybrid fﬁnctionai. For example, a
hybrid contact element fOrmuiated with Lagrange mulﬁpliers will have matrix equations
of the same form as the‘ d.isplacemént-based ,contact"elément (see, fof example, {76]). Thus,
computational performance of the hybrid'contact element is similar to the-displacement-
" based elements with regard to the treatment of contact. Any perférmaﬁce advantages of

one method over the other for the non-contact elements will be retained.

There are several features of the hybrid formulations that -make it attractive for
constrained media problems, in particular for biphasic elements [157]. This section will

not present a full derivation of the hybrid contact elements, but rather, recognizes the



53

similarity in the resulting finite element equations. To complete the process of evaluating
possible formulations for the biphasic contact finite element, the hybrid contact elements
will be considered using the information presented in the previous sections, and

information in the literature on hybrid finite elements [16,76,110,113,114].

Selection of the Biphasic Element

There are two important considerations in choosing a biphasic contact finite
element. First is the means by which the mixture continuity relation, Eq. (2.37), will be
introduced into the formulation. As has been alluded to, finite element formulations for
constrained media problems can present significant difficulty when choosing the finite
element interpolations (90,108]. Second is the method of enforcing the contact boundary

conditions, Eqns. (2.40), the alternatives to which have been described in this chapter.
Selecting the Element Formulation

Regarding the con&:inuity relation, there have been four methods reported in the
literature for biphasic finite elements: the penalty formulation of Suh et al. [142,146], the
mixea-penalfy fdrmulation of Spilker and Maxian [139], the hybrid formulation of
Vermilyea and Spilker [156] and the pressure-velocity formulation of Oomens et al. [112] or
the similar pressure-displacement formulation by Wayne et al. [159]. A recent paper
suggests using the augmented Lagrangian approach to enforce the continuity relation for a
single-phase éontinuum {161], although this method has not yet been used with the biphasic

equations.

The penalty formulation of Suh was implemented for two dimensional problems

with a four-node quadrilateral. He notes that for distorted quadrilaterals, this element



behaves poorly [145]. In addition, the mean dilatitional formulation used for that element
is not readily extensible to higher order elements, which are often desirable in constrained
media problems. Maxian indicates these shortcomings as the motivation to develop the
mixed-penalty element [91]. There is also strong motivation to use simplex elements when
considering mesh generation on realistic geometries {122,137,141], or when employing
adaptive mesh updates [39]. The pressure-velocity elements are quite attractive, since they
replace the unknown fluid velocity in the formulations by the scalar pressure field,
reducing the size of the assembled matrix equations. Iﬁ Wayne's formulation, she notes
that the solution can exhibit spatial oscillations near‘ba loaded surface at early times in the
deformation [159]. While these oscillations do dixhinish in time, they can have significant
effects for nonlinear problems, or on solutions that také advahtage of ﬁ-adaptive mesh

enrichment.

The hybrid method appears quite attractive, since it does not require the user to
select a penalty,parameter to enforce the continuity constraint. In addition, Vermilyea
indicates a much better convergence rate for the two dimensional hybrid element as
compared with the mixed-penalty triangle for an uniaxial confined compression problem
[155]. | There are disadvantages, however, most significant being that the hybrid
formulation requires a strain-stress law, as opposed to a stress-strain law for
displacement-based elements. For Hnear materials it is straightforward to invert the
material property matrix, but for nonlinéar materials one must formulate the inverse of
the Helmholtz free energy function. This is a significant undertakihg for, as described in
Chapter II, there are numerous axioms which must be satisfied. ’While constitutive laws of
this form could be céhsfrﬁcted,'Vexf)é’fimén'téllyvbéﬁr?é ﬁtkt;) detérmihé ﬁheif parameters and
tested fo ensure physiéally plausible behaviour, one does not presently exist so biphasic

studies to date with the hybrid element have been limited to linear analysis.



With regard to numerical performance, the hybrid element does require larger
amounts of CPU time to assemble, factor and solve the system of equations. Vermilyea
reports between one and three times more effort spent on these tasks for the three
dimensional hybrid element, as compared with the mixed-penalty elemert {155]. There is
also an increase in system bandwidth by as much as a factor of two, adversely effecting the

solution time and storage requirements.

For a confined compression stress relaxation problem, Vermilyea reports a

convergence rate of 2.6 for fluid velocityk in a two-dimensional element [155]. These tests

were conducted on regular meshes of triangles. Using irregular meshes, Maxian found a
coﬁvergence rate of 1.0 for fluid velocity in the mixed-penalty triangle [91]. More recently,
Alineida has reported convergence studies for a confined compression creep problem with
both the mixed-penalty and velocity-pressure formulations [6]. The mixed-penalty
triangle converges with a rate of 2 for fluid velocity, for either regular or irregular
meshes. With the velocity-pressure formulation, the rate was less than this, perhaps

indicative of over constraint for this particular mesh [66].

| With these observations, then, the mixed-penalty element will be chosen as the
basis on which to formulate the biphasic contact element. For reference, a complete
presentation of the finite element equations is given by Spilker and Mazxian. This
provides an accurate, efficient element which can be extended to nonlinear contact
analysis in the future, and v&hich has been successfully extended to model all relevant
nonlinear mechanics for the single-region problem (6]. In addition, the element has been
implémented for both triangles and tetrahedra, allowing existing h-adaptive mesh
enrichmenf schemes to be coupled to »this formulation [20,39], providing the necessary

resolution of moving contact interfaces.




Selecting the Contact Treatment

With the element formulation now determined, each of the methods of enforcing
contact constraints will be evaluated with respect to this element. Two pieces of
information weigh heavily in détermining the efficiency of the candidate contact
formulations. First, the present implementation considers only the linear, time-
dependent form of the biphasic equations. Second, the computer implementation will

utilize a direct equation solution strategy, on a serial computer architecture.

While there are numerous successful penalty contact finite elements (for example,
(24,67,74]), the ill-conditioning due to the penalty term may prove problematic. This is
especially true in the presence of a penalty term to enforce the continuity relation. Also,
considering the time-dependent nature of the biphasic problem, and the use of a direct

solution strategy, the structure of the penalty equations will entail excessive calculations.

For nearly the same reasons, the augmented Lagrange approach is also discarded.
As noted previously, the form of the matrix equations for both the penalty and augment
Lagrange methods is the same, which results in the same conclusion concerning repeated
solutions in this time-dependent problem. Unfortunately, for a linear equation set, the
quadratic convergence of the multipliers does not provide any significant improvement in

the computational effort.

Thus, the biphasic contact finite element will be implemented with a mixed-penalty
treatment of the incompressibility and a Lagrange multiplier treatment of the contact
constraints. Since there is no potential energy functional for the biphasic theory, it will be
necessary to formulate the element using a Galerkin weighted residual method. - The

contact contribution due to the Lagrange multipliers will also be introduced into the




weighted residual. Observe that if the resulting finite element equations are symmetric, a
variational principle does exist, and that its Euler equations and natural boundary
conditions are those introduced into the weighted residual statement [165]. This

formulation is the subject of the subsequent chapter.



Chapter IV: The Mixed-Penalty Lagrange
Multiplier Formulation

Introduction

With the statement of the governing equations and boundary conditions for the
biphasic contact problem, Eqns. (2.37-43), and the element formulation specified in
Chapfer I11, it is straightforward to develop the finite element equations. This derivation
will be based on a Galerkin weighted residual statement, and will closely follow the
preséntation given by Spilke.r and Maxian [139]. Attention is focused on the Lagrange
multiplier treatment of fhé cohtact boundary conditions in the ¢ontext of a weighted
residual method. A matrix form of the weighted residual statement is developed, which is
general and can be interpreted for any two- or three-dimensional interpolation. The .
formulation is then specialized for a quadratic velocity interpolation over a triangular

element.

- Weighted Residual Statement

The finite element method has a rich histpry which began when researchers in the
1950's began to apply relaxation and approximation methods to structural problems (see,
for example, [165] for a history of the method). A tremendous mathematical formalism has
been déveloped since then, which allows nearly any system of equations to be
approximated. Before the biphasic finite element equations can be developed, however, two
imppftanﬁ steps must be taken. First, the mixture continuity equation and contact
boundary conditions must be modified to facilitate the numerical procedure. Second, the

weighted residual method requires a precise mathematical statement of the function spaces



in which solutions will be sought. Then a weak form of the problem can be formulated, to

which the numerical approximation will be applied.
Preliminaries

The weighted residual statement is constructed from the governing equations and
natural boundary conditions in each domain, and from the contact boundary conditions.
In particular, the solid and fluid momentum equations, a penalized form of the mixture
continuity relation and the traction boundary conditions will be approximated, while the
constitutive laws, strain-displacement relations and essential boundary conditions will
be exactly satisfied. The method begins by developing a penalized form of the continuity

equation [45,139],

f
(¢Svf + ¢fvi)’i +% =0, (4.1)

which in the limit B - oo is equivalent to the originai continuity relation presented in
Chapter II. Suh developed a methodology to estimate the penalty parameter for the biphasic
equations [145]. He formed the total momentum as the sum of the solid and fluid momenta,
Eq. (2.38), and substituted from the constitutive laws, Eqris. (2.39), to obtain an expression
in terms of displacement, velocity and pressure. He then eliminated pressure by.using Egq.
(4.1). Specializing this relation for a one-dimensional problem, he found the penalty
parameter was proportional to machine accuracy, a reference time and the equilibrium
modulus of the solid phase, and inyersely proportional to volume fracﬁon. He later
demonstrated that for linear problems, the penalty parameter can be varied over

approximately four orders of magnitude with no adverse effect on the solution.

To introduce the contact boundary conditions into the weighted residual statement,

and still retain the properties of a Lagrange multiplier method, it is necessary to redefine



the kinetic contact relations. For example, compare the contact continuity relations
developed in Chapter II, Eqns. (2.40), with the Eulef equations for the Lagrange functional
for elastic contact in Chapter III, Eqns. (3.22). Observe that the kinematic constraint
appears directly as an Euler equation, but that kinetic constraint is replaced by two
equivalent relations. These indicate that the multiplier is simultaneously equal to
traction on side 'A' of the interface and the negative of traction on side 'B'. The Euler
eqﬁations can be considered defining relatipns for the multiplier which have the

additional effect of producing continuous traction on the interface.

In the absence of an energy functional in the biphasic case, it is still possible to
develop finite element equations which represent a Lagrange multiplier constraint
operation. As stated previously, if the finite element equations which result from a
weighted residual statement are symmetric, one can conclude that a functional does exist
which produces the same equations [165]. In addition, the Euler equations of this unknown
functional are precisely those equations introduced into the weighted residual statement.
Thus, in this formulation, the kinetic continuity relations will be rewritten to define the
multipliers according to the analogy above. For the biphasic case two scalar multipliers
will be required: one each for the solid and fluid kinetic contact continuity relations.

From Eq. (2.40c) define Af on the contact surface and require:

_ fA A A
P ¢ M B ’
M=—t—— motnr, (4.2a)
¢
Cm n nB
M= —0ad meBar, (4.2b)
. ¢ - - .

