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Nomenclature [11]

G refers to the geometric model, or, when used as left subscript,
to indicate one or more entities associated with the geometric
model

M refers to the mesh, or, when used as left subscript, to indicate

one or more mesh entities

~T set of all topological entities associated with model T,
T=GM
“sz'd topological entity i from model Y of dimension d, d =0 is a

vertex which represents a point in space, d = 1 is an edge
‘which represents a 1D locus of points, d = 2 is a face which
represents a 2D locus of points, d = 3 is a region which
represents a 3D locus of points

d(+TE) boundary of topological entity v+T, T = G, M

— 7 . . d d

+T# closure of topological entity defined as (yT} U d(T7)),
T=G,M

C classification symbol used to indicate the association of one or

more entities from one model, typically M with a higher
model, typically G

1 Introduction

An adaptive finite-element method can be defined as a feedback process
where a domain is analyzed with a given mesh and the effectiveness of the
approximation of the domain is measured though an error indicator. In this
context, the selective and local refinement/derefinement of the mesh throughout



the computation arise as a natural feature. This has induced a change in the
static classical grid generation approach, in which one fixed grid with adequate
refinement is assumed. This chapter surveys some of the available techniques for
the refinement and derefinement of the meshes in 2-D and discusses the edge
based refinement and derefinement technique which has been implemented.

2 Existing algorithms for
refinement/derefinement in 2D

2.1 Refinement

Refinement methods in 2-D can be broadly categorized into three different
groups:
1. Using subdivision patters [2].
2. Bisection algorithms [9], [10].
3. Insertion of points into the mesh in Delaunay context [10].

The main requirement for refinement algorithm is that the resulting triangulation
should be conforming, (i.e) in 2-D the intersection of two non-disjoint is either
a common vertex or a common edge (see Figure 1).

(@ &)

Non conforming Conforming

Figure 1. conforming and non conforming triangulations in 2D

There are many criteria which are used during the refinement process, for
example [2] and [9] use the following criteria:

1. The size of the smallest angle of any triangle should be bounded away from 0.
2. The transition between large and small triangles in the grid should be
“smooth”.



3. The triangulation is nested in such a way that each refined triangle is embedded
within one of the parent triangle.

2.1.1 Subdivision patterns In the subdivision pattern the parent triangle is
subdivided into child triangles by using subdivision patterns or templates. In
this context two different patterns are commonly used [2] for subdivision:

1. Regular subdivision (1:4), see Figure 2(a)
2. “Green” subdivision (1:2), see Figure 2(b)

Parent THangle

Regular {1:4) subdivision Green (1:2) subdivision

@ (b}

Figure 2. Regular and Green subdivision patterns

Bank and Sherman [2], use regular subdivision to divide the parent triangle
into four smaller triangles by joining the mid points of the edges, see Figure
2(a). Each of the four new ftriangles is similar to the parent triangle, hence
regular subdivision never reduces the size of the interior angles (satisfies criteria
1). Green subdivision (Figure 2(b)) can reduce the size of the interior angles
and repeated use can violate criteria 1, hence they are used only in the clean up
phase to main conformity, see Figure 3(a). During the clean up stage, to satisfy
criteria 1 and 2, [2] uses regular subdivision to refine a triangle whenever two of
its neighbors have been divided once or one neighbor has been divided twice, see
Figure 3(b). Adequate history is also maintained whenever the triangle is “green”
subdivided, if this triangle is marked for future division then the original trlangle
1s reinstated and regular subdivision is applied.
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Figure 3. Green and regular subdivision used for maintaining conformity

2.1.2 Bisection algorithms In the bisection algorithms, Rivara [9], [6] use
bisection of the triangles by the longest side. They use two variations of the
bisection algorithm:

1. The 2-triangles algorithm [7].
2. The 4-triangles algorithm [8].

In the 2-triangle algorithm, for any triangle ;,77 marked for refinement, the
longest edge of the triangle is bisected first (generalized bisection) and let MT]O)
be the midpoint generated on the longest edge (see Figure 4(a)). If MTJ% is
a nonconforming midpoint of a triangle ;, 72 (see Figure 4(a)), first bisect the
wmT by the longest side to obtain 57, Figure 4(b). If Tp i 47T, then
do a simple bisection (bisection at the mid point of any edge) to make the non
conforming side conforming (see Figure 4(c)). This process is recursive and the
process stops when all the triangles have been made conforming.
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Figure 4. Generalized bisection

The four triangle algorithm is similar to the two triangle algorithm, but in this
case the triangle is divided into four new triangles instead of two and the resulting
nonconforming triangles are made conforming as given in the previous procedure.
The main difference between the two algorithms is depicted in Figure 5(a) and
(b). In this algorithm also adequate history information is stored regarding the
parent and the child triangles.

