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Abstract

As part of the highly complex numerical simulation of human joints, a finite element formulation for
contact between layers of articular cartilage has been developed. A biphasic description of the cartilage is used, where
the material is considered to be a porous, permeable solid matrix with fluid flowing through it. Governing equations
and contact boundary conditions are summarized for this material before developing the finite element formulation
from a Galerkin weighted residual statement. Lagrange multipliers are introduced to enforce the two kinetic
continuity equations across the contact surface, and an iterative scheme is employed to determine the current contact
area. Numerical examples are presented which demonstrate both that the appropriate continuity across the contact

surface is enforced and that the contact surface definition is accurate.

Introduction

With our population steadily aging, more and more adults are afflicted with osteoarthritis (OA). Thisis a
degenerative disease affecting the articular cartilage in joints. When functioning normally, this cartilage provides a
nearly frictionless bearing surface for the articulating bones [1,2]. As OA progresses, the cartilage changes
mechanically, biochemically and structurally [3], compromising its performance. Overall, the causes of QA are not

fully understood, but hypothesis have been put forth suggesting that repeated stressing of cartilage can eventually




lead to its degeneration [4]. To help explain the causes of OA, this research is concerned with understanding the
mechanical response of articular cartilage layers in contact. A robust contact formulation is a crucial step toward
developing a complete numerical simulation of human joint mechanics, which in turn can be used to investigate the

complex clinical problems that effect cartilage degeneration and QA.

We choose the biphasic theory of Mow and co-workers [5] as the continuum description for articular

cartilage and other soft hydrated tissues. The theory has been widely accepted as a means to model cartilage, and has

been adopted by many other researchers in biomechanics (i.e. [6-8]). The theory has also been extended to include

the nonlinearities observed in tissue mechanics, including finite deformation {9,10], strain-dependent permeability

[11-13], transversely hyperelastic solid phase mechanics [14] or viscoelastic solid phase mechanics [15,16].

This section continues by citing those works in the literature that were most useful in developing the
biphasic contact finite element, then subsequent sections present the governing equations and boundary conditions,
the finite element formulation, details concerning contact surface calculations and lastly numerical examples to

validate the present formulation.

There are two important considerations in choosing a biphasic contact finite element. First is the means by
which the mixture continuity relation will be introduced into the formulation. It is well known that finite element
formulations for constrained media problems can present significant difficulty when choosing the finite element
interpolations [17,18], so particular care must be taken in choosing a robust element. Second is the method of
enforcing the contact boundary conditions. The most common methods found in the literature are Lagrange

multiplier methods, penalty function methods and augmeniéd Lagrangians.

Regarding the continuity relation, there have been four methods reported for biphasic finite elements: the
penalty formulation of Suh et al. [19,20], the mixed-penalty formulation of Spilker and Maxian [21], the hybrid
formulation of Vermilyea and Spilker [22] and the pressure-velocity formulation of Oomens ef al. [23] or the similar

pressure-displacement formulation by Wayne et al. [24]. The penalty formulation of Suh was implemented for two



dimensional problems with a four-node quadrilateral. He notes that for distorted quadrilaterals, this element behaves
poorly [25]. In addition, the mean dilatational formulation used for that element is not readily extensible to higher
order elements, which are often desirable in constrained media problems. Maxian indicates these shortcomings as the
motivation to develop the mixed-penalty element [26]. There is also strong motivation to use simplex elements
when considering mesh generation on realistic geometries [27-29], or when employing adaptive mesh updates [30].
The pressure-velocity elements are quite attractive, since they replace the unknown fluid velocity in the formulation
by the scalar pressure field, reducing the size of the assembled matrix equations. Both Oomens and Wayne note the
well known tendency of velocity-pressure elements to show spatial oscillations when subjected to a step change in
applied force. Oomens refers to the literature on consolidation in soil mechanics for further explanations of this
phenomenon (for example, [31]). While these oscillations do diminish in time, they can have significant effects for

nonlinear problems, or for solutions that take advantage of A-adaptive mesh enrichment.

The hybrid method has the advantage that it does not require the user to select a penalty parameter to enforce
the continuity constraint. There are disadvantages, however, most significant being that the hybrid formulation
requires a strain-stress law, as opposed to a stress-strain law for displacement-based elements. For linear materials it
is straightforward to invert the material property matrix, but for nonlinear materials one must formulate the
complimentary free energy function. While constitutive laws of this form could be constructed, experimentally
curve fit to determine their parameters and tested to ensure physically plausible behaviour, one does not presently

exist so biphasic studies to date with the hybrid element have been limited to linear analysis.

With these observations, then, the mixed-penalty. element will be chosen as the basis on which to formulate
the biphasic contact element. For reference, a complete presentation of the finite element equations is given by
Spilker and Maxian [21]. This provides an accurate, efficient element which can be extended to nonlinear contact
analysis in the future, and which has been successfully extended to model all relevant nonlinear mechanics for the

single-region problem [32]. In addition, the element has been implemented for both triangles and tetrahedra,




allowing existing h-adaptive mesh enrichment schemes to be coupled to this formulation [30,33], providing the

necessary resolution of moving contact interfaces.