In a similar manner, define A on the contact surface from Eq. (2.404):
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SA ;
sSA A A ¢ fA A A onQAmFC,

S _ ~
M=l n 0 TofA 5T m ) (4.3a)
.sB ’
s_,SB B B ¢ B B B B
AS = (Gij nj o ) - ¢>fB <Cij n, nj) on Q- Nr. {4.3b)

Note that A% and Xf are not independent in body 'A’' and body 'B', but rather are defined on
I, such that they enforce the continuity required by Eqns. (2.40c,d). They become
additional variables which must be interpolated in the finite element formulation, and

from which the normal components of interface tractions can be recovered.
Choice of Trial and Test Spaces -

The essence of the weighted residual method is to multiply each equation that will
be approximated by an arbitrary weighting function, integrate this over the domain where
the equation is to be enforced and sum these. For arbitrary weight functions, the resulting
weighted sum is equivalent to the governing equations [66]. For the biphasic contact
element, three classes of weight, or test, functions are required. These function spaces are

defined as follows:

By = {w | we Hlandw=0on Fys v va}, (4.4a)
Oy = {W | we HO}, (4.4b)
ﬁc={w | we HO and w = 0 on Q\T }, (4.4¢)

where HS are Sobolev spaces equipped with their natural norms. Respectively, these will be
spaces of velocity, pressure and contact weight functions. These are, in effect, smoothness
requirements on the test functions, and will ensure that the subsequent mathematical

manipulations are well defined [70,144]. Additionally, three function spaces for the trial




solutions must be defined as

5@ ={w | we Hland w = won FV?}, o =51, (4.5a)
i

8p={w | we HO}, (4.5b)

5C={W | we HO and w = 0 on Q\T, } (4.5¢)

Analogous to the test functions, these are trial spaces for the velocity (or displacement),
pressure and multipliers. These definitions require that the trial solutions satisfy the
essential boundary conditions, while the velocity weight functions need only satisfy the
homogeneous fofm of the essential boundary conditions. Rigorously, the space of
velocities must also be constrained by the kinematic part of the Kuhn-Tucker relations,
Eq. (2.43a) [75]. In practice, this requirement is too strong, since the deformed state of the
material is unknown in advance. - Alternatively, an iterative procedure has been

developed which finds solutions satisfying both Eqgns. (2.43) and (4.5).
Development of the Weak Form

A single weighted residual statement will be written as the sum of terms from body

'A', body 'B' and the contact surface, such that

GA+GBige=o. (4.6)

For clarity, each of these will be presented separately. From body 'A' the contributions to

the weighted residual are

i i

GA= Z[W.SA 2 i ™Nda . Jh?A @54 A ar+
i ij,j i i
Q



fA  fA fA fA —fA fA
+ iwi (Gij,j + I1; ¥Q + {[hi (t ; -t dl+
Q

fA A A
+ JWCA (( ¢>fAvi + ¢5Avis ),i + I—ng dQ +

QA
fA A A
fA.f _1j 1 7
+ Jr (X - q>fA ]dI’+
IqC
, A )
SA S_sAAA oS fA A A
+ J’r (}. (Gij n; nj )+-—¢fA (oij n; nj) dar. 4.7)
FC ’

Here the requirements on the weight functions are that W;x» € By, h;x € By, % e ¥y and

wle Bp for o = s,f. Trial solutions are restricted to be members of the spaces defined by

Eqns. (4.5) as follows: v(ix € 8y pe dpand A% e §.. Observe that Eq. (4.7) contains the
i

definitions of t_hé multipliers given by Eqns. (4.2a) and (4.3a).

To develop the weak form of the weighted residual, terms in the first and third
integrals of Eq. (4.7) With the divergence of stress can be rewritten by applying the

Divergence Theorem. The first integral becomes

sA sA sA sA sA sA A
Q Q r

where the parentheses surrounding the indices indicate the symmetric part of the tensor.

Weight functions are chosen to be members of the spaces in Eqns. (4.4), then, since
A A

FA = Fvs v I“vfu I“ts U rtf v, the choice of weight functions will cause the boundary

. . A A .1 SA, sA .
integralin Eq. (4.8) to be zeroon T S and I"Vf. Also if hi 1s chosen equal to w; , portions



of Eq. (4.8) will cancel terms in the second integral of Eq. (4.7). By decomposing the
traction vector into its normal and tangential components, and recognizing the tangential
component will be zero on I', for the frictionless case considered in thié study, the
remaining terms will be
iw?A Aag=- i (Sj:) A 40+ jwk (o S.A nf nA) n‘; dr. (4.9)
Q Q

1 1) J
c

This last term in Eq. (4.9) can be eliminated by choosing the weight function

sA

A A
roe = wi ny in Eq. (4.7).

Likewise, applying the same operations to the third integral in Eq. (4.7) and
fA fA fA A
selecting the fluid weight functions hi =W; and 8 = Q)fAWk ny + q)SAW}S&AnQ, the

term remaining from the divergence theorem applied to this integral will be

fA fA ’
i ; J.W(I,J) (4.10)
Q

The contributions from body 'B' are similar, and the same steps can be followed to develop
a weak form for GB. In particular, the requirements for trial and test spaces for the
solution and weight functions are the same. ‘Also, the same choices are made for relations

between the weight functions after the Divergence Theorem has been applied.

Terms in the weighted residuai from the contact surface are

GE= JAtm((u +X1A)n +<ulS sB,



fB _fB B B, B
~1~(q)ﬁ3(ui +X )+ ¢SB (uis +XiS ))ni dr‘], (4.11)

and come from Eqns. (2.40a,b). The contact weight factors are restricted to be in HO°:
s%e B¢ for o = s,f. The decision to scale the scalar weight functions will become apparent
after the time discretization. Of course, since this is an arbitrary weight function, the scale

factor does not effect the generality of this derivation.

Now the complete weak form of the weighted residual is formed as the sum of the
contributions from body 'A’, body 'B', and the interface. Multiplying through by negative
one at the same time, this becomes

sA  sA sB sB fA fA fB B
Q Q Q. Q .

] J:.w.SA 440 - £w-s BsBaa. z[wa mi4q .- £W$ nB4a -
1 i 1 1 1 1 1 1
Q Q Q Q

1 1
IS T IA
t §

fB fB
‘Lwi ti dr-

Iy
1

o {[wagiAdr- waB £ Bar.
Iy
1

£ A ' ' B, pB
- JWCA [(Q)fviA),i + (q)SV?A)’i + IéX) dQ - JWCB [(¢fV§B),i + ((bsv? )i+ I;_B] dQ -

QA oB

A sA f < A sA
- J‘xfnk (¢>SAWk +¢fAWk dr- -‘XS n, wy dr-

I T

C C

B sB fB [ B sB
- jkfnk(qﬁBwk +¢fBWk)dI“- .Xsnk wy dr-
e Te




s [ sA SA A sB sB B]
- JAtco (u_i +Xi )ni -4-(ui +Xi )ni dr -

e

f fA
Jaro (o e xi™ vt it i ) 4
r

C

fB _fB. ..p,sB _sB\ B, : :
+(¢>fB (0, +X; ) + 0SB (uf +xf >) n; dr]:o. (4.12)

Finite Element Matrix Equations

At this sfége the weak form, Eq. (4.12), is a statemen_t equivalent to the governing
equations présented in Chapfer II, Eqns. (2.37-43), and no approximatiéns have been
introduced. The next step is to chose finite dimensional counterparts to the function spaces
gi‘ven in Eqns. (4.4-5), which will suggest the nﬁmericél a.\pproximation. This will be
conducted in a formal wéy, producing a set of matri:k( equations valid for accepfgble choices
of interpolétions in two or fhree dimensions. The final step is to particularize the

interpolations for a six-node, triangular element.
Element Interpolations

To write Eq. (4.12) in matrix form the domain is divided into elements and the
kinematic variables, pressure, Lagrange multipliers (A% and Kf) and weight functions are
interpolated in terms of their element nodéi values, with subécript 'e' indicating the
element number. The interpolations within element 'e' are chosen as follows. Solid and
fluid velocity are interpolated with functions, N € Sva < 8ya, where the’ superscript ‘h'

refers to the finite dimensional subset. The form of the interpolation for velocity is

v =N a=sf y=AB, (4.13a)



and for solid displacement is

uST=N uesy, v=AB, (4.13b)

where the coefficients uesY are related to V:Y by a time derivative. The velocity weight
functions which, for a Galerkin weighted residual method, have the same polynomial

h
form as the velocities, are interpolated with functions N e 8, c ¥y as

w=N W:UY, a=s8f y=AB. (4.13¢)

Referring to the definitions of the spaces in Eqns. (4.4-5), the only difference in the
interpolations for the velocity and its weight functions ‘are at ioéations where essential
boundary conditions afe specified. This Vhas the effect of removing ’as independent
equations those éorresponding to the constrained degrees of freedom, and producing
additional forcing terms related to the essential condition‘s.k With this recogﬁzed, the
slight abuse in’ notation of ‘using the same symbol for both the velocity and its weight
function will be allowe»d.' In the computer implementation, this impdrfant distinction is
properly accounted for by an element-levél conéi;raint operation. Pressure is interpolated

h
with functions Np € 8p c 8p as

p'=N,pl, v=AB, (4.13)

and its weight function with Npe ﬁ}; < By as

w =N} W, Y= AB. (4.13e)

Each of these two interpolations has a lower order continuity than the velocity. The solid
and fluid multipliers, whose interpolant is non-zero only on the contact surface, are

interpolated with functions M e SICl < d, as



A% =M xg‘, a=sf (4.130)

. . . . h
and the corresponding weight function with M e ¢ e © O as

s%*=Ms” a=sf (4.13g)

Element reference coordinates, required in the kinematic contact continuity relations, are

interpolated in the same way as displacement,

X¥=NX", a=sf y=AB. (4.13h)

Last is an interpolation for the known volume fraction,

%7 =N 027, a=sf y=AB, | (4.131)

enabling the numerical calculation of the gradient of volume fraction within the finite
element program. The interpolation matrix N would typically contaih the same

poiynomials as N, though the ordering within the matrix is different.

At this time the constitutive relations, Eqns. (2.39), are substituted into Eq. (4.12),
which necessitates several other definitions. - Strain and strain rate are defined as the
symmetric part of the gradient of solid displacement and fluid velocity, respectively, and

are inﬁerpolated as,

) S
€5 = VSN u =Bu (4.14a)
ef= VSN g =B Z (4.14b)

with VS the symmetric gradient operator. Similar operations are performed for the

symmetric gradient of the weighting functions. The gradient of volume fraction,




VoY = VN q;SY: B q)gy, a=sf y=AB, (4.152a)

is required in terms coming from the momentum exchange and continuity relation.
Because the mixture is saturated, gradients of the solid and fluid volume fractions are

related,
volY = v(1- 45T = VoSY, y=AB. (4.15b)

In the finite element method, a reduced index notation will be used for stress and strain,
where the independent terms of the symmetric tensors are arranged in a vector. To

account for this, the vector m is defined as the reduced index form of the Kronecker delta

operator, and the fourth rank tensors of material properties are redefined accordingly.