L AN N\
@ )

Figure 5. 2 triangle subdivision and 4 triangle subdivision
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2.1.3 Insertion type algorithms Insertion type algorithms mainly deal with in-
serting a point into a Delaunay triangulation. Inserting a node into a Delaunay
triangulation can be achieved using the Watson’s [12] algorithm. In Watson’s
algorithm all elements which contain the point (interms of circumcircle contain-
ment) are deleted and a convex polyhedral cavity is formed. New triangles are
created by connecting the boundary of the cavity to the newly inserted node (see

Figure 6).

Newly inserted point z

Figure 6. Point insertion in a Delaunay triangulation

The point insertion can also the achieved by splitting the entity on which the
points fall, for example if the point falls on an edge then the concerned edge is
split or if it falls on the face then the concerned face is split (see Figure 7).
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Figure 7. Edge/face split in 2D

2.2 Derefinement

Derefinement can be seen as an inverse process of refinement algorithms
defined above. All the refinement methods discussed above maintain history
information as to which original triangle the refined triangles belong to. This
history information is used in the derefinement process. For example Rivara [9]
modifies several discretizations of the sequence in order to maintain the nestedness
of the meshes. For example in Figure 8(a) in order to derefine the shaded triangle
(3yT?) which was obtained by successive refinement, every triangulation of the
sequence that contains the ;77 is modified. That is the derefinement procedure
also modifies the history of the refinement as shown in Figure 8(b).
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Figure 8. History information used for derefinement

3 Edge based refinement and
derefinement procedures

3.1 Refinement

In this approach refinement is achieved by marking appropriate mesh edges
for refinement. Once the edges have been marked for refinement the triangle is
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refined using sub division patterns (templates). Up to three edges can be marked
for refinement for each triangle. There are four possible templates for refinement
based on the number of edges in the triangle that needs to be refined. The
refinement templates are,

1. 1 edge needs to be refined (see Figure 9(a)).
2. 2 edge needs to be refined (see Figure 9(b)).
3. 3 edge needs to be refined (two templates) (see Figure 9(c) and (d)).

@

(b)

(c) (d)
‘ Figure 9. Templates for refinement in 2D

There are two ways in which the triangle can be split if two edges are marked
for refinement, Figure 9(b), and similarly there are three ways in which the triangle
can be split if three edges of it are marked for refinement, Figure 9(d). The
template given in Figure 9(c) is the same as the regular subdivision (1:4) as given
in [2] and the templates given in Figure 9(d) is same as the 4-triangle bisection
algorithm given in [§].




3.2 Derefinement

Derefinement is achieved by marking the mesh edges for derefinement and the
marked edges are derefined by collapsing the edge to one of the ending vertices
(hence there are two ways in which an edge can be collapsed, see Figure 10).

T0
Edge collapsed onto M 1

D

Figure 10. Two different collapsed configurations

Before collapsing one of the ending vertices ( MT(g, deleted vertex) onto
the other vertex (5,7, target vertex) the collapse is evaluated for topological
compatibility and geometric validity (a detailed description of the topological and
geometric checks done is given in [5]).

For the final mesh to be geometrically valid after collapsing in 2D the signed
area of the newly created mesh faces should be positive if the vertices of the
faces are taken in a particular order. Figure 11 shows one of the geometrically
invalid situations for collapsing.
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Initial configuration Coliapsed configuration

Figure 11. Invalid configuration for collapsing

If both the vertices are valid for collapsing then that vertex is chosen for
collapsing which gives better triangulation. During derefinement the metric of
the resulting triangulation is not allowed to fall below some threshold value for a
user specified criteria (element aspect ratio, face angles etc.)

Once the target vertex is chosen after the topological and geometric checks,
[5], collapsing can be broken down into the following steps:

1. Delete all the mesh faces connected to 5,77, which forms a convex cavity
(see Figure 12(b)).

2. Connect the vertices of the cavity to the 5,7, forming new mesh faces and
mesh edges (see Figure 12(c)).

Edge to be collapsed

(b) (¢}
Figure 12. Steps involved in collapsing an edge
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4 Implementation details

This section describes the implementation details of the refine-
ment/derefinement procedures discussed in the previous section. These pro-
cedures have been written as a stand alone module without any tie to a particular
mesh generator or a modeler. To achieve this the module which query or change
the mesh database have been made operator driven. The current implementation
uses the SCOREC mesh database operators [3] to interact with the modeler
and the mesh.

The main interaction with the geometric modeler is to get the proper spatial
coordinates at the mid point of the edge when the edge is split. When a mesh
edge classified on a boundary edge (GT}) is split the newly created vertices should
be snapped onto the appropriate model entity instead of living it on the straight
sided segment (see Figure 13).

