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GLOSSARY OF CONVENTIONS AND NOTATIONS

CONVENTIONS:
The following conventions are used to distinguish different entities in the text:

(a) sets and spaces — Zapf Chancery font: B, S,

(b) scalars — lightface italic: W, p;

(c) vectors and second order tensors — boldface italic: v, F, o

(d) higher-order tensors — boldface Helvetica font: C;

(e) arrays — boldface italic: Y;, ¥ :

(f) sub-arrays using the same name — boldface italic between square brackets or braces, with indi-
ces specifying the partition: [Y;] w , {ve}a ; ,

a a

i {-ve}i ;

(h) material quantities, reference configuration — upper case, or 0 as subscript: X, ng;

g) array elements ~ lightface italic between square brackets or braces: [Y;]

(i) spatial quantities, current configuration ~ lower case: x, 1;

Throughout the text, the convention of summation over repeated indices applies only to
subscripts and superscripts in izalic (superscripts and subscripts in roman letters are considered
part of the variable name). The comma convention, where a comma in the subscript denotes partial

differentiation, is often used to shorten the equations.

NOTATIONS:

Auxiliary Notation

()% superscript denoting the otth constituent;

( )aB superscript with two greek letters denoting a relative quantity: ( )aB= ()% ( )B;
(")  prescribed value;

) condensed form of a tensor: S ;

@ assembled counterparts of the element vectors, or supply quantities in the theory of

. A O
mixtures: ¥, ¢ ;
o reference configuration: #y;

(O)° array defined at element level;

xil




Of superscript denoting the fluid phase;

O superscript denoting the solid phase;

()™ symmetric part of a tensor;

L()  linearized form: £(C®%);

= sign meaning that the right-hand-side defines the left-hand-side (used to infroduce

intermediate matrices in the finite element formulations).

Boundary Value Problems

i,j indices referring to the current configuration;
K,L  indices referring to the reference configuration;
R set of real numbers;

R"<  Euclidean n,zspace;

Q domain in R"¢;

Q closure of £2;

I'  boundary of £;

I part of the boundary where Dirichlet conditions are prescribed;
I part of the boundary where Neumann conditions are prescribed;

S=42 current configuration of the body;
B = {2, reference configuration of the body;
x position in §;

X position in B.

Functional Spaces

(¢ . . -
S space of trial solutions for the ath constituent;
P space of trial solutions for the pressure;
o o . L
v space of weighting functions for the ath constituent;

7P space of weighting functions for the pressure.

xiii




Tensor and Matrix Notation

1 second order identity tensor: [1]; = Si i

a®b tensor product of two vectors, which has the property (a®b)v = a (b -v) forarbitrary
v: [a®b] Vo aibj;

w -t  contraction of tensors: w - £ = witi;

. e i ij
on contraction of tensors (omitting the dot): (on) = J ng
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Abstract

This thesis addresses finite element based computational models for the 3-D nonlinear
analysis of soft hydrated tissues such as articular cartilage in diarthrodial joints under physiologi-
cally relevant loading conditions. A biphasic continuum description is used to represent the soft
tissue as a two-phase mixture of incompressible inviscid fluid and a hyperelastic, transversely iso-
tropic solid. The theoretical foundations of this theory are reviewed with emphasis on constitutive
modeling. Alternate mixed-penalty and velocity-pressure finite element formulations are used to
solve the nonlinear biphasic governing equations, including the effects of a strain-dependent per-
meability and a hyperelastic solid phase under finite deformation. The resulting first-order nonlin-
ear system of equations are discretized in time using an implicit finite difference scheme, and
solved using the Newton-Raphson method. Both formulationls are used to develop quadrilateral
and triangular elements in 2-D and hexahedral and tetrahedral elements in 3-D. Numerical exam-
ples, including those representative of soft tissue material testing and simple human joints, are
used to validate the formulations and to illustrate their applications. While not the central objective
of this work, important insights have been gained from selected linear biphasic analyses. A focus
of this work is the comparison of the alternate formulations for nonlinear problems. While it is
demonstrated that both formulations produce a range of converging elements, the velocity-pres-
sure formulation is found to be more efficient computationally. | "

A significant contribution of this work is the implementation and testing of a biphasic
description with a transversely isotropic hyperelastic solid phase. This description considers a
Helmbholtz free energy function of five invariants of the Cauchy-Green deformation tensor and the
preferred direction of the material, allowing for asymmetric behavior in tension and compression.
An exponential form is suggested, and a set of material parameters is identified to represent the
response of soft tissues in ranges of deformation and stress observed experimentally. After demon-
strating the behavior of this constitutive model in simple tension and compression, a sample prob-

lem of unconfined compression is used to further validate the finite element implementation.

Xviii






CHAPTER1

Introduction and Historical Review

I am sure that the greatest contribution of biomechanics to mechanics lies in its youthfulness.
It brings mechanics back to a new formative stage, and asks it to be young again.
Y.- C. FUNG.[33, p.14]

In the last fifteen years, an impressive body of work related to articular cartilage and other
biological soft hydrated tissues has contributed to expand the “biphasic theory” based on the
biphasic model presented by Mow et al. {70]. In that seminal work, and in subsequent experimen—
tal and theofetical studies extending it, the biphasic model represents biological soft hydrated tis-
sues as a binary continuum mixture composed by a solid matrix immersed in interstitial fluid, and
its strength lies in general assumptions and constitutive laws validated experimentaily.

The biphasic model has many practical applications in biomechanics. Direct applications
include: (a) the correlation between failure mechanisms in biological tissues and d¢generative dis-
eases; (b) the determination of ktissug degradation based on mechanical and biochemical proper-
ties; (c) the comparison and evaluation of surgical procedures to replace damaged tissues, using
biological or synthetic grafts; and (d) the development of synthetic material replacement for bio-
logical soft hydrated tissues. Applications aimed at understanding mechanisms fundamental to
joint mechanics also exist. The representation of fluid flow within articular cartilage, for instance;
is a prerequisite for understanding the mechanisms of lubrication, friction and wear that occur in
diarthrodial joints. Such knowledge is necessary for modelling the deformational behavior of
joints, and is essential for the development and evaluarion of less invasive surgical procedures and
prosthetic devices.

Virtually any physiological application of the biphasic continuum description implies the

_use of nonlinear and anisotropic constitutive models, irregular three-dimensional geometries, and

complicated boundary conditions, characteristics that can only be simulated numerically. Even the

investigation of constitutive laws for biological tissues, which depend on experiments performed



on small, inhomogeneous specimens, often requires solutions of corresponding continuum prob-
lems that are intractable analytically. Therefore, applications of the biphasic model require effec-
tive and reliable numerical methods, such as the finite element method, that can cope with all the
characteristics mentioned above. The purpose of this investigation is to develop and evaluate finite
element formulations to simulate the biphasic, anisotropic and nonlinear Eehavior of biological
soft hydrated tissues, in particular articular cartilage. The work involves the development of alter-
nate finite element formulations of the biphasic theory, and the computational implementation of a

hyperelastic, transversely isotropic constitutive model.

1.1 Articular Cartilage

In this section articular cartilage and its constituents are briefly described, and structural
features relevant to the finite element representation are reviewed. For complete discussions of this
érea and extensive lists of related references, see review papers by Woo et al. [117], Mow et al.
[72, 73] and Setton and Mow [89]. )

The human musculoskeletal system contains a number of freely articulating joints called
diarthrodial, or synovial, joints. Some examples are the ankle, knee, hip, shoulder, and elbow.
Diarthrodial joints provide anatomical congruity and stability for a large range of loads and rela-
tive motions. They constitute excellent mechanisms for shock absorption and load transmission |
between thie bones.

To illustrate the characteristics of articular cartilage in diarthrodial joints we will look at

‘the knee. Figure 1.1 shows a schematic cross-section of the human knee, where contacts between
the femoral condyle (lower base of the femur) and the tibial plateau (upper end of the tibia), and
between the femoral condyle and the patella are emphasized. Thin layers of cartilage cover the
articulating surfaces of the bones and, together with the meniscus, are enclosed in a fibrous cap-
- sule. A vascular membrane-lines the-inner-surface of the fibrous capsule and is responsible-for the
- production of synovial fluid that fills the joint cavity (the region surrounded by the cartilage sur-

faces and the fibrous capsule). Ligaments and tendons, together with the meniscus interposed
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Figure 1.1 Schematic representation of the human knee joint.

between cartilage layers, contribute to the alignment of the bones and to the overall stability of the
joint.

Arﬁcular cartilage works as a bearing element in the joint and censists of an avascular and
aneural layer of soft tissue. If is cemposed bof a solid matrix of collagen fibrils and proteoglycan
aggregates satufafed with interstitial fluid (Fig. 1.2). Articular cartilage exhibits anisotropic prop-
erties that feﬂect the orieﬁtation of coilegen fibrils in planes paraﬂel end perpendicular to the artic-
ular surface. The fibril orientation follows certain pattems accordmg to the cartilage zone. As
shown in Fig. 1.2 (a), fibrils are orgamzed parallel to the surface on the superﬁcml tangential zone,
becoming thicker and more randomly oriented in the middle zone. In the deep zone fibrils form
bundles which are inserted into the calcified cartilage, providing support for the tissue on the sub-
chondral bone. |

Interstitial fluid, basically water and electrolytes is the major constituent of articular carti-
lage (with 60 to 85% of the total weight), followed by collagen (15 to 22%), proteoglycan 4 to

7%), and other constituents [72, 89]. The dlstnbutlon of the constituents is inhomogeneous




throughout the thickness. The water content and collagen content decrease with depth, being
higher in the superficial tangential zone. The opposite occurs with proteoglycans, with higher con-

tents in the deeper zones.

Articular Surface
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Figure 1.2 ‘Structural features of articular cartilage: (a) orientation of the collagen network in
different zones of the cartilage layer; (b) schematic representation of the molecular organization.
Figures based on drawings presented in Mow etal. [72].

‘ Proteoglycan monomers, being negatively charged and restrained within the tissue, are
associated with the swelling pressure of articﬁlar cartilage. First, the high density of the fixed
charges within fhe tissue ipduces repulsive forces between charged groups and between proteogly-
can monomers. Second, the fixed charges give rise fo concentrations of counter-ions, whose imbal~
ance is responsible for the Donnan osmotic pressure in the tissue. The electro- and physico-
chemical properties and the stiffness of the collagen-proteoglycan network determine the overall
compressive stiffness of the tissue. On the other hand, the tensile stiffness depends mainly on the
collagen fibrils, with the entanglement with proteoglycans aggregates contributing indirectly

through the pre-stretching of the collagen network.
1.2 Constitative Model

Articular cartilage was first modelled as a single-phase elastic material and solutions to the

associated continuum representations were obtained using the theory of elasticity. Poor correlation



with experimental results, however, indicated the need to incorporate viscous effects in order to
explain the time-dependent response and incomplete recovery after unloading. The viscoelastic
models that followed were able to represent the creep and stress-relaxation phenomena. Neverthe-
less, they were inadequate for articular cartilage because they cannot represent the transient
stresses caused by the ﬁuid flow within the tissue.

In order to include flow-dependent effects in the constitutive model, Mow et al. [70]
developed the biphasic model for soft hydrated tissues based on the theory of mixtures of Trues-
dell and Toupin [109]. The biphasic model describes articular cartilage as a mixture of two immis-
cible and intrinsically incompressible constituents: a porous and permeable solid matrix of
collagen and proteoglycans saturated with interstitial fluid. It is assumed that the interaction
between solid and fluid phases is the major factor responsible for the apparent viscoelastic behav-
jor in compression. The biphasic theory has been validated experimentally for articular cartilage
under various loading conditions [2, 63, 69]. Its current form considers strain-dependent perme-
ability [42-44, 61], finite deformation and hyperelasticity [43, 44, 57, 58, 71, 105], including
anisotropic hyperelastic materials [24]. A triphasic model has also been developed based on the
theory of mixtures [59]. This model has an additional ion phase representing the dissolved solute
concentration, and can predict the Donnan osmotic pressure and the chemical-expansion stress

responsible for the swelling of the cartilage.

1.3 Finite Element Formulations

Some background on types and titles of finite element formulations for biphasic continua
may help. For purposes of this discussion we refer to biphasic or poroelastic models as “dynamic”
if the inertial terms are included in the momentum equations. Quasistatic models are those for
which the inertial effects can be neglected. On the other hand, quasistatic formulations for bipha-

sic--continua with - intrinsically--incompressible constituents_can be classified in three broad

groups:




a) penalty and mixed-penalty formulations, where the continuity condition is imposed using a
penalty parameter;
b) mixed u-p formulations, where the linear momentum equation for the fluid is used to elimi-
nate the fluid velocity, and the pressure is continuously interpolated between elements;
'¢) hybrid formulations, where the momentum equation for the mixture is satisfied exactly and
equilibrated stress/pressure are interpolated.
To our knowledge, nonlinear hybrid formulations for biphasic continuum have not been devel-
oped. Readers interested in linear hybrid formulations can consult the papers of Vermilyea and
Spilker {112, 113]. Formulations considering compressible constituents are common in soil
mechanics and can be specialized for incompressible constituents. The resulting formulations
admit one of the following classifications: mixed u-p, if the pressure appears as unknown, and
penalty with reduced integration, if it does not. In the discussions which follow, formulations are
identified using the following designations: p (or 7) denotes the pressure, u and U denotes solid
and fluid kinematic unknowns (displacements, velocities, accelerations, or corresponding incre-
ments), and w denotes a kinematic unknown that describes the relative motion of the fluid phase

with reSpect to the solid phase.

Finite element formulations based on the poroelastic theory of Biot [10, 11] were first 4

developed in soil mechanics. The linear u-p formulation of Sandhu and Wilson was presented in
1969 [88], followed by the dynamic u-w formulation of Ghaboussi and Wilson in 1972 [37]. Zien-
kiewicz et al. [119] and Carter er al. [22] presented elastoplastic formulations considering large
deformations. Prevost used the framework of the theory of mixtures to derive constitutive models
for elastoplastic and path-dependent soils [81]. He developed nonlinear u-p and u-U formulations
to investigate consolidation [83] and the dynamic response of saturated soils {82, 84].

In biomechanics, Oomens et al. [79, 80] presented a nonlinear u-p formulation based on

the theory of mixtures to study porcine skin. In their theory, a simplified form of Fung’s exponen-

tial strain energy function [34] was used to represent the solid matrix. A similar formulation was

presented for articular cartilage by Wayne et al. [115], who adopted one of the Helmholtz free



energy functions proposed by Kwan et al. [57]. Simon and Gaballa [92], and Yuan and Simon
[118] presented nonlinear u-p and u-w formulations based on the poroelastic theory of Biot to
study arterial walls.

Spilker and Suh [100] presented a penalty finite element formulation of the linear biphasic
mixture equations for soft tissues, and used that formulation to develop a 4-node, axisymmetric
biphasic element. This formulation was extended later to include the nonlinearity due to strain-
dependent permeability, finite deformation and a hyperelastic solid phase [105]. The mixed-pen-
alty formulation for the linear biphasic model was presented by Spilker and Maxian [99]. For a
six-node triangle, it was found that the linear mixed-penalty approach was superior to the standard
penalty formulation, justifying the extension of this formulation to contact problems and to nonlin-
ear problems. Donzelli [27, 28] used the mixed-penalty triangle to implement the contact condi-
tion for biphasic matérials derived by Hou et al. [46]. As for nonlinear problems, initial results of
this thesis have already been presented [97, 98], confirming the accuracy of the mixed-penalty tri-
angle in numerical simulations of nonlinear confined compression problems.

Studies comparing finite element formulations for biphasic continua exist in the literature
of soil mechanics and biomechanics. Formulations for soil dynamics are discussed by Zienkiewicz

and Shiomi [120]. Higher-order one-dimensional elements were evaluated by Simon ef al. 193],

who also compared the z-p and u-w formulations using various time-integration schemes [94].

Insights into the u-p and u-U formulations were presented by Mish et al. [68]. There is an agree-
ment upon the use of the u-p formulation in consolidation problems (quasistatic), and the use of
the u-U and the u-w formulations in dynamic problems. However, issues concerning the loss of
accuracy at early times [85], hyperelastic materials and strain-dependent permeability were not
covered. In biomechanics, Spilker et al. [101] discussed the differences between penalty, mixed-

penalty and hybrid finite formulations for biphasic continua.

- —<While-a number-of studies-of biphasic and poroelastic models have been performed, there

is still relatively little known about the relative merits of the finite element formulations when ‘

applied to the 3-D, nonlinear, hyperelastic problems with strain-dependent permeability. This the-



sis addresses two alternate formulations, a mixed-penalty and a velocity-pressure formulations, for
such problems and considers a number of 2-D and 3-D elements with each formulation. The inten-
tion is to provide guidelines toward identifying a superior formnlatidn and element for such analy-
ses. A relevant part of this work is the inclusion of a transversely isotropic hyperelastic solid phase
in the biphasic finite element model. Within this development, a particular free energy function is
suggested and evaluated. Example problenis related to material testing configurations and simple,

clinically-relevant problems are used to evaluated the methods.

1.4 Layout of this Thesis

A brief summary of the main contents in each chapter of this thesis is given below.

In the next chapter, the kinematics and axioms of the theory of mixtures are reviewed.
Basic concepts, notation and definitions are introduced for later reference in the derivation of gen-
eral forms of constitutive equations. At the end, the main assumptions of the biphasic theory are
employed to derive balance equations and the entropy inequality.

Chapter 3 covers the theory necessary for the implementation of anisotropic materials.
The general framework used to study constitutive equations is reviewed, including possible
restrictions upon these equations. Experimental assumptions simplifying the form of constitutive
equations are discussed, followed by examples of Helmholtz free energy functions for soft“
hydrated tissues found in the literature. The theory is then used to derive the elasticity tensor for
transversely isotropic materials. The chapter ends with a summary of the governing equations for
biphasic problems.

‘The extension of the biphasic mixed-penalty (MP) formulation to noniinear problems is a
major contribution of this study. The complete derivation plus the algorithm used to solve the non-

linear system of equations are presented in Chapter 4. In a manner parallel to incompressible

--media-formulations, the-use-of a discrete divergence-operator in-the-nonlinear-penalty formulation

leads to the equivalence with the MP formulation, a result that is shown here for the first time. A




variant of the u-p formulation, called v-p to emphasize that increments of velocity are used as
unknowns, is also reviewed taking advantage of the development for the MP formulation.

Chapter 5 is dedicated to the finite elements used in the MP and v-p formulations. The lin-
ear version of the confined compression creep problem is used to access element behavior and per-
formance. In Chapter 6, several nonlinear problems are solved using two- and three-dimensional
elements to demonstrate their capabilities.

The computational implementation of transversely isotropic materials is validated in
Chapter 7. In this process an exponential Helmholtz free energy function is tested in its ability to
represent the asymmetric behavior in tension and compression characteristic of biological tissues.

Concluding remarks and suggestions for future studies are found in Chapter 8.






CHAPTER 2

Field Equations for a Biphasic Mixture

“.. To develop the general theory the notation alone can be overwhelming

as it usually involves several alphabets and multiple layers of subscripts.”

M. H. HoLMES [45, p. I1.1]

This chapter introduces the field equations of a biphasic mixture based on the theory of

mixtures of Trﬁesdell and Toupin [109]. First the kinematics and axioms of the theory of mixtures

for an arbitrary number of constituents are vpresented. The a;sumptions enunciated by Mow et al.

[70] are then used to derive the field équatioris for a biphasic mixture under finite deformation. As

in Mow et al. [70], we adopt a notation and a‘nomenclature that is almost standard in the contin-
uum mechanics of a single-phase continuum [40, 66, 67].

The current framework of the theory of mixtures was developed by, among others, Bowen

[18], Atkin and Craine [3, 4], and Bedford [8]. The papers by Bowen, and Atkin and Craine greatly

contributed to resolving the uncertainties about the entropy inequality of a mixture, a polemic subject

that “survived” the 1960’s without general acceptance. Each of the above references is a thorough

and updated review of the original theory proposed by Truesdell [107] and, together with a paper by

Bowen [19], constitute the main references for the next two sections. The outline of this chapter is

similar to that used by Kwan [58], Mow et al. {71}, Holmes et al. [43], Suh [103], vand Cohen [24];

the main difference is the emphasis on issues related to the finite element implementation.

2.1 Kinematics of a Mixture

A mixture can be seen as a superposition of deformable continua, or constituents, that
occupy the same domain £2in three-dimensional (3-D) space at the current time ¢. In order to rep-
resent the motion of the mixture, quantities associated with the motions of the constituents and the
mixture as a whole must be defined. Let 3% denote the current configuration of the ath contin-

, .0 . .
uum, or constituent, whose domain {2~ and boundary ™ are shared with other constituents at

10
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time ¢ (Fig. 2.1). Each constituent follows an independent motion and has a fixed but otherwise

. . o . NP 2
arbitrary reference configuration B, occupying a domain £2, at time ¢,

time t;

Xz, X3

~ Figure 2.1 The kinematics of a mixture.

“Let X% denote the position of a particle of the ath constituent in its reference configura-

tion. In the current configuration, the position of this particle is given by

=x=x"(xX%y, @2-1)-

o, . , . C )
where X is the deformation funcrion of the cth constituent, which is assumed to be smooth and
-1 ‘
. . o 2 . . .
invertible suchthat X = (x ) (x, ) . The velocity and acceleration fields of each constituent

are defined, respectively, as

V% = %x“(x“, 9|, 2-2)
Xﬁ

o 0 82 o, 0

AT ) = Zox & 2-3)
Xa




12

Using the inverse of the deformation function, we can rewrite the velocity as a function v~ of the

current position x:

Vet = V(XD (0. D, (2-4)

where v is called the spatial or current description of the velocity, while v® is called the mate-
rial or reference description. When a common system of reference is used for the position vectors
% and X%, the displacement field is defined as u*(X%, 8 = x-X".