With ng) defined to be the total number of finite elements in body 'A' and body 'B’,
then substituting the interpolations into Eq. (4.12), the following matrix form of the

weighted residual results (note that the terms are in the same order as in Eq. (4.12)),
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ofA [MT nATN ar @+ x™) 4 B MT nBTNar wl + XZB))} =0. (4.16)
r

Ce Ce



The notation of a summation over elements implies that an integral over an

s B : 1ot
element domain Q o would be zero when the index 'e' corresponds to an element in the
domain Q4. Likewise, an integral over I Ce would be zero when the index 'e' refers to an

element that is not on the contact surface.
Element Matrices

In Eq. (4.16), the nodal coefficients have been removed from the integrals, as they
are not functions of position. Each of the remaining integrals, then, can be identified as

an element level matrix, or its transpose. These matrices are

a= j(m B)TN da, (4.17a)
Q
bY= fNTf; 0. 'NpdQ, y=AB (4.17b)
Qe
k= [BTD"B 4, a=sf y=AB (4.17¢)
Qe
cl= [kYNTNdQ, y=AB (4.17)
Qe
- |INTN a0 4.17
k= Ny Np (4.17e)
)‘e
Y T ¥ _
q, =- FIN n'™dl, y=AB (4.170)

Ce
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ng: fNTfowdr, a=sf v=AB : (4.17g)
I“tow
e

Recall that, because of the assumptions made during the derivation of the contact boundary
f . . . .
conditions, k o is required to be zero for this element. This restricts the contact formulation

to model only inviscid fluids. With these definitions, Eq. (4.16) becomes,
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The shape functions Np are chosen according to Eq. (4.5b), and thus possess ¢l continuity.
This allows one to solve the third and sixth equations of Eq. (4.18) for the element pressure

A B . ..
coefficients, p R and p - at the element level. This solution is

p/= BY(kp>‘1(<-¢SYaT pYyest 4 (ofaT 4+ bYT) vfY), y=aB, (4.19)

which can now be substituted back into Eq. (4.18), yielding
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The element matrix 932, comes from the penalty terms and gradient of volume fraction, and

is given by
, [(¢57a+b)k;)1(¢sya+b)’r -(q;sya-t-b)k;)l(-(bfya-f-b)’r_l
5= | ) X , y=AB  (4.21a)
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It is interesting to note that the matrix qg is precisely that which arises in a

Lagrange multiplier formulation for single phase elasticity. This matrix couples the
multipliers to degrees of freedom on both sides 'A’ and 'B' of the interface. In the biphasic
case, the matrix Qg performs this coupling, including the cross coupling between solid and

fluid degrees of freedom on opposite sides of the contact surface.

Beféi‘e assembling the global bc’ounterpért of Eq. (4.20), the fémily 6f geﬁeralized
trapezoidél finite difference rules is applied in time [66]. For the breseﬁt implementation,
the time scale of thé pfoblein is divided into uniform inérements of length At, and the
displacement at the current ‘tim.e step is written in terms of the cui’rent velbcity and the

displacements and velocities at the previous time step,
A A .
u=u+At{l-o)v+Atov. (4.22)

The superposed (7) indicates the known value at the previous time step and @ is an user-
defined parameter chosen between 0 and 1 that controls the order of accuracy of the time

integration, numerical damping, etc. When @ 2 0.5 the integration corresponds to an



implicit method which is stable for any size time step. Comments on the choice of this
parameter for the biphasic contact finite element are given in Appendix A. Equation (4.22)

is substituted into Eq. (4.20) and the known values are transferred to the right hand side.
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Note that the contributions from the contact elements are symmetric because of the choice of
the algebraic scale factor introduced in Eq. (4.11). Standard finite element assembly
procedures are now applied to this system, and the assembled weight functions are

recognized as arbitrary, which leads to a global system of differential equations in time,

cA + 34 0 QA KA o oll[vA]
0 cB+38 QB |+wat o K_B o|HvBl=
a4’ Q® o o o oflla
r 1 (4.24)
A KA 0 o|[d®+at(1- oA
=¢8] o KB oldB+ar1-wyB
& QA _cﬂ_ 0

WAt wAt




78

where the matrices without the subscript ‘e’ are the assembled counterparts of those with the
'e'. This is a semi-definite system as is typical of Lagrange multiplier methods. Note that
as the contact surface evolves in this linear problem, only the matrices QA and QB will

change, so for a direct solution strategy the upper 2x2 block of Eq. (4.24) need be factored

only once.
Quadratic Velocity Triangle

For the first biphasic contact finite element, the computer implementation is
restricted to the six-node, quadratic-velocity triangle.. Details of the interpolation,
integration order and post processing are given by Maxian [91]. This section will be

primarily concerned with the additional requirements of the contact matrices.

Interpolations for displacement and velocity are quadratic, and use the familiar
Lagrangian shape functions for the triangle [66]. = Both a plane strain and an
axisymmetric version of the element have been implemented. The element is
isoparametric, and has nodes at the vertices and mid-edges. All calculations are
performed in the element parent coordinates system, which is based on triangular area
coordinates. Gaussian quadrature of sufficient order to exactly integrate straight-sided

elemenﬁs is performéd for all element matrices.

The pressure interpolation is linear within an element, and ‘independkent from
element to element, as would be expected for this constrained media problem. Maxian
found that a three-parameter interpolation written directly in terms of the triangular
coordinates produced a matrix ky that was insensitive to numerical instability during
inversion [91]. It should be recognized that the combination of quadratic velocity and

linear, discontinuous pressure produces an element which violates the Babuska-Brezzi




condition [66] for linear elasticity. In practice, the triangular biphasic element performs
well, and shows no signs of locking or constraint violation for reasonable meshes.
Alternatively, the quadratic-velocity, constant-pressure element does satisfy the Babuska-
Brezzi condition. Experiments performed with the one-parameter pressure interpolation
in the contact formulation showed no improvement in the behaviour of the solutions. The
discussion may not be directly extensible to three dimensions, however. Recent
convergence studies by Almeida with simplex and hexahedral elements in three
dimensions show that the tetrahedron can be sensitive to mesh gradation and orientation

when using the linear pressure interpolation [6]. :

If the finite elementrmatnces are to be symmetric, whlﬁh IS a hlghly desirable
charactemstm the multipliers and contact weight functions must be interpolated with the
same functions. There are two possibilities, then, when choosing the order of interpolation
for these variables. Examining the weak form of the weighted residual statement, Eq.
(4.12), one sees terms that are products of the multiplier with the velocity weight functions,
and others that are products of the contact weight function with velocity. In addition, recall

Eqns. (4.2-3) which define the multipliers as tractions.

The first possible interpolation is to choose the multipliers to be of the same order as
traction, e.g., the gradient of displacexﬁént. For this element, that is a linear
interpolation. In the case of node-to-node contact, traction evaluated in elements on either
side of the interface is equal pointwise, and equal to the multiplier. The kinematic contact
constraints are only enforced pointwise, however. The second theoryAis to choose the
_interpolant such that there are as many independent coefficients in the contact weight
function as there are in the velocity. This is a quadratic interpolation and would produce

solutions where the weighted integral form of the kinematic contact continuity relations



are exactly enforced. This element uses the second philosophy, which favors a more
rigorous enforcement of the kinematic conditions, but does not allow one to equate the
element traction with the multipliers at a particular location within the element.
Numerical experiments with elastic contact elements in the symbolic algebra package

MAPLE [31] support these conclusions, and are presented in Appendix B.

The choice of function spaces does not require the interpolation for the multipliers to
be continuous between elements. With a Lagrange multiplier method, though, the final
matrix equations are semi-definite, and do not allow the multipliers to be eliminated at the

element level. Thus, there is no computational advantage in choosing a discontinuous

interpolation.

For the triangular element, the contact surface will be a curve in space. This
implies that the contact interpolations will be the familiar Lagrange polynomials of order
two defined on the canonical range (-1,1). Here too, Gaussian quadrature of sufficien
order to exactly integrate straight-sided elements will be used to compute integrals of the
matrices q. The following chapter will detail the procedures for assembling these matrices

for the discrete representation of the contact surface.






Chapter V: Contact Surface Calculations

Introduction

As described earlier, thé contact surface is unknown in advance, and iterations
kmust be performed to find that surface which is bconsistent with the Kuim-Tucker relations,
Egns. (2.43). In addition, a discretization of the contact surféce is required so that the
contact matrices can be evaluated. It is important that the ‘discretization algorithm be
robust, computationally efficient and insensitive to mesh gradation. While the proposed
kmeth’ocli of discretizing the contact surface has been implementéd only€ in two dimensions,

itv is readily extensible to three dimensions, and would sﬁffer only from the naturally

higher cost of three-dimensional geometric calculations.

Contact surface calculations can become a significant part of the computational
effort during finite element analysis {24]. It is essential that efficient means of contact
detection be developed, and that these be optimized for either scalar, vector or parallel
hardware. Several algorithms have been presented in the literature, including the pinball
algorithm of Belytschko and Neal [24] and the contact segment treatment of Simo,
Wriggers and Taylor [126]. Others have included the contact surface kinematics directly
into a finite element formulation [58]. Laursen and co-Workers have recently proposed a
method which localizes all calculations to numerical quadrature points within finite
elements on the contact surface [82,83]. This same algorithm was inidependently developed

in the course of the present research.

Within an iterative cycle, three main tasks must be performed. First, given a point

on one side of the contact surface, the closest point projection to the opposing surface is
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computed, and the finite element containing this projection is found. Second, utilizing the
projection results, a discretized form of the contact surface is developed, which will be used
in forming the contact matrices. Last, there is an assessment of changes to the surface,
including points that come into or are released from contact. Each of these topics is covered
in detail in the subsequent sectioﬁs. The chapter concludes with a description of the

iteration algorithm itself.
Closest Point Projection

In evaluating the Kuhn-Tuckgr relations, Eqns. (2.43), the Vector from a point on
one surface directed normal to »the opposing surface is required. This vector is referred to
as the gap function; and, by constructibn, represents the minimum distance to the opposing
surface. It has its origin at a contactor point, x., located on a contactor surface, and
terminates at the neafest point, x*, on'a target surface. In the finite element context, this
function will be evaluated with respect to the isoparametric coordinate interpolation.
Although this formulation has been developed Within the limits of infinitesimal
deformation theory, a distinction must be made at this point between reference and current
coordinates. ~All calculations and solution quantities are referred to the reference
configuration; however, for the purpose of identifying evolving contact, a current
coordinate system must be used. Thus, the gap function is defined with respect to the
current configuration of the contactor and target surfaces, represented by the deformed

coordinates of finite element nodes on these surfaces.

Three pieces of data result from this calculation: the finite element which contains
the closest point projection, the local coordinate of the projection within that element and the

magnitude of the gap function. An algebraic sign is associated with the magnitude to



indicate whether the contact point has penetrated the target surface. A positive magnitude
represents surfaces which are not in contact. The sign is computed by comparing the
direction of the gap function with that of the external normal to the contactor surface. The
sign of the inner product of the normal vector with the gap function is taken as the sign of

the magnitude, as illustrated in Fig. 5.1

weneeeee Target Surface
Contactor Surface

Fig. 5.1. Definition of the gap function and its sign on a contactor surface.

Mathematically, the closest point projection is stated as a minimization problem.
Given a spatial point, X,, on the contactor surface find the spatial point, x", on the target
surface that minimizes the distance from x; to the target. Symbolically this is represented

by the equations
g=X-X, xe{xt}, ' (5.1a)

d g™l
% =0, (5.1b)




where the set {x } is the target surface. When the target surface is discretized by
isoparametric finite elements, these calculations can be performed for each element that
lies on the surface, and one can take advantage of a local coordinate system, &, within these

elements to reduce the dimensionality of the problem. This is expressed as

gf®) =x%)-x, xe {X £ }, (5.2a)

in /dllgeE™l
min (A ) 520

e dg -
In performing the minimization over elements, solutions 2’;* outside the valid range of
local coordinates must be discarded. The discrete equations have the advantage of
returning the required finite element and local coordinate as their solution. This

information can then be used to calculate the gap function and its sign.

For the six-node triangle, Eq. (5.2b) is a cubic equation in one variable, which has a
closed-form solution [136]. In three dimensions, the problem rapidly becomes more
difficult to solve. For example, for straight-sided tetrahedra, there are two linear
equations in two variables. When the elements have curved sides, there are two nonlinear
equations in two variables. Despite the difﬁoulty, one can still obtain a solution. This
algorithm can be made much more efficient by reducing the number of elements that are
tested for the minimum. One such methodology is the pinball algorithm of Belytschko and
Neal [24], where finite elements are replaced by spheres of equal volume. It is relatively
inexpensive, then, to compare the distance between the centers of two spheres with their

radii. Only those elements whose spheres overlap need be checked in Eq. (5.2b).