1
Model . Edgeto be splitM'{ o

\

Vertex snapped on
model boundary

t= (tg+ t2)/2

N
\

Figure 13. Snapping the vertex on the boundary of the model entity

" A linear interpolation in the parametric space of ;7. is done to obtain the
parameter values of the split point (see Figure 13) and the modeler functionality
is used to obtain the spatial coordinates given the parametric value on the model
entity. . In the Figure 13 to obtain the parameter values (t) of the split point
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IO (which is in the middle of the edge ;,77) a linear interpolation between the
parameter values of the two end points of the edge is done to obtain t = (f; +
t;)/2. Modeler functionality is also used to get the parameter values on a higher
order entity given the parameter value on a lower order entity.

The pseudo code describing the refinement process is given in Figure 14 and
the pseudo code describing the derefinement process is given in Figure 15.

Procedure 2DRefine

{

/* This module does the overall refinement in 2D */
/* Loop over all the mesh faces, and find if any
of its edges needs to be refined */
for ( 1 = 0 ; i < numFaces ; i++ )

{

}

e

/* Check if any of the edges needs to
be refined */
numRefine = refineEdges (i) ;
/* Switch to the appropriate template
based on the number of edges to be refined */
if ( numRefine == 1 )
{
/* Only one edge needs to be refine, call the
1 edge template */
1 edgeTemplate (i) ;
t
else if ( numRefine == 2 )
{
/* Two edges of the face needs to be refined, call the
2 edge template */
2 edgeTemplate (1) ;
} .
else if ( numRefine == 3 )
{
/* Three edges of the face needs to be refined, call the
3 edge template */
3 edgeTemplate (i) ;
}

/* End of loop over all the faces */

Figure 14. Pseudo code describing the refinement process
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Procedure 2DDerefine

{
/* This is the main module which does the derefinement of

mesh edges */
/* Loop over all the mesh edges and check if the edge has
been marked for derefinement */ :
for ( 1 = 0 ; i < numEdges ; i++ )
{
if (OKto(Derefine,i))
{
/* Edge is 0.k to derefine, check for topological
and geometric validity */
/* Vertex 0 of the edge is the collapsed vertex */
statusl = checkvalidity(vertex0,vertexl, émetricl) ;
/* Vertex 1 of the-edge is the collapsed vertex */
status2 = checkValidity (vertexl,vertexO, &metric2) ;
/* Check if both of the collapse is valid */
if ( statusl && status2 )
{
/* Choose the best among the two collapse */
if ( metricl > metric2 )
2dCollapse (i, vertex0,vertexl) ;
else
2dCollapse (i, vertexl, vertex0) ;
}
/* Check which configuration is valid */
else if ( statusl )
2dCollase (i, vertex(,vertexl) ;
else if ( status2 )
) 2dCollapse (i, vertexl, vertex0) ;
} /* Edge is o.k to refine */
} /* End of loop over all the edges */

Figure 15. Pseudo code describing the derefinement process
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5 Results of implementation

Figure 16 shows a thick walled cylinder subjected to uniform external pres-
sure. One quarter of the cylinder was modeled due to symmetry. The geometric
model was generated using the PARASOLID solid modeler and the initial mesh
shown in Figure 17(a) was generated using Finite Octree [11]. ABAQUS was
used for assembly and solution and an interior residual error estimator which uti-
lizes the flux balancing algorithm of Ainsworth and Oden [1] has been used to
estimate the error. The decisions about which elements to split for refinement was
predicted by an algorithm given in [4]. The refinement/derefinement procedures
given in Section 3 have been used for the local refinement of the mesh. The mesh
shown in Figure 17(e) is final mesh generated after the second adaptive step and
the mesh shown in Figure 17(c) is an intermediate mesh. The relative error in the
results of the analysis using the mesh in Figure 17(e) was less than the allowable
relative error of 5% which was specified by the user.

Uniform pressure

00 OO0 Q0 OO0

OO 00000

Figure 16. Thick wall cylinder, boundary conditions
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Figure 17. Initial and final meshes used in the analysis
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Figure 18 shows a square plate with symmetric cracks subjected to a uniform
pressure (tension) load. One quarter of the plate was modeled due to symmetry.
The mesh shown in Figure 19(a) shows the initial mesh which was used in the
analysis. The finial mesh shown in Figure 19(e) was generated after the second
adaptive step. The allowable relative error was specified as 5%. Figure 19(c)
shows one of the intermediate meshes in the adaptive analysis.

i

Q 0O 0O O O O 0 O

C O O OO0

Figure 18. Cracked plate with boundary conditions
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Figure 19. Initial and final meshes used in the analysis  (Continued) . . .
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