Contact finite element formulations for linearly elastic and nonlinear materials, with and without friction,
have been in use for nearly as long as the finite element method itself. They fall into the more general category of
constraints applied to the finite element method, such as the constrained medial problems of incompressible solid or
fluid mechanics. The text by Johnson [34] gives an extensive treatment of the contact probleﬁ in solid mechanics.
Aspects of the numerical solution of contact problems by the finite element method are the subject the book by
Kikuchi and Oden [35]. They give a complete discussion of the mathematical formalism behind contact finite
elements, which leads them to a discussion of error estimates and the Babuska-Brezzi condition for constrained

problems.

Dynamic contact, or contact-impact, has been treated by several authors, including Wriggers [36] and
Belytschko [37]. An added effort is made to develop efficient computational algorithms in these strongly nonlinear,
time-dependent problems. Wriggers proposes a frictional law from which a matrix form of the virtual work of the
contact forces can be added directly to the finite element equations. This leads to a contact formulation in terms of
displacement only, and no explicit constraint equations are introduced. The authors note that for some frictional
laws, the method can be identified as a penalty method. Belytschko enforces impenetrability by examining the radii
of 'pinballs’ inscribed in the finite elements along with either penalty functions or Lagrange multipliers. He also
notes that for an explicit central difference integration of the semi-descritized equations, the contact surface and

Lagrange multipliers (interface tractions) can be determined without iteration.

Recently, researchers have embraced the method of .perturbed or augmented Lagrangians as a
computationally efficient means to enforce constraints on the finite element method. Simo and co-workers have
applied the method to contact formulations. They first present the method as a way to regularize the ill-conditioned
system that results from a Lagrange multiplier approach [38]. In the same publication, they present an unique

treatment of the contact surface kinematics by contact segments. Simo and Laursen have extended that formulation



to include frictional effects on the contact surface [39]. Laursen and Oancea have indicated how the convergence
characteristics of the augmented Lagrangian formulation render it superior to either penalty methods or Lagrange
multipliers [40]. The advantage is that with finite penalties, there is nearly exact satisfaction of the constraint. On
the other hand, it is not necessary to optimally choose the penalty to guarantee convergence. Heegaard has developed
a large displacement, frictional sliding contact element for hyperelastic materials using the augmented Lagrangian
approach [41,42]. He has applied this element to the problem of pgtello-femoral contact in the human knee, and has

made comparisons of the numerical procedure to experimental results.

Governing Equations for Soft Tissue

This research is based upon the biphasic theory of Mow and co-workers [5], in which soft hydrated tissues
are considered to be a continuum mixture of solid and fluid. Based on the observed structure of cartilage, several
simplifying assumptions were used by Mow, et al. in their presentation of the theory [5]. First, both the solid and
fluid phases aré inert, and do not undergo any chemical changes or interactions. Each phase is considered
incompressible, which gives rise to mass conservation statements for each phase, as well as for the mixture. For
biological materials it is reasonable to assume isothermal deformations and no heat supply. Inertial terms are not

included in this formulation and it is assumed that no energy is lost by convection across the contact surface [43].

A fully linear form of the governing biphasic equations is used for this development, where small strains
are assumed, the solid phgse is governed by a linear constitutive law, tissue permeability is constant and volume
fractions of the solid and fluid phase do not change with deformation. Correlations of theoretical results with one-
dimensional confined compression tests suggest that these assumptions are valid in a wide range of problems,

including up to nearly 20% compressive strain in the solid matrix [3].

Governing differential equations for the theory are derived from integral statements of balance of mass,
momentum and energy. Contact boundary conditions are found in the same way, but with integrals performed over a
volume having a surface of discontinuity, as first reported for the biphasic theory by Hou et al. [43]. This results in

the theoretically correct statement of traction continuity and relative flow across the interface. An additional

5.



assumption of frictionless contact is introduced for the present work, as motivated by experimental findings {1,2].
This provides a significant simplification in the boundary conditions, since tangential components of traction can be
eliminated from the expressions. In solving a contact problem by the finite element method the solution procedure
is nonlinear, since the contact area is unknown in advance. This is true even in the case of fully linear constitutive
relations and small strains. Additional restrictions beyond the contact boundary conditions must be imposed to

recover an unique solution to this nonlinear problem.

This derivation considers two continuum bodies, denoted body 'A’ and body 'B'. Extensions to multiple-»
body contact are straightforward and are treated within the numerical procedure. The contact surface is defined by the
relation T, = A A OB and the fact that it must satisfy T', < 9(-n5d_1 with QA « ®"sd and OB < R "sd,
where ngq is the number of spatial dimensions in the problem. At times, to emphasize terms associated with either
body ‘A’ or bédy ‘B, the notation r.n QA will be used, although this intersection merely recovers the contact
surface. Standard indicial notation is used, so summation is implied by the repeated indices i, j, k or m. Subscripts
represent components and range 1, 2 ... n 4; superscripts 'A’ and 'B' refer to the body with which a given quantity is

associated. This geometry is depicted in Fig. 1.



Xi, Xi

Fi/g. 1: Problem domain for contact between two deformable, biphasic continua.