The present finite element is built upon a topological data structure for both the

finite element mesh and the geometric model, referred to as a radial edge representation




[160]. In this structure the topology of a finite element is composed of four hierarchical
entities: vertices, edges, faces and regions, ranked zero through three, respectively. Two
vertices bound an edge, edges in turn bound faces, and faces bound regions. Any entity
within the mesh contains pointers to the higher order entities that use it, and to the lower
order entities it uses. The data structure is depicted graphically for a simple mesh in Fig.
5.2. Similarly, a topological representation of the physical geometry is maintained by a
geometric modeling program. During the course of generating the finite element mesh
[120], each mesh entity is classified on a topological entity of the geometric model. The
classification always refers to the lowest order geometric entity that contains the mesh
entity. For example, finite element vertex '4' in Fig. 5.2 would be cléssified on the
underlying model vertex, not on the model edge or model face. This proves an highly
efficient means by which to program a finite element with regard to attribute specification

[121] and other issues, and this topological data is also advantageous when treating contact.

1 | 4
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| | 154

1
2 1,6,2
5 4 8 3 273
4 3,84
5 5 5,6,7,8
1 1 3 3 Edge: Face Vertex
1 ' 1 1,2
2 2 2,3
3 3 .34
6 2 7 4 4 41
/ \ 5 41 15
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Fig 5.2. Finite element mesh of four triangles with the topological entities
identified. A sample of the upward and downward pointers for edges and
vertices is given at right.



As a consequence of the classification property in the radial edge data structure, it
is a trivial matter to compute those finite elements whose mesh entities are on the model
boundary. This avoids costly procedures to determine which elements lie on the boundary
[23], or the need to store this information and search through it. Once the finite element
containing the projection has been found, subsequent searches during the evolving contact
problem can utilize topological adjacencies to limit the number of elements that are
evaluated. Strategies based on the mesh topology are used in the current two-dimensional

implementation and prove quite efficient.
Surface Discretization

To initialize contact a user denotes model edges, in two dimensions, or model
faces, in three dimensions, as contactqrs or targets. The finite element edges or faces that
lie on those model entities then become contactor or target segments. A contaétor segment
may come in contact with a target, or several targets, in any part of the model, except those
within the same model region as the contactor (note that one physical body may be
composed of multiple model regions, though). The code does not allow contactor segments
to contact other contactors. In the case of an internal model edge or face shared by multiple
regions, it should be identified as a contactor; the code will define both the contactor and
target segments. A sample finite element mesh is given in Fig. 5.3, which shows how the

contactor-target designation would be able to identify three pairs of contacting surfaces.
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Fig. 5.3. Section of a finite element mesh composed of three model regions.
An appropriate selection of the contactor and target surfaces is indicated.
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When complex mechanical systems are subjected tb loading, one often does not
know where the contact areas will be. Thus, the present assumptions on ‘contactor-target
pairs may seem overly restrictive. For biological systems, however, there is a growing
body of data to indicate where the prospective contact areas are (for example, [68,134,135]).
With this knowledge of the contactor-target pairs, it is straightforward to génerate a model
and annotate it with this information. The contactor-target methddology is merely a
convenience to reduce the number of surface elements that must be searched for a closest
point projection. In the future, if more complex contact geqmetries arise, one can abandon

this treatment in favor of a more general searching algorithm, at the expense of higher

computational cost.

Examples presented in the following chapter show that the solution is not biased by
the choice of contactors or targets with regard to mesh refinement, material properties or

expected deformation. One exception may be the case where the level of mesh refinement




on a contactor is significantly less than that on a target. While the algorithm would
function, there is the possibility that evolving contact could not be resolved properly, or that
the contact continuity conditions would not be adequately enforced. Arbitrarily, then, the
contactor surface is associated with domain 'A' referred to in the problem definition set

forth in Chapter II, and the target surface is identified with domain 'B".

The contact algorithm requires integrals to be performed along the contact surface.
These integrals involve terms uniquely defined on the interface, and alternately, terms
defined in the domain elementslon either side of the contact surface. The discretization
algorithm must provide a coordinate system in Whicil to perform the integrals and
information about »th»e domain elements on either side. The most easily identified
coordinate system is that which is already defined within the contactor segments. The
nodes of the contact elements will therefore be chosen to coincide with those of the finite
elements along the contactor surface. Interpolations of quantities associated with side 'A’
of the contact surface are readily available, since the contact elements are aligned with the
finite elements on the model boundary. Quantities associated with side 'B' can be
computed in the ﬁnite element containing the closest point projection. More information

concerning the contact elements and degree of freedom numbering is given below in the

section on element matrix calculations.
Detecting Contact or Release

tor segment, an assessment must be made as to whether
this segment should be included in the contact surface. Since the contact matrices will be

integrated with numerical quadrature, this assessment is made for each quadrature point

within the segment. Thus, the quadrature points also become the contactor points, x., used



to define the gap function. For each quadrature point two pieces of data are stored: the
finite element into which it is projected and the local coordinate of the projected point. This
data is the minimum required to perform the contact integrals and to define the degree of

freedom connectivity for assembling the contact matrices.

Two other pieces of data are used to determine if this quadrature point should be
considered active or not active for the contact integrals. These are the gap function and the
normal component of total traction, calculated in the reference coordinates of the contactor
segment. For quadrature points ihat were not previously active, they will be active in this
iteration only 1f the gap is less than some positive tolera:nce. For quadrature points that
were previously active, they will remain so if the normal component of total traction is
negative and will be released if the traction is tensile. Note that, with a Lagrange
multiplier method, the gap function at active quadrature points will be zero, within
numerical precision. This would not necessarily be true with a penalty method, or an
augmented Lagrangian, where the constraint is approximated. These conditions are

derived from the Kuhn-Tucker relations, Eqns. (2.43), and will form the basis of the

iterative process in the final section of this chapter.

A tolerance parameter is required to define proximity for the contact calculations.
To avoid user-specified values, the tolerance is chosen as a fraction of the minimum

contactor segment length,

TOL = ¢ hpin. (5.3)

Selecting the fraction o, requires some special considerations. It is possible (in fact, it is
often the case) that a contact geometry will have only point contact at the initial time. If the

tolerance were zero, this would produce a contact surface of zero length, and effectively




uncouple the two domains. Having ignored the inertia terms in the governing equations,
this situation will result in an ill-posed problem when forces are applied. To circumvent
this difficulty, the fraction o, has different values at t =0 and at t >0. The program
chooses default values of 0.1 and 0.0001, respectively, for o at these times, although the
user may override these choices. This has the effect of making the initial surface large,
and allowing the contact-release algorithm to remove segments as needed in the early
iterations. At later times, the domains must nearly penetrate before contact is extended.
In general the solution is relatively insensitive to this parameter, however, a poor choice
will result in more contact iterations to converge at a given time step. Effects of varying

the parameter are given in the examples.
Element Matrix Calculations

Degrees of freedom for the multipliers will be associated with the finite element
nodes of the’contactor segments. If at least one of the quadrature points within a contactor
segment is classified as active, then the degrees of freedom are created for its nodes and
are assigned unique numbers. To illustrate this refer to Eq. (4.17f), repeated here as Eq.

(5.4), defining the element level contact submafrix,

q]=- JNTnYM dr, y=AB. | (5.4)

I‘ce

When the index v is taken to be 'A', the domain of the integral, FCe, will be an entire
contactor segment. Interpolations for the multipliers, M, are defined in the local
coordinates of this contactor segment. Likewise, the surface normal, n, and velocity
interpolations, N, can be computed by looking to the finite element associated with. this

contactor segment. In practice, each of these terms will be evaluated at some number of
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quadrature points along the contactor segment. In general, there is no direct

correspondence between the local coordinates within a contactor segment and those within
a single target segment, as illustrated by Fig. 5.4.. For this reason, contributions to both qA
and qB are assembled on a per-quadrature-point basis. Thus, the contribution to g from
the first active quadrature point in the contactor segment is computed and assembled into
the global matrix. Then the contribution to qB is calculated with respect to the finite
element associated with the target segment containing the projection. Recall from the

previous discussion that this closest point projection information has been stored for each

quadrature point. This methodology allows for several interesting features including

node-to-edge contact, partial contact within a contactor segment and multiple regions
contacting at one point‘.

wwe Target Surface
Contactor Surface -

O Quadrature Point —
— Closest Point Projection

Fig. 5.4. Section of a finite element mesh indicating the projection of
quadrature points to the target surface. A contactor segment in Q1 is
coupled to multiple target segments in different regions.




In the context of a direct equation solver, the form of the finite element matrix
equations for contact can be quite undesirable. There is a block of zeros on the diagonal,
and there are colurhns corresponding to the contact matrices that have a large bandwidth
(see Eq. (4.24)). Since the location of the zero diagonals can be anticipated, Crout
elimination can be used and there is no restriction placed on the solver. An intelligent
node numbering scheme can be effective in reducing the amount of computational effort
required to factor or solve the matrix equations. A reverse Cuthill-McKee [37] algorithm is
used, and its present implementation is based on the radial edge representation of the finite

element mesh. .

To begin, a finite element vertex, or group of vertices, is chosen as the starting
point, or seed, of a queue. The queue is set up as a first-in-first-out data structure. The
algorithm proceeds by taking a vertex out of the queue and assigning it a node number.
Then, respectively, unnumbered nodes in regions, on faces or on edges surrounding the
vertex are numbered. Last, vertiées with unnumbered nodes on edges connected to this
vertex are added to the queue and the process is repeated until the queue is empty. Once the
numbering is complete, it is fully reversed. An effective means to implement this in the
contact code is to seed the queue with the éontactor and target finite element vertices. In the
first pass, these will be given the lowest node (and hence degree of freedom) numbers.
When reversed, they will have the highest numbers. As the active contact degrees of
freedom are assigned, their numbers Willy be closest to the degrees of freedom of the
contactor and target finite elements, minimizing the éolumn heights of the coupling

matrices.




Contact Iterations

While the Lagrange multiplier treatment of the contact boundary conditions
guarantees that these conditions will be satisfied oﬁ the contact surface, it does not ensure
that this is the correct surface. An independent test is required to make this assessment,
and an iterative algorithm is implemented to find the proper contact surface. The choice of
active or inactive contact segments is modified by recogniziﬁg two forms of non-physical
behaviour: material overlap or tensile contact traction. Both of these conditions are

precluded by the Kuhn-Tucker relations, Eqns. (2.43).

If a contact surface is selected which is smaller than the true surface, the material
will appear to be more compliant and will experience a deformation greater than the true
solution. Since there is no boundary condition outside the active contact segments,
boundaries from either domain may deform past each othef. Thls will be identified by a
negative gap function during the subsequent validity check. On the other hand, if the
contact surface is chosen larger than the true surface, the material response will be
excessively stiff. The kinematic contact boundary conditions dictate that points on I'; will
have the same current position. The multipliers function to apply a force which produces
exactly this deformation; even if the result is a tensile contact force. If the multiplier, or
more precisely the normal component of total traction, is positive this indicates that this

point should be released from contact.

Iterations, then, will be performed until the Kuhn-Tucker relations are satisfied.
In the finite element implementation each quadrature point on the contactor surface is
assessed as active or inactive according to Fig. 5.5 below, and contact contributions are

assembled from the active points.




CONVERGE: =tzrue
for each quadrature point (
compute g and net?
if (inactive && [lgll < ToL) {
make active
CONVERGE:=false}
else if (active && netT > Q) [
make inactive
CONVERGE: =false}
} .
if (CONVERGE) -
goto next time step
else

solve with updated surface

Fig. 5.5. Algorithm for contact surface iterations.