As in the continuum mechanics of a single-phase continuum [40, 66, 67], the deformation

. . . a . . .
gradient F* and the velocity gradient L~ of each constituent are linear transformations defined as

F =V .x = ax_a’ (2-5)
0X
L% = w® o’
=t =9 (2-6)
ox

where V is the gradient operator, and VX“ denotes the gradient operator with regard to reference

coordinates. The Jacobian determinant of the deformation is given by
J* = de(FY, 2-7)
while the right and left Cauchy-Green deformation tensors are defined, respectively, as

o aToc

T
c* = F* F%, B* = F*F* . (2-8)

These two tensors have the same principal invariants given by

& o o
If=uc®, I)=

X i_(tr ¢ —u c““J, I3 = det C”. (2-9)

p* = %['Vv“ﬂ» (W% T] (2-10)
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In what follows we consider an immiscible mixture, for which both the mass mg and the
o . .
volume V' of the ath constituent are well defined when an element of volume V o of the mixture

is given. The apparent densiry pa and the true density p% are then defined as

m(l
pa(x, )= lim ==

, (2-1D
V.= ()Ve

[84
. me '
lim —. (2-12)

VZ—-)OV:

Pr?(x, )

In reality, V_ and V: must be such that the éverage material‘ properties and mechanical interac-
tions computed within elements of volume are representative of the mixture, not a separate constit-
uent, around a position x. Note that if a constituent is assumed to be intrinsically incompressible,
its true density remains constant during the process. The volume fraction ¢a of the ath constituent

is defined as

poc
==, (2-13)

¢a(x, f) = lim

e

o
£
oV,

and, consequently,
Yot =1. (2-14)

The previous definitions are associated with an arbitrary constituent. Let us now define

functions associated with the mixture as a whole, starting with the density of the mixture defined as
o
pl, ) = Y pxD. (2-15)
a

If the fields, say f oL(.vc, 1), of all constituents are given, the baricentric or mean function f(x, ) of

the mixture is defined as a mass-weighted average given by
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flx 1 = Il;z p% . (2-16)
04

Thus, the baricentric velocity, which corresponds to the velocity of the center of mass of the mix-

ture, 18
1 o o
v(x,t) = = 12 ‘ 2-17
x, ) p§ap 2-17)

Two kinds of material derivatives are defined in the theory of mixtures: one following the motion

of the ath constituent,

] o o

D¢ _o9p o g o D™'w
dt Dt

aw™ o, o
== +(Vwhv, (2-18)
and another following the motion of the center of mass of the mixture,

o o o
b o, v BB wme, e

where (pa and w” are spatially smooth scalar and vector valued fields, respectively. The material

derivatives are related by

o o o a o o
¢ _Do 5% vo* Dw _Dw o, o )
By T +v o, B~ = Di +(Vw v, 2-20)

W)

0, g . . )
where ¥ is the diffusion velocity of the ath constituent, and is defined as

~0

7% = v v, (2-21)

Finally, the material derivative of a baricentric function ¢ is related to the material derivatives of

the corresponding functions (pa of the constituents through the identity [18]:
o o
Do _ oD Q" g O OO A0 O §
B: = %[p 5 v (pev)+ip } (2-22)

where 2° represents the mass supply as will be defined in Subsection 2.2.1.
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2.2 Fieild Equations for a Mixture

The thermodynamical processes of mixtures are embraced by the same axioms postulated
for a single-phase continuum: the balance equations of mass, linear and angular momenta, the bal-
ance equation of energy, and the entropy inequality. The first three axioms correspond to the prin-
ciples of mechanics while the last two correspond to the first and second laws of thermodynamics.
In the theory of mixtures, the four balance axioms are stated for each constituent, and new terms
are provided to account for the interactions among constituents. There are also four balance equa-
tions for the mixture as a whole. They are postulated based on the Principle of Mixtures, which
states that the equations for the mixture should have the same form as those for a single constituent
[4]. Alternative forms of these equations, directly restricting the interaction among constituents,
are derived by enforcing compatibility between the equations for the mixture and the sums of the
corresponding equations for the constituents. The entropy inequality, unlike the other axioms, is
stated only for the mixture as a whole, and so it is essential for defining the admissible form of the

constitutive equations, even for mechanical theories.
2.2.1 Balance of Mass

For a fixed domain £2 bounded by a surface I, the axiom of balance of mass for the ath

constituent is expressed as
% [pPaa+ [p™% nar = [da, (2-23)
£ r 0Q

where &% is the mass supply, representing the rate of mass transferred per unit of volume from
other constituents. With the use of the divergence theorem, the local form of Eq. (2-23) can be

written as

8p‘a — e . )
P yv. Y =% (2-24)
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Since the total mass must be preserved, the axiom of balance of mass for the mixture is postulated as

Pp.y. - .
§—t+V' (pv) = 0. (2-25)

From the comparison of Eq. (2-25) with the sum of the Egs. (2-24) for all constituents, it follows that

2&“ =0. (2-26)

o4

In this work we are concerned with mixtures whose constituents are immiscible

o o o L . . o o . ..
(p" = ¢ pp)and intrinsically incompressible (D~ p/ Dt = 0). For these mixtures, it 1s conve-
nient to eliminate the densities of the constituents in favor of their volume fractions and thus to

replace Eq. (2-24) with

04 A

9 L v. (oMY = &, @2
at o
Pt

The sum of the Egs. (2-27) for all constituents produces the continuity equation for the rﬁixture:
o o c‘:a
SV = (2-28)
a o Pr ; C

where use has been made of Eq. (2-14).
2.2.2 Balance of Linear Momentum

The axiom of balance of linear momentum for the cth constituent is expressed as

a
% j % dQ + j pX* (v* mydr = j t%dr+ j( p’p w4 a“v“)da, (2-29)
o} r r Q
where b% is the external body force per unit of mass, 7 is the momentum supply per unit of vol-

ume (also called local or internal body force) and ¥ is the external traction force. The term

o Lo . . . .
(7 +¢& v ) results from the interaction with other constituents. The tetrahedron argument
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[109], also known as Cauchy’s fundamental lemma [62], is employed to establish the existence of

. o
the partial stress tensor o such that

[0 (¢4

on=t. (2-30)
Introducing this equation into Eq. (2-29), and applying the divergence theorem to obtain the local
form, yields

a o

oDy
Dt

o
= V~o-a+pab +re (2-31)

The axiom of balance of linear momentum for the mixture is postulated as

Dv

pE =V.o+pb, ‘ (2-32)

o
where b = (1/p) Za pab is the external body force per unit of mass, and the stress tensor for

the mixture is defined as [109]
o= ("-p""®). (2-33)
a

The requirement that the sum of the linear momentum equations for the constituents is equal to

Eq. (2-32) produces the following condition for the mixture:

3 (w*+2%% = 0. (2-34)
. , |

2.2.3 Balance of Angular Momentum

The axiom of balance of angular momentum (or moment of momentum) for the oth con-

stituent is expressed as

%J‘pax Xy dQ+ jpax x v (va . h) ar =
. "'."’Q""' - " T B T

(2-35)
[+

jx x (o%n)dl+ j [x x (p"b + s a“v“) +ﬁz°‘]dg,

r 2
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where 7" is the angular momentum supply, and the last integral, except for the external body forces,

is due to the interaction with other constituents. The local form of Eq. (2-35) can be written as

O a aof

M =0 -c , (2-36)

N . . . L O
where M is the skew-symmetric tensor associated with the vector m !

I Y
[0 o
0 my -m,
B = 0 mY| 2-37)
a [0
my Ty 0 |

. a . P
It is clear from Eq. (2-36) that the stress tensor o 1s symmetric in the absence of angular
momentum supplies.

The axiom of angular momentum for the mixture.is postulated as

D Dv .
p—D—t(xxE;)_V-(xxa)+pxxb, (2-38)

from which reéults the symmetry of the total stress tensor (o = CTT ). Adding Egs. (2-36) for all

constituents, and making use of the symmetry of o, yields the following equation for the mixture

2:?:"‘,: 0. (2-39)

o
2.2.4 Balance of Energy

The axiom of balance of energy (or first axiom of thermodynamics) for the ath constituent

is expressed as

2 2
9 pa(aa+%va )d.(2+'{pa(ea+%va )va-ndl" =
r

Q
J.(a-a va-qa)-ndl“+][para+(pab +1ra)-va+éa+aa(ea+lva ndﬂ,
2 02
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2
where v* = v y® , " is the internal energy density (or specific internal energy [45]) of the

ath constituent, qa is the heat flux vector, r is the external heat supply deﬁsity per unit of mass,
and £% is the energy supply to the cth constituent, which accounts for the energy interactions, just
as 7 accounts for the linear momentum interactions. The left-hand side of Eq. (2-40) corre-
sponds to the rate of change in the internal and kinetic energies within a fixed domain £2 plus the
rate of change in energy associated with mass influx. With the use of the divergence theorem, the

local form of the above equation is obtained:

a o

alD €
Dt

= on L%~V g%+ %% 8%, (2-41)

a ¥ . . .
where L~ denotes the gradient of velocity of the ath constituent.

The axiom of balance of energy for the mixture can be written as

De :
P5; = © L-V q+pr+§p v b, \ (2-42)
where 7 is the external heat supply density for the mixture,
1 a o
r== r, , (2-43)
pgp |
£1s the internal energy density for the mixture,
1 a0 O 1 a o
8—8I+-2—p2pv ‘v, EI:;SZPS , (2-44)
o a
and q is the heat flux vector for the mixture,
T .
g=gq;+ %Zpa Cal 7% 7%, q; = Z(qa —o% 5%+ paeaf»a) , (2-45)
o a

with € being the inner part of the internal energy density, and q; being the inner part of the heat

flux vector.
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The derivation of the condition that enforces compatibility between the balance equations
for the constituents, Eq. (2-41), and for the mixture, Eq. (2-42), can be found in Bowen [18]; the

resulting equation is:
z {éa + c‘:a( e+ %f»a . f’a) P Ga] = 0. (2-46)

2.2.5 The Second Axiom of Thermodynamics

The entropy inequality for the mixture (or second axiom of thermodynamics), is postulated

as [18]

3 o , e pocra
.a__jpndmfjpnv -ndll 2 —jz—&~ndr+j ~-dQ, (2-47)
Q r rob oo B

a . . - .
where h° is the influx vector, and @ is the absolute temperature for the oith constituent. The

equal sign holds for reversible processes, and the symbol 7 denotes the entropy density for the

mixture, which is defined as

= %2 pin @ n, (2-48)
o

w1th n bemg the entropy density ass1gned to each consutuent Following Bowen [18], the fol-

lowmg relationship is assumed between the mﬁux vector and the heat flux vector:

o
B* = q"+6%p 0. o (249)

With this assumption, the local form of Eq. (2-47) becomes

o o ’
+V 2( +p%n% J— pg; >0. (2-50)
o

Equation (2-22) can be used-to-eliminate the entropy density for the mixture, yielding

D(l o (1 o & o o
2{:/) 21 .v. )-p L +e%n }zo. (2-51)
Dt o o
o 6 8
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Using Eq. (2-41) to eliminate the term para , produces

oo o o »
1| o DN D¢ @ o | V6| o o oo« > i
2;9“@)[6 = —-75—J+a-.L (-;;j i+ 917}_0. (2-52)

As a matter of convenience, the internal energy in the total derivative can be replaced by the Helm-
holtz free energy function, defined as
y = -6 (2-53)
Using this definition and the balance of energy for the mixture, Eq. (2-46), yields
a o o O o o
o™ Dt Dt t o> .
& (2-54)
—éa(y/a+%§a- fza)] 20.

Notice that the above form of the entropy inequality can be readily simplified in the case of an iso-

thermal mixture without mass exchange.

2.3 Balance Equations and Entropy Inequality for a Biphasic Mixture

In what follows the name biphasic mixture designates a binary mixture composed of a

porous solid matrix saturated with fluid. The constituénts, or phases, are asSumed to be immisci~
ble, intrinsically incompressible and chemically inert. It is further assumed that the mixture is iso-
thermal and has a constant temperature 8y-

The above assumptions considerably simplify the balance equations and the entropy ine-
quality for a biphasic mixture. Thus, it is worthwhile to specialize the previous equations before
proceeding with the constitutive equations in the next chapter. Superscripts “s” and “f” are used to

identify quantities associated with the solid and fluid phases, respectively (Fig. 2.2).
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Xl,xl

Figure 2.2 The kinematics of a biphasic mixture.

2.3.1 Balance of Mass for a Biphasic Mixture

The equations of balance of mass for the constituents, Eq. (2-27), and for the mixture,

Eq. (2-28), can be replaced by two simpler equations
s f .
o +¢ =1, (2-55)

V. (¢ +ovh) = 0. | | (2-56)

The last equation is the continuity equation for a biphasic mizéture, and the volume fractions ¢S:
and ¢f are called the solidity [43] and porosity [19] of the mixture, fespec'tively. Note that when
one of the ‘volume fractions vanishes, Eq. (2-56) becomes the incompressibility condition fora
single-phase continuum.

The change in the solidity that occurs from the reference configuration to the current con-
figuration can be obtained from the deformation of the solid phase. The true density must remain
constant for an intrinsically incompressible solid phase, and thergfore

S

S
pT = E-; = N (2'57)
¢

S | S
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where the subscript “0” denotes quantities in the reference configuration. For a control volume fol-

lowing the solid phase, the density in the current configuration is given by

; (2-58)

bw
I
i

where J° is the Jacobian determinant of the deformation of the solid phase, Eq. (2-7). From Egs.

(2-57), (2-58) and (2-55),

S s
¢ = ?is’, ¢f = 1_%’, (2-59)

J J

which shows that the changes in both volume fractions are completely determined by the deforma-

tion of the solid phase.
2.3.2 Balance of Linear Momentum for a Biphasic Mixture

Due to the low permeability of biological soft hydrated tissues, inertial terms and external
body forces are usually negligible when compared to the linear momentum supplies (or diffusive
drag forces) for frequencies and rates of deformation which occur physiologically [43, 70]. For

this reason we replace Eq. (2-31) by the following quasistatic linear momentum equations:

V.o'+n' = 0, V~0'f+7rf=0. (2-60)

, T T
The symmetry of the partial stress tensors for the solid and fluid phases (a’S =a , a‘f = a'f )s

which results from the angular momentum equations, has been incorporated into Eqgs. 2-60. The
linear momentum equation for the mixture, Eq. (2-34), provides an action-reaction relationship for

the momentum supplies,

T o= -7, . (2-61)
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2.3.3 The Second Axiom of Thermodynamics for a Biphasic Mixture

Under the assumptions expressed at the beginning of this section, the entropy inequality of
a biphasic mixture, Eq. (2-54), becomes

qu/_ DI;/
Dt ’ODt

roiLra: Ll nt o' =% 20, (2-62)

where, in reaching Eq. (2-62), the linear momentum equation for the mixture, Eq. (2-61), and the
definition of diffusion velocity, Eq. (2-21), were used. For a mixture of incompressible constitu-
ents, the continuity equation for the mixture, Eq. (2-56), is a constraint in the thermodynamical

process and, therefore, must be introduced into Eg. (2-62) in association with a Lagrange multi-

plier p, yielding
sD° fo f f
[-—p Dlii -p ——W-+a- L +a L +7 (v ~vs)

: (2-63)

+p V(6 + o) ] >

. f S o o
Recalling that V¢ = -V¢ and V.v~ = 1: L, produces
{—pSDD‘ﬁ’ —prD‘f (S +gp) L+ (0 + P L]

(2-64)

# (== pVe) - (v =¥") ] >

which is called the reduced entropy inequaliry [45]. This inequality will be used in the next chapter
to establish the general form of the constitutive equations for a biphasic mixture with incompress-

ible constituents.






CHAPTER 3

Constitutive Equations and Summary of the Governing Equations

“The beginning is half of the whole.”
PLATO

In the last chapter the kinematics and balance equations of the theory of mixtures have
been reviewed and later simplified into the equations of the biphasic theory. It is now time to char-
acterize the response of the constituents as 1nd1v1dua1 materials and to consxder the nature of the
interactions between constituents. This is a fundamental step to complete the set of equations of
the initial/boundary value problem that will be treated numerically using the finite element

| method.

A prelirrﬁnary coimt of the number of equations and unknowns is summarized in Table 3.1
fof the three-dimensional biphasic preblem. The deformation functions xs and xf are chosen as
independent kinematic variables. These ‘functions are hot arbitfary, as they muet satisfy the bound-
ary.conditions and the continuity equation for the mixture imposed on velocity end volume frac-

tion fields. Volume fractions, on the other hand, must obey the eqﬁation for a saturated mixture,

s f . . . " :
¢ +¢ = 1.The continuity constraint does not affect the difference between the number of equa-

tions and unknowns, since it is introduced in the problem with the additional Lagrangian multi-

plier function (see Section 2.3.3). Therefore neither the continuity equation nef the Lagrange
multiplier are listed in the table. There is also 10 need te list quantities derivable from the deforma-
tion, such asbdisplacements, velocities, changes in volume fractiens etc., if the cofresponding
equations are also omitted. In doing so, only the linear momentum eQuatiens remain on the left
side, and the table can then be completed with the kiﬁetic unknowns, that is stress fensors and
momentum supply, which are the dependent variables in these equations. In three-dimensions,
each symmetric stress tensor is associated with six scalar components, while each vector unknown

is associated with three, yielding a total of 21 scalar unknowns.

25
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Table 3.1 Preliminary count of the number of equations and unknowns for a biphasic mixture in
three-dimensional space.

Equations Num. ~ Unknowns Num.
f
Balance of linear momentum: Deformation functions; xs, P 6
s s s  f

V.o+m =0 3 Stress tensors; o, @ 12

f ] . s A

Vie-m =0 3 Linear momentum supply; 7 3

6 : 21

This brief count shows the need for fifteen additional equations to solve the initial/bound-
ary value prohlem in three-dimensions. The missing equations relate the kinetic unknowans to the
kinematic variables and are termed the constirutive equations. They describe the material and its
constituents through macroscopic relatlonshlps of cause and effect, and must be determined exper-
unentally. Although the axioms of continuum mechamcs can not be used to determme the material
response they can identify the form of the constitutive equations and their arguments. This will be
illustrated in the next sectlons, where the axiom of rnatenal frame md1fference the entropy ine-

quality, and restrictions 1mposed by matenal symmetry will be apphed toa blphasm mixture.

The review sections in this chapter have vanous sources. The axiom of material frame '

indifference follows the presentatlon in Bowen [18] The discussion of the entropy inequality for a
b1phas1c mlxture 1s based on the approach proposed by Holmes [43]. The discussion about mate-
rial symmetry uses concepts presented in Truesdell and Noll [108], and Ogden [781 These two ref-
erences and the books by Marsden and Hughes {67], and Cxarlet [23] are the main references for
the restrictions tmposed on the constitutive equations.

3.1 Axiom of Material Frame Indifference

The axiom of materzal frame zndzﬁ’erence also called the axiom of objectivity or the
axiom of invariance under change of observer, states that the constitutive equations must be

invariant under changes of frames of reference [108]. A change of frame is a mapping that, given
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. . o . . o* o
a deformation function x , yields a new deformation x~ = b(f) + @(f)x , where b represents
a translation and Q an orthogonal transformation (rigid rotation). A possible interpretation is to
. a* . S :
consider x as the deformation seen by another observer. The concept of objectivity, or more

precisely Eulerian objectivity [78], is associated with the following transformation rules under a

change of frame:

o* o

o =90,
w* = ow® | (3-1)

*
K’cx - Qna QT,

where (pa, w” and ” represent, respectively, scalar, vector and second order tensor valued func-
tions and fields. And an asterisk denotes quantities referred to the new frame. The Helmholtz free
energy function l;la , the velocity y* , the deformation gradient F * , the right and left Cauchy-

Green deformation tensofs, ¢® and B , and the velocity gradient L% can be shown to obey the

following transformation rules:

v =y ¢ =%
v = (B+0x) + 0", B = 0B%Q", (3-2)
Foz* - QF(X’ La* - QLaQT+QQT,

, . . o o Lo . '
where the dot denotes time derivative. Therefore, only ¥~ and B~ are objective according to
Eq. (3-1). Because the traction force on a surface and the normal vector to this surface are objec-

. . o o L ' .
tive, the partial stress tensor, defined by & n = ¢, is also objective. The transformation rules

of B

for the relative velocity, v~ = y% ~v", and for the relative velocity gradient, LeCB =L%- L‘3 ,

are obtained directly from Eq. (3-2)

(3-3)

showing that both fields are objective.
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There are two ways of enforcing the axiom of material frame indifference. In the first, all
functions and their arguments are required to be objective, and thus transform according to Eq. (3-
1). Although this is preferred for simple constitutive equations, the correct choice of the objective
arguments demands a considerable understanding of continuum mechanics in order not to intro-
duce undesirable constraints. A good example is when the left Cauchy-Green deformation tensor,
B”, is chosen as the only deformation argument, instead of F * . This choice implicitly incorpo-
rates the assumption of isotropic constituents into the constitutive equations [23].