The system of differential equations to which the finite element method will be applied are [5] the

continuity relation for the mixture,

(‘bsvis + ({)fvl;),i =0, (1)

and the momentum equations for the solid and fluid phases,

o o
Gij,j + Hi =0, a=sf, )]

where ¢%, o = s,f, are the volume fractions of solid and fluid, v® are the phase velocities, c& are the Cauchy stress

tensors and IT™ are vectors of diffusive momentum exchange. Note that for a saturated mixture, ¢S + cpf =1.

There are three constitutive laws to govern the momentum exchange and stress-strain behaviour:
s f s f s
I =-IT, =p ¢, +K(v, - v,), ()

S _ s . S S
S5 = 0% P 34 * Dy Preny (35)
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o} = -ofp 81J + Dljkmgkm | (3c)

where K=¢K_ is a diffusive drag coefficient [12], x is the tissue permeability, p is the interstitial pressure, €5 is
solid strain and gf is fluid strain rate. These are derived with the previously stated assumptions on small
deformations, constant permeability and volume fractions constant in time. The fourth rank tensors D% admit
orthotropic behaviour, but are not dependent on deformation. In applying the assumption of frictionless contact to
simplify the contact boundary conditions, viscous effects of the fluid have been ignored, éo non-zero values of Df are
precluded. The contact continuity relations developed by Hou and co-workers [43] are manipulated to introduce the

assumption of frictionless contact, and to isolate the kinematic and kinetic terms [44], yielding:

(uiSA + X?A) niA + (u?B + X?B) n? =0, (4a)

(q>fA (u§A+ XfiA) + 0S4 (uf Ay XSiA)) n‘iA +

+ (¢fB (u€B+ XgB) +oSB (uSiB+ X‘EB)) n? =0. (4b)
fA A A f8 B B
(O 1} nk) (G ny ny)
=0, (4c)
ofA q)fB
sA sB
sA A A sB B B 0% fA o> B

(o‘lk n. k) (le k) ¢fA (len nk)+¢ (len nk) 0, 4d)

where n is an external normal to the contact surface. Interpreted with respect to the linear constitutive relations the
above represent continuity of normal solid velocity, continuity of normal relative fluid flow, continuity of pressure
and continuity of normal elastic traction. Observe that Eqns. (4a,b) are expressed in terms of displacements, u%, and
reference position, AXOL. For points in persistent contact, the time derivatives of these expressions gives the
continuity of velocity, while at the instant of contact they provide a-necessary forcing term proportional to the initial
separation of the points. ‘There are two kinematic, or essential, boundary conditions for biphasic materials:

vi=v. onT s, (5a)

17 vi

£ f |
v;=v, on Fv’if, (5b)

and two kinetic, or natural, boundary conditions

8-




S S -
oM =4 =t on Ftis’ (6a)

ff f
Gijnj =t =t on I‘tf. (6b)

Initial conditions are also required for this first order differential system in time, and so displacement and velocity are
chosen to be zero at t = 0. There are three additional relations required to uniquely determine the correct contact area.

The Kuhn-Tucker conditions of optimality [45] for a contact problem state that anywhere on the material boundary:

Hes)ll <0, (7a)
tT(s) » n(s) <0, (7b)
Hg(sHll tT(s) *n(s)=0, (Tc)

where g(s) is closest point projection to an opposing surface, tT(s) is the total traction vector and s is a surface
coordinate. These are also the familiar boundary inequalities that result from the Signorini problem for linear
elasticity (see, for example, [35]). These relations are intuitive, since a free surface must be traction-free and have a

positive distance to an opposing surface, and since bodies in contact must experience a compressive surface traction.

Finite Element Formulation

The finite element method has a rich history which began when researchers in the 1950's began to apply
relaxation and approximation methods to structural problems. A tremendous mathematical formalism has been
developed since then, which allows nearly any system of equations to be approximated. Before the biphasic finite
element equations can be developed, however, two important steps must be taken. First, the mixture continuity
equation and contact boundary conditions must be modified to facilitate the numerical procedure. Second, since we
will develop our finite element equations from a weighted residual statement, a precise mathematical statement of the
function spaces in which solutions will be sought is required. Then a weak form of the problem can be formulated,

to which the numerical approximation will be applied.



Preliminaries
The weighted residual statement is constructed from the governing equations and natural boundary
conditions in each domain, and from the contact boundary conditions. In particular, the solid and fluid momentum
equations, a penalized form of the mixture continuity relation and the traction boundary conditions will be
approximated, while the constitutive laws, strain-displacement relations and essential boundary conditions will be

exactly satisfied. The method begins by developing a penalized form of the continuity equation [21,46],

(q)svis + Q)fvg),i + % =0, ®
which in the limit § — oo is equivalent to the original continuity relation. Suh developed a methodology to
estimate the penalty parameter for the biphasic equations t25]. He found thé penalty parameter was proportional to
machine accuracy, a reference time and the equilibrium modulus of the solid phase, and inversely proportional to
volume fraction. He also demonstrated that for linear problems, the penalty parameter can be varied over

approximately four orders of magnitude with no adverse effect on the solution.