A solution to the matrix equations is generated, and each quadrature point is reassessed. If
no point changes its state, then com;'ergence has been achieved; otherwise, the solution is
recomputed with the updated status of the quadrature points. Once convergence is achieved,
the solution is advanced to the next time step with the current state of the quadrature points
retained. In practice a limit is placed on the number of iterations within a time step. An
example showing the progress of the iterations is pr'esenfed as one of the validation

problems in the next chapter.




Chapter VI: Two Dimensional Examples

Introduction

The contact code must perform two functions. First, given the contact surface it
must enforce the required continuity of kinematic and kinetic variables across that
interface. Second, when the contact surface evolves in time, there must be logic to adjust
the definition of the surface for advancing or retreating contact. In validating the proposed

formulation, each of these requirements will be addressed with separate examples.

With the element and algorithms verified, the program may be used to model
problems of clinical significance. In the present implementation, only plane strain or
axisymmetric geometries may be analyzed for deformations within the lineaf regime.
This precludes cases where there is large-displacement, sliding contact, effectively
eliminating some of the more interesting clinical applications. Axial compression of the
gleno-humeral joint of the shoulder does provide an axially symmetric geometry that can
be analyzed with the current formulation. Contact between the femur, meniscus and tibia
is another that awaits a solution. While the knee joint is not axially symmetric, two
different axisymmetric geometric approximations are an‘alyéed to investigate the
dependence of the solution on geometry. This problem also demonstrates that the
discretization algorithm functions properly for multi-body contact where there are three

pairs of contacting surfaces.
Validation Examples

Three examples are chosen to validate the biphasic contact finite element. The first

checks that the kinematic and kinetic contact continuity relations are enforced across the




contact surface in a mesh where there is node-to-node contact. Two cases are run: one
where the solid content is continuous and one where it experiences a jump across e A
second problem assesses the performance of the contact discretization and iteration
algorithms. The elastic Hertz problem is used, since there is a closed form solution. Last,
comparisons are made to an analytic solution of a spherical biphasic indentation test.
This verifies both the continuity enforcement and contact itefations for a problem with two-
phase materials.

Unconfined Compression

One of the most fundamental tissue tests performed experimentally is the
unconfined compression test. The solution to this problem is well known, and it provides
an excellent means to test the contact algorithms. One quadrant of a plane strain
unconfined compression geometry is analyzed. This quadrant is divided into two
material regions at the quarter-height of the sample. The primary goal with this problem
is to demonstrate that the required continuity on a contact interface is enforced. One
expects that with either a lubricated or adhesive platen, in stress relaxation or creep, there
will be no shear at the contact interface, and thus the contact surface geometry will not
change in time. The finite element mesh provides node-to-node contact, and it is trivial to

validate that the discretization algorithm is performing correctly.

Geometry and boundary conditions ére given in Fig. 6.1, while the finite element
mesh for this example is in Fig. 6.2. Material properties for each material region are
chosen to simulate articular cartilage: A =0.1MPa, p = 0.3MPa, ¢S = 0.17,
x = 7.6x10715 m4/Ns and 8= 1.0><1014, where A and u are the‘ Lamé parameters for the
isotropic solid matrix. There should be no confusion between the Lamé parameter A and

the Lagrange multipliers A5f The sample has h = 1.78mm and w = 6.35mm. An uniform



displacement whose value increases linearly from u=0 at t = 0 to uy = 0.05h/2 = 0.045mm
at t =t, = 500s is applied to the upper, frictionless platen. These material and physical

parameters follow values reported by Mow et al. [96].

u(t)

Modeled Quadrant

Fig. 6.1. Geometry and boundary conditions for the frictionless
unconfined compression problem.
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Fig. 6.2. Finite element mesh and boundary conditions for the unconfined
compression problem.




To compare the overall accuracy of the contact formulation, the solid and fluid
radial velocities at point 'P' of Fig. 6.1 are plotted in time in Fig. 6.3. This demonstrates
that displacements applied to region ‘B' are transferred through the contact surface to
region 'A', and compares well with the values presented by Vermilyea [155] for an hybrid
biphasic finite element. Of more interest are the displacements, velocities and stresses on
the contact surface. Axial velocities are compared at t = 50s in Fig. 6.4, where the lines are
solutions from the degrees of fre;edom on side 'A’ and the syxﬁbols are from those on side
'B'. One would expect the velociﬁes to be uniform through the width of the sample, and
although there are slight variations depicted in the figure, these occur in the sixth
significant digit and are not problematic. One can see that the kinematic continuity is

exactly enforced for this case, since the lines and symbols coincide.
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Fig. 6.3. Radial solid and fluid velocities at the half-height, point 'P', for
the unconfined compression test.
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Fig. 64 Axial solid and ﬁuid veiocities along the contact surface at t = 50s

for the unconfined compression test.

Figure 6.5 compares solid stresses and pressure along the contact surface, also at
t = 50s. The figure shows stress at the nodes of each contactor segment (side 'A’) plotted as
a line, while those from the target segments are plotted as symbols. Recall from the
derivation of the contact boundary conditions that Whén the solid content is continuous
across a contact surface, the normal solid velocity, normal fluid velocity, solid normal
traction and fluid pressure will each be continuous. For this problem the normal to the
contact surface is in the axial direction, and the desired continuity is enforced. Also
observe that the solid shear stress is zero along the contact surface, in agreement with the

frictionless contact assumptions.
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Fig. 6.5. Solid stress and fluid pressure along the contact surface at t = 50s
for the unconfined compression test.
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Fig. 6.6. Solid and fluid normal traction along the contact surface
compared with the multipliers at t = 50s for the unconfined compression test.
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In Fig. 6.6 the multipliers are compared to the normal components of solid and
fluid traction on the contact surface. Since the multipliers are not directly identified with
tractions, Eqns. (4.2-3) have been solved for traction in terms of the multipliers; this
solution is reflected in the legend. Overall there is good agreement, though when plotted on
finer scales, there is a difference of one percent between the smooth element stresses and

the more oscillatory Lagrange multipliers.

~ The previous analysis is now repeated for materials with a discontinuity in the
solid content across the contact surface. The lower portion of the model in Fig. 6.1, side
'A', is taken to have #SA = 0.25 and ¢SB = 0.5. For most ;;roblems, one would expect that a
jump in the solid volume fraction will produce a discontinuity in fluid velocity, as
predicted by Eq. (2.40b). For unconﬁhed compression however, the relative velocity is
purely radial. This implies that the ve;'tical components of both the solid and fluid velocity
will be continuous, which also satisfies Eq. (2.40b).” The stresses are dependent on
pressure, which is continuous, and volume fraction, and will experience discontinuities as
depicted in Fig. 6.7. Using the scale on the figure and Eqns. (2.40c,d) one can calculate

that the required continuity of the stresses is enforced for this choice of volume fractions.
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Fig. 6.7. Solid stress, fluid stress and pressure along the contact surface at

t = 50s for the unconfined compression test with discontinuous volume
fraction.

Hertz Contact

The contact solutioyns developed by Hertz [59] are some of the ohly analytic results
for evolving contact problems. As a demonstration of the discretization algorithm, the
biphasic mixed-penalty contact finite element is used to solve the problem of a cylinder
contacting an infinite medium. The problem is modeled in plane straih, and material
parameters for the biphasic element must be chosen which will accurately simulate either

ricid
ixgald
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or 1 +in t ™.

o +ha o PR LI P I DR, B~ Lo o
erials. F igure 6.8 presents the geometric model, and Fig. 6.5

depicts the finite element mesh. There are 669 triangular elements and 1506 nodgs,

manually graded toward the contactor and target surfaces.
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Fig. 6.8. ‘Model geometry for the plane strain Hertz contact problem.
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Fig. 6.9. Finite element mesh for the plane strain Hertz contact problem.

For this problem the flat surface of the foundation was chosen as the contactor and
the curved surface of the cylinder was the target. Three combinations of materials are
_possible: both bodies elastic, an elastic cylinder contacting a rigid foundation or a rigid
cylinder contacting an elastic foundation. Accurate solutions using a fixed mesh have

' been obtained for each case, demonstrating the invariance of the solution to the choice of the
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master segments with regard to material properties and expected deformation. Results for
the last case are presented here. The foundation is 2 mm in height and 5 mm in width,
while the cylinder has a radius of 10 mm. Young's modulus for the foundation is 1.0 MPa
and Poisson's ratio is 1/3. Both the cylinder and foundation are designated as 95% solid,
and made highly permeable so therve is no resistance to fluid flow. This essentially
uncouples the solid and fluid motions and allows one to recover the compressible elastic
solution from the biphasic theory. The penalty parameter is chosen as 1 x 1010 for the

foundation. A rigid material is given material properties making it 1000 times stiffer

than the compliant materials surrounding it. .
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Fig. 6.10. Axial solid stress at several iterations of the contact surface for a

total load of 4 N in the plane strain Hertz contact problem.

Figure 6.10 depicts the axial solid stress distribution on the surface of the
foundation for several of the iterations required to converge when a total load of 4N is

applied to the cylinder. Note that for this geometry, the axial direction will be the normal to
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the contactor surface. Also in the figure is the accepted solution to this problem. The choice
of a contact surface for the first iteration drastically underestimates the true contact
surface. This prediction is made based only on the proximity of the contactor and target
segments. The algorithm recognizes the material overlap that kresults, and adjusts the
contact surface. This prediction now overestimates the surface. By the sixth iteration there
is no change made to the presumed surface and the solution for contact radius and traction
agrees with the accepted solution to within one contactor segment length. At each iteration
quadrature points are made inactive when they have a positive normal traction. Observe
in the intermediate iterations that near the edge of the contact region there is a rapid
change in sign of the normal traction. Thése are contactor segments with only some active
quadrature points, and the element is trying to represent both the contact pressure and the
traction free surface. Mesh refinement would be required to further refine the definition of

the contact radius and traction distribution.

The previous result was generated with the factor o, in the tolerance parameter, Eq.
(5.3), chosen to be 0.,,(0) = 0.01 at t =0 and o(t) = 0.0 for t > 0. Table 6.1 shows that six
iterations of the contact surface were required before the Kuhn-Tucker relations were
satisfied. Differ(;nt choices of the tolerance parameter result in different numbers of
iterations to convergence. The table indicates the number of active contactor segments in
the surface at each iteration. When the same value is indicated for subsequent iterations,
the number of active quadrature points in the segment has been changed. Observe that
when «.(0) is small, the initial contact surface is small, and that subsequent iterations
overestimate the surface. The parameter o(t) controls the proximity of points that will be
brought into contact after the initial surface is chosen. A value of zero is an acceptable
choice, though the program chooses a default of 0.0001. As this parameter becomes larger,

there is increasingly more oscillation in the choice of segments to include.




Iteration 0(0)=0.1 | 0(0)=0.01 | 0e(0)=0.001 | og(0)=0.01
Number o {t) = 0.0 o) = 0.0 oa(t) = 0.0 | ou(t) =0.001

1 7 4 2 4

2 9 11 12 1

3 10 1 10

4 10 10 10

5 9 10 9

6 9 9 9

7 9 ‘ 9

Table 6.1. Number of active contactor segments at each iteration of the
contact surface for a range of settings of the tolerance parameter.
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Fig. 6.11. Deformed surface geometry for a total load of 4 N in the plane
strain Hertz contact problem.
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Fig. 6.12. Axial solid stress distributions for several applied loads in the
plane strain Hertz contact problem.