The second way is illustrated here and has the advantage of providing important insights
that would otherwise remain hidden. It starts with a véry general constitutive statement that is later
modified and restricted in order to satisfy the principle of material frame indifference. Let us
express the dependence of the free energy functions, the linear momentum supplies, and thé stress
tensors in terms of the history of the deformaﬁon gradiénts, velocity gradients, and velocities.

Using the concise notation of Bowen [18], this can be written as

[Wa’ ﬂ_oc, o_a] f(FS, Ff, Ls’ Lf, v§, vf)

, (3-4)
= fEP PP, with B o= s
where each term on the left-hand-side is a function of the arguments on the right-hand-side, which
are abbreviated in the second line. This is a rather general constitutive assumption that includes
mixtureé of viscoelastic éonstituents, although it may be insufficient to represent non-Newtonigr{

fluids. The axiom of material frame indifference requires that the function fis independent of the

transformation, yielding

o o*

™, =, 01 = roF®, (0LP0T + 00", 5+ 0x + 0vP)), (3-5)

whose left side can be rewritten to provide

v 0% 00%0"] = fQF, (0L°Q" + 00", (5 + 0x +0vP)). (3-6)
Egs. (3-4) and (3-6) must hold for all vectors b(r) and orthogonal linear transfbrmations Q0. In |

particular,for Q = 1,0 = 0 and b = —ys , these two equations produce
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Al Ao WG L ARSI Y
Eq. (3-7) shows that the dependence on VB must occurvthrough the relative velocity vfs , an objec-
tive quantity. The dependence on LB is not arbitrary. Choosing @ = 1 and Q= W', where

W’ is the skew-symmetric tensor from the additive decomposition L'=D+Ww, yields
£ L8Py = £, (DP 4 WP -y ) .

= AP DR W oW v,
This equation shows that the dependence on the velocity gradient must occur through the rate of
deformation tensor DB and the difference of spin tensors WfS , which are both objective quanti-
ties.

An additional aSsumptioh, motivated by the study of constitutive equations for single
phase fluids, consists of replacing F ! by the apparent density of the fluid [3, 18, 19]. Since the
fluid is assumed incompressible in the biphasic theory, the porosity ¢f can be used instead of the

density, yielding

S
W%, 7% o™ = ¢, D DLW WLy Y (3-9)
Although it is not apparent, at least not from the number of arguments, Eq. (3-9) is considerably

more tractable than Eq. (3-4). Moreover, F * is now the only non-objective argument in Eq. (3-9).

3.2 Restrictions Imposed by the Entropy Inequality

In order to establish the constitutive models for articular cartilage, Mow and co-workers
[43, 57, 38, 70] introduced additional assumptions associated with the meéhanical behavior of the
constituents. They realized that the effects of the fluid viscosity were negligible compared with
' the diffusive drag forces and assumed that the fluid phése was inviscid. Their constitutive model
for finite deformation also considered the solid phase as a hyperelastic material (Green-elastic
material), with the frictional interaction between solid and fluid phasés being responsible for the

“apparent” viscous behavior of the tissue.
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These assumptions considerably simplify the arguments in the Helmholtz free energy
functions. For a hyperelastic solid phase, the corresponding function becomes 1;/5 = IZIS(FS) ,
where F° is the deformation gradient at the current time. Invariance of the scalar t;/s requires that

the dependence on F ® occurs through C’,or

v = §7(C). (3-10)
.. . J—s s, 1 . . .
This is proved by choosing @ = §C (F') , arotation motivated by the polar decomposition of
 the deformation gradient.
The assumption of an inviscid fluid implies that the free energy function for the fluid
phase is independent of its rate of deformation tensor. Since the fluid phase is also incompressible,

Holmes [43] assumed that its Helmholtz free energy function is independent of the deformation,

¥ = const, | | (3-11)
which implies the consideration of small relative velocities {3]. Rewriting the reduced enirOpy ine-

quality, Eq. (2-64), taking into account Egs. (3-10) and (3-11) produces

AS T '
(crs + 6 p1-20°'F L F J: L+ (o +0'p): L'+ (x°-pV6") - o' -4 20, (3-12)
aCc | B

where use was made of the identity

DU(C) _ [0 psT ). ps (3-13)
Dt aCS ) ’

Eq. (3-12) must hold for all motions described by L°, Lf and (v' %) , yielding

; ‘ . A5 T v
o =-pplroh,  with of = 20T G149
aC

o =-¢pl, (3-15)

o =% - (7° - pVe) 20. | (3-16)
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Eq. (3-14) shows that the solid stress can be decomposed into two parts. The extra Cauchy stress
0'; (also known as elastic or effective stress), which is completely determined when the deforma-
tion is known, and a hydrostatic stress that depends on the pressure p. The pressure, also called
true or pore pressure, contributes to the stresses of the solid and fluid phases according to the vol-
ume fractions and is determined by equilibrium. In the finite element formulation, it will be con-

venient to use the second Piola-Kirchhoff stress tensor defined as [67]:

-1 -T
Sg = JF opF . (3-17)
From the expression of a'; in Eq. (3-14),, results
AS - T
st=200%%,  ad of = <FSF (3-18)
oC J

As for the linear momentum supply, the following constitutive equation is assumed based

on Eq. (3-16)

2= em = p VS - (3-19)

The first term corresponds to a buoyancy force arising from the volume fraction gradient. The sec-

ond term represents the diffusive drag due to the interaction between phases and is assumed pro-

portional to the relative velocity. The diffusive drag ¢ is a second order tensor that measures the
frictional resistance against fluid flow through the solid matrix.

Introducing Egs. (3-15) and (3-19) into the linear momentum equation for the fluid phase,

Eq. (2-60),, and recalling that V¢' = —V¢', yields
Vp = -2 ). (3-20
o
If ¢ is assumed invertible, we can then write

w Vp = —¢f (vf—vs) , (3-21)




32

where K = ¢f2 C—l is the permeability tensor. Except for the omission of the body force poten-
tial, Eq. (3-21) is the classical Darcy’s law. A slightly different definition of permeability is used
in the poroelastic theory of Biot [11]. In the case of a porous medium with an incompressible fluid
phase, these two definitions are related by Kpior = My%, where 7 is the fluid viscosity.

There are two types of permeability in the biphasic theory: the intrinsic permeability
defined locally, and the apparent permeability measured in the permeation experiments. The dis-
tinction is necessary because the strain field varies considerably under finite deformation, and the
apparent permeability, averaged through the entire thickness of the tissue, becomes inadequate to

assess the dependence of the permeability on the deformation [43, 61].

3.3 Restrictions Imposed by Material Symmetry

In the previous subsection, the solid phase has been assumed hyperelastic in order to
derive general forms of the constitutive equations for stresses and linear momeﬁtum supply using
the entropy inequality for the mixture. The resulting equation for the solid stress, however, is still
too general and must be further simplified. The simplification is pursued in this subsection, where
the material symmetry of the solid phase, a property inferred experimentally, is incorporated into
the equations. |

~ Let F* and F° denote the deformation gradients with respect to the configurations CB?)’
and 538 , respectively (Fig. 3.1). The only difference between these configurations is the orthogo-

nal transformation X of the material in the neighborhood of a point X, given by

ity = B 9K, R - (3-22)
If the corresponding stress responses &S’(F > and c;s(F S) coincide for any mechanical experi-
ment, the material is said to be indistinguishable in its response after being subject to the transfor-

mation K [108]. In this case, we can write

o (FY = o (F°K). (3-23)
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Figure 3.1 Orthogonal transformation of the material at a point X ®
followed by a deformation.

The set of all invertible tensors X for which Eq. (3-23) is valid constitutes a groupl, called the
symmetry group G, and describes the symmetry of a Cauchy-elastic material. For a hyperelastic
material, on the other hand, the syrﬁmetry group gw is formed by the orthogonal transformations

K for which the Helmholtz free energy function is unaffected:

WF) = W K> (3-24)
and the free energy functxon is said to be form-mvanant under the group gll’ Eqmvalently, Eq. (3-

24) can be expressed in terms of the right Cauchy -Green deformauon tensor [78],

WK CR) = MCH, 329

which is the form usually adopted since C is symmetric.
The problem of representing scalar functions such as {A(C S) under the constraint imposed
by Eq. (3-25) is a subject covered by the repredentation theorems of scalar functions. In broad
terms, these theorems state that the dependence on a set of vectors and second-order symmetric

tensors can be replaced by the dependence ona ﬁmte number of polynormal invariants

1. Aset Gissaidtobea group with respect to the composmon of functions K when: (a) 1 € G;(®
if Kl,K2 € G then K L€ G and (c) if there exist K with K € G, then K -1 € G.
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I 12, ..., 1, that constitute an irreducible integrity basis (see [12, 13], and references therein).

1’
The term irreducible means that: (a) an invariant I]. is not expressible as a polynomial function of
the others; and (b) any scalar function that is invariant under the transformations in gw can be

expressed as a function of the invariants. -
3.3.1 - Isotropic Scalar Functions

By definition, the symmetry group of an isotropic material is the set of all orthogonal ten-
. . . AS .. ..
sors. In this case, the representation theorem states that a scalar function {r (CS) is isotropic if and

only if there exists a functicm yfs(lj(Cs)) such that

VC) = VU1, 1), (3-26)
where Ij ,J =1 2; 3, represent scalar invvafiants of C° [401.
3.3.2 Transversely Isotropic Scalar Functions

A material is called a transversely isoiropic material if there exists a plane such that every
plane perpendicular to it is a plane of material symmetry [63]. Transverse isotropy is characterized
by a symmetry group G that contains: (a) the unit tensor 1; (b) the central inversion -1; (c) all rota-
/ tions R;ft 0< @< 2w, about the axiS m that determines the preférréd direction of‘ the material in
the current conﬁgurétion; and (d) one reflection —Rf; about a pldne cbntainiﬁg m. If the type of
anisotropy is characterized by a proper subgroup G _< G, as in Truesdell and Noll [108], only the
transformations (a) and (c) are taken into account.

The representation. theorem for transversely isotropic scalar functions states that 2 scaler

function i,‘l/S(CS) is transversely isotropic if and only if there exists a function WS(IJ.(CS)) such that

V(€ = v, 1, 1, 1, 1Y, IR € 7)
‘where Ij L7 =15 ,'aie' invariants of €° and-the preferred direction expressed in the refer-

ence configuration, m; [30]. The members of the integrity basis adopted in this study are the
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three principal invariants of C® and two additional invariants proposed by Ericksen and Rivlin

[301:

2 2 .
I =t C, I, = [(trcs> —trCs}, I3=detCS,

[N 1 e

1
(3-28)

S

[ =My C, I =M, ¢,
where Mo is the structural tensor in the reference configuration defined by M, = m;® m (see
also Appendix A).

Geometrical interpretations of the ihvariants I, and [5 are useful in obtaining the form of
the free energy function for transverse isotropy. Humphrey et al. [49, 50}, for instance, used the
interpretation of the invariant [, to:propose structurally motivated strain energy fuhctions for pas-

sive cardiac tissues. The association between this invariant and the deformation along the pre-

ferred direction is shown as

I, = My: C* = rimy (Cmp)] = (b)), (3-29)

v 2
where A denotes the stretch associated with the direction m,,. The invariant Iy = M c is
0 :
usually omitted from the constitutive equations because it does not have an easy geometrical inter-
pretation. More recently, Achcar [1] used the following invariant to study the behavior of trans-

versely isotropic materials:

Iy = [7Cmp|” = wCmy - wCmy, C(330)
where () denotes the orthogonal projection of a vector onto a plane whose normal is m and is
givenby mw) = w— (my-w)m, for an afbitrary vector w. The invariant /5, is associated
with the deformation perpendiculai to the preferred direction and is thus more convenient than I

to expreéé the constitutive equations. The development of Eq. (3-30) yields the identity

| 2
I, = Is-1,, - (3-31)

which confirms that | SA is an invariant.
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3.4 The Cauchy Stress Tensor and the Elasticity Tensor

In hyperelasticity, the Cauchy stress tensor is typically computed from the second Piola-
Kirchhoff stress tensor, which depends on the Helmholtz free energy function. Using Eq. (3-18) 1
and the chain rule of differentiation, the elastic part of the second Piola-Kirchhoff stress tensor can

be written as

ol.
Sy = 2,053""S = 2py ij — j=1,..,n, (332
0 aC
where Wsj = oy'/ 81]., and n is the total number of invariants in the integrity basis. Using Eg. (3-

18), and the partial derivatives of the invariants presented in Table A.1, the expression of the elas-

tic Cauchy stress for a transversely isotropic material is obtained as

S S S S S S s"1 8
= 2p [(12'1’,2 +1, y/y3)1 + z;/,lB -1, z;/,zB + I4w,4M
(3-33)
S
+1,w (B°M + MB®) ] ,

s S ST . : ~ . . .
where B = F'F is the left Cauchy-Green deformation tensor, and M is the structural tensor in
the current configuration.

In the finite element formulation, the linearization of the nonlinear elasticity vector of the »

solid matrix produces the elasticity tensor C, a fourth-order tensor with major and minor symme-.

. . . . N - .. -
tries. This tensor relates the variation of stress SSE and the corresponding variation of deforma-

tion §C°
.3 (305
85% = lowsct, o= 4,05_3.; QKS , (3-34)
2 ac\ac

This is the same dennmon adopted by Simo and Plster [90] but dlffets from the one by ‘vfarsden
and Hughes [67] due to the presence ‘of the coefficient one—half The general expression of the sec-

ond derivative of 1,{/ for transversely isotropic materials is given by Eq. (A-7) in Appendix A, and

its derivation and computational implementation constitutes one of the contributions of this thesis.
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3.5 Restrictions Imposed on the Constitutive Equations

The search for suitable stored energy functions for single phase materials has been an
important and active area of investigation (see Truesdell and Noll [108]; Marsden and Hughes
[67]; Ogden [78]; Ciarlet [23], and references therein). As a result, many restrictions thaf limit the
choice of the stored energy function have been proposed and studied in detail. Under the assump-
tion of a hyperelastic solid phase, the same restrictions can be applied to the free energy function,
since the function ¥ = pf) q/s corresponds to the stored energy function, or strain energy func-
tion, in the case of an isothermal process at a uniform temperature. For infinitesimal deformation,
lys is réduced to a quadratic function of the stfain components, and its form is completely deter-
mined after considering the existence of a natural state. For finite deformation, a quadratic func-
' tion is just one possibility, unfortunately not very well behaved for large strains. In this case,
restrictions are typically 'applied in order to obtain functions that are capable of representing the
known, or hypothesized, behavior of the material.

It is common to distinguish between two types of restrictions: mathematical rest;*ictions,
proposed to ensure the existence of the solution of the boundary/initial value problem, and physi-
cal restrictions, proposed based on generalizations of experimental observations. In contrast with
the former, most physical restrictions cover ranges of deformation that often overlap and, when
vextended to transverse isotropy, are limited in validity to states of pure stretch. Equivalences
among physical restrictions are presented by Truesdell and Noll [108] for isotropic materials. See
Marsden and Hughes [67], Ogden [78] and Ciarlet [23] for comprehensive discussions about
mathematical restrictions such as éllipticity and polyconvexity. |

In what follows, we list some of the restrictions and corresponding inequalities that have
been used to evaluate the adequacy of the stored energy functions [108]. To express these inequal-
ities, let us consider two configurations of a rectangular brick, B, and CB; , subjected to three
' orthogonal pairs of distributed forces normal to the faces. The asterisk denotes a quantity in the

*
configuration B, and subscripts i and j denote distinct principal directions perpendicular to the
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faces. For a transversely isotropic material, we further assume that the preferred direction is along

a principal direction, so that the configurations always differ by a state of pure stretch.

Pressure-Compression Condiﬁon (P-C). The volume of a cornpressible material should
. decrease when the solid is subjected to a hydrostatic compression, and increase when subjected to
a hydrostatic tension.

“Invertibility” of the Force-Stretch Condition (IFS). The force-stretch relationship should be
uniquely invertible. » .

N Extension-Tension (E-T) and Tension-Extension (T-E) Conditions. When the length‘of the
brick changes in one principal direction, while the faces parallel to thisbdirection are held, the prin-
cipal stress in this direction should increase with eléngation and decrease with shortening. Con-
versely, wh:en thé magnitudes of one pair of opposing forces changes, with the remaining pairs of
forces kept fixed, the brick should elongate with increasing magnitudes, and shorteﬁ with decreas-
ing ones. This can be gxpressed by

(ET) A;=1, j=i,

(T, =T) (4 =A)>0,  for A #A, and { (3-35)

*
(T-B) T,=T,

where T is the giistfibuted force per undeformed area, and Xl. is the corresponding stretch.
Ordered Forces Condition (O-F).y For isotropic materials, the greater stretch should occur in the

direction of the greater force. This condition can be expressed as
(Ti—Tj) (}.i—kj) >0, for }”iikj' - (3-36)

GCN Inequality. For isotropic materials the GCN, inequality implies the conditions (P-C, IFS,
E-T, T-E, and C-F) [108], and is expressed as

' 3
e ST -T) (N =2) 0. | (33

i=1

It is equivalent to the requirement that the incremental work is always positive.
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Coleman-Noll (C-N) and Generalized Coleman-Noll (GCN). Coleman and Noll proposed the

following inequality for the free energy function:

WE )= TAE) = (F = F): o) >0, (3-39)

x*
where F and F correspond to deformations differing by a state of pure stretch. Interchanging

the order of F ) and F above and adding to Eq. (3-38), produces

(F <F): (T -T)>0, for F #F, (3-39)
where the definition of the first Piola-Kirchhoff stress tensor, T = POW(F)/oF was used.
Egs. (3-38) and (3-39) are known as Coleman-Noll (C-N) and Generalized Coleman-Noll (GCN)
ineéualities and imply strict‘ convexity of the free energy ﬁmction in the case of isotropic hyper-
.elastic materials [77]. |
Baker-Ericksen Inequaliﬁes (B-E). The Baker-Ericksen inequalities require that the greater prin-

cipal stress occurs in the direction of the greater stretch,
(0;- G]-) (A, - ?\,j) >0, for A, ;ﬁ?t.j, (3-40)

where o; and o, are principal Cauchy stresses on the faces of the brick. The B-E inequalities con-
stitute an important set of restrictions in Continuum Mechanics, but they do not hold for anisotro-
pic materials.

Hill's Inequalities. Hill [41] proposed inequalities that consist of the scalar product of a strain-
rate with an associated stress-rate. Different inequalities can be stated in this way, including the
GCN inequality, by changing the strain-rate tensor. However, only the inequality with the loga-
rithmic strain (logarithms of the principal stretches) allows incompressibility, the other inequalities
being oo strong for this type of material. For hypereiastic materials, this inequality is equivalent

to the requirement that the strain energy be a convex function of the logarithmic strain [77].




40

Coerciveness Condition. This condition states that “infinite stress must accompany extreme
strains” [23], requiring that the free energy function must approach +o if any of the eigenvalues

of C approach 0 or +e. This is equivalent to

m (F) = +oo, and im {AF) = +eo. , (3-41)

J—=0" - J = 4eo

This condition can also be expressed as an inequality, which is essentjal to démonstrate the exist-
ence theorems of hyperelasticity associated with the concept of polyconvexity [6].

Reduction to the Linear Theory. The free energy function must reduce to the quadratic function
of the linear theory in the case of infinitesimal deformation.

Existence of a Natural State. The body must have a na‘tural‘ staté associated with an undisiorted
configuration. For transverse isotropy, the natural state has one of the principal axes coinciding
with the preferred directionm (o = ~ pl + ¢ m ® m ), and includes the casé of hydrostatic pres-

sures, which is the natural state for isdtropic materials [26].

The above list of restrictions is far from complete, but contributes to the idea that undesir-

able features of the constitutive model can be eliminated during its formulation. Some of the

restrictions are considered too restrictive, as it is the case of the GCN condition that implies con-

vexity of the free energy function. A convex function would make it easier to demonstrate the
existence of a solution for problems in finite elasticity. However, convexity is unacceptable
because it is in conflict with experimental evidences [23, 67]. First, it implies uniqueness of the
_solution and, therefore, contradicts examples showing the existence of muitiple solutions in elas-
ticity. It is also incompatibie with the axiom of material frame indifference. A convex and frame-
indifferent free energy function would produce a state of stress where the sum of any two principal
Cauchy stresses is always positive. Finally, the convexity property is incompatible with the first
part of the coerciveness condition, since it prevents ﬁ/(F) from approaching + e whenJ

approaches 0.

i
|
!
|
|
i
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A way of circumventing this problem is to weaken the convexity condition using the con-
cept of polyconvexity of Ball [6]. A function ¥ (F) is said to be polyconvex if there exists a con-
vex function l,l/* (F,cof F,J) suchthat y(F) = Vf* (F,cof F,J) forall F. Not only was this
concept introduced to prove the theorem of existence, but it also became the basis of important

constitutive laws in rubber elasticity, as described by Ogden in [78].