Lagrange multipliers are typically used to append constraints to a variational principle, however, in the
absence of an energy functional in the biphasic case, it is still possible to develop finite element equations which
represent a Lagrange multiplier constraint operation. To introduce the contact boundary conditions into the weighted
residual statement, and still retain the properties of a Lagrange multiplier method, it is necessary to redefine the
kinetic contact continuity relations. If the finite element equations which result from a weighted residual statement
are symmetric, one can conclude that a functioﬁal does exist which produces the same finite element equations [47].
In addition, the Euler equations of this unknown functional are precisely those equations introduced into the weighted

residual statement. Thus, in this formulation, the kinetic continuity relations will be rewritten to define the

Principle of Minimum Potential Energy. For the biphasic case two scalar multipliers will be required: one each for

the solid and fluid kinetic contact continuity relations. From Eq. (4c) define Af on the contact surface and require:
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SA A A
M=t d 1 hoanT,

(%)
q)fA
fB B B
¢ Oj Dy 0y B
M= AL noBar, (9b)
o
In a similar manner, define A® on the contact surface from Eq. (4d):
A
s_ . SA A A 05D fA A A A
A —(0’ij n, nJ ) - ¢fA (Gij n. nj ) onQENIL, (10a)
B
s_,sB BB ¢° fB BB B
A® = (Gij o nj) - ¢fB (csiJ n; nj) onQ° NT,. (10b)»

Note that AS and Af are not independent in body 'A' and body 'B', but rather are defined on I'., such that they enforce
the continuity required by Eqns. (4¢,d). They become additional variables which must be interpolated in the finite

element formulation, and from which the normal components of interface tractions can be recovered.

Choice of Trial and Test Spaces
The essence of the weighted residual method is to multiply each equation that will be approximated by an
arbitrary weighting function, integrate this over the domain where the equation is to be enforced and sum these. For
arbitrary weight functions, the resulting weighted sum is equivalent to the governing equations [48]. For the
biphasic contact element, three classes of weight, or test, functions are required. These function spaces are defined as

follows:

ﬁv={wiwe H! andw:OoanSuFVf}, (11a)

Op={wiwe HOJ, (11b)

S.={wlwe HO and w = 0 on Q\I'.. }, (11c)
¢ C

where HS are Sobolev spaces equipped with their natural norms. Respectively, these will be spaces of velocity,

pressure and contact weight functions. These are, in effect, smoothness requirements on the test functions, and will
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ensure that the subsequent mathematical manipulations are well defined. Additionally, three function spaces for the

trial solutions must be defined as

5Vi06={w lwe Hl and w = won Fv?}, o = s,f, (12a)
Sp={wiwe HO }, (12b)
Sc={wiwe HOandw=00nor, }. (120)

Analogous to the test functions, these are trial spaces for the velocity (or displacement), pressure and Lagrange
multipliers. Tﬁese definitions require that the trial solutions satisfy the essentialyboundary conditions, while thé
velocity weight functions need only satisfy the homogeneous form of the essential boundary conditions.
Rigorously, the space of velocities must also be constrained by the kinematic part of the Kuhn-Tucker relations, Eq.
(7a) [35]. In practice, this requirement is too strong, since the deformed state of the material is unknown in advance.

Alternatively, an iterative procedure has been developed which finds solutions satisfying both Eqns. (7) and (12).

Development of the Weak Form
A single weighted residual statement will be written as the sum of terms from body 'A’, body 'B' and the

contact surface, such that

GA+GB+Ge=o. (13)
For clarity, each of these will be presented separately. From body 'A' the contributions to the weighted residual

come from the momentum equations, traction boundary conditions, penalized continuity equation and Lagrange

multiplier definitions:

\ { sA . sA S A i'ﬂ,\ ~sA  sA
A _ D Lx gt NiaY bn— >
GA= Jwi (Gij,j+ni )dQ + .hi (ti ti )dr +
ot A
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. chA [(¢fAva+ ¢5Av§A) .o ) Q.
1 E] BA

+ J‘wa (GfA. + HfiA)dQ + jth (t fA )dF+

oA
fA A oA
+ At —]————J— dar" +
fA
o
Te
sA
sA [+ SA A A fA A A
+ Jr (7» (cij n. nj)+¢fA (GU ; j) dar (14)
c
Here the requirements on the weight functions are that W(x € By, h e 9, ™% e 9, and w e U for o =s.f.
Trial solutions are restricted to be members of the spaces defined by Eqns. (12) as follows: Vloc € 6 “.pe 8 and

A% e §.. Observe that Bq. (14) contains the definitions of the multipliers given by Eqns. (9a) and (10a). The

- contributions from body 'B' are similar and, in particular, the requirements for trial and test spaces for the solution

and weight functions are the same. Terms in the weighted residual from the contact surface are

$
c_ s SA . SA A sB . _sB B)
Gt = jAtm((ui +Xi )ni +(ui +Xi )ni dr +
r

ST )t

+ (¢fB (u€B+ XfiB) +¢SB (uSiB+ XSiB)) n]?dl"],

and come from Eqns. (4a,b). The contact weight factors are restricted to be in HO: s&*

(15)

€ U; for oo = s,f. The

decision to scale the scalar weight functions will become apparent after the time discretization. Of course, since this

is an arbitrary weight function, the scale factor does not effect the generality of this derivation.
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Element Interpolations
At this stage the weak form is developed by applying the divergence theorem to terms containing the
divergence of stress, and by choosing appropriate relations among the weight functions. It is important to note that
the weak form is equivalent to the governing equations, and no approximations have been introduced. The next step
is to chose finite-dimensicnal counterparts to the function spaces given in Eqns. (11-12), which will suggest the
numerical approximation. This will be conducted in a formal way, producing a set of matrix equations valid for
acceptable choices of interpolations in two or three dimensions. The final step is to particularize the interpolations

for a six-node, triangular element.