Figure 6.11 displays the deformed surface geometry when the applied load is 4N.
Observe that theb cylinaer does remain rigid, and that the A01;ﬁdation surface remains
geometrically smooth. The accepted contact radius for this configuration is 0.213mm.
While the elastic soiution to Hertz contact is not timéﬂependent, the biphasic contact finite
element formulation does discretize in time. For the elastic problem a force“ varying
linearly with time is pr“escribed,‘ and the solution at each time step is considered the elastic
soh';tion for that particular load level. Figure 6.12 compares the converged traction
distributions at four load levels with the accepted solution. As the load increases, the
discretization algorithm continues to c;)rrectly predict the extent of the contact surface, and

hence the traction distribution.
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Biphasic Indentation

The previous examples show that the contact code is capable of both finding the
correct contact surface, and enforcing the required continuity there. The next goal is to
verify these two criteria for an evolving biphasic contact problem. There are limited
solutions for this type of problem, an asymptotic solution presented by Ateshian et al. [13]
and a more recent integral transform solution by Kelkar and Ateshian [73]. The geometry
is as in the plane strain Hertz contact problem, but with geometric parameters h = lmm,
W =20mm and R = 100mm. Physically the problem represents two identical cylinders
layered with a biphasic material in contact along the length of their axes. Because of the
symmetry, a geometrical transformation reduces this to a shallow, rigid, impermeable
cylinder indented into a thin biphasic layer. A creep problem is modeled where a load is

applied to the cylinder at t = 0% and held constant.

Following Kélk’ar’s model, the material propeﬁies for the tissue léyer are A = 0.0,
= 0.25MPa, 68 = 0.25, x = 0.2x10"14 m4/Ns and B = 1:0><1010. A distributed load equal to
1000N is applie’d to the rigid cylinder in one time step. Results are presented for times well
beyond the application of load. This allows for differences between a true step load and the
short ramp loading to decay. Figure 6.13 shows excellent agreement between the surface
normal fraction predicted by the integral transform solution (lines) and the finite element
solution (symbols) at t = 100s. Similar correlations are observeci fof times from 20 to 200
séconds, and for kinemétic variables. Observe that the fluid traction is nearly twice the
solid traction. At much 1<;nger times, when fluid flow ceases, the pressure will be zero and

the total load will be carried by the solid phase.
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Fig. 6.14. Deformed surface for biphasic indentation after 100 seconds of
creep.
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In Fig. 6.14, note how the tissue surface has undergone a tensile deformation in the
outer portion of the contact surface, also at t = 100s. This region also experiences an efflux
of fluid, as depicted by the relative velocity in Fig 6.15. The maximum principal stress is
shown as a shaded contour on a mesh deformed by five times the displacement; the scale is
given in kilopascals at right. The magnitude and direction of the relative velocity field is

indicated by the arrows, with magnitudes ranging to 0.43 pm/s.

Fig. 6.15. Shaded contour of maximum principal stress in kPa for biphasic

indentation. Solutions are on a 5x deformed mesh after 100 seconds of
creep. The relative velocity field is indicated by arrows.

For the purpose of visualizing the solution, the program Data Explorer (69] is used.

It is extremely powerful, but requires certain simplifications for finite element data.

First, it can only represent a linear variation between the points of its connection

elements. Thus, for the six-node triangle, only data values at finite element vertices are

used. Alternatively, one could define four sub-elements to each triangle. Neither method
depicts the true spatial variation of the finite element interpolations. Second, it is not

capable of interpolating data from points other than the vertices. For derivative quantities,
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which are typically evaluated at the Barlow points [22] within an element, some smoothing
is necessary between elements. Currently a direct nodal averaging is used. In the future,
more sophisticated techniques may be implemented, such as Lo smoothing {107} or patch
recovery [166). In the present case the finite element mesh is sufficiently fine that the
visualization does not incur any appreciable error. All subsequent contour plots or vector

distributions should be viewed with this fact in mind, however.

Clinical Demonstrations

Two examples whic’h‘demonstrate the _‘épplicabﬂity of the biphasic contact finite
element to problems of clinical ’signiﬁ‘canc’e’ are presented. Axisymmetric models of the
gleno-humeral joint (GHJ) of thé shoulder and tibio-femoral joint of the knee are selected
since they cén be analyzed under the linéar aésumptions used in the present element.
These are problems which will 'benéﬁf' grea'tyl}'fbjfrom recent advances in data colleétion
[12,14] for and finite elemeng mesh generation {122,123,137,141}of physiological geometries,
as well as from three dimensional and ‘,‘nonlinear analysis techniques being developed

[6,71.
Gleno-Humeral Confaét_ :

An axisymmetric model of the GHJ is developed from stereophotogrammetric data
by choosing the sphere which most cloSeiy approkimates the true surface geometry [133].

Average values of the radius of curvature for both the bone and cartilage surfaces of the

these are average material properties; all values are from Soslowsky [133].
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Glenoid Humeral Head
Cartilage Radius (mm) , 26.37 26.85
Bone Radius (mm) 34.56 | 26.10
A (MPa) 0.01146 0.0295
p (MPa) ' 0.274 0.265
x *10°15 (M4/Ns) 1.16 1.70
$S 0.2 0.2

Table 6.2. Average material and geometric properties for human cartilage
in an axisymmetric model of the gleno-humeral joint, from [133].

Humeral
Head

Glenoid Bone

Bone
Finite

Element
Mesh

Axis of
Rotation

Glenoid

Cartilage Humeral

Head
Cartilage

Fig 6.16. Model geometry and finite element mesh for the axisymmetric
GHJ.

The geometric model and a finite element mesh of 1128 quadratic triangular

elements and 2536 nodes are depicted in Fig. 6.16. A distributed load whose magnitude
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increases linearly to 100N in one second is applied to the humeral head along the axis of
rotation, while the glenoid bone is held fixed. This level of load is then maintained for an

additional one second.

The contact surface establishes itself immediately as the load is applied, and
remains nearly constant in size during the creep phase. Figure 6.17 shows that on the
contact surface a majc#riytyi of :the load is supported by the fluid stress. This behaviour
matches the prediction by Hou ét alf [64], who state that the applied load is distributed

between the phases according to th}ek;vk'olume fraction.‘f ‘ ;
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Fig. 6.17. Normal tractions verses radial coordinate after one second of

creep for points along the glenoid surface. ‘

Results are displayed as shaded contours over the deformed geometry at one
second.:- At this. time, approximately 80% of the glenoid surface is in contact with the
humeral head. As with the spherical indentation problem, the tissue experiences

significant tensile stresses, despite the purely compressive loading. In the presence of a
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large fluid pressure, elastic stress (that stress coming for the deformation of the solid
matrix, see Eq. (2.39b)) is a more meaningful measure of the stress state in the solid
matrix. Thus, Figs. 6.18 and 6.19 display the maximum and minimum elastic principal

stresses in the tissue layers.

]

Fig. 6.18. Shaded contour of the maximum principal elastic stress in kPa
__._in the GHJ after one second of creep. Magnitude and direction of the in-
plane principal stresses indicated by arrows.
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Figure 6.18 also displays arrows representing the magnitude and direction of the in-plane
principal elastic stresses. These figures indicate that every point in the tissue experiences
a tensile elastic principal stress. Also observe that both the peak positive and negative
principal stresses occur at the cartilage-bone interfaces. Thls implies that the shear stress

will be maximum at these locatioﬁs.

Fig. 6.19. Shaded contour of the minimum principal elastic stress in kPa
in the GHJ after one second of creep.
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Tibio-Femoral Contact

The knee is perhaps one of the most interesting diarthrodial joints in the body, as
well as one of the most complex. Referring to Fig. 6.20, the articulation Between femur,
meniscﬁs and tibia is certainly not axisymmetric. For the present investigation, however,
two axisymmetric models will be developed as a demonstration of the capabilities of the
biphasic contact finite element. Of primary interest is the ability of the code to

simultaneously follow advancing contact with multiple pairs of contact surfaces.

- o

Fig. 6.20. Tibial surface of the knee showing the menisci ”and several

major ligaments, from [51]. '

The two models represent different views of the ’meni'scal geometry on the tibial
surface. The first treats the femur as spherical and ponsiders a single meniscus
surrounding it. The second recognizes the femoral condyles and analyzes one condyle in
contact with the surrounding meniscus. The primary differehées in the models are the
distance from the axis of symmetry to the inner radius’v of the meniscus, and the geometry

of the distal femur. I
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Figure 6.21 displays the parametric geometry for the axisymmetric model of the
knee. Tibial cartilage is modeled as a rectangular region rigidly attached to the
underlying, impermeable bone and frictionless at its top surface. Femoral cartilage is
modeled by a cubic curve passing through points 'A' and 'B' in the figure, and tangent to
the meniscus and tibia, respectively, at those locations. The femur is treated as rigid and
impermeable. Cattilége thickness values are averages obtained from stereophoto-
grammetry [14]. The ‘fibial skurface‘ of the meniscus is flat, while the’outér and femoral
s'urfacés ére kq‘uadra’ticﬁ This geometry Was 'uséd previously fbr a ‘pararhetric study of the
meniscus with loads applied to the solid and fluid phases, and normal to the femoral
sﬁrface"[138]. Table 63 4g4ivés Valués‘ of the vaﬁous geon:ietric barameters for the two
différeﬁt models bf the knee. Médel 1 corresponds to a spheriéal géometry for the distal

femur and a single meniscal ring, while Model 2 considers only one condyle.
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Fig. 6.21. Parametric geometry for axisymmetric, three-body meniscus-
femur-tibia contact.

Isotropic material properties are selected for cartilage, while a transversely
isotropic constitutive law is used for the solid phase of the meniscus. - Isdfropic values are
averages reported by Mow et al. [96] and the transversely isotropic vaiues are those reported
by Proctor et al. [117] and also used by Spilker, Donzelli and Mow [138] in a previous
meniscus study. In the transversely isotropic meniscus, fibers are assumed to be oriented
circumferentially, and will provide a stiffening effect to the tissue. In Model 1, a total load
increasing linearly in time from zero to 350N at t = 1s, is applied axially to the femur. In
model 2 the stress level is held constant, while the area has decreased, resulting in 176N at

t = 1s. This level of stress is consistent with values measured by Ahmed and Burke [3].
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Model 1 Model 2
Inner radius r; 15.0 5.0
Outer radius Ty 30.0 20.0
Meniscal bulge b 1.5 1.5
Center height h,. 2.25 2.25
Meniscal he’igﬂht ho, 6.0 6.0
Tibial width Wy 35.0 o 25.0
Tibial height hy 50 50
Femoral width Cwel  ss0 | 250
Femoralbheight he 2.0 - 2.0

Table 6.3. Geometric parameters for two axisymmetric models of three-
body meniscus-femur-tibia contact. Values are given in mm.

As with other biphasic contact problems, the contact area develops rapidly, and all
surfaces come in contact within the first half of the loading cycle. During this time, the
discretization algorithm correctly detects contact between the femur and tibia, tibia and
meniscus, and meniscus and femur. Figﬁre’ 6.22 displays contour plots of axial
compressive strain atvt = 1s on the deformed geometry for both models of the knee joint.
OQeraH the distributions are quite similar. In Model 1 there is a greatef compressive
strain in the region of contact between the tibia and femur. For the particular geometry
chosen in Model 1, this region supports nearly twice the load seen in thé meniscus-tibia
contact. The peak compressive strainé are" seen at’:‘ thé,out‘e‘r'.radius of the meniscus, aiong
thé tibial surface. Values are localized to tﬁat point, and are most cerﬁainly an artifact of
he tensile strains at the inner radius

and bulged region of the meniscus. These tensile strains may be indicative of regions

susceptible to tears [9].
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Fig. 6.22. Axial compressive strain in percent at t = 1s for .
three-body meniscus-femur-tibia contact: (a) Model 1 and (b) Model 2.
Values are not reported for the femur.
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Fig. 6.23. Fluid pressure in kPa at t = 1Is for axisymmetric, three-body
meniscus-femur-tibia contact: (a) Model 1 and (b) Model 2. Values are not
reported for the femur.