3.6 Restriction on the Volume Fraction and the Permeability Function

The restrictions listed above and associated with the solid phase are insufficient for a
biphasic mixture, so an additional condition is necessary to guarantee that the solid volume frac-.
tion ¢S remains between zero and one. As a matter of fact, only the upper limit is a problem since
a Helmholtz free energy function satisfying the coerciveness éondition already prevents a negative
q)s . One way of imposing the upper limit is through a singular point incorporated into the energy
function at ¢S =1 (or I = qbg), as done for the function proposed by Holmes [43]. This solu-
tion, however, modifies the original energy function of a fully drained solid phase and should be
avoided if possible. A better alternative that leaves the function intact was devised by Holmes and
Mow [44]. Considering that the permeability fﬁnction must approach zero when (1)5 approaches
one, they concluded that even when the free energy function allows compressions with ¢S >1,the
permeability function would prévent this from occurring since it would take an infinite time to
reach a deformation with ¢S = 1. Based on experimental data for articular cartilage, they proi
posed the following isotropic exponential function for the permeability:

s f O\
N M(I,~1)/2
e

K=K , | (3-42)

0 S, S
\ (1 - ¢0) ¢
where the exponents L and M are material parameters, and &, is the intrinsic permeability associ-

ated with the undeformed configuration. Eq. (3-42) has the equivalent forms
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£\L L
000 | mt-1) 2 F=oy | uu-12

= i | MBI R , (3-43)
o6 | -4

where the latter expresses the permeability as a function of the volumetric deformation. Notice
from Eq. (3-43) that this function satisfies the conditions
slim x=0, lim x = . (3-44)
I =4 # -0 '

Eq. (3-42) represents a significant contribution of the biphasic theory to the study of soft
hydrated tissues under finite deformation. It can be reduced to the permeability function obtained
by Lai and Mow [60], as shown by Holmes and Mow [44], and it has been demonstrated to corre-
late well with permeation and confined compression experiments of articular cartilage [43, 44].

The importance of Eq. (3-42) is apparent Wheﬁ examining permeability functions used to
describe other biological soft tissues. For skin under finite deformation, Qomens etal. [79, 80] use

the function

Ml,-1 ) .
K= Kye (=1 (3-45)

based on the expression suggested by Mow et al. [70]. Van Campen et al. [110] improved upon the
model developed by the Huyghe er al. [51], and adopted the following function to represent the

redistribution of intracoronary blood in the ventricular wall:

. : 2
Js_¢s s 2 ,
K=K, 0 = KO(J —1+1] . (3-46)
S f
1 -9, Py

This expression can be obtained from Eq. (3-42) by setting L = 2 and M = 0. The reader is
referred to Mow er af. [70], Lai aﬁd Mow [60], Lai ez al. [61], Holmes {42, 43], and Holmes and
Mow [44] for comprehensive presentations of this subject, including the description of the experi-

ments.
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3.7 Examples of Helmholtz Free Energy Functions

Several free energy functions have been proposed to study biological soft hydrated tissues
under finite deformation. Kwan [58] and Kwan et al. [57] investigated polynomial and exponential
functions suitable for uniaxial compression of articular cartilage. They recommended the follow-
ing “modified-quadratic” free energy function that correlated well data from confined compression
tests:

pf),;ys:éT[(sx F2u) I+ (A +m>1 — A +108) 1], (3-47)

where [, I, and I are the pr1nc1pa1 invariants of C". This function has only two material
parameters, A and ,u wh1ch coincide with the Lamé constants of the fully dramed sohd phase
under infinitesimal deformation. Although it is acceptable for compress;on tests, and has been
implemented by Wayne in a finite element program [115], this functién has‘some drawbacl;s when
modelling multiaxial deformation. According to Suh [103], the resulting state of stress can become
nonphysical when the tissue is elongated beyond a certain limit.

Oomens et al. [79] used a variant of the exponential form suggested by Fung [34] to repre-
sent porcine skin. They rewrote the free energy function, originally for incompressible materials,

as

: E, E
P?) v o= %aUKLEIJEKL'!'éC oy “rgly, (3-48)

where o, C, and @ ;) denote material parameters, and E;; are the components of the
Green-Lagrange strain tensor. Since a good fit to uniaxial experiments was obtained using only the
exponential part of the function, a simplified 2-D version of Eq. (3-48) was adopted mn their finite

' element implementation:

. - (a—AE-zr *1-{1E2~7-1-~aE2 +2a,EE..) L
psOl[/S=C€1u ligytByliyy 4:122, (3-49)

with the equality a; = a, valid for isotropic materials.
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Simon and Gaballa [92] also based their constitutive model on Fung’s exponential func-

tion. They used the following form to study rabbit aorta undergoing finite deformation:

S BIJKLEIJEKL

1
py v = 5Co @ . (3-50)
Holmes [43] proposed the following exponential free energy function to study the uniaxial
behavior of articular cartilage:

A 1,-3
l[/s = __{__ e.B( 1 )’ (3-51)
I;-9,

<2 ‘ , .
where n = 3 ( - ¢(S) ) ;and B and 7y are material parameters. Note that the above function has a
singularity at ¢S = 1, which was later found to be an unnecessary restriction (see Section 3.6).
Holmes and Mow [44], and Suh er al [105] modified Eq (3- 51) to account for multiaxial defor-

matmn and suggested the 1sotrop1c: function

. o (I, =3) + 0y (1,=-3) ‘ ;
s s e o
Po ¥ = = . (3-52)

3

where n = @, +20,; and @, @; and a, are positive material parameters. Holmes and Mow
[44] have shown that the above function satisfies the Baker-Ericksen inequalities, and have

. obtained material parameters for human and bovine articular cartilage via curve-fitting. Further:
more, Suh and co-workers [103, 104] have used the penalty finite element formulation to verify -
that this function provides physically acceptable responses for configurations other than the con-

fined compression test. |

Cohen [24] extended the form expressed in Eq. (3-52) to anisotropic materials. He pro-

posed the general form

[ -aQ Uty d,) -i], .

—y e
p (3-53)

o

OV’,
<,
llx
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where ¢ and yare material parameters and Q is a function of the integrity basis (I;,1,, ... 1) »
which depends on the symmetry group of the material. Cohen also suggested a transversely isotro-

pic free energy function, for which the function Q is given by

QUp Ly ) = B (I =3) +B,(I,=3) +B5(1;=3) U4=1) + B (I~ 1)

2 (3-54)
+ﬁ5 ([5‘ D +BG (14— 1)“-111(13).

If the multiplicative coefficient ¢ is not counted in Eq. (3-53), only five independent coef-
ficients remain after imposing a natural state as a reference configuration. This is the minimum
number required to reproduce the stress-strain relationships of 1ineaf transverse isotropy. We shall
return to this constitutive model in Chapter 7, where a transversely isotropic Helmbholtz free

energy function will be examined to validate the finite element implementation.

3.8 Governing Equations of a Biphasic Mixture

We can now resume the count of the number of equations and unknowns left incomplete
in the introduction of this chapter. To do so, it is convenient to rewrite the linear momentum equa-
tions in Table 3.1 to minimize the number of unknowns. Replacing the solid and fluid stresses

using Egs. (3-14) and (3-15), and introducing the expressions of the linear momentum supplies,

Eg. (3-19), we finally obtain Egs. (a) and (b) in Table 3.2. These equations are explicitly written in -

terms of the elastic stresé tensor, the pressure, and the solid and fluid velocity fields, which are the

- unknowns of the problem. To complete the set of equations, we add the expression of the elastic

stress tensor and the continuity equation for the mixture. Moreover, we recall that the diffusive

drag ¢ and the Helmholtz free energy are functions of C°, which, together with the changes of ¢s
and ¢f (where q)s + q;f = 1), are cbmputed from the solid displacement field u'.

The equations shown in Table 3.2 are similar to the equatioﬁs obtained in the quasistatic

version of the ngnlmggr ;qnsolidatiqn theory of Biot [11], in the case- of/incompressible and invis-

cid solid and fluid phases. However, Mow and co-workers opted to use the theory of mixfures to

derive these equations because it offers a consistent framework to incorporate the assumptions



Table 3.2 Final count of the number of equations and unknowns
for a biphasic mixture in three-dimensional space.
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Equations Num. Unknowns Num.
Balance of linear momentum:
V. 0'; - ¢5Vp —¢CH —vf) =0 (a) 3 :
; ; | Velocities; v, v 6
S, , S
o Vp+CC)v-v) =0 (b 3
Elastic stress tensor:
) ~S S T )
a'; = 2,()51738—'11-/——(QFS 6 Stress; a;: 6
s
ac®
Continuity equation for the mixture:
L] ff
V-(¢y +¢v) =0 1 Pressure; p 1
13 13

k regarding soft hydrated tissues. The versatility of ihe theory of mixtures is clearly demonstrated by

the triphasic theory‘ of_Lai et al. [59], where an additional ion phase is introduced.

3.8.1 Boundary Conditions

With the governing equations established, it is possible to introduce the time-dependent

boundary conditions that makes the initial/boundary problem well-posed. Fig. 3.2 shows the

boundary conditions on the solid and fluid domains in the current configuration. The following

kinematic boundary conditions applies:

us(x,t) =gs, for xe I ;
: S 8
£
a £
vf(x,t) =D_g =z, for xe I',,
. 4

t

(3-55)

(3-56)
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Figure 3.2 Schematic representation of the boundary conditions.

where the over-bar () denotes a prescribed value, and I , and I" ; are portions of the boundary
‘ g g
on which solid displacement and fluid velocity, respectively, are prescribed. The boundary condi-

tions imposed on the kinetic fields are

a's(x, Hn = is, for x¢€ Fts; (3-57)

o nn =t | for xe Ty, | (3-58)

where n is the outward normal vector; and I” s and I” i are portions of the boundary on which
solid and fluid tractions are prescribed. In the case of an inviscid fluid, Eq. (3-58) is simplified to

o) = —¢p1 ,forxe I The partition of the boundary I is such that

rol,=I,uol,=T
& ! & ! (3-59)

r.nrr,=I,nr,=e,
4 4 4 t
where the superimposed bar denotes a set closure. The boundary partitions in Fig. 3.2 and Eq. 3-
59) have illustrative purposes only since different partitions are possible according to the compo-

nent of the external traction forces.
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3.8.2 Initial Conditions

Initial conditions are specified with respect to the reference configuration of the solid

phase in terms of initial velocity fields:

V(X0 =g, fo Xe (3-60)

F £
v (X,0) =g, for X'e, (3-61)

-$ f . . . . . .
where g and g must satisfy the continuity equation for the mixture. In the finite element imple-
mentation it will be assumed that the reference configuration corrésponds to a natural state and that

the initial velocities are zero, trivially satisfying the continuity equation.

3.9 Summary

In this chapter the theoretical foundations of the biphasic theory have been reviewed with

emphasis on the constitutive modeling. Restrictions imposed by the axiom of material frame indif-
ference, the entropy inequality for a biphasic mixture, and symmetry of the material have been
examined, together with restrictions intrinsic to a biphasic mixture, The Cauchy stress tensor and
the elasticity tensor for hyperelastic transverse isotropyvhave been derived for use in the finite ele-
ment formulations, for wﬁiéh the governing equations and initial/boundary are stated at the end of

this chapter.




CHAPTER 4

Nonlinear Finite Element Formulations

“Although in some exact solutions to problems in finite elasticity the assumption

of an incompressible material leads to certain simplifications in the analysis,

such is not the case in finite element applications”,

J. T. ODEN [76, p. 236]

In this chapter three nonlinear finite element formulations for biphasic continua are dis-

cussed. First, the linear mixed-penalty formulation presented by Spilker and Maxian [99] is
extended to nonlinear problems in order to consider an anisotropic, hyperelastic material under
finite deformation, and a stmin—dependent permeability. Second, the nonlinear penalty formulation
of Suh er al. {105] is reviewe(;i“‘and updated using the discrete divergence operator to allow the use
of higher-order interpolation elements. With this update, the equivalence between penalty and
mixed-penalty formulations is. demonstrated, a result that reduces the number of candidate ele-
ments to be investigated. Third, a nonlinear version of the mixed u-p formulation, called y-p to dis-
tinguish from previous versions, is examined for comparison with the mixed-penalty formulation.
All three formulations incorporate nonlinearities that are essential to represent soft
hydrated tissues under finite deformation: anisotropic hyperelasticity, strain-dependent.pe_rmeabil-
ity and geometric nonlinearity. A semidiscretization procedure, involving the spatial discretizatioo
in finite elements followed by a temporal discretization using‘ a finite difference scheme, is adopted
to solve the quasistatic biphasic equations [9]. This is accomplished by using the Galerkin
weighted residual method to derive finite element weak forms for each formulation, and a trape-
zoidal rule to obtain recursive expressions in time for the resulting systems of ordinary, first-order,
differential equations [47]. A totalﬂLagréngi,a‘n approach is adopted in constructing the nonlinear

_systems of equations, whose incremental forms are solved iteratively using the Newton-Raphson

method [7].

49
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A common characteristic of the mixed-penalty and penalty formulations considered here
for biphasic problems is that they employ a penalized form of the continuity equation for the mix-
ture. In the mixed-penalty formulation, based on the consistent penalty method of Engelman ez al.
[29] for single—phas¢ incompressible media, the pressure is retained as an independent field vari-
able. Thus, the penalized continuity equation is introduced, along with the momentum equations
and natural boundary conditions for each phase, into the weighted residual statement. Since the
derivative of the pressure does not appear in the finite element weak form, a pressure field which is
discontinuous between elements can be used, and the pressure unknowns can subsequently be
eliminated through static condensation.

In the penalty method of Suh et al. [105], the penalized continuity equation is used to
eliminate the preséure as a field variable, so that the development is analogous to a displacement-
based formulation. Thus, only the linear momenturh equations and the natural boundary condi-
tions, expressed in terms of Ve‘locities, enter in the weighted residual statement. Selectivé/reduced
integration is used for the penalty terms. As a result, there is little control over the pressufe interpo-
lation, and other alternatives must be considered for the implementation of elements in nonlinear
analysis. In the present sttdy, the concept of a discrete divergence operator used by Simo et al.
[91] is adopted to extend the nonlinear penalty formulation to elements with higher-order interpo-
lation. |

Historically, penalty finite elements have also been derived by considering limiting cases
of finite element formulations that address mixtures with compressible constituents (a common
practice in ‘soil mechanics). When such an approach is used, the penalty form of the continuity
equation plays a secondary role since it becomes a ‘simpiiﬁcation’ at the end. This secondary role
has prevented further development of the corresponding finite elements, which have been

restricted to 4-node quadrilaterals with selective/reduced integration.

~The v-p formulation-is-a mixed formulation where the quasistatic linear momentum equa-
tion for the fluid is used to eliminate the fluid velocity from the governing equations. The weak

form is obtained by introducing the momentum equation for the mixture, a modified form of the
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continuity equation, and boundary conditions for flux and total traction into the weighted residual
statement. Different versions of this formulation have been implemented both in soil mechanics
[15, 38, 56, 68, 83, 88, 94] and biomechanics [79, 80, 115]. The version of the u-p formulation
presented here is called v-p in order to emphasize that the solid velocity is used as a primary vari-
able, and to distinguish it from other versions with distinct assumptions with regard to the nonlin-
earities.

In limiting conditions, the biphasic equations presented in Table 3.2 represent either sin-
gle-phase incompressible elasticity (x — 0 with y ~ vf) or permeation through a porous, rigid
medium (vS ~ 0). Even in conditions far from these extremes, the short term response of a mixture

_initially at rest resembles the response of a single phase incompressible solid (with the fluid phase
being trapped within the solid matrix). Due o these considerations, biphasic finite elements are
required to satisfy the LBB (or inf-sup) condition for single phase continua in order to avoid prob-
lems such as spurious pressure modes and ‘locking’ normally associated with the enforcement of

~ the compressibility constraint. The LBB condition poses restrictions on the use of arbitrary inter-
polations for primary and secondary variables in order to guarantee the stability and convergence
of the solution. It was derived independently by Babuska [5] and Brezzi [20], with a similar c<.mdi-

tion previously obtained by Ladyszhenskaya for the case of Stoke’s flow. In the next chapter

important results from analytical studies with mixed finite elements are used to select biphasic

finite elements. For a complete discussion about mixed finite element methods and the enforce-

ment of constraints see Brezzi and Fortin [21] and references therein.

4.1 Penalty Form of the Continuity Equation

The continuity equation for a biphasic mixture, Eq. (2-56), is a kinematic constraint that
expresses the intrinsic incompressibility of the solid and fluid phases. A similar equation is used to

enforce the incompressibility constraint in Stokes flow (divergence-free condition), but for incom-

pressible elasticity the constraint is normally written using the Jacobian determinant of the defor-

mation {35, 36, 106]. This is done to avoid the accumulation of residual volumetric deformations,
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taking advantage of the fact that the volumetric deformation has to be zero everywhere. For bipha-
sic continua, however, an expression in terms of Jacobian determinants does not improve accuracy
- since the current volume is unknown. For this reason, the dive'rgenee form is adopted in the finite
element formulations.

In the mixed-penalty and penalty formulations, the continuity equation for the mixture,

Eq. (2-56), is replaced by the following penalty form:

AE (¢svs+¢fvf) +% =0, 4-1)

where the additional term corresponds to an arbitrarily small perturbation, and 3 is a user-specified
penalty parameter. Notice that as /3 approaches infinity, the continuity equation is correctly
enforced. There is a strong resemblance between this equation and the continuity equation for a
mixture with a compressible fluid phase [84], suggesting that 8 allows a small compressibility.
However, further analogy between 8 and the bulk modulus can be misleading since the material
time derivative of the pressure, instead of the pressure itself, appears in.the continuity eciuation in
- the compressible case.

To enforce continuity, the penalty parameter must be a large number, but not so large that
it would make the system of equations ill-conditioned. Determining a suitable range for 3 depends
mainly on numerical experiments. Suh et al. [105] verified that 8 can range over four orders of

magnitude, and derived the following expression based on one-dimensional problems:

1Val H

- where [|Vul| and |Vv| are Euclidean norms of the displacement and velocity gradients, respec-
tively; Hy = A 2,us is the aggregate modulus of the linear biphasic theory [70]; (bf is the

porosity; and 7y is a representative time. The coefficient C; is a machine-dependent parameter, and

" avalue of ¢, = 10° is recommended for 64-b1t double-precxsmn calculatxons Smce the gradient
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norms are not known a priori, the usual procedure is to obtain B from simple analyses that can
represent the class of problems being studied.
Note that Eq. (4-2) is similar to the second part of the relation provided by Prevost for

soils [84] which, converted to the notation of this work, reads:

£ AtH
~ g A . -
B=Cymax( =, — ), 4-3)
where x is the permeability coefficient, Az is the increment of time, and a value C,, = 107 is sug-
gested for the machine-dependent parameter. Penalty parameters obtained using the first part of
Eq. (4-3), however, may lead to a ill-conditioned system of equations for permeability values typi-

cal of articular cartilage (kK ~ %107 m”*/Ns ).

4.2 Function Spaces for the Mixed-Penalty and Penalty Formulations

Appropriate function spaces must be defined in order to obtain the weak form using the
weighted residual method [47, 53]. To this end, the space of square-integrable functions in £2is

required:

Ly = {w l J.w(x)de{oé, xeQ}, (4-4)
Q
as is the Sobolev space with square-integrable first derivatives:

H'(@ = {w| wel, DweLlyi=lon )}, (4-5)

where D;w denotes the first derivative with respect to x;, and nyy is the number of space dimen-
sions.

Let $° and § ! denote spaces of trial solutions for the solid and fluid phase velocities,
respectively, which have sqqare—intggrable first derivatives over the domain £ and satisfy the

essential boundary conditions
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(92
]

{v(s, I)i v e [HI(Q)]RM, v(x, 1) =§5 on I},
¢ (4-6)

(928
]

o] Viene tH @1 vizwn=5 on r.

. .f
where gs and g are prescribed solid and fluid velocities (Fig. 4.1). Let 7 * and V f be spaces of
arbitrary weighting functions for the solid and fluid phases, w® and wf respectively, which satisfy

the homogeneous form of the essential boundary conditions

s

v® = ' we (H@1 ", w'@) =0 on r..

@7

<
1

il wie B @17 wie) =0 on I

Ft I # prescribed solid traction Ft ¢ 1 prescribed fluid traction

£
r S:vgs prescribed solid displacement I ;: g prescribed fluid velocity
4 ) g

Figure 4.1 Boundary surfaces for the mixed-penaity (MP) and
penalty (PE) formulations.

Additional spaces are necessary for the mixed-penalty formulation. The space SISIP of trial solu-

tions p is defined as

Swp = (o0 | e P (@3, “8)
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which reflects the fact that no inter-element continuity is required for the pressure field. And the

space er\I/’IP of arbitrary weighting functions g is

vl = {q| ace 2@} (4-9)

The portions of thé boundaries I” e r o r . and I” ) are specified in the current configu-
ration B, which is shared at time ¢ by the solid and fluid phases. It is assumed that the correspond-
ing surfaces in the referencé configuration ﬁBé are well defined through the deformation of the
solid phase. Note that functionsin ¥ °, ¥ f and V,, P p donot depend on time, while the functions
in 5 5 and Sy yp vary with 7 due to the essential boundary conditions. |

In the finite element method, the spaces defined by Egs. (4-6) to (4-9) are approx1mated by
discrete, or finite-dimensional, subspaces. These subspaces are associated with a discretization of

" the domain (2 (finite element mesh), identified with a subscript “h”. The approximated trial solu-

tions are restricted to the subspaces
o o o p P
and analogously for the weighting functions,

wie vicv®,  gye Vipy S Vip- @11)

4.3 The Mixed-Penalty Formulation (MP)

In order to obtain the weak form in the mixed-penalty formulation (MP), the linear
momentum equations (a) and (b) in Table 3.2, the penalty form of the continuity equation (Eq. (4-
1)), and the natural boundary conditions (Egs. (3-57) and (3-58)) are multiplied by weighting func-

tions and introduced into the weighted residual statement:
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[0 19 04=6Vp- 0" ¥ T +w" [-0'Vp 4 ¢ ° D]

Q
+q[V- (0" + o5 +1ﬂ 1dQ @12
+ [w' (@~ o'nydr- jwf.n o' (p-pydl = 0.
Fs rf

To réduce the order of differentiation of the field variables, aﬁd thus the order of continuity

required subsequently in the finite element interpolations, the divergence theorem is applied to

Eq. (4-12). In particular, it is worthwhile to show the intermediate steps:

S S S S S T S |
J'w (V- op)dQ = J-w . (a’En)dI"-Jtr((Vw ) opd, , (4-13)
0Q r 0

S
.