The domain is divided into elements and the kinematic variables, pressure, Lagrange multipliers (A and Kf)
and weight functions are interpolated in terms of their element nodal values, with subscript 'e' indicating the element
number. The interpolations within element ‘e’ are chosen as follows. Solid and fluid velocity are interpolated with
functions, N € Ssa < dyo, where the superscript 'h' refers to the finite-dimensional subset. The form of the

interpolation for velocity is

CvOY =N v:“{, a=sf y=ApB, (16a)

and for solid displacement is
u'=Nul’, v=AB, (16b)

Y

. s s . e . . . .
where the coefficients u * are related to veY by a time derivative. The velocity weight functions which, for a

Galerkin weighted residual method, have the same polynomial form as the velocities, are interpolated with functions

Ne*&hcﬁvas
v

wo= N ng’ a=sf y=AB. (16¢c)
Referring to the definitions of the spaces in Eqns. (11-12), the only difference in the interpolations for the velocity

and its weight functions are at locations where essential boundary conditions are specified. This has the effect of

removing as independent equations those corresponding to the constrained degrees of freedom, and producing
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additional forcing terms related to the essential conditions. With this recognized, the slight abuse in notation of
using the same symbol for both the velocity and its weight function will be allowed. In the computer
implementation, this distinction is properly accounted for by an element-level constraint operation. Pressure is

interpolated with functions Ny e 82 < 8p as

pY=N, p/. v=AB, (164)

and its weight function with Np € ﬁg c ﬁp as

w=N_w'l  y=AB. (16€)
P e
Each of these two interpolations has a lower order continuity than the velocity. The solid and fluid multipliers,

. . . . . h
whose interpolant is non-zero only on the contact surface, are interpolated with functions M e 60 < 3¢ as

A% =M xg, o = s.f, (16f)

and the corresponding weight function with M e 13? c ¥, as

o
@ =MsY, o= (169)
Element reference coordinates, required in the kinematic contact continuity relations, are interpolated in the same way

as displacement,

X =NXJY, a=sf y=AB (16h)

Last is an interpolation for the known volume fraction,

~ O .

0 =No_ T, a=sf y=AB, (161)

enabling the numerical calculation of the gradient of volume fraction within the finite element program. The
interpolation matrix N would typically contain the same polynomials as N, though the ordering within the matrix is

different.
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At this time the constitutive relations are substituted into the weak form, which necessitates several other
definitions. Strain and strain rate are defined as the symmetric part of the gradient of solid displacement and ftuid

velocity, respectively, and are interpolated as,

e8=VNu =Bu, ' (17a)
ef= VSN vfe =B vi, (17b)

with V® the symmetric gradient operator. Similar operations are performed for the symmetric gradient of the

weighting functions. The gradient of volume fraction,

VoY =VN o V=B ol ", a=sf y=AB, (18a)
is required in terms coming from the momentum exchange and continuity relation. Because the mixture is saturated,

gradients of the solid and fluid volume fractions are related,

VoY =v(1 - 9% =-VoSY, y=AB. (18b)
In the finite element method, a reduced index notation will be used for stress and strain, where the independent terms
of the symmetric tensors are arranged in a vector. To account for this, the vector m is defined as the reduced index

form of the Kronecker delta operator, and the fourth rank tensors of material properties are redefined accordingly.

These interpolations are substituted into the weak form and the pressure, since it is interpolated with c1

functions, is eliminated at the element level yielding the following matrix differential equations:
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A A A A A
w | Ve Cl + 1] 0 or v
w? 0 Cl+8% Q2 |vEi+
R 0 0 0 [|4,
WAt
T
.y wh K 0 offu
+Y 4w’ 0 K’ oRu’}=
e= T
N2l ot o oflo
WAt
T : (19)
A A
Mg we fe
B B
=24w 1/
e=1 Se g
wAt]

The matrices C, 8 and X are discrete forms of the momentum exchange and fluid stiffness, penalized continuity, and
solid stiffness, respectively, while the vectors f and g are due to prescribed tractions and initial separation on the

contact surface. The contact coupling matrices are of particular interest here and have the form

y_[o otag
Q. = o ¢f7 v P Y= AB, (20a)
qC
with
qey =- FJNTnYM dI’, v=A,B. (20b)
Ce