Figure 6.23 displays contour plots of fluid pressure at t = 1s in both models of the
knee. Higher pressures are observed in Model 1 where there is an extended region of
contact between the tibia and femur. In either case, this pressure develops rapidly as the
mating tissue surfaces come into contact, effectively limiting fluid exudation. While the
data presented is for simplified models of the knee, extensive parametric variation in the
future can provide significant insight into the deformational behaviour and structure-

function properties of this joint.



Chapter VII: Summary and Concluding
Remarks

Summary

A contact formulation based on the mixed-penalty biphasic finite element [139] has
been derived from a weighted residual statement. In addition to the customary governing
equations for hydrated soft tissues [96], the conditions of contact [64] have been included as
weighted integrals over an assumed contact surface. Significant efforts have been made
in this research to develop an efficient means of introducing the contact constraints into
the formulation, and to determine the correct contact surface on which to enforce these

conditions.

The present formulation, while valid for two- or three-dimensional analysis, has
been implemented only for the six-node triangle. In addition, the formulation is based on
the fully linear form of the biphasic theory, Whére the solid matrix is governed by a linear
constitutive law and volume fraction and permeability are not dépendent on deformation.
Boundary conditions on the contact surféce have been simpliﬁed to account for these
assumptions, as well as fér the assﬁmption of frictionless confact. A Lagrange multiplier
approach was selected to enforce the contact conditions. By examining the contact
formulations for single phase elasticity, a weighted residual Lagrange multiplier method
was developed for the biphasic contact finite element formulation. The finite element
equations are written for an assumed contact surface, and iterations must be performed to
find -that surface which is-physieally admissible;-in—addition-to-satisfying-the contact
boundary conditions. An iteration algorithm based on the contact surface kinematics and

kinetics at the Gaussian quadrature points of finite elements on the model boundary was




implemented. This contact surface discretization is directly extensible to three-

dimensional analysis with either hexahedra or tetrahedra.

Two series of example problems were presented. The first consists of tests with
known solutions which isolate different aspects of the formulation and numerical
implementation. The biphasic contact finite element has successfully solved each of these
test cases, thus validating the formulation and implementation. A second class of
examples illustrates how this element may be used for challenging problems of clinical
significance. Axial compression of the gleno-humeral and tibio-femoral joints, while
simplified loading protocols, can provide insight into‘the deformational behaviour of

cartilage. These examples further demonstrate the importance of fluid effects in tissue

mechanics.

Comments on Element Performance

Overall the mixed-penalty contact finite element is capable of providing accurate
solutions to’ é wide range of contact problems. There are some limitations of which an
analyst should be aware. These are rapid rates of loading, modeling rigid or elastic
materials and mesh reﬁnement. Each will be discussed in turn in the following

paragraphs.

As indicated in the presentation of the spherical, biphasic indentation problem,
very rapid rates of loading can be problematic. First, if too severe, they can cause material

deformations beyond the limits of applicability of the linear theory. Within the linear

regime, it {5 still possible to achieve non-physical solutions dué to a contact surface that is
drastically underestimated. In this situation, traction results may dictate that points

within the contact surface be released, while overlap conditions indicate that points need to



be added. The result is that a 'hole' may develop in the surface. In general this will correct
itself, however the experience to date indicates that the most reliable solutions are obtained
when the initial estimate of the contact surface is greater than the true surface. This can be
achieved by varying the input parameter ¢, at t = 0 over one to two orders of magnitude and
observing the converged solutions at the initial time step. With the correct choice the
program can be allowed to continue unattended for the duration of the time scale of the
problem. Default values of the contact parameters are chosen by the program and would be

appropriate for most ramp-type loadings.

Rigid materials modeled with the biphasic elements present problems independent
of the contact boundary conditions. As one approaches the limits of solid content or
permeability, poor numerical performance may affect the solution. When both compliant
and rigid materials are present in the same mesh, direct solution strategies may become
ill conditioned, and the analyst must be aware of this possibility. = In general, rigid
materials are defined by increasing the solid moduli by two to three orders of magnitude
ahove the sui'rounding materials. Permeable or impermeable interfaces are created by

. respectively increasing or decreasing the permeability coefficient by two to three orders of

magnitude.

With regard ‘;o the contaét element, rigid or cémpressible elastic materials on the
contact surface may pose additionai problems. In the Hertz problem the solution was
declared independent of the choice of the contactor and target edges. Indeed, for the case
presented, the solution was in good agreement with the analytical result. With a rigid

_material on the contactor surface however, it may be possible to have kinematic solutions
with the correct continuity, but with small variations. With high moduli, these can be

amplified into significant variations in traction. As a result, the discretization algorithm




may release quadrature points based on these erroneous tractions. Often only one
‘quadrature point in the contact element will be released, not significantly affecting the
solution. The analyst should be aware of this possibility, and should choose the rigid

materials to be target surfaces whenever possible.

One can obtain the quasi-static response of a compressible elastic material with the
biphasic theory by choosing a high permeability and a solid content near unity. If time-
dependent boundary conditions are applied, the solution at any time can be considered the
quasi-static response at that particular load level. With these choices, solid displacement
is accurate and pressure is several orders of magnitude_smaller than the elastic stress.
Values of the solid and fluid velocities are not physically relevant, although the latter can
be quite large. When solving contact problems with elastic materials, this large fluid
velocity may cause a difficulty by virtue of its contributions to the right hand side through
the time discretization. Because the fluid velocity may be larger than the solid velocity by
. one or two orders of magnitude, any numerical inaccuracy in the satisfaction of the contact
boundary conditions becomes significant. In extreme cases, these terms will accumulate
and may cause the contact algorithm to degrade. In practice, this limitation is not
significant, since bone is modeled as rigid and impermeable. Alternatively, if one

requires the elastic response, it is straightforward to implement the appropriate element

formulation within the biphasic finite element code.

Obviously, an intelligent choice for the finite element mesh makes the contact
solution progress more smoothly. An ideal solution uses adaptive mesh refinement to
-enrich the discretization .in_zones where contact is actively advancing or. receding.
Observations of the finite element stresses on the contact surface indicate that error

estimators utilizing smooth projections of the stresses will call for mesh enrichment in



these regions. When adaptive meshing procedures are not available, the user must realize
that the contact surface can be predicted to within only one element length. Depending on
the type of problem being modeled, more or less refinement may be required on the contact
surfaces.

Future Directions

With the success of the first biphasic contact finite element formulation, several
opportunities to increase the sophistication of diarthrodial joint modeling become
apparent. The single most important tool in developing a complete simulation of
arti‘culation is three-dimensional finite element analysis of contact. While the present
formulation could be implemented with a three-dimensional element, several other

enhancements are required to make this element useful in clinically relevant problems.

Certainly paramount are finite deformation and material nonlinearity. Large-
displacement, sliding contact, which is observed in every diarthrodial joint, cannot be
modeled within the confines of geometric linearity. Obviously, the material non-
linearities represent tissue behaviour which is observed during in vitro tissue tests, and
must be included in the model to obtain a physically meaningful solution. The effects of
material and geometric linearity have been included in recent work by Almeida [6]. In the
course of that reséarch, two- and three-dimensional elemgnts have been implemented for
the mixed-penalty and velocity-pressure formulations. It is possible that frictional effects
on the contact surface play an important role in the overall de nrmational behaviour.

Additional experimental research is required to quantify this effect and to postulate the

laws that may govern it for tissue mechanics. Once nonlinearity has been implemented,

computational efficiency becomes a significant issue.




As the biphasic finite element analysis code is extended and applied to
physiologically relevant problems, it rapidly exceeds the computational resources of the
most powerful workstations. It is essential that all of the new implementations be designed
for a parallel architecture. Currently parallel implementations of platform-independent
software tools for mesh generation, matrix solution and data handling have been
developed by researchers in collaborating groups. There are many more tasks within the
biphasic code that will have to be addressed though, including parallel stiffness
calculation, fast searching algorithms for contact, parallel error calculations and time
integration. A complete knowledge of a portable message passing library will be needed to
make these modifications. Parallel implementations of the biphasic analysis software

will become a major part of future research.

Once the transition to noniinear analysis has been made, alternative formulations
for the contact boundary conditions must be evaluated. For instance, the augmented
Lagrangian approach becomes more attractive when matrices must be reformulated
during iterations of a nonlinear solver. At the same time, in the context of a parallel
computing platform, hybrid or pressure-velocity elements may have advantages over the

mixed-penalty formulation, and should be re-evaluated.

Any numerical analysis technique should be capable of providing some measure of
the error in the numerical approximation. For the examples presented here, this has been
the traditional approach of a convergence study; the finite element mesh is refined until
solutions on subsequent meshes are the same. In the future the biphasic contact finite
element should be coupled with error estimation techniques and automatic mesh
enrichment. Error estimates for parabolic system of equations have been developed (see,

for example, [2,70,71,94]), and research has been conducted on error analysis for porous



soils using Biot's equations {104,105]. A research effort focused on extending these error
estimates specifically to the linear and nonlinear forms of the biphasic theory is
necessary. This must be coupled to related work on &, p or h-p adaptivity. Certainly, these

tasks must also be developed with a parallel computing platform in mind.

Any future research in biphasic finite element analysis will build upon the many
existing formulations, so it is important that these elements be applied to as many varied
physiological problems as possible. This serves many purposes, but most of all it advances
the understanding of the nature of joint mechanics and articular cartilage. Through this

process researchers can identify those areas requiring increased theoretical,

experimental or computational understanding.
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Appendix A: Implicit Time Integration

In Chapter IV the generalized trapezoidal rule was used to integrate the semi-
discretized finite element equations in time. The integration rule, Eq. (4.22), is repeated

here for reference,

A A
u=u+At(l-@)v+Ataov. v (A1)

The integration parameter, , is chosen in the range zero to one. A value of zero gives an
explicit scheme; any other‘value produces an implicit scheme. When the parameter @ is
chosen to be 0.5, the method is Crank-Nicolson, and is second order accurate in time.
Values of o greater than 0.5 produce schemes stable for any size time step. This choice
reduces the time accuracy to only first order, however. Chapter eight of the text by Hughes
[66] gives a complete analysis of this differencing method. For reasons of accuracy, then,
it is desirable to use the Crank-Nicolson formula whenever possible. There are two cases
where it is prudent to choose ® other than 0.5: models where forces are prescribed, and

cases with evolving contact.

In modeling a creep problem with the biphasic finite element codes, one often finds
temporal oéciliétions of the primary variables. Referring agaiﬁ to Hughes, a modal
analysis can be uséd to determine the stability of the time ihtegration. The result is that the
amplification factor for the schéme is the limit of a sequenée indexed by time step. Figure
A.1 shows this limit for various values of the integration parameter. This amplification

factor is a function of both the time step and the eigenvalues of the assembled equations.

addition, those for which the amplification factor is positive are non-oscillatory. The fully

implicit integration, ® = 1, does not oscillate. Other choices of ® will have some modes
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which oscillate with decreasing amplitude in time. It is apparent from the figure that
increasing the integration factor has the effect of increasing the numerical damping, and

decreasing any oscillations.

o
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Fig. A.1. Amplification factor for the generalized trapezoidal rule for

various values of the integration parameter, o (reproduced from [66}).

‘While it may be present, this oscillatofy behaviour typically does not manifest
itéeif for ‘prescribed‘ disi)lacement boun’dary cohditions. Severél possibilities exist to
improve the solutior’lk for creep broBIemé. The most obﬁbus is to choose‘ é fullyk implicit
integration, which will eliminate the oscillations, but revert the scheme to first order
accuraéy in time. A second éptibn is to employ smaller time steps in fhe Crank-Nicolson

scheme, which reduces the number of modes which contain an oscillatory component. For

many bre;zé.rz‘l;ijléé,l this limit on time step is too restrictive and adds considerably to the

computaﬁonal cost. An attractive approach would be dynamic modification of the time step
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and/or the integration factor. This would allow the solution to proceed with second order
accuracy where possible, but revert to first order if oscillations eccur. Unfortunately, for
the linear form of the biphasic finite element equations, this requires that the coefficient
matrices be refactored during the solution stage. The effects of either storing these

matrices or recomputing them would be quite costly.