J' w. (6%Vp)dQ = [w® n po®dr- [V @™ pag
2 r, 2 (4-14)

t

= s,f ( no summation),

where the definitions of the spaces for w* , Eq. (4-7), have been used to reduce the domain of inte-

gration on the boundary. After cancelling boundary terms we obtain

[ T -V (g9 4 6w p e ) - ¢ ° D)
Q2

_q[v. (6% + oD +‘1ﬂ 140 8 4-15)
= [w'far- [w'on polar
T L |

In the total Lagrangian approach, the above equation must be rewritten in the reference
configuration [7]. Recall that the elements of volume d2 and area dI" refer to the current configu-

ration, and are related to the corresponding reference values d,QG and dI7, by

dQ = I°dQ,, (4-16)



57

‘ -1
ndl' = I'ny- F° dI,, | 4-17)

where F° is the deformation gradient of the solid phase, J * is its determinant, and n o is the out-
ward unit normal to dI7; [66, 67]. The last equation can also be presented in a ratio form using the

right Cauchy-Green deformation tensor C °

dr -1
Jp= i - S ng- € ny. (4-18)

For hyperelastic materials it is customary to introduce the Lagrangian strain tensor E (Green-
. . . , . . s
Lagrange strain tensor) and the elastic part of the second Piola-Kirchhoff stress tensor Sg

defined, respectively, as

-1, | (4-19)

1 .
oL F° (4-20)

o'; being the elastic Cauchy stress tensor, Eq. (3-17). For a hyperelastic solid phase; S}SE is

derived from the Helmholtz free energy function as

s s oY s af//S
Sg = Po— = 2py —. 421

3E ac’
. Introducing Egs. (4-16) to (4-18) and (4-20) into Eq. (4-15) yields the weak form of the boundary/

initial value problem:

s T 5.8
[l (Vew)) F'SE)dQ,
2, .

+[‘£ {(ws—wf) -C(vs—vf) -V. (¢Sws+¢fwf)p—q[v- (¢S_vs+¢fvf) +%]}Jsd.(20 (4-22)

I"f
o 0

s 508 f -1 f
= J'w EJdly~ jw ~(nO~F5 )quJsdI"O.
FS
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In order to solve the problem numerically, the finite element method is used to approxi-
mate Eq. (4-22) in terms of a finite number of unknowns. The basic idea consists of replacing the
spaces .Sa, 5151},; p* ahd (V}E’IP with finite-dimensional subspaces 5:, 51511’ - ‘Vﬁt and (VISIPh'

| The discrete analogue of Eq. (4-22), called the finite element weak form, is obtained by subdivid-
ing the continuum into 7, elements of domain Q2 . and boundary I', . Within element “e”, solid

displacement, and solid and fluid velocity fields are interpolated in terms of nodal values as

S sa sa S sa sa f favfa

uh =N u , vh =N v s vh =N s a = 1,...n 5 (4'23)

where N° and Nfa are local CO, interpolation functions, with the property Naa(xb), = Sab, xb

being the coordinates of node 5, {and usa, v*¢ and vfa are nodal displacement and velocities
associated with element node a. According to Eqg. (4-23), the components of a vector are indepen-
dently interpolated by the same scalar funcﬁon. The summation convention only applies to the
index a, which varies from one to the number of nodes per element, n,,,. The pressure field is
interpolated in terms of pressure coefﬁci’ents, with 1, being the number of coefficients per ele-

ment:

p, = N P R (4-24)

Since spatial derivatives of pressure do not occur in the weak form, the interpolation function NC
can be of class C—1 . The pressure interpolatioﬁ can not be arbitrérily selected in a constrained:
~problem, and typically a polyndrhial of lower order than the ones used for the vélocity fields is

chosen. |
In the Galerkin approximation of the weighted residual statement, the weighting functions

share the same interpolation functions used for the trial solutions, yielding

s sa sa f ~fa fa
w

Wy = N w, Wy = N s a=1,.,n (4-25)

qh = N: q-, c = 1,...,’! . . (4‘26)
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While different interpolations could be used for the solid and fluid phases, there is no apparent rea-
son to do so. Therefore, in what follows the same interpolation functions are used for both phases,
N*® = N = N*. By introducing Egs. (4-23) to (4-26) into Eq. (4-22), the finite element weak

form is obtained:

n,, ‘ LT s ‘
3 jtr (Vyw') F'Sg JdQ,
e=1 Qg

S, Sa

+ j [wsa.NaCNb(va—vfb) -V (6'NW )Ndpd]]sdﬂo
o

fa ,.a.,.b sb fb foa fa .d d, ;s
+ -NCN (-=v +v )-V- (¢ N 7 JdQ
je[w CN7 (=7 +v )=V (9 Nw ) A p"1T A, w2
Q()
- [V 0N 4V (0N +[139\("qu54190}
2% |

et s o : -1 f
= 3w [N Tdry —w' e [Ny BT pe S, |,
e=1 r, ry

¢ t,

0 0

‘witha, b = 1,..., and ¢, d = 1,...,npc. Note that the summation convention and the ranges

n s
npe
associated with the letters a4, b, ¢ and 4 will be consistently maintained throughout this chapter.
In Section 4.7 it will be shown that the first integral in the above equatiori can be written as’

a product of two vectors:

T T s
w™ g = j tr( (Vgw') FSSE)dQO, (4-28)
fox ’ ;
with w™° containing the nodal weighting values for the solid phase, ’and gSe representing the non-
linear elasticity of the solid phase (’the assembled counterpart of gse is called the nonlinear elastic-

ity). Collecting coefficients of the vectors of nodal values, Eq. (4-27) can be rewritten in matrix

form:
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n £ eT

2] S Sl ) e

e=1 A ~A° —=H° e=1
B

. oy el sel  feT .. e
where, with regard to element “e”, v~ = [» v ] represents nodal velocities; p~, pressure

T T
. e se
coefficients; w = [w

feT o L :
W ], nodal weighting values; and qe pressure weighting function
coefficients.
A convenient way of expressing matrix A is to use the partition A% = [ A% A ], with

the sub-matrices for the solid and fluid phases being given by

a,® o b c o b b, s
(4% 0% = [0V "N Faq, (4-30)
9
where no summation is implied by o = s,f. Eq. (4-30) is abbreviated using intermediate vectors,

which will be specialized for 3-D and axisymmetry in Appendix B, to represent the divergence

terms:
b .
T V. (N, ~ (4-31)

yielding, for an arbitrary element of A° ,

o ¢k 0. b . v
(41 = [ (%) Tag. (4-32)
0
o, cb . a, b .
Note that [A ] represents a sub-array, while [A"]; , without bold text, represents a single
b b
element; the same applies to other arrays such as in {ha} and {ha} .
. , E i
The remaining arrays in Eq. (4-29) are obtained from the expressions of the corresponding

sub-matrices and elements!:

1. See Appendices B and C for a complete development of the finite element matrices for 3-D and
axisymmetric problems.
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b a
v = [ NN g, | (4-33)
9
cd
(" = [T aq,, (4-34)
2
gSC
o = { i } (435)

and, finally, the force vector is given by

s al N
{fs 1 f‘[ r="o0
Sy = el = o Co (4-36)
| ] ’
{rr - [ N'ny-F° po Sdr,
r

f 4
%

Because pressure is discontinuous between elements, and pressure coefficients are inde-
c ) o . g . .
pendent from element to element, p~ can be eliminated at the element level by using the equations

for the pressure in Eq. (4-29):

P = -BH A% @-37)

Substituting Eq. (4-37) into the velocity equations in Eq. (4-29) produces the matrix equation for
the nonlinear mixed-penalty formulation:

n n
er T
S oW L(BY[+Y)» 4] =

e=1

e

T
Y oWt ft 4-38)

e=1

~ where

-
Y;=4° (H) A" (4-39)
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Global matrices are obtained through standard assembly operations over the elements.
That is, element degrees of freedom and weighting function nodal values are related to their global
counterparts, and contributions of each element are summed to produce the global system of equa-
tions. A caret (A) is used to indicaté the assembled form of an element nodal vector, For arbitrary
nonzero w the following assembled system of nonlinear equations is obtained:

A

Yyp?+& = 7, (4-40)

where YMP = [ Y1 + YZ} ; and Yl, Y2, g and f are the assembled counterparts of the ele-

ment matrices.

4.4 The Equivalence of the Penalty and Mixed-Penalty Formulations

The weak form of the penalty formulation of Suh ez al. {105] is developed in a similar
fashion, the only difference being the absence of the pénalty form of the continuity equation from

the weighted residual statement

[0 V- 0h =8 Vp-¢ " =] 4w’ -6Tp e ¢ * oD 1 a2

“ s s s ¢ ¢ ; (4-41)
+ Jw - - n)d]’-—J‘w -n ¢ (p-p)dl = 0.
I, I,

t ¢

The continuity equation, instead, is solved for the pressure, which is then substituted into Eq. (4-

41), yielding,
[Lo((Tw") e+ BV - (6w + g%y V- (6 + 65
Q : , '

+ (W - wf) - vf) }aQ (4-42)

= fws~tsd1’— jwf-n ﬁqbfdl'.
Fts th
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Using Egs. (4-16) to (4-18) and (4-20) to write the above equation-in the reference'conﬁguration

produces the weak form

T
| tr( (Vw®) FSS-;)dQO

QO
+£J2' [BV- (¢5w5+¢fwf) v. (¢Svs+¢fvf) + (ws—-wf) -C(vs_-vf)]Jsd.QO (4-43)
0
1 f
= ij.tSJj,dro- J'wf.(no.ps 1)p‘¢ Jdr,

T, r
H

¢
‘o 0

As before, the finite element weak form is obtained by subdividing the continuum into
finite elements, and interpolating the trial solution and the weighting functions within each ele-
ment. Adopting the same interpolation function for the velocity components of both phases, and

introducing Egs. (4-23) to (4-25) into Eq. (4-43), gives

net . s T s s
S [ (Ve Fisg)agq
e=1 <&

[ 1BV (N W 17 (N + V- (6N

2

s NN 07 vy 1 g
| (4-44)
[1BY- (N %™ 1 (0N + 7 (9'N")]
fox ‘

' NN (<v ™) 1 e, J
sa aS s fa Ve sl fs
= X |\ w [N ILdr, -w [ Nng FT pg Sdry |,
r

Iy

7

TS
‘o 0

ab = 1,...,nnpe.
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By collecting vectors of nodal values, and making use of Eq. (4-28), Eq. (4-44) can be rewritten in

matrix form as

net

net T e
zweT[(ﬁ Yi+Y)vTegl = oWt £ C(4-45)
e=1 e=1

Matrix ¥, and vectors ge and f ® are the same arrays shown for the mixed-penalty formulation

(Egs. (4-33), (4-35) and (4-36)): While matrix Y3 is given by

Yss st
[Y;] = > 3f : (4-46)
Y3 s
where the sub-matrices are defined by
a ab b .
[w‘ﬂ] (¥ 7 = [V (N Y (' NV Faq., i

with no summationon o,y = s,f.

If the intermediate vector A%, defined in Eg. (4-31), were to be used to replace the diver-

ab
gence terms, the sub-matrices [ng] above would be computed as

i - | 'y bJSdQO. - (4-48)

2
However, the computaﬁoh of ¥, réquires special treatment to avoid problems such as locking
(overconstrained solution) or rank deficiency (spurious zero energy modes). When dealiﬁg with
bilinear quadrilaterals, selective/reduced integration can be employed, leading to a standard pen-
alty formulation. A more general approach, valid for higher-order interpolation elements, uses the

following discrete divergeﬁce operator [911:

c. e cd
V") = AT [ A0V (6Pwyda

Q (4-49)
¢ cd
A (H] (A

db
7 w3y’
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ab cd
where [Aa] and [H e] are given by Egs. (4-32) and (4-34), respectively. Replacing the

divergence operators in Eq. (4-47) by their discrete counterparts, yields

[Y;W] ab B j [Aa’r] ac [He-T] cd Ndy\[f [He-l] /g [AY] ngSd.QO
2 (4-50)

[A aT:} ac [He—l] cd [AY] db,

and ¢,d, f,g = 1,...,n

Witha',b'—" 1,...,71 s .
npe pc

The comparison between Egs. (4-50) and (4-39), and Egs. (4-45) and (4-38) is sufficient
to demonstrate the equivalence between the nonlinear penalty and mixed-penalty formulations
when the discrete divergence is adopted. For bi-linear quadrilaterals, Eq. (4-49) is cénsiderably
simplified due to the constant pressure interpolation, leading to an efficient mean-dilatation pen-
alty formulation [100, 105]. For elements with higher-order intérpolatibn, however, there is no
apparent computational advantage in using the penalty formulation, and preference should be

- given to the mixed-penalty formulation.

4.5 Mixed Solid Velocity - Pressure Formulation (v-p)

The use of the linear momentum equation for the fluid phase to eliminate the fluid velocity
from the governing equations characterizes the mixed velocity-pressure (v-p) formulation. The '
weak form, obtained using the momentum equation for the mixture and a modified form of the
continuity equation, contains the gradient of the pressure and thus requires an inter-element con-
tinﬁous interpolation for the pressure, which is a now a primary variable. The corresponding dis-
crete form produces systems with smaller number of equations than in the previous methods. And,
because of this advantage, different variants of the velocity-pressure or displacement-pressure for-
mulations (both linear and nonlinear) hé.ve been investigated in the fields of soil mechanics [15,

38, 56, 68, 83, 88, 94] and biomechanics [79, 80, 115]. In this section, a nonlinear version of the v-

p formulation is developed adopting as unknowns increments of velocity and pressure. The load-
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ing terms of the v-p formulation, though rarely addressed in the above references, are presented
here for completeness.
The process of eliminating the fluid velocity starts by rewriting the linear momentum

equation for the fluid phase (Eq. (b) in Table 3.2) as

2 - B
o' v = =6 ¢V = — kY, 4-51)
2 _
~where k = (d)f) ¢ ! is the permeability tensor. Except for the omission of the conservative
body forces, Eq. (4-51) is the classical Darcy’s law. For a saturated mixture, the continuity equa-
tion can be expressed as
V-0l = 0. (4-52)
Adding the linear momentum equations in Table 3.2, and introducing Eq. (4-51) into Eq. (4-52),

produces the following system of equations:

V. (og-pl) =0, T (4-53)

V(' -kYp) =0, O @se)

where the first equation is the momentum equation for the mixture. The elimination of the fluid
velocity from the governing equations leads to a mixed finite element formulation in which the |
pressure and solid velocity/displacement are interpolated. Consequently, the prescribed fluid flux
that leaves the domain Q through the boundary I, Q replaces the prescribed fluid traction as a nat-

ural boundary condition. Using Darcy’s law, the prescribed fluid flux is defined as

D =-(kVp) n=0¢@ v n. (4-55)
Therefore, the boundary conditions associated with the governing equations are

s

W =g, forxel ;o - (@56)

px, ) = P, for xeI' p; 4-57)
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ox,)n =i, for xe I"ts; : (4-58)

- (kVp) -n =0, for x e I"Q, (4-59)

where the surfaces I" | and I“t , are complementary subsets of the boundary I", and so are I” - and
g

FQ , as shown in Fig. 4.2,

w

o

r p: D prescribed pressure

r tsz i prescribed total traction
r. gs prescribed solid displacement FQ: Q prescribed fluid flow
g

- Figure 4.2. Boundary surfaces for the v-p formulation.

The function spaces defined for the pressure in Section 4.2 are inadequate for the v-p for-
mulation, so new spaces must be defined. Let § vpp denote the space of trial solutions for the pres-

sure, which have square-integrable first derivatives over the domain £2, and satisfy the boundary

condition for the pressure:
1 . B
sh = (pe0 | pene B@, po=pon I}, (4-60)

and let ¥ VI; be the space of weighting functions g, which satisfy the homogeneous form of the

essential boundary condition,

. - R
Vo = {4 | g H'©Q), ¢x) =0 on r}. (4-61)



68

In the v-p formulation, Eqs. (4-53) and (4-54) and boundary conditions, Egs. (4-58) and

(4-59), are introduced into the weighted residual statement, yielding

JO0' 1V (og-pD ] +q V- (- rVp)1}d02
2

+ J‘ws4 (z—an>dr-jq(Q+(nvp) nydl = 0,
r, FQ

¢

(4-62)

where use has been made of Egs. (4-7) and (4-61) to restrict the domains of integration on the

boundary, explaining why ¢ is considered only on Ft .- The divergence theorem is then applied to

reduce the order of differentiation, as is illustrated below for two of the integrals:

j,ws -VpdQ = Jpws -ndl’~ fpV wdQ,
Q r 2

S
t

jq V. (kVp)dQ = jq(nvp) ~ndr—j(nvp) - VqdQ. |
Q I, 0

After cancelling boundary terms, the weak form in the current configuration is obtained:

j {tr( (Vw®) Tcr;) ~qV v =pV W'~ (kVp) - Vq}dQ
2

= j w' . tdl+ j q0dr.
T, T,

¢t

(4-63)

(4-64)

(4-65)

In the total Lagrangian formulation, the integrals in Eq. (4-65) must be rewritten in the ref-

erence configuration, yielding

T s
j tr( (was) FSSE)d.QO- j [V - v +pV- w' + (,kVp) - Vq] Jsa'.QO
QO QO

= [w'-wpdry+ [ g1y dry,
r I,

¢ 0

S
s

where Egs. (4-16) to (4-18) and (4-20) have been _employed.

(4-66)
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The finite element weak form is obtained by subdividing the continuum into n,, elements
of domain £2_ and boundary I'_. Within an element “e”, pressure, solid displacement and solid

velocity are interpolated in terms of nodal values as

p, = N 0’ ¢ = Lian,,; (4-67)
ui = Nausa, v; = Navsa, a= l,...,nnpe, (4-68)

0. . .
where Nc and N* are C interpolation functions; n

pn 18 the number of pressure nodes per ele-

ment, and 7,,,, is the number of kinematic nodes per element. The above interpolation functions

are also used for the weighting fupctions:

qy = 9\(C qc, c=1,.,n (4-69)

we=NWY =l . (4-70)
By introducing Egs. (4-67) to (4-70) into Eq. (4-66), the following finite element weak form is
obtained;

i ( j tr( Ty Eés;)mo- [V @™ \*plrde,

% 2

~g [ v’ kAP + AV - (Nvab)]JSdQOJ

4-71)
QO
net
= 3 | j Nty dly+4° j N°DJRdI |,
e=1 rt rs

s Q,
tD 0

with a,b = 1,..,nnpe and ¢, d = 1,..'.,npn. This eXpression is more compact than the penalty-
based expressions presented earlier, having the advantage of avoiding the divergence term
V. (¢ava) . By collecting coefficients of the vectors of nodal values, Eq. (4-71) can be rewritten

in the matrix form
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n, 0 Ae T vsc se n f
2[53’1‘ ST] “p { }-&-{g }‘=Z[e’r e]il{ }, (4-72)
—wq e e Pe 0 w o q Qe
o=l ~Ayp ~H,y,p
where v°°, pe , w™° and qre are nodal vectors of solid velocity, pressure, and weighting values for
the solid phase and pressure, respectively, for element “e”. Vector gSe is the nonlinear elasticity of
the solid phase, Eq. (4-28), and f te corresponds to the total traction. Matrices in Eq. (4-72) have

the following subfmatricesl-:

ca’ ' o ’ o
[Ajp] v = j AV (N Sdgy, NCEE)
x , e
J ,
[H‘:p}c = j v’ anMdJsd.QO; (4-74)
2%
and the force vector is given by
L a | Ny,
{f1 e
iy = o= 00 - (4-75)
{0°} [ aorsar,
L Tg,

It is convenient to define an intermediate vector to represent the divergence (see Section

B.5), such that
T S sa ’ -
Ry =V (N Y. | (4-76)

. € .
Thus, the elements of matrix Avp are given by

4y, = [ 2 (hyrdg,. @
_Q;

1. See Appendix C for the complete development of the finite element matrices for 3.D and axisym-
metric problems.
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By defining the following vectors and matrix:

%€ wse 0 4° T -
f:{ } we~={ } Y,, = e, S @T®)
P . q e e
—Avp —va

Eq. (4-72) can be represented as

n
. CT e e €
ZW [vav +g]

e=1 e=1

N
¥
~,

(4-79)

After assembling the element matrices, and assuming arbitrary nonzero weighting values, the sys-

tem of nonlinear equations is obtained as

Ypo+8 =1, ' - (4-80)

where a caret ( ) indicates the assembled counterpart of an elemerit vector.

4.6 Solution of the Nonlinear System of Equations

Eqgs. (4-40) and (4-80) constitute systems of ordinary first-order differential equations con-

densed into the form!

~

YP+g = f, ‘ (4-81)
where # is the Vectbf of nodal unknowns (eithef velocitieé, or velocities and pressures); Y is the
capacity matrix [47, 83]; & is the vecfor of nonlinear elasticity, which contains nodal forces corre-
sponding to elastic stresses in the solid matrix; and f is the vector of external forces (see Sections
4.3, 4.4 and 4.5 for specific details).