Recognize that this matrix is often null since the integral is zero for elements which do not lie on the contact
surface. It is also interesting to note that the matrix q‘ is precisely that which arises in a Lagrange multiplier
formulation for single phase elasticity. This matrix couples the multipliers to degrees of freedom on both sides 'A’
and ‘B’ of the interface. In the biphasic case, the matrix Q performs this coupling, including the cross coupling

between solid and fluid degrees of freedom on opposite sides of the contact surface.
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Before assembling the global counterpart of Eq. (19), the family of generalized trapezoidal finite difference
rules is applied in time [48]. For the present implementation, the time scale of the problem is divided into uniform
increments of length At, and the displacement at the current time step is written in terms of the current velocity and

the displacements and velocities at the previous time step,

u=G+Atﬂﬂn$+Atwv. 2D
The superposed (*) indicates the known value at the previous time step and ® is an user-defined parameter chosen
between 0 and 1 that controls the order of accuracy of the time integration, numerical damping, efc. When ® > 0.5.
the integration corresponds to an implicit method which is stable for any size time step. Equation (21) is substituted
into Eq. (19) and the known values are transferred to the right hand side. Standard finite element assembly procedures
are now applied to this system, and the assembled weight functions are recognized as arbitrary, which leads to a

global system of equations,

Cc* + R 0 o* k* o0 ofl [
0 CP+8% Q%|l+wArl 0 KP 0O|WHyvPl=
o 0¥ 0 0 0 0|4
22)
A K* 0 of[a*+A(l-w)pt
=< fPi=1 0 K% O{a®+Arl-w)i?
re BT
g o 0 0 0

WAt WAt oAt
where the matrices without the subscript 'e' are the assembled counterparts of those with the 'e’. This is a semi-
definite system as is typical of Lagrange multiplier methods. Note thélt as the contact surface evolves in this linear
problem, only the matrices QA and QB will change, so for a direct solution strategy the upper 2x2 block of Eq. (22)

need be factored only once.

For the first mixed-penalty biphasic contact finite element, the computer implementation is restricted to the
six-node, quadratic-velocity triangle, as first developed for single-region problems by Spilker and Maxian [21].

Thus, interpolations for displacement and velocity are quadratic, and use the familiar Lagrangian shape functions for
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the triangle [48]. Both a plane strain and an axisymmetric version of the element have been implemented. The
element is isoparametric, and has nodes at the vertices and mid-edges. All calculations are performed in the element
parent coordinate system, which is based on triangular area coordinates. Gaussian quadrature of sufficient order to
exactly integrate straight-sided elements is performed for all element matrices. The pressure interpolation is linear
within an element, and independent from element to element, as would be expected for this constrained media
problem. Maxian found that a three-parameter interpolation written directly in terms of the triangular coordinates

produced a matrix that was insensitive to numerical instability during inversion [26].

If the finite element matrices are to be symmetric, which is an highly desirable characteristic, the Lagrange
multipliers and contact weight functions must be interpolated with the same functions. Referring to the weighted
residual, Egns. (13-15), one should choose the interpolant such that there are as many independent coefficients in the
contact weight function as there are in the velocity. This is a quadratic interpolation and would produce solutions
where the weighted integral form of the kinematic contact continuity relations are exactly enforced. This choice
favors a more rigorous enforcement of the kinematic conditions, but does not allow one to equate the element
traction with the multipliers at a particular location within the element. The choice of function spaces does not
require the interpolation for the multipliers to be continuous between elements. With a Lagrange multiplier method,
though, the final matrix equations are semi-definite, and do not allow the multipliers to be eliminated at the element

tevel. Thus, there is no computational advantage in choosing a discontinuous interpolation.

For the triangular element, the contact surface will be a curve in space. This implies that the contact
interpolations will be the familiar Lagrange polynomials-of order two defined on the canonical range (-1,1). Here
too, Gaussian quadrature of sufficient order to exactly integrate straight-sided elements will be used to compute
integrals of the matrices q. The following section will detail the procedures for assembling these matrices for the

discrete representation of the contact surface.
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Contact Surface Calculations

Contact surface calculations can become a significant part of the computational effort during finite element
analysis. It is essential that efficient means of contact detection be developed, and that these be optimized for either
scalar, vector or parallel hardware. While the proposed method of discretizing the contact surface has been
implemented only in two dimensions, it is readily extensible to three dimensions, and would suffer only from the
naturally higher cost of three-dimensional geometric calculations. Several algorithms have been presented in the
literature, including the pinball algorithm of Belytschko and Neal [37] and the contact segment treatment of Simo,
Wriggers and Taylor [38]. Others have included the contact surface kinematics directly into a finite element
'formulation [41]. Laursen and co-workers have recently proposed a method which localizes all calculations to
numerical quadrature points within finite elements on the contact surface [40,49]. This same algorithm was

independently developed in the course of the present research.

Within an iterative cycle, three main tasks must be performed. First, given a point on one side of the
contact surface, the closest point projection to the opposing surface is computed, and the finite element containing
‘this projection is found. Second, utilizing the projection results, a discretized form of the contact surface is
developed, which will be used in forming the contact matrices. Last, there is an assessment of changes to the
surface, including points that come into or are released from contact. Each of these topics is covered in the remainder

of this section.

In evaluating the Kuhn-Tucker relations the vector from a point on one surface directed normal to the
opposing surface is required. This vector is referred to as the gab Sfunction, and, by construction, represents the
minimum distance to the opposing surface. It has its origin at a contactor point, X, located on a contactor surface,
and terminates at the nearest point, x* ona target surface. In the finite element context, this function will be
evaluated with respect to the isoparametric coordinate interpolation and the current configuration of the contactor and

target surfaces, represented by the deformed coordinates of finite element nodes on these surfaces.
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Three pieces of data result from this calculation: the finite element which contains the clos;zst point
projection, the local coordinate of the projection within that element and the magnitude of the gap function. An
algebraic sign is associated with the magnitude to indicate whether the contact point has penetrated the target surface.
A positive magnitude represents surfaces which are not in contact. The sign is computed by comparing the direction
of the gap function with that of the external normal to the contactor surface. The sign of the inner product of the

normal vector with the gap function is taken as the sign of the magnitude, as illustrated in Fig. 2.

e 1 @rget Surface
——— Contactor Surface

neg

Fig. 2: Definition of the gap function and its sigir on a contactor surface.