For evolving contact, a separate difficulty arises. The kinematic contact boundary
conditions, Egns. (2.40a,b) are written in terms of displacement and reference position.
This produces the necessary force terms to bring into contact points which were initially
separated, and is required because of the possibility of £naterial overlap and the positive
tolerance parameter in the contact evaluation, Eq. (5.3). _In the present formulation,
displacement in the semi-discretized finite element equations, Eq. (4.20), is related to
velocity by Eq. (A.1), leaving a system of equationé written only in terms of velocity.
Thus, when using a Lagrange multiplier approach, the effect of this boundary condition is
to generate velocities which will bring points on opposing surfaces precisely into contact.
These velocities, however, will not in general satisfy the'conditions ixﬁplied by the time

derivatives of the kinematic boundary conditions. Recall from Chapter II that it is the

corresponding velocity conditions that arise from first principles.

A simple example both illustrates this contradiction and offers a solution.
Consider a riéid triangular body with a prescribed displacement at its top surface, as
illustrated by Fig. A.2a. At the initial time, let it be in point contact with a deformable
surface. As time progresses, assume that the deformable surface exactly conforms to the
rigid body, but does not deform outside of the region of contact. This does not represent a

solution to the equations of elastic equilibrium, but is analogous to the response dictated

within the region of contact by the time-discretized form of the Lagrange multiplier contact
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formulation. Physically one expects that the instant points come into contact they will have

different velocities, but after that they will both have the constant velocity of the rigid body.

Surface B

(@)

Surface A

t=At

(b)

Flg A.2. Illustration of a rigid block under displacement control

penetrating a deformable surface.

The displacement of the rigid block is prescribed as a function of time, thus the

velocity can also be calculated,

uB(x,t) = -, : (A.2a)
VB =-1 (A.2b)

Using the assumptions above, the displacement and velocity of surface 'A’' can be
caleulated,

At = {5 2:;“: , | (A.32)



-1 O<x<t
vamn = {7 0 (A.3b)

Now, with the knowledge that the biphasic contact equations will produce the correct surface
deformation, let the displacement of surface 'A' follow Eq. (A.3a) and calculate the

velocities from Eq. (A.1). At the first time step the velocity of surface 'A’ will be

1rx
vA(x,At)={5(At - l) 0<x <At , (A.4)

0 X > At

where the values at the previous time step are taken as zero. Advancing to the second time

| %[l(_l_wﬁ)(ilﬂ 0<x <At

vA(x,2At) = 1/x% ) ) (A.5)

step,

mﬁ'z At < x < 2At

0 ' x> 2At

Examining Eq. (A.5) for ® = 0.5 illustrates how Crank-Nicolson gives undesirable

results for the contact problem. As depicted in Fig. A3, in fhe first sp’at'ial increment,
| 0 < x < At, the velocity varies linearly from 0 to\ -2, then in the second increment, from -2
back to 0. Alternatively, when ﬁilly ixﬁplicit iniy.:egration‘ is used, ‘co = 1, the first increment
has an kuniform‘ velbcity of -1 and in the second increment it vé.ries from -1 to 0. For later
timés, implicit i.ntegration‘ continues this trend; each spatial increment has an uniform
velocity’of -1,' except the last which varies linearly from -1 to 0; This can be interpreted as
points in persistént contact having’the correct velocity, but those which have come into
contact in the present time step being assigned their average velocity during that time step.
Thus, using a fully implicit integration with the contact equations produces a solution
which more closely approximates both the displacement and velocity forms of the

kinematic continuity relations.



159

7

&
(6]

Velocity

-1.5

1]
—t
Illllll'lerlllllllll/"
|sa)

o

Fig. A.3. Velocity along surface A (Eq. (A.5)) for different values of the

mtegratmn parameter.

The same conclusipn can be reached by a different argument. When the
integration parameter is set to one, the difference equation ‘predicts that velocity is
dependent only on the dlsplacement history, and not the prevmus velocmes Since the
contact formulation always produces the des1red displacements on the contact surface, an
implicit mtegratwn will produce velocxtles which are in agreement with the time mstory of
the surface In the ﬁmte element program thls 1mphes that points w}uch were in contact at
the last time step, and which remmn in contact 1n‘th15 time step, wﬂl possess the correct
continuity of velocity across the contact surface. Points added to the contact surface in the
cnrrent time step, however, will not be required ’to have this velocity continuity.

Phys1ca11y, this is reasonable, since at the mstant of 1mpact points must have different

veloc1ty
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This behaviour has been verified in the finite element code. As a demonstration,
the biphasic indentation exampile from Chapter VI will be solved with the time integration
parameter set to 0.5 and 1, respectively. Values of the normal components of solid velocity
on the contact surface are presented in Fig A.4. Part (a) of the figure is given as a
reference and depicts the solid velocity after the first time step for the fully implicit
integration. Both methods of integration give the correct deformed configuration and
stress distribution at this time. Observe that the contact radius is nearly 4mm, but that the
velocities are different. Part (b) of the figure shows the same data after the second time
step,yvand part (c) shows data after the second time step for Crank-Nicolson integration.
Observe in (b) that the solid velocities are the same over the region that was in contact

during the first time step, but that in (¢) the results are completely non-physical.
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Fig. A.4. Normal solid velocity along the contact surface for the biphasic
indentation problem: (a) t=At, ® =1.0, (b) t = 2At, © = 1.0, (c) t = 2At,
o = 0.5.
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Similar results are obtained for later time steps, and for the fluid velocity. The
solution with Crank-Nicolson integration will rapidly break down, however, because the
non-physical velocities affect the pressure. Poor pressure in turn affects the stress and
then the algorithm for releasing contact points. For the present choice of a family of time
integrators, then, the biphasic contact finite element is limited to first order accuracy in
time. In the future it may be possible to develop a second order accurate rule using only the
displacement history, though this would undoubtedly be a multi-step rule and would entail
greater storage requirements. If this element were coupled with a p-adaptive scheme for
the spatial discretization, this issue becomes more significant, as even higher order

accurate time integrators are required.






Appendix B: Symbolic Elastic Contact
Calculations

An important consideration in the performance of the contact element is the
multipliers (AS and AS), Eqns. (4.2-3), defined when constructing the weighted residual
form of the prokblem.b These are defined in such a way that one should recover C©
definitions of the solid and fluid interface tractions. Ideally, this could then be used as the
criteria for release in the discretization algorithm. This is not true in all cases. When the
contactor and target segments are aligned node-to-node.the multipliers do coincide with
the finite element tractions. When there is nio correspondence between the contactor and
target nodes (as in most evolving contact meshes), or when there aré extreme gradients in
traction on the contact surface, one cannot rely on the interface traction variables to

adequately represent the true traction. This observation in no way appears to limit the

applicability of the biphasic contact element.

To further investigate this phenomena, the symbolic computation program MAPLE

[31] was used for simplified finite element conta_ctbproblems. Tests were performed with the

“three- and six-node triangular elasticity elements in MAPLE. A rectangular geometry

one unit by two units was analyzed for both uniform and linearly varying displacements
on the top surface. The meshes are given in Fig. B.1, where the node-to-node mesh depicts

the uniform displacement and the node~£o-e1ement mesh 'depicts the linear displacement.

A contact surface is placed at the half-height of the mesh. All of the x-degrees of freedom

were constrained, and Poisson’s ratio was zero.
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Fig. B.1. Node-to-node (left) and node-to-element (right) meshes used in
MAPLE testing of contact elements.

' MAPLE has the advantage of performing exact integrals for the element matrices,
and can exactly solve the resulting global system of equations. This problem also provides
an independent test of the contact formulation. The same methodology was used in
deriving the finite element equations, and the contact matrix for elastic contact is
equivaient to one quadrant of that for biphasic contact. Thg same meshes can be used for
the biphasic finite element program, and direct comparisons can be made betweeg terms in
the contact matrices. A two-node contact element is used in conjunction with the linear
- triangle, and thé three-node contact element with the quadratic triangle, which follows

from the discussion of contact interpolations in Chapter IV.

Six problems were solved with the uniform displacement; three each with the three-
and six-node elements. One expects a uniform stress in the material, and a displacement
that varies linearly through the thickness. For the node-to-node mesh the problem is solved
with the three- and six-node elements with and without contact, each time recovering the

expected solution. For the node-to-element mesh only the contact solution is possible, and it
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too recovers the exact answer for each element. For the cases solved with the contact
elements, the values of the degrees ‘of freedom corresponding to the Lagrange multipliers
were exactly equali to the uniform stress in the rﬁaterial. Values for the displacement
degrees of freedom all had the same value on the contact surface. An additional
perturbation was made in the node-to-element mesh. In Fig. B.1 the top pairs of elements
each have éide lengths equal to one half on the contact surface. To examine the effect of
disproportionately small contact elements, their lengths were made -]:é—o and 1%36 The exact
solution is still obtained for all quantities, and no change in the Lagrange multipliers is

observed.

The same six problems are solved for the linearly varying applied displacement.
In the node-to-node mesh Withoﬁt kcontact the solutions are linear in the x-direction, as
expected. While the solutions from the three- and six-node elements are not identical, it
appears that the quadratic solution is a refinement of the linear solution. When this
problem is solved with the contact elements, the kinematic and kinetic solutions are equal
to the respective non-contact solutions. On the contact surface the expected kinematic
continuity is exactly satisfied. Figure B.2 shov_rs the normal (vertical) component of stress
on the contact surface, compared with the multipliers for the node-to-node mesh of six-node
elements; side 'A' is on the bottom of the geometry in Fig. B.1. The finite element stress is
plotted two ways. First as the linear variation in the one element whose edge is on the
contact surface, and second as the nodal averaged value of elements which share nodes on
the contact surface. The multiplier is plotted as a straight line through its nodal values,
even though it is quadratic. This variation in tractions from side 'A' to side 'B' exists

even though the displacements posses the correct continuity on the contact surface.
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Fig. B.2. Normal tractions and Lagrange multipliers for a linearly
varying displacement applied to the node-to-node mesh of six-node

triangiles.

For the node-to-element mesh there are similar observations. For both the three-
and six-node elements, the solution is a refinement over the node-to-node mesh, as
expected because of the greater number of degrees of freedom. Again the correct kinematic
continuity is enforced across the contact surface. Figure B.3 is a result analogous to that in
Fig. B.2. Here the finite element stresses are in better agreement across the contact
surface (especially the nodal averaged values), but the multipliers show significant
variations. Remember that the Lagrange multipliers are quadratic, but plotted as

piecewise linear, so the variation may be more extreme.
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Fig. B.3. Normal tractions and Lagrange multipliers for a linear

displacement applied to the node-to-element mesh of six-node triangles.

These results are in agreement with the assessments made in Chapter IV, that a
quadratic interpolation for the multipliers will exactly enforce the kinematic constraint,
‘but will allow some violation of the traction continuity. Results presented for the biphasic
element in Chapter VI show that with more refined meshes, there is greater agreement
between the tractions on either side of the contact surfaéé. In addition, the multiplier
approximates this traction more closély than in this simple example. Pointwise, though,
there are locations where the approximation is poor, particularly the boundary between
active and inactive contact segments. This is not a serious difficulty, as the finite
elements tractions are always well behaved. It is these values that are used in the contact

iterations to assess the release condition.