 The system of equations (4-81) is nonlinear and it is valid at any instant of time. To solve

this system numerically, the time domain is subdivided into intervals called time steps, i.e.

1. Although the solution process is unified in this presentation, the reader should be aware that, in
contrast to the penalty formulations, the coefficient matrix of the v-p formulation is not positive
definite.
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At

n-i-1=z

nel =ty where L by o by denote instants of time. A finite difference scheme is

used to obtain approximations of the temporal response using a series of recursive solutions at suc-

cessive time steps. For time ¢ Eq. (4-81) can be written as

n+l’
Y tPne1%8n01 = Josts (4-82)
.. A A ] S . o
where it is assumed that o=V, ) anda, =0 (1, ). The coefficient matrix

and the nonlinear elasticity vector g, _, depend on the current configuration, which is unknown

| at r, . The external force vector is an explicit function of time and can depend on the current
configuration, as occurs for a prescribed pressure or a solid-phase traction normal to the boundary.
In order to solvé this nonlinear system of equations, Eq. (4-82) must be linearized, and an appro-
priate finite difference rule and iterative scheme must be introduced within a time step to account
for the approximation of vectors and coefficient matrices.

The approach adopted here expresses the solution in terms of increments of nodal veloci-
ties and, for the v-p formulation, increments of nodal pressure. This approach is similar to the one
presented by Suh er al. [105]; it has also been émpldyed by Prevoét [82-84] and Borja [i’f] with
elasto-plastic constitutive models. Another possible approach uses incremef:lts of displacements
instead of velocities to solve the nonlinear equations [80, 115]. Because both approaches are
related by a finite difference rule, their computational implementations are quite similar. Finally, it |
should be noted that only nodal vectors in assvembled form are deélt with in what follows and,
since there is no danger of confusion, the caret symbol (A) used to denote global nodal Values is
droppéd. |

‘In order to obtain a recursive relation for Eq. (4-82), a partial linearization that includes
only the nonlinear elasticity g is performed. In this approach, due to the absence of linearized
forms for the capacity matrix and the force vector, the arrays Y and f have to be updated through-
out the iterations. Thdcomplet&linearization of Eq. (4-82) and simplifications-that lead to the

approach adopted here are issues examined in the next section. The linearized form for g is derived
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in Section 4.7.2 and has, in the context of the Newton-Raphson method, the following recursive

form:

. 4
' 8n+1 s (3) s(i=1) | LS3U=1 s .
8n+1 T { ’ 8s1 = 8ne1 tE, Au, oy (4-83)
where Ki .1 Isthe tangent stiffness matrix of the solid phase. The zero vector above corresponds
to either fluid velocity or pressure degrees of freedom, depending on the formulation being consid-
ered. The superscript within parentheses designates the iteration number, with (i-1 )‘ referring to
vectors and matrices that are known from the previous iteration:

s(i=1)

. . s
KUTD = (K& D0 (4-84)
0 0

(i-1) _ s(i=1)
‘gn+1 _gn~+1(xn+1 )

Thé above eqﬁations require a stafting value for the vector §f sollidehase displacements. To com-
pute this value, a predictor vector obtained from the éonvérged displacements and velocities at the
previous time ¢, is adopted [47]. The predictor phase is followed by multi-corrector phases, whose
recursive relation is developed below.

Let us start by assuming that the displacementat ¢, _, is given by

S

pst

=u, +Arv,, (4-85)

where v denotes the vector containing the solid-phase components in v, a velocity vector that

occurs between £, andz, . A trapezoidal, one-step finite difference scheme is used to compute

+

v{j}j

Ve = (l—a))vn+a)v

(4-86)

n+l’
with @ being a specified parameter (0 < @< 1). Since the solid displacements are obtained itera-
tively, Eq. (4-85) is rewritten as 7

s{i)

n+1l

s (1)

s s
=u, + (1—-co)Atvn+coAtvn+1,

(4-87)
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which yields:

s{f) _ us(i) s(i-1)

Upol S U817 %0

s (2)

n+1°

Au = @ Ar Ay (4-88)
The complete velocity vector in Eq. (4-82) is expressed in terms of the incremental veloc-

()

ity Av, _, in order to obtain a recursive relation for that equation, resulting in:
@ _ -1 (0
Parl T Vnet TAnL (4-89)
Introducing Eqs.(4-83), (4-88) and (4-89) into Eq. (4-82) leads to the expression
(i-1) (i-1 () (i-1) (-1 (-1 (i-1)
(Yo vk, A = i =Y Vs T8nat - (4-90)
In the case of an external force vector that does not depend on the current configuration, f r(l i+—11) is

replaced by f, ;. For systems with weak nonlinearities, the iteration procedure can be per-
formed w1thout updating the coefficient matrix on the left- hand-s1de of Eq. (4—90) This corre-

sponds to the Modzﬁed Newton-Raphson Method in which the recursive equatxon is replaced by

(0 ) _f(i- )_Y(l hD,G-1 _ G-D

Vool S Jps1 n+1 Va1 n+1

v 2+ 0ark D 1Ay (4-91)

Note that the right-hand-side of this equation is the residual of Eq. (4-82), which is updated at each

iteration. The complete flow chart of the iterative solution process is presented in Table 4.1.

Trapezmdal schemes are often used to sol?e ordinary dlfferennal equatxons, and some of
'them have special names as indicated in Table 4.2 [122]. From this table, it is clear that optimum
accuracy and high frequency numerical dissipation cannot be achieved simultaneously with any of
these schemes [48]. Stability and convergence analyses for the trapezoidal schemes applied to lin-
ear and nonlinear biphasic problems are préSented by Booker and Small [14] and Prevost [83],
respectively. The result is now well known: the solution is unconditionally stable for ®>1/2,a
condition that is also valid for strictly increasing time steps. Alihough the stablhty ané.lyses for

nonlinear problems are based on linearized stability, numerical examples in the literature have
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Table 4.1 Iterative solution flow chart

Description

FIRST ITERATION
Predictor phase

A.l  Initialize velocity and solid displacement vectors, where v and u are con-
verged vectors from the previous time t,

o _ . S(O),

—_ s AZ-S.
n+l 7 'w n+1'—un+ Vs

A.2  Setiteration counterto [ :=1;

0 . . . I
A3 Use ung_ ; to compute matrices and the residual vector in Eq. (4-90), yielding
a system of linear equations that is solved for the first increment in nodal
velocities Avn a1

[Y,E(j_)l«}-a)AtK(o) 1Ay L _ f(O) _y0 O (0}

Vor1 =041 nel’nel " 8ns1e

Corrector Phase

B.1  End the first iteration with a corrector phase, which updates velocity and dis-
placement vectors:

(1) . )] (1 1y 0 (GRS
Vpel 1S Vel AV, Ly nel’ n+1+“)AtA n+l
REMAINING TTERATIONS
Multi-corrector Phase
C.1  Update the iteration counterto { := i+ 1;
C.2  Update matrices and vectors using unl :11) ;
C3 Solve Eq. (4-90) for the increment of nodal velocities Av @ 1
(i-1) (i- o _ 1) (1-1) (1—1) (i-1),
[Yn+1 +wAtKn+1 ]Avn+1 - fn+1 -Yn+1 Varl “8n+1 0

C.4  End the current iteration with a corrector phase, updating velocity and dis- »

placement vectors:
o, _ -1 () s, _ sl s() |
Vi1 = Vnsi +Avn+1, n+1°7 Tn+l +0.)AtAvn+1,

C.5  Return to step C.1 and proceed with a new iteration until the norm of the vec-
. . i 3 A
tor of incremental velocities Av nel satisfies the convergence criteria.

~ shown that it is strong enough for most practical problems in soil mechanics [15-17, 83] and bio-

mechanics [105].
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Table 4.2 Trapeioidal finite difference schemes {122]

@  Trapezoidal Scheme Characteristics

0 Euler, Forward difference Explicit, but conditionally stable.

Higher order of accuracy, but

1/2 - Crank-Nicolson AR
response may have oscillations.

2/3  Galerkin Good for damping high-frequency oscillations.
.878  Liniger Developed to minimize the domain error.
1 Backward difference Fully implicit.

The Galerkin scheme waé used in most of the examples in this work; it is unconditionally
stable and can damp nonphysical higher-order frequencies introduced by the finite element
approximation. Systems of equations arising from soft hydrated tissue problems can be considered
stiff [17], and, consequently, the forward difference scheme is generally discarded because it
requires very small time steps in order to be stable.

In the present study, the following convergence criterion was used for iterations within a
time step:

av®?|
(1)’

<TOL, (4-92)

where TOL = 10 . Because there may be oscillations during convergence, the criterion must be

satisfied through m consecutive iterations (in this study m = 3 has been adopted).

4.7 Incremental Linearization

In the previous section 2 linearized form of the nonlinear elasticity, Eq. (4-83), was used to
obtain the incremental form of the biphasic equations. The objective of this section is to derive that
equation and, in a broader context, discuss the assumptions behind the partial linearization adopted

at that time. -
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4.7.1 Linearization about a Reference Motion

The current position vector of a solid-phase particle is given by the deformation function
L . s . .
x (X', ), where X is the position vector at 7 = 0. The deformation can be decomposed into a ref-

. ~§ . N
erence motion X and a superposed motion du

S

X=X =2 X, 0+’ X 0. (4-93)

The reference motion can be seen as a motion in the neighborhood of x°, with du~ being an admis-
‘ sible increment {or variation) with respect to this motion. Note that as both motions xSand ¥ refer
. S . . S S .
to the same time ¢, du~ is not the displacement vector &~ = x° =X’ . The letter § will also denote

the first term of the expansion of a Taylor series in u’, for example:

2
AFE +8u)) = A@) + DA, 5u’ +0Bu’)
el s

(4-94)
- 2
A+ 064+ O(SuS ),

where a tilde ( ) is used to represent a quantity associated with the reference motion. The linear-

ized form of A is then defined as

LAG +8u’) = A+34, (4-95)
where the letter £identifies the first-order approximation of A.

4.7.2 Linearization of the Solid-Phase Elasticity

In the finite element weak form, the solid-phase elasticity arises from the integral

T
Gy = | u((vst) Fss;)dao, (4-96)
£9)

oo
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S . N . . :
where F° and S depend on the deformation xs(XS, n. F ® is a linear function of the deforma-
. . N . . . . ~$
tion and, assuming that it is continuous and has continuous first-order derivatives!, F(x + Sus)

coincides with the linearized form LF 5 s

FE +8u’) = F + V(50" . | (4-97)

Before dealing with the stress tensor, it is convenient to have the linearized form of the right

T
Cauchy-Green deformation tensor, c’=F FS,

S, ~8

LC(x + Sus)

LBV, (%) + (Vo (5u®)] P
X” u ) + ylou ) (4-98)

f,‘s +8C°.

The stress tensor for a hyperelastic material depends only on the current deformation (see Eq. (4-

21)). Therefore, by using the chain rule of differentiation, the following expression is obtained:

S

oS

s &S E| | s sY _ oS L1l s08
pSE-SE-l-g-(—:;.(DC is~8u)_SE+-2-C.SC, (4-99)
is
' or, in a more familiar form,
LSy = 85 +C: SE°, (4-100)

where the symbol (:) denotes a tensor product yielded by the double contraction [67], and

C = C|_, is the fourth-order elasticity tensor defined by [90]
X

s S 2

oS oS
C = a—Es =2 acES or, C = 4pgagsgvcs. (4-101)
E

The linearization of Eq. (4-96) is achieved by expansion in a Taylor series. In this case, the
same result is obtained by introducing Egs. (4;97) to (4-99) into Eq. (4-96), and then eliminating

higher-order terms in Su’:

" 1. In what follows, the appropriate differentiability is always assumed.
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- T . ~ =T T.s7
LGZ’ = G;+ I { [(was) FS:}: C :[F Vy(8u®) + (Vx(8u%)) F]
@ (4-102)

(NSRS

s, T 5, =S
The above equation can be simplified by using the symmetry of S ; and C , yielding

T .| .sT
- {[(VXWS) FSJ . C :[Fs VX(auS)Tym
T (4-103)

+ tr( Ve 8y [vx(aus)]”ym) }de,,

where the superscript “sym” designates the symmetric part of a tensor. Finally, approximating w
S . . . . R . s .
and du  using interpolation functions within a finite element, and developing the gradient terms as

shown in Appendix B, produces the matrix form

S SCT s SCT ~5¢

LG, =w" g =w" [§ +K du]. (4-104)

Matrix K*¢ is the rangent stiffness matrix of nonlinear elasticity [7], which is usually decomposed
. L . se L ”

in the large deformation stiffness matrix, K ', and the geometric stiffness matrix, K z}e (see Appen-
dix C for the development of these matrices). Vector §Se is the nonlinear elasticity vector of ele-

(1944

ment “e”, given by

T=S
= [ B{Spdq,. o (4-105)

=S . . . .
where Sg is a condensed vector containing the components of the second Piola-Kirchhoff stress

tensor and, together with the intermediate matrix By , is specialized in Appendix B.

47.3 Considerations about Full and Partial Linearizations

Let G(xs) be the residual of the biphasic equation, defined based on Eq. (4-81) as

Gi®) = Y&©) v(x)) +g(x) - Fx)) , (4-106)
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where the dependence upon the current configuration has been made explicit by using the current

position of the solid phase, x° = x.The linearized form of Eq. (4-106) is expressed as

LGE +8u’) = GE) + G, (4-107)
with the first term of the Taylor expansion given by

8G = 8Y v+ Y dv +08g - of . (4-108)
Applying the chain rule of differentiation to 8g and df in Eq. (4-108), and introducing the result

into Eq. (4-107), provides

S

du

~$
X

7+l

LGE +5u’) = ~,§+8Y§+?8v+ §+ig—s
' : ' ou

Su’ | (4-109)
dJu '

~5

This full linearization is an expensive alternative, and approximate forms of the above equation
are normally used in the finite element implementation. For example, if changes in the matrix Y

can be neglected during an iteration, Eq. (4-109) can be simplified to

S

Su’ |- f(scs)+a—fs Su’|. :(4410)

LG(iS +8u)) = YE) v@ +8u) +| g®) +ais
S du

Ju

~8

=8
X

The linearization of the nonlinear elasticity vector is essential to obtain a non-singular sys-
tem of equations, but the second linearization can be avoided when convergence is achieved just

by updating the force vector. In this case, the above equation becomes

LGE +8u’) = Y& v(E + 8ud) + ,g(is)+a_g§ Su’ |- fE +86%). (411D

ou |os
X

In this thesis, this approximation was ;chosen‘ instead of Eq. (4-110) for the following reasons: it is
usually less expensive, and it produces a symmetric system of equations due to the absence of

matrices arising from the linearization of the force term.
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4.8 Summary

In this chapter, three nonlinear finite element formulations for biphasic mixtures of incom-
pressible constituents have been derived using the Galerkin weighted residual method. The mixed-
penalty biphasic formulation has been extended to nonlinear problems, and its equivalence with
the penalty formulation has been demonstrated. A velocity-pressure formulation which considers
the nonlinearities found in soft hydrated tissues, has been developed. And finally special attention
has been dedicated to the incremental linearization of the system of equations, which is done in a
form compatible with the weighted residual method, that is, without explicitly introducing the con-

cept of virtual strain energy.







CHAPTER 3

Selected Element Results for the Linear Confined Compression Biphasic Problem

It is a standard practice to develop general finite elemen£ formulations which are dissoci-
ated from the element type. During the derivation, discrete spaces of functions are defined and
issues such as element geometry, number of nodes per element, and interpolation functions are left
for the implementation. In so doing, not only does the development of the formulation become
more genefal and concise, but the computational implementation also becomes more flexible and
systematic in the way element routines are managed. This dissociation between formulation and
element implemenfation should not be misinterpreted as implying that all elements arising from a
formulation will be robust. For ‘example, the success of a formulation for constrained media still
strongly depkends on éleﬁent—by-element numerical and theoretical analysés to find reliable and
accurafe sets of elements.

Most successful biphasic formulations and elements, taken to the limit of pure solid or
ﬁuid,,h‘ave analogs that are used to fepresent single phase incompressible elasticity or Stokes flow
[31, 32, 86]. With regard to formulatiéns presented in this thesis, élements of fhe mixed v’elocity-
pressure (v-p) formulation can be classified as members of the Taylor—Hood family of elements,
Whicil are characterized by continuous pressure interpolations one order lower than the velocity
interpolations. Elements of the mixed-penalty (MP) formulation share the same combinations of
inter-element, discontinuous-pressure and continuous-velocity interpolations employed for single
phase incompressible media. This analogy with elemenfs for single phase incompressible media
has motivated the implementation of MF elements since a more accurate representation of the
incompressibility constraint is expected for elements with discontinuous pressure.

The focus of this thesis is nonlinear analysis, and therefore it is important to put the pre-
sentations of this-chapter in the proper perspective: In-the process-of developing and-implementing
alternate formulations for nonlinear analysis, it has been necessary to adopt what appear to be the

most appropriate element shapes and interpolations, guided where possible by results for linear
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biphasic analysis and/or linear or nonlinear single phase analysis. At various stages in this devel-
opment, unexpected results i nonlinear analysis have led to re-examination of linear biphasic
analysis. As the number of candidate elements is large, it is not the intention of this thesis, or more
specifically this chapter, to preseht an exhaustive vstudy and comparison of elements. Rather, the
intention is to provide examples and information that provide insights and guide the choice of
finite elements to be used in the nonlinear analysis.

Lihear biphasic versions of both v-p and MP elements are used to illustrate how element
type mesh refinement and mesh distortion affect the numerical approximation of the confined
compressmn creep (CC-creep) problem. New results are analyzed in the light of previous studies
on element performance conducted by Sandhu {87], Reed [85], Spilker and co—workers [99, 100,
112, 113], and Murad and Loula [74, 75]. Although it ls a one-dimensional problem (keven yvhen
modeled l)y 2-D or 3-D elements), the CC-creep problem is adeqﬁate for diagnosing convergence
problems, and showing that biphasic elements do not always have the same performance as their
smgle phase analogs Furthermore the CC-creep problem is an extreme test of the elements in that
all of the load is suddenly placed on the solid phase. Examples in the next chapter will show that
the performance can improve for problems where the load is distributed over both phases as may

be typical in realistic joint loading cases.

5.1 Types of Elements

Several plane-strain, axisymmetric and 3-D finite elements, both linear and nonlinear,
have been implemented (see Figs. 5.1 and 5.2 in the next pages). All elements are characterized by
a pressure interpolation which is of lower-order than the velocity interpolation. The Taylor-Hood
elements use inter-element, continuous;pressure mnterpolations, in contrast with the MP elements

‘which use inter-element, discontinuous-pressure interpolations. Isoparametric interpolation func-

tions are adopted for velocity fields. ‘Interpolation functions for these elements can be found in

Bathe [7], Zienkiewicz and Taylor [121], Hughes [47] and Kardestuncer [54].
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For this thesis, elements are identified by the number of nodes and element geometry (e.g.
8-node quadrilateral). However, because error-estimate analyses use a nomenclature based on the
names of the velocity (displacement) and pressure interpolations, those nafnes are also shown in
the figures. In this context, P, denotes the set of complete polynomials of degree k. Q, denotes
the set of functions that are polynomials of degree k along each coordinéte, and é superécript in
parentheses indicates the number of coefficients or nodal points. For ekample, in two dimensions
Q, contains bilinear functions, while Qz(g) and Qég) contain incompiete and fully biquadratic
functions, respectively. A plus sign as a superscript indicates an internal ﬁode or, more génerically,
the presence of bubble functions. | |

Table 5.1 presents the integration rules addpted to compute the ﬁ\nité element matrices of
the MP and v-p formulatidhs (with the order of the ﬁoiynomial exactly integrated’ givebn within
parentheses). As a matter of convenience, the Same mtegration fule was used for all matrices of the
v-p fonnulation. It should be noted that H ip can utilize a lo§ver order integration without affécting
the result of integration. Numerical integration rules and their application are discussed by Strang
and Fix [102]; Bathe {7], Hughes [47] and Zienkiewicz [121]. ’Higher order integration rules for

tetrahedra are provided by Jinyun [52] and Keast [55].

Table 5.1 Integration rules adopted to compute the finite element matrices

Stiffness MP formulation v-p formulation
: ) qclatrice% e e e e
Element Geometry || K; & K Y, A"&H A, &H,
. 6 points 7 points 6 points 6 points
6-node triangle ) D @) | @)
. 3x3 4x4 3x3 3x3
9-node quadrilateral o @ 5) )
: I 3x3x3- 4x4x4 3x3x3 - 3x3x2
20-node hexahedron o) I ) S)
10—nod¢ tetrahedron ; 1 %:;nts . - 1 }(js;nts
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5.1.1 Mixed-Penalty (MP) Finite Elements

Figure 5.1 shows ﬁnife elements used with the MP formulation; solid circles fepresent
fluid and solid veiocity nodes, and crosses identify the pressure interpolation (one cross per pres-
sure parameter, or coefficient). With respect to these elements, the 7-node triangle, the 9-.node
quadrilateral and the 27-node hexahedron satisfy the LBB condition for single-phase continuum
[31, 47]. The six-node trrianglewas the first element to be implemented 1n the linear MP formula-
tion [99], followed by the 10-node tetrahedron [112] not shown in the ﬁgure. The 10-node tetrahe-
dron has not been included in part oue to poor performance in problems witn multiaxial
deformation. Specifically, it has been noticed while solving nonlinear confined and lunconﬁned
compression problems that this element fequires very fine meshes and can manifest locking The
remammg elements are based on standard elements for mcompress1b1e media, and were 1mp1e-
mented for b1phas1c continua in this study. /

The 5-node quadnlateral was the last element unplemented in the program Accordmg to
Fortin [32], it does not sansfy the LBB condition, but the presence ofa bubble funct1on avoids the
lockmg phenomenon. We shall present results showmg good behavior and opumal rates of conver-
gence for this element, making it competiti\}e with quadratic elements for the confined compres-
sion problem. The lowest-order MP element is the 4-node quadrilateral with constant pressure (nog
: shoWn), Which does not satisfy the LBB condition. This element is eq‘uivalent‘ to the p’enalty ele-
ment investigated by Spilker and Suh [100] and Suh et al. [105] and thus will not be examined
here.