To initialize contact a user denotes model edges, in two dimensions, or model faces, in three dimensions, as
contactors or targets. The finite element edges or faces that lie on those model entities then become contactor or
target segments. A contactor segment may come in contact with a target, or several targets, in any part of the
model. Arbitrarily, the contactor surface is associated with domain 'A' referred to in the problem definition, and the

target surface is identified with domain 'B'.

21-




The contact algorithm requires integrals to be performed along the contact surface. These integrals involve
terms uniquely defined on the interface, and alternately, terms defined in the domain elements on either side of the
contact surface. The discretization algorithm must provide a coordinate system in which to perform the integrals and
information about the domain elements on either side. The most easily identified coordinate system is that which is
already defined within the contactor segments. The nodes of the contact elements will therefore be chosen to coincide
with those of the finite elements along the contactor surface. Interpolations of quantities associated with side 'A’ of
the contact surface are readily available, since the contact elements are aligned with the finite elements on the model
boundary. Quantities associated with side 'B' can be computed in the finite element containing the closest point

projection.

For each candidate contactor segment, an assessment must be made as to whether this segment should be
included in the contact surface. Since the contact matrices will be integrated with numerical quadrature, this
assessment is made for each quadrature point within the segment. Thus, the quadrature points also become the
contactor points, X, used to define the gap function. For each quadrature point two pieces of data are stored: the
finite element into which it is projected and the local coordinate of the projected point. This data is the minimum
tequired to perform the contact integrals and to define the degree-of-freedom connectivity for assembling the contact

matrices.

Two other pieces of data are used to determine if this quadrature point should be considered active or not
active for the contact integrals. These are the gap function and the normal component of total traction, calculated in
the reference coordinates of the contactor segment. For quadrature points that were not previously active, they will
be active in this iteration only if the gap is less than some positive tolerance. For quadrature points that were
previously active, they will remain so if the normal component of total traction is negative and will be released if
the traction is tensile. This constitutes the logic for an iterative procedure, where iterations within a time step

continue until the solution quantities at the quadrature points agree with the assumed state.
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Degrees-of—freedom for the Lagrange multipliers will be associated with the finite element nodes of the
contactor segments. If at least one of the quadrature points within a contactor segment is classified as active, then
the degrees-of-freedom are created for its nodes and are assigned unique numbers. To illustrate this refer to Eq. (20b)
defining the element-level contact submatrix. When the index v is taken to be 'A’, the domain of the integral, Fce,
will be an entire contactor segment. Interpolations for the multipliers, M, are defined in the local coordinates of this
contactor segment. Likewise, the surface normal, n, and velocity interpolations, N, can be computed by looking to
the finite element associated with this contactor segment. In practice, each of these terms will be evaluated at some
number of quadrature points along the contactor segment. In general, there is no direct correspondence between the
local coordinates within a contactor segment and those within a single target segment. For this reason,
contributions to both qA and qB are assembled on a per-quadrature-point basis. Thus, the contribution to qA from
the first active quadrature point in the contactor segment is computed and assembled into the global matrix. Then
the contribution to qB is calculated with respect to the finite element associated with the target segment containing
the projection. ‘Recall from the previous discussion that this closest point projection information has been stored for
each quadrature point. This methodology allows for several interesting features including node-to-edge contact,

partial contact within a contactor segment and multiple regions contacting at one point.

Validation Examples

The contact solutions developed by Hertz [50] are some of the only analytic results for evolving contact
problems. As a demonstration of the discretization algorithm, the biphasic mixed-penalty contact finite element is
used to solve the problem of a cylinder contacting an infinite medium. Thé problem is modeled in plane strain, and
material parameters for the biphasic element must be ch<;;en which will accurately simulate either rigid or linearly

elastic materials. Figure 3 depicts the finite element mesh; there are 669 quadratic triangular elements and 1506

nodes, manually graded toward the contactor and target surfaces.
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Fig. 3: Finite element mesh for the plane strain Hertz contact problem.

For this problem the flat surface of the foundation was chosen as the contactor and the curved surface of the
cylinder was the target. Three combinations of materials are possible: both bodies elastic, an elastic cylinder
contacting a rigid foundation or a rigid cylinder contacting an elastic foundation. Accurate solutions using a fixed
mesh have been obtained for each case, demonstrating the invariance of the solution to the ch‘oice of contactor
segments with regard to material properties and expected deformation. Results for the last case are presented here.
The foundation is 2 mm in height and 5 mm in width, while the cylinder has a radius of 10 mm. Young's modulus
for the foundation is 1.0 MPa and Poisson's ratio is 1/3. Both the cylinder and foundation are designated as 95%
solid, and made highly permeable so there is no resistance to fluid flow. This essentially uncouples the solid and
fluid motions and allows one to recover the compressible elastic solution from the biphasic theory. The penalty.
parameter is chosen as 1 x 1010 for the foundation. A rigid material ié given material properties making it 1000

times stiffer than the compliant materials surrounding it.
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Fig. 4: Axial solid stress distributions for several applied loads in the plane strain Hertz contact

problem.