In the MP formulation, the pressure can be expressed within the element in terms of either
parent or global coordinates. For linear pressure interpolations, the function contains
Mo = Ngg+ 1 pressure coefficients, and is expressed either as p(g) =ap+ a;§; in parent, or

pX) = »bo.:*- b, X, in global coordinates, with i = 1, -y 1t Interpolations using parent coordi-

nates are adopted in this study except where noted to the contrary in this chapter.



36

PN
X L I x

xoox | Lexels

b

7-node triangie 3-node qgadrifateral 27-node hexahedron
+ % 2n
Py-P Q" -P QQ -P

X

] A

I O Y
X X | TR

7/
@

g v

8-node triangle 8-node q(lélz)adrilateral 20-node hexahedron
’ (20)
P2 - Pl Q2 - Pl QZ -P 1
X . Velocity nodes
. )( Pressure parameters

X X

5-node quadrilateral
+
O

Figure 5.1 Finite elements with discontinuous pressure fields.

5.1.2 Mixed v - p Finite Elements

- Figure 5.2 shows slements used with the v-p formulation; solid circles represent solid
velocity nodes; and open circles around the vertices represent pressure degree‘s of freedom. The
‘pressure field in the Taylor-Hood family is continuous between elements and is based on element
vertices in the case of the quadratic elements considered in this study. The 6-node triangle and the -

9-node quadrilateral satisfy the LBB condition for single-phase analysis [47]. It is interesting to
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Figure 5.2 Finite elements with continuous pressure fields (Taylor-Hood elem,ents).

note that the 6-node triangle was the first element used to model biphasic (or poroelastic) continua

[88].

5.2 Confined Compression Creep Problem

The confined compression creep (CC-creep) problem has been chosen to test elements due
to the existence of analytical solutions (see, for instance, Mow et al. [70]). In addition, indepen-
dent solutions for the nonlinear case can be obtained using the finite difference method in space
and time [44, 45]. Such solutions are used in the next chapter to demonstrate the accuracy of the
nonlinear elements.

' The CC-creep problem corresponds to the experimental test schematically represented in

Flg 5.3, which is performed in soft hydrated tissues to determine permeability and aggregate mod-

~ulus. In this test a cylindrical sample of soft hydrated tissue is placed into a confining chamber and
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its top surface is subjected to a step load applied through a rigid, porous and permeable platen. The
sample is assumed to fit exactly inside the chamber, and the chamber walls are assumed to be fric-

tionless, so that deformation and fluid flow occur only in the axial direction.

Distrib_uted Normal Traction o

<O

L
orous
 Platen ™ | \/

i "fﬁésde Sample

\w

//52222;;/ /é;géiéfi’ o

Confining Chamber

Figure 5.3 Schematic representation of the confined compression
creep test of a cylindrical disk of soft hydrated tissue.

In the CC-creep problem, the load is applied entirely to the solid phase. A sudden change
in load produces severe gradients in the response near the loaded surface and can create nonphysi-
cal spatial oscillations in the finite element approximation [85]. The oscillations are more intense
immediately after the change in load, and diminish over several increments in time. Vermeer and
Verruijt [111] have studied this problem in linear biphasic analyses and found that the oscillations

can be avoided by choosing a time step greater than the lower bound:
(5-1

where A% is the element size in the direction of the flow, @ is the finite difference parameter, Ky
is the permeability, and H, = A +2 us is the aggregate modulus. This lower bound was derived

by assuming continuous linear pressure interpolations and uniform mesh refinement. Thus there
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are competing demands on the time increment; A¢ must be small enough to accurately integrate
the system of equations, but large enough to avoid oscillations. Alternatively, element size, Ah,
can be reduced to avoid oscillations. Moreover, because of the strain.-dependent permeability,
Eq. (5-1) may not work in nonlinear analysis, where the oscillations can lead to large errors in the
nonlinear contributions and subsequent non-convergent results.

Figure 5.4 shows the finite element meshes of 9-node quadrilaterals and 6-node triangles
used to solve the CC-creep problem. Nonunifo‘rrd meshes were chosen to capture the steep gradi-
ents that develop near the _‘top‘ surface (later iﬁ this chapter, the efficacy of these meshes will he
compared to that of uniform meshes). Plané—strain elements are used to facilitate the comparison

with 3-D elements.

Z (mm)

___1.0000 98148
=] =—06296 94444

91667 3889
83333

— 75000
— 66667

—.50000

— 25000

Figure 5.4 Nonuniform 2-D finite element meshes for the confined
compression problem.

The linear material properties used in this chapter were obtained from nonlinear constitu-

tive laws for bovine cartilage under the assumption of infinitesimal deformation [44]:
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Aggregate Modulus: H, = 0.33 MPa
Solidity: ¢ = 0.2
15 4
Permeability: x, = 2.519x10™"° m /N5,

where the aggregate modulus of the solid phase is defined as H, = BG;/ 04, Ly with G}SE and
iz being the elastic stress and the stretch in the z direction. This dzeﬁnition yields
H, = 40, (o +2ay) for the free energy function éiven i Eq. (3-52), a;ld H, = A +2 ,us in
the case of infinitesimal deformation, with A° and i being Lamé constants. As for Poisson’s
ratio, the expressions Vo= o,/ (o +3a,) and Vo= A%/ 2 (}ts +,us)] can be derived for
finite defdrfnatioh and inﬁnitesimal deformation, respectively [105]. It is important to mention that
the ‘infinitesimal’ constants determined in this fashion yield a material that is softer than the one
obtained by curve-fitting the experimental data using the linear biphasic theory. So that such dif-
ferences do not affect the observations made in these studies, a diffusion time scale is adopted; that
is T=1t/ty, with 1y = hz/ (k H,) being the di]j"usibnjime. All numerical analyses use the
ﬁnité difference parameter ® = 0.667, with time steps varying from A7 = 5.O><10—5 to
4’2><10"4 . A penalty parameter equal to 1x1013, is adopted in the MP formulation. A distributed
force, 6, = 0.1 H,, is applied to the upper surface and kept constant during the analysis.

Distributions of pressure (Fig. 5.5), solid velocity (Fig. 5.6), and fluid velocity (Fig. 5.7) at
several normalize‘d times are representative of the response in the CC-creep problem. Nodal valueé
obtained using the mesh of 6-node MP triangles agree well with the analytical solution represented
by solid lines. Results for the 9-node MP quadrilateral coincidé with results for the triangle and are
not presented here.

Due to the variation in solid and fluid velocities, both in time and space, plots such as the
above are not practical to evaluate the elements. Velocity values at 7 = 1.0, for instance, were

omitted because they almost coincide with the horizontal axis. An alternative approach is the use

of error norms, which reduces the comparison between analytical and numerical solutions at a par-

ticular time to a single scalar value.




91

Figure 5.5 Normalized pressure versus height. Comparison between 6-node MP
triangle results (symbols) and analytical solution (solid lines).

CC - creep
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Figure 5.6 Solid velocity versus height. Comparison between 6-node MP triangle
results (symbols) and analytical solution (solid lines).
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Figure 5.7 Fluid velocity versus height. Comparison between 6-node MP triangle
results (symbols) and analytical solution (solid lines).

5.3 Error Norms for the Confined Compression Creep Problem

The velocity error norm at'time ¢ is defined here as the L, -norm of the error divided by

the L, - norm of the velocity, or:

net net

e (v(t) = j (v,-v)’dQ,  with |, = [vlaa, 62

2

&

[EN {I 14

e=

(4]
ey

where v, represents finite element results. interpolatéd from nodal values, and v, is the analytical
solution. The error norm for the pressure, ¢ (p(z)) , is similarly defined, with scalar pressure quan-
tities replacing the velocity vectors. Nodal values for pressure in the MP formulation and for fluid
velocity in the v-p formulation are obtained using nodal averaging; i. e. nodal values are computed

‘at the element level and averaged at each node according to the number of adjacent elements.

More accurate post-processing methods can be utilized to compute secondary fields, see for exam-
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ple Zienkiewicz and Zhu [123]. In the next subsections, error norms are used to measure the

effects of mesh refinement, nonuniformity and distortion on the finite element results.
5.3.1 Uniform Finite Element Meshes

To determine the effects of mesh refinement, a rectangular domain measuring 1.00 by
0.25mm was discretized with 8 layers of elements (Fig. 5.8), and then subdivided twice to yield
meshes with 16 and 32 layers. Since the refinement is restricted to the direction of the flow, con-

vergence rates obtained from the error norms are valid only for rectangular elements.

) ®) )

Figure 5.8 Uniform finite element meshes of (a) quadrilaterals, (b) triangles '
and (c) tetrahedra fpr the confined compression problem.

Error norms are plotted for the MP and v-p formulations considering 9-node quadrilaterals
and 6-node triangles, Figs. 5.9 and 5.10, respectively. The disconnected symbols refer to the non-
uniform meshes in Fig. 5.4 and are discussed later. The general trend observed in these plots con-

firms the higher accuracy of the MP elements. However, based on the number of degrees of

freedom, this advantage is considerably reduced, particularly for quadrilaterals.
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(a) Linear MP formulation (b) Linear v-p formulation 1
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" Figure 5.9 Error norms for 9-node quadrilaterals of the MP (a) and v-p (b) formulations.
NOTES: Plots in each column refer to pressure, solid and fluid velocity fields. Solid lines
connect error norms obtained using uniform meshes with 8, 16 and 32 elements(Fig. 5.8).

Disconnected symbols refer to the nonuniform mesh with 11 elements (Fig. 5.4).
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(a) Linear MP formulation (b) Linear v-p formulation
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Figure 5.10 Error norms for 6-node triangles of the MP (a) and v-p (b) formulations.
NOTES: Plots refer to pressure, solid and fluid velocity fields. Solid lines connect error norms
obtained using uniform meshes with 8, 16 and 32 layers of elements (Fig. 5.8). Disconnected

symbols refer to the nonuniform mesh with 11 layers of elements (Fig. 5.4).
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5.3.1.1 Error Norms for the MP Elements

The errors plotted in Fig. 5.9 can be used to compute convergence rates for the 9-node MP
rectangle. Intentionally, a small time step was used to minimize its effects on the finite element
results (AT = 5.0><10_5 , @ = 0.667). Convergence rates for pressure are quadratic (Fig. 5.9.a).
At early times, the convergencye rates for velocities are approximately -2.1., and thus suboptimal
compared with the cubic convergence expected for this element. Little can be said about the rates
at later times since the error is already in the range affected by the penalty parameter.

Errors for the 6-node MP triangle, Fig. 5.10, even though the aspect ratio of this element
degreases with mesh refinement, are very close to those for the rectangle (Fig. 5.9.a). The 5-node
quadrilateral is an appealing option due to its optimal rates of convergencé (Fig. 5.11). Pressure
and velocity errors obtained using rectangular méshes (Fig. 5.8) yield rates of Cp = -2.06,
Cvs = -2.01 and Cvf = -2.01, at 7 = 0.01, an outcome that makes this element competitive

with the quadratic elements for the CC-creep problem.

53.1.2 Error Norms for the v - p Elements

For the 9-node v-p recfangle, convergence rates are Cp = -1.99 and CvS = —2.06 for the
pressure and solid velocity, respectively (7 = 0.01). The rate for pressure is compatible with the
error estimate derived by Murad and Loula [74], but for veloéity the rate is sub-optimal compared
to their estimate of quadratic convergence for solid strain. It is interesting to note, however, that
the above values agree with an intefmediate expression in their work (equaﬁon' 68 on page 653),
which yields a suboptimal convergence for strain with réséect to the elliptical projection. Notice
that nodal averaging improves the rate of convergence for flnid velocity. Rates of -1.9 and -1.6 at
7 = 0.01 and 1.0, respectively, were obtained instead of the value -1.0 expected for a quantity
derived from the pressure field.

In the CC-creep problem, the response of the 6-node v-p triangle (Fig. 5.10.b) is consis-

tently worse than the response of the 9-node v-p rectangle (Fig. 5.9.b). This poof performance is

likely to be caused by the lateral constraint of confined compression and the nodal averaging pro-
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Figure 5.11 Error norms for the 5-node quadrilateral of the MP formulation.
"NOTES: Plots refer to pressure, solid and fluid velocity fields. Solid lines connect
error norms obtained using uniform meshes with 8, 16 and 32 elements (Fig. 5.8).
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cess. Sandhu et al. [87] also noticed this problem and were able to improve the response by aver-
aging the results of two meshes of triangles, one being the reflection of the other. Note that the 10-
node v-p tetrahedron (Fig. 5.12) is free from this problem, showing error norms similar to the

quadrilateral.
5.3.2 Nonuniform Finite Element Meshes

Nonuniform meshes were used at the beginning of this chapter to illustrate the response of
the CC-creep problem (Fig: 5.4). In order to evaluate their efficacy, the error norms were calcu-
lated and incorporated into Figs. 5.9 and 5.10 (disconnected symbols). The norms compare favor-
ably at early times with interpolated values from uniform‘m‘e.shes, but show a small degradation at

later times. The degradation is greater for the v-p formulation, in particular for the pressure field.
5.3.3 Distorted Finite Element Meshes

Mesh distortion has little effect upon the responses of the elements of the v-p formulation
considered in this study, but can lead to unacceptable behavior for some elements of the MP for-

mulation. This is illustrated using the distorted meshes in Fig. 5.13. Unlike the 6-node MP triangle

_{ 10%
7

—& 10%
'T

Figure 5.13 Finite element meshes for the CC-creep problem with
distorted elements and detail of the distortion.
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Figure 5.12 Error norms for the 10-node tetrahedron of the v-p formulation.
NOTES: Plots refer to pressure, solid and fluid velocity fields. Solid lines connect
error norms obtained using uniform meshes with 8, 16 and 32 layers of elements (Fig. 5.8).



100

£
(P, - Pf) and 5-node MP quadrilateral (Q; - PT ), for which the pressure and fluid velocity fields
are fairly accurate, the distorted 9-node MP quadrilateral has difficulty representing these fields

(Fig. 5.14). For this element we distinguish between pressure interpolations using parent

i
l |
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] i 1 1 f t \
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6-node triangle 5-node quadrilateral ~ 9-node quadrilateral' 9-node quadrilateral
¢ Nt pb 9 g 9 X
PZ—PI Ql_'Pl Q2 _Pl‘ QZ —Pl

Figure 5.14 Fluid velocity at nodes and pressure isolines for distorted meshes of MP
elements in the CC-creep problem (7 = 0.01).£ and X refer to parent and global
coordinates, respectively.

(Q2 - Pf) and global (Q, - Pi{) covordinates. vThe first leads to unacceptable errors in fluid veloc-
ity, even though the errors in solid velocity are small (e(vf) = (.25 against e(vs) = 0.0067, at
7 = 0.01). The second improves the fluid velocity, but has a negative effect on the pressure. Sim-
ilar results occur for the 8-node MP quadrilateral, and are likely to occur for the 20- and 27-node
MBP hexahedra in similar conditions. Despite the seriousness of the problem, the accuracy in solid

velocity leads us to believe that the distortion sensitivity can be solved at the element level.
5.3.4 Irregular Mesh of Tetrahedra

Since both triangle and tetrahedron have quadratic interpolations, the better accuracy of
the latter in the CC-creep problem was not expécted. This result cannot be attributed to the use of

rectangular blocks of tetrahedra to compute the error norms since this element also works well
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with irregular meshes. The mesh in Fig. 5.15, for instance, provides error norms that are close to
‘the ones plotted in Fig. 5.12 for uniform meshes (e(p) = 0.014, e(vs) = 0.044 and-

e) = 029,at 7 = 0.01).
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Figure 5.15 (a) Irregular mesh of 10-node tetrahedra for the CC-creep
problem; (b) relative velocity at vertices and pressure isolines
a7 = 0.01 (v-p formulation).

5.4 - Closing Remarks

In tﬁe initial phase of this study, the 9-node MP quadrﬂateral seemed to be a promising
nonlinear element, in part because it is considered one of the most effective qﬁadrilateralé to deal
with incompressible media [31, 47]. Excellent results obtained with meshes that were either rect-
angular, or that favored in some way the direction of the fluid flow, contributed to this opinion. It

was therefore surprising to find its sensitivity to element distortion, which manifests primarily in

{h;ﬂu;d \}éléiciﬂtialrppl;bximation. The same difficulties are expected for the 20- and 27-node MP
hexahedra, analogs in three-dimensions of the 8- and 9-node quadrilaterals, when subjected to

similar conditions. Additional studies are needed to determine if this sensitivity of fluid velocity
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can be circumvented without drastically changing the formulation. If not, the 6- and 7-node trian-
gles and the 5-node quadrilateral would be the only robust elements of the mixed-penalty formula-
tion recommended from this study, and further research will be necessary to minimize the
sensitivity of other MP elements.

Except for the triangle, the Taylor-Hood elements used in the v-p formulation were found
to be robust elements in the CC-creep problem. The tetrahedron did not inherit the problems
shown by the triangle, and the hexahedron should behave well under multiaxial deformation. One
drawback of these elements is the large initial errors due to spatial oscillations. A problem that is
more accentuated when sudden loads are applied directly to the solid phase, as in the CC-creep

problem.







CHAPTER 6

Nonlinear Finite Element Examples

In contrast to linear biphasic formulations, for which example probiems with closed form
solutions are available, the nonlinear formulations must depend on other resources to validate their
implementation. This validation process normally includes comparisons with linear solutions in
the case of infinitesimal deformation, independent finite difference solutions, results from different
finite element formulations and from distinct descriptions of the same problem (plane-strain, axi-
symmetric and 3-D models). In the examples that follow, resources used to validate the mixed-
penalty (MP) and mixed velocity-pressure (v-p) formulations are illustrated for selected elements
that have shown a good performance in the previous chapter. Additional aspects concerning the
nonlinear Helmholtz free energy function for transversely isotropic materials are examined in the

next chapter.

6.1 The’ Nonlinear Confined Compression Problem

In the confined compression test, a cylindrical sample of tissue is laterally confined and
subjécted,,to either an applied load or a prescribed ramp displacement through a rigid porous platen
(see Fig. 5.3 in Chapter 5). The diagrams in Fig. 6.1 describe the temporal variation of the loads
adopted in the numerical simulations of the creep and stress-relaxation versions of this test, where
t. denotes an user-defined time which is-small compared with the diffusion time. In the creep case,
a force corresponding to a distributed normal traction. gy, in the reference configuration is applied
and held constant. In the stress-relaxation example there are two stages: first, prescribed velocities
are used to represent a nearly-linear increase in displacement up to a maximum deformation £,
(equilibrium or fully drained deformation); second, the displacement at the top is held constant,

corresponding to the stress-relaxation stage.

The Helmholtz free energy function givenvby Eq. (3-52) is used to represent the solid

phase. Material properties used in the numerical models are &, = 0.1084 MPa, a; = 0.592 and
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Figure 6.1 Creep and stress-relaxation load diagrams adopted in the
numerical solutions of the confined compression examples.

o, = 0.0846. They can be derived from H 4 = 0330 MPa and n = 0.761 obtained from non-
linear regression curve-fitting of confined-compression experimental data for bovine cartilage [44]
by assuming a Poisson’s ratio of 0.1 under infinitesimal deformation. Parameters for the perme-
ability function, Eq. (3-42), are ¢} = 0.2, Kk, = 2.519x10""m®/ (Ns) , L = 0.0848 and
M = 4.638.The tissue sample height is assuméd tobe 1 mrh, Yiéiding a dii;fusion tirhe of approx-
imately 1200 s.
The finite difference description makes use of the uniaxial equations presented by Holmes
[43] and Holmes and Mow [44]. The corresponding program, though one-dimensional, had an
important role in-the verification of the nonlinear finite element formulations. For the materiai
- parameters above, a total of 801 points were necessary in order to obtain converged finite differ-

“ence results for the CC-cx"eep problem. -
6.1.1 Creep Example

In the creep example, a normal traction of o, = 0.8 H 4 1s applied in a ramp of
t. = 0.24 s and held constant. Time steps varying from 0.06 to 2.4 seconds are used in the finite

element analysis. Finite element results are obtained using the nonuniform 11-layer mesh of 6-

node MP triangles indicated in Fig. 5.4.
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Figures 6.2 and 6.3 show the temporal variation of pressure and axial stretch, respectively,
at different heights, and Fig. 6.4 shows the distribution of axial stress at different times. The
response is smooth in time and space, and excellent agreement is obtained despite' the high load
applied, which causes deformations of 40% at the top of the sample. This is an indication that the
CC-creep problem does not pose serious problems for the 6-node MP triangle. This is also true for
the quadrilaterals and hexahedra of the MP formulation, whose responses are similar to the ones
presented for the triangle.The finite element mesh, however, is coarse for this problem and is
responsible for a slight increase in the creep rate, as noticeable in the curve for 7 = 1 in Fig. 6.4.
This problem is readily solved by subdividing the elements in the lower region of the domain.