While the elastic solution to Hertz contact is not time-dependent, the biphasic contact finite element
formulation does discretize in time. For the elastic problem a force varying linearly with time is prescribed, and the
solution at each time step is considered the elastic solution for that particular load level. Figure 4 compares the
converged traction distributions, evaluated at the finite element nodes on the contactor surface, with the accepted
solution at four load levels. As the load increases, the discretization algorithm continues to correctly preciict the
extent of the contact surface, and hence the traction distribution. The tensile traction at the edge of contact is due to
partial contact within a contactor segment. In this case a single element is approximating both the steep gradient
within the contact region and the traction-free condition outside the contact area. Mesh refinement would be required

to more accurately define the edge of contact.

The previous example shows that the contact code is capable of finding the correct contact surface. The
next goal is to verify the element for an evolving biphasic contact problem. There are limited solutions for this type

of problem, an asymptotic solution presented by Ateshian ef al. [51] and a more recent integral transform solution
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by Kelkar and Ateshian [52]. The geometry is as in the plane strain Hertz contact problem, but with a height of
Imm, width of 20mm and indenter radius of 100mm. Physically the problem represents two identical cylinders
layered with a biphasic material in contact along the length of their axes. Because of the symmetry, a geometrical
transformation reduces this to a shallow, rigid, impermeable cylinder indented into a thin biphasic layer. A creep

problem is modeled where a load is applied to the cylinder at t = 0% and held constant.

Following Kelkar's model, the solid phase Lamé parameters for the tissue layer are A = 0.0,
U =0.25MPa; the solid volume fraction is §5 = 0.25; the tissue permeability is k = 0.2x10"14 m4/Ns; and the
penalty parameter is = 1.0x1010. A distributed load equal to 1000N is applied to the rigid cylinder in one time
step. Results are presented for times well beyond the application of load. This allows for differences between a true
step load and the short ramp loading to decay. Figure 5 shows excellent agreement between the surface normal
traction predicted by the integral transform solution (lines) and the finite element solution (symbols) at t = 100s.
Similar correlations are observed for times from 20 to 200 seconds, and for kinematic variables. Observe that the
fluid traction is nearly twice the solid traction. At much longer times, when fluid flow ceases, the pressure will be

zero and the total load will be carried by the solid phase.

26-




(@]

L
o
o

I{)
(@)
(@)

IS T ST S T T R e S R O
{
¥

Traction (kPa)

—=— Total

—o— Pressure

T i T T } T T Tt ] 1T T 7T i T T T T k T T T T ]

1 2 3 4 5

Radial Coordinate (mm)

W
o
S

Fig. 5: Normal traction distributions for biphasic indentation after 100 seconds of creep. ‘Lines

are the integral transform solution and symbols are the finite element result.

In Fig. 6, note how the tissue surface has undergone a tensile deformation in the outer portion of the
contact surface, also at t = 100s. This region also experiences an efflux of fluid, as depicted by the relative velocity.
The maximum principal stress is shown as a shaded contour on a mesh deformed by five times the displacement; the
scale is given in kilopascals at right. The magnitude and directionl of the relative velocity field is indicated by

arrows, with magnitudes ranging to 0.43 pm/s.
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Fig. 6: Shaded contour of maximum principal stress in kPa for biphasic indentation. Solutions

are on a 5x deformed mesh after 100 seconds of creep. The relative velocity field is indicated by

arTows.
Summary

With the success of the first biphasic contact finite element formulation, several opportunities to increase
the sophistication of diarthrodial joint modeling become apparent. The single most important tool in developing a
complete simulation of articulation is three-dimensional finite element analysis of contact. While the present
formulation could be implemented with a three-dimensional element, several other enhancements are required to make

this element useful in clinically relevant problems.

Certainly paramount are finite deformation and material nonlinearity. Large-displacement, sliding contact,
which is observed in every diarthrodial joint, cannot be modeled within the confines of geometric linearity. The
material non-linearities represent tissue behaviour which is observed during in vitro tissue tests, and must be
included in the model to obtain a physically meaningful solution. The effects of material and geometric linearity
have been included in recent work by Almeida [32]. In the course of that research, two- and three-dimensional

elements have been implemented for the mixed-penalty and velocity-pressure formulations. It is possible that
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frictional effects on the contact surface play an important role in the overall deformational behaviour. Additional
experimental research is required to quantify this effect and to postulate the laws that may govern it for tissue

mechanics [53].

Any numerical analysis technique should be capable of providing some measure of the error in the
numerical approximation. For the examples presented here, this has been the traditional approach of a convergence
study; the finite element mesh is refined until solutions on subsequent meshes are the same. In the future the
biphasic con’tact finite element should be coupled with error estimation techniques and automatic mesh enrichment.
Error estimates for parabolic system of equations have been developed (see, for example, [54-57]), and research has
been conducted on error analysis for porous soils using Biot's equations [58,59]. A research effort focused on
extending these error estimates specifically to the linear and nonlinear forms of the biphasic theory is necessal;y.

This must be coupled to related work on #, p or h-p adaptivity.
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