The nonlinear v-p formulation, on the other hand, is particularly sensitive to a sudden load
applied on the solid phase. For the magnitude of load considered here, the 11-layer mesh of 9-node
v-p quadrilaterals (Fig. 5.4) gives rise to oscillations in the solid stress response that compromise
the convergence of the Newton-Raphson method. It is important to mention that the problem per-
sists'when the mesh is subdivided, but is absent when a uniform mesh with 32 elements along the
height is used. Figure 6.5 presenfs results for this 32 element mesh showing excellent agreement
with the long term response, but also showing some lack of accuracy at earlier times. Except for
the CC-creep problem, the v-p elements have shown a reasonable tolerance to mesh gradation in

other examples, including the case of stress-relaxation examined next.
6.1.2 Stress-Relaxation Example

In the stress-relaxation example, a displacement ramp corresponding to £, = 0.1 is pre-
scribed at the top in 60s (¢, = 1.2s). The ramp parameters are chosen to provide values for
stresses and stretches close to the ones found in the previous example. A constant time step of 0.2s
is used in the finite element analyses.

For this problem, a diffusion rate parameter defined by R2 = 14/, can be used to access
the level of interaction between solid and fluid phases that will lead to the maximum local com-

pression [103]. Values R > 1 represent small rates, while values R < 1 represent fast rates of com-
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pression. In this example, R = 0.22, which means that considerable effects due to finite
deformation and strain-dependent pgrmeability can be expected.

Again, the same mesh of 6-node MP triangles is used to obtain responses shown in the
next three figures. Figures 6.6 and 6.7 present temporal variation of pressure and axial stretch,
respectively, at different heights. Note that the fast compression rate causes the stretch to decrease
far below its elastic equilibrium value. Figure 6.8 shows the distribution of pressure at different
times. A very good agreement is obtained, with some loss of accuracy for T -around 0.05. This is
particulaﬂy noticeable in the pressure distributions in Fig. 6.8. Note that the errors during and after
the displacement ramp tend to compensate in this example, so that a better agreement is obtained
att'= 0.1.

-« For this problem, the accuracy of the 9-node v-p quadrilateral is comparable to, if not bet-
ter than, the accuracy of the MP triangle using the nonuniform mesh of 11 elements (Fig. 6.9).
Note that the problems observed for the v-p quadrilateral in the CC-creep problem occurred for
similar levels of stress and strain and, therefore, are attributed to the fast application of the load in
the creep case. | _

For completeness, the CPU times (RS6000 IBM340) are reported. A total of 695 time
steps for the CC-creep problem required 4.8 and 5.4 minutes in the MP and v-p formulations,
respectively, with different meshes. The relative performance changed when the same mesh was
used to anaiyze the CC-relaxation problem: 3.3 against 1.6 minutes for the v-p formulation to com-

pute 600 time steps.
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Figure 6.2 Pressure time history at various heights. Finite difference (solid
lines) and 6-node MP triangle (symbols) results for the CC-creep problem.
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Figure 6.3 Stretch time history at various heights. Finite difference (solid
lines) and 6-node MP triangle (symbols) results for the CC-creep problem.
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Figure 6.4 Normalized solid streés versus height. Finite difference (solid lines)
and 6-node MP triangle (symbols) results for the CC-creep problem.
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~ Figure 6.5 Normalized solid stress versus height. Finite difference (solid lines)
and 9-node v-p quadrilateral (symbols) results for the CC-creep problem.
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Figure 6.6 Pressure time history at various heights. Finite difference (solid lines)
and 6-node MP triangle (symbols) results for the CC-relaxation problem.
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Figure 6.7 Stretch time history at various heights. Finite difference (solid lines)
and 6-node MP triangle (symbols) results for the CC-relaxation problem.
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Figure 6.8 Normalized pressﬁre versus height. Finite difference (solid lines)
and 6-node MP triangle (symbols) results for the CC-relaxation problem.

7 Figure 6.9 N onnalizéd pressure ve;éﬁé height. Finite difference (solid lines) and
9-node v-p quadrilateral (symbols) results for the CC-relaxation problem.
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6.2 Unconfined Compression with Adhesive Platen

In the unconfined compression test, a thin cylindrical disk of tissue is compressed between
two rigid and impermeable platens (Fig. 6.10). Under these conditions, the axial compression pro-
duces radial expansion, which is accompanied by elastic radial stresses in the solid matrix. The
lower platen is assumed fixed, and a prescribed ramp displacement is enforced through the upper
platen. Loading parameters are selected as &, = 0.15 and 7, = 50s, and a cylindrical sample of

hy = 2mm and d; = 6mm is considered.

Prescribed

Displacement

Rigid
~ Platen - T
™ Finite Element
: Domain £,
Fixed
Platen

Figure 6.10 Schematic representation of the unconfined compression
stress-relaxation test of a cylindrical disk of soft hydrated tissue.

This example focuses on the ‘singularity’ at‘ the‘ cornér of the cylindrical wall in the case

of perfectly adhesive contact between platen and tissue. It is known from numerical analyses con-

ducted by Spilker ahd Suh [100] that this boundary".convdition considerably stiffens the Sample,

leading to a higher peak reaction force and a smaller relaxation time when compared to the case of

perfectly lubricated platens. The singularity, however, has prevented the numerical solution under
finite deformation in that study, and thus constitutes a good test for the biphasic elements.

Because of the symmetries with respect to the central axis and to the nﬁd—heigﬁt, only one

quadrant is considered in the finite element representation. The contact with the upper platen is
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modelled as perfectly adhesive (vi = 0; vz = vi = 7,) and, on the mid-height plane, nodes are
fixed to the plane but free to move radially. For the v-p formulation, a zero pressure must be pre-
scribed on the cylindrical surface. Figure 6.11 shows the finite element mesh used tb represent this
problem. A radial refinement around the comer is required to obtain convergence for the Newton-
Raphson method using a relative coarse mesh (7 layers by 7 columns). The strategy of refining the
region where large distortions are expected is justified by the exponential stiffening of the constitu-
tive law for the solid phase. This accentuated stiffening restricts the region of large stresses and

strains, and it is an important feature observed in soft biological tissues [33].

Figure 6.11 Finite element mesh for the adhesive unconfined compression problem.

Figure 6.12 shows solid veiocity at nodes and pressure isolines at 50s. There is a very ]
good agreerhent between‘the résults fqr the MP and’v-p formulations. Figtire 6.13 presents almost
identical isolines for maximum distortions which reach values up to 1 radian in this problem. Fig-
ure 6.14 constitutes a detail showmg isolines for the maximum shear stress. ThlS last figure illus-
trates the effect of the exponential stlffemng provided by the constltutlve model which restricts

the region of stress concentration to the neighborhood of the singularity.



Pressure (MPa)

8.2

0,15

0.10

0.05

0.00

Figure 6.12 Solid veiqcity ai nodes and pressure isolines at 50 s for the
adhesive unconfined compression problem.

Distortion (rad)

Figure 6.13 Maximum angle of distortion at 50 s for the adhesive uncon-
fined compression probiem.
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T (MPa)

Figure 6.14 Detail of the free lateral surface showing maximum shear stress at
50 s for the adhesive unconfined compression problem (v-p formulation).

6.3 Example Using the Geometry of the Articular Cartilage of the Humeral Head

The shoulder is a close-ﬁtting ball-and-socket jéint;'whére‘ the glenoid can be seen as a
shallow cup covering approximately ohvé thll‘d of the sphericai hurheral hééd [72]. Precise mea-
sures of the énatomic surfaces in the shoulder joint have been obtained by Soslowsky et al. [96] A
using stereophotogrammetry. For an average male specimen, the carﬁlage layer of the humar;
humeral head can be described by an‘axisymrr»letric” geomgtrj} of thiékneés hy = 1.42 mm and
bone radius R, = 26.10 mm., as illustrated in Fig. 6.15 [95].

The shoulder joint has recently being analyzed by Donzelli [27] using a biphasic mixed-
penalty contact finite element formulation. At early times, it was found that the contact load is
almost parabolic, with the contact surface being established soon after the load is applied. It was
also confirmed that the load is shared by solid and fluid phases according to their volume fractions
[46]. In this example, the contact surface is defined by a = 7.5 mm, and the corresponding load

is adapted from contact forces determined by Donzelli in a linear contact analysis of similar prob-
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Figure 6.15 Schematic representation of the articular cartilage of the
humeral head, and the applied pressure load. -

lem. The prescribed total traction and pressure increase linearly in time, reaching the following

maximum distributions after one second:

t= 573+ 423R+5.13R" (kPa), D

5 =512-40.1R - 3.86R* (kPa) .

Although nonlinear material parameters are not available for the humeral head, Soslowsky
[95] provides linear biphasic material properties from which hypothetical permeability and free
energy functions can be b;iil_t for illustrative purposes. The exponential form in Eq. (3-52) is
adopted for the Helmholtz free energy function. The corresponding parameters are selected so that
the compressive secant stiffness coincides with ihe linear prcpextiés fora deformation of 15%. As
far as the permeability function is concerned, the coefficient L in Eq. (3-42) coincides with the
linear permeability, and the exponent is built based on material parameters of the previcus exam-
ples. The average values for the linear material properties provided by Soslowsky [95] are

~15_4

¢(S) =025, x5 = 1.7x10 "m / (Ns), HA = 0.56 MPa and v = 0.05. The hypothetical

parameters for the exponent of the permeability function are L = 0.1 and M = 4, and for the

Helmholtz free energy function are &y = 0.09MPa, o, = 0.98 and o, = 0.06, which corre-

spond to H, = 4o, (o +2a,) = 04 MPaand v = o,/ (a;+30a,) = 0.05 (see Holmes
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and Mow [44] and Suh ez al. [105] for relations between nonlinear parameters and elastic con-
stants).

For this example, axisymmetric and 3-D descriptions are solved using the v-p formulation.
Finite element meshes of 8-node quadrilaterals (288 elements, 937 nodes, 2040 equations) and 20-
node hexahedra (144 elements, 941 nodes, 2208 equations) are presented in Fig. 6.16. The axi-
symmetric mesh is twice as refined, and it has a nonuniform distribution of elements along the
thickness. The 3-D mesh corresponds to a sector of 30°, with constraint equations being used to

prevent normal velocities on the skew vertical plane.

Figure 6.16 Axisymmetric and 3-D finite element meshes for the articular
cartilage of the humeral head. ‘ '

" Pressure isosurfaces equally spaced by 0.1MPa are shown in Fig. 6.17 at 1s. Isosurfaces

have the circumferential shapes expected for this problem, and are in agreement with axisymmet-
ric pressure results shown in Fig. 6.18. The 3-D problem ‘was also solved using the MP formula-
' ﬁén, but since no discernible difference was observed in the pfessilre isosﬁffacee, the results are

not shown here.
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Figure 6.17 Pressure isosurfaces at 1s for the'eartilage ef the humeral head.

Figure 6.18 alsojsho’\fvs iSOHnes for the maximum stretch (7‘1 ) and maximum angle of dis-
tortion. Note the tensile strains under the load, and maximum stretches of 1.26 occurring on the
bone interface. Maximum distortions up to 0.45 rad are also found close to the bone surface. These ,
hlgh values are caused by the use of an isotropic const1tut1ve Iaw curve-ﬁtted to represent the com-
presswe behavior of articular cartilage. Smce the tensile behavwr is also important here, it can be
anticipated the need for more complex constitutive models. As seen in the next chapter, the tensile
stiffness of articular cartilage in planes parallel to the surface is one order of magnitude greater
tﬁan its compre‘ssi‘ve stiffness normal to the surface [25], a fact that cannot be ignored in future
analyses of the humeral head.

CPU times in minutes, corresponding to the first 20 time steps, are 0.11 for the axisym-
metric analysis, and 44.6 and 238‘.5 for the 3-D anélysis using the v-p and MP formulations,

respectively.

6.4 Final Remarks

~ I almost ail problems examined here, ‘a'clearfadvantage*has'*been'ﬁotieed for-the v-p for-

mulation. The advantage reflects smaller number of equations per node and, in most cases, smaller

number of iterations per increment of time required by the Newton-Raphson method. It is worth-
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Figure 6.18 Axisymmetric results at 1s for the cartilage of the humeral head.

while to mention that both MP and v-p formulétioné may fail to converge with coarse meshes,
although no pattern in mesh or problem type was observed which could predict this failure in
advance. The MP formulation, however, will show more iterations per time-step before failing,
where for the y-p formulation the failure to converge may occur suddenly without a change in the

number of iterations. This fact confirms the distinct features of the corresponding nonlinear sys-

tems of equations, which should be studied independently to pursue more cost-efficient nonlinear

solvers.



CHAPTER 7

Exponential Helmholtz Free Energy Function

“Thﬁs far, investigators have used linear, isotropic theories. However, analysis of some of the more
general problems requires tackling intractable mathematical difficulties and developing more
complex computer codes.”

Mow et al. [72, p.93]

In 1993, Cohen eral. [25] presented linear transversély isotropic materiail properties for
articular cartilage of the human humeral head. These properties were obtained by matckhing finite
element results with experimental data from creep indentation tests. Significantly different values
were found for Young’s moduli in planes parallel (E, = 5.8 MPa) and perpendicular to the carti-
lage surface (E2 = 0.46 MPa). The use of a linear isotropic constitutive model, on the other
hand, provided E = 0.69 MPa for the same experimentél data. As for Poisson’s ratios, the values
were almost zero in all cases. Another important differeﬁce occurred in the permeability:
5.1x107° against 3.0x107° m*/ (N's) obtained in the isotropic model. These results, showing
the importance of cartilage anisotropy, have motivated the implementation of a nonlinear trans-
versely isotropic model, whose validation is the subject of this chapter.

In order to pursue this objective, the Cauchy stress tensor and elasticity tensor derived for
transverse isotropy in Chapter 3 have been implemented in the finite element program. Since there
is no experimental transversely isotropic Helmholtz free energy function available yet, a hypothet-
ical exponential function is proposed in the next section to represent articular cartilage. To this
end, the orthotropic behavior of articular cartilage is approximated assuming that the solid matrix
is a hyperelastic, transversely isotropic material. This model neglects the anisotropy of the tissue
in planes parallel to the cartilage surface and considers a single preferred direction perpendicular
to.the surface. In the remaining sections of this chapter, the response of the proposed exponential

function is investigated simultaneously with the validation of the program.
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7.1 Transversely Isotropic Helmholtz Free Energy Function

The general form of the exponential, transversely isotropic Helmholtz free energy func-

tion considered bere is given by

(p(Ip 129 147 Ij)
S _§ e
poV = o ———— =

L

3

e[(P(Ip Iy Iy 19 = n In(l3)] . (7-1)

where the exponent ¢ is a polynomial function of the invariants, and includes terms up to forth

order in the stretches:

2

‘ 2
OUp L lply) = o (1 =3) + 0y (=3 + &y (1 =3) "+ oy U= + o5 (L=

+ o (I =3) ([=1) + o, (Is=1).

where o, ..., 0; and n are material parameters. The above equation is similar to Eq. (3-54) sug-
‘gested by Cohen [24], except that the number of parameters has been increased. The term
oy (1) - 3 2 in Eq. (7-2) is new, and the third invariant in the denominator of Eq. (7-1) now has
an exponent n: These additional terms are necessary to control the exponential response of the tis-
sue both in tension and compression. Only 7 parameters are independent, since the irn'position ofa
naturai state as a reference configuration reduces the number of parameters by two (see Appendix
D). Note that Eq. (7-1) can be extended into a sum of exponentials in order to include, for exam-
ple, the pseudo strain energy function proposed by Humphrey and Yin [50] for passive myocar-

dium.
For completeness, the derivatives with respect to the invariants that appear in the elastic

stress tensor and the elasticity tensor are presented. First derivatives are given by

s s s s s n
V=%V, Vo= BV, Vy=-1V,

S S S S .
R

where l//sj denotes partial derivative with respect to the invariant [ It and coefficients ¢, and 9,

abbreviate the following terms
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9 = a1+2a3(11-3) +a6(l4-—1),

(7-4)
v, = a4+2a5(14—1) +a6(11—3).

Table 7.1 contains the second partial derivatives ¥ .. with respect to the invariants /. and [,
P Vi P i j

which are identified by column and row numbers.

Table 7.1 Second partial derivatives with respect to the invariants

I, I, I, I, I,
I (& +2ay) ¥ W) - }’i}wfl (9,8, + ag v’ P~
I A | - }r‘; v, 'k A ' d7 v,
& - '("'272& V’,Ss 9y ‘st 2t Wf;
1, Symrﬁetric ' | (z}ﬁ+2a5) v oy,
s oW

To avoid problems associated with nonphysical responses which may result from the
exponential function, basic issues are examined in Appendix D. These issues include the existence
of a natural state, the stress-strain relations under infinitesimal deformation, and the extension-ten-
sion (E-Tj condition for stretches in the 'prinbipal directions of the material.

For correlation with experiments, the nﬁniber of material parameters in Eq. (7-2) is cer-
tainly excessive. Nevertheless, the reduction in the number of pa;ameters is more effeciively done

by relating some of them to the infinitesimal material properties, rather than by simply rémoving

terms from the function. The following material parameters have been selected to illustrate the

qualitative trends of the stress response produced by the exponential function: n = 0.6, o =0.08
MPa, a; = 7.733, ap =-3.567, o3 = 1.905, 0oy = 3.958, a5 = 0.8904, g = -0.0111, o7 = -1.979.

For infinitesimal deformation they correspond to £, = E; = 0.7MPa, E, = 1.4 MPa,
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Gy, = 0.35 MPa and v,, = v,; = 0.05, where m denotes the preferred direction (in this exam-
ple, perpendicular to the cartilage surface). Relationships between material parameters and engi-

neering coefficients are developed in Appendix D.

7.2 Single-Phase Tests

The selection of the Helmholtz free energy function is a trial and error process, so that the
elimination of functional forms that give rise to nonpﬁysical responses is a crucial part of the
investigation. This can be done by inspecting the general trends of the response from simulated
tests, in particular single phase tests considering only the solid matrix. Although far from conclu-
sive, these tests eliminate functions that, despite correlating well with uniaxial responses, are
unable to represent multiaxial behavior. Finite element models are particularly suitable for this
task; the implementation of various free energy functions represents a small effdrt when compared
to the attainment of analytical solutions for each function. Furthermore, complex boundary condi-
tions do not represent obstacles to the finite element method asr they do for analytical methods. The
results of such tests are also useful for subsequent mathematical investigatioﬁs, which must be

pursued to establish the range of deformation for which the model is adequate
7.2.1 Confined Compression of the Solid Matrix

The confined compression of the solid matrix is a straightforward way of eiaminjng the;
resulting response and also a good test for thé imﬁlementatidn of the elasticity tensor computed
from the Helmholtz free energy function. The analytical solution for prescribed stretches is found

| in Appendix D (Egs. (D-11) - (D~15)) and can Ee used to verify numerical results as shown in Figs.
7.1 and 7.2. Subscripts A, m and t are used to identify the direction of stretch, the preferred direc-
tion, and a transverse direcfion in the plane of isotropy, respectively. In those figures, analytical

and finite element results practically coincide for the stretch prescribed along and perpendicular to

the preferred direction of the material.
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o (MPa)

Figure 7.1 Principal stresses versus stretch (M) prescribed along the preferred
direction (m). Comparison between FE results (symbols) and analytical solution .
(solid lines) for the confined compression of the solid matrix.

Figure 7.2 Principal stresses versus stretch (A) prescribed perpendicularly to the

preferred direction (m). Comparison betwcen FE results (symbols) and analytical
solution (solid lines) for the confined compression of the solid matrix.
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This test has also been used to select the nonlinear material parameters ¢, and n so that
the compressive response resembles the experimental curves for stress at equilibrium presented in
Holmes [43] and Warden et al. [114]. It is important to mention that this test uncovered one limita- .
tion of the exponential function: when the material is stiffer in the plane of isotropy, larger Pois-

son’s ratios can give rise to confining stresses greater than the applied stress.
7.2.2 Simple Tension and Compression of the Solid Matrix

Additional insights into the material response can be obtained from simple tension tests
simulated using the finite element program. Figure 7.3 shows normal stress versus stretch for loads
applied parallel and perpendicular to the preferred direction. Two important trends are shown in
the figure: the asymmetric stiffening in tension and compression, and the differential increase in
the Young’s moduli. Both trends are desirable features ksince they allow distinct degrees of

anisotropy depending on the stretch.

Figure 7.3 Normal stress versus stretch for loads applied perpendicularly and
- parallel to the preferred direction. FE results for simple tension/compression
' of the solid matrix.
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Figure 7.4 shows transverse stretch versus prescribed stretch for loads applied parallel and
normal to the preferred direction. Physically acceptable results are obtained for the entire range of
deformation of interest for articular cartilage. Note that Poisson’s ratios increase with stretch. The
desirability of this result still has to be verified experimentally, but is likely to be inadequate for
large stretches where fibers are supposed to be predominantly aligned in the direction of the largest

stretch.

“long.

Figure 7.4 Transverse stretch versus longitudinal stretch produced by loads
applied perpendicularly and parallel to the preferred direction of the material.
FE results for simple tension/compression of the solid matrix.

7.3 Biphasic Unconfined Compression Example

In order to test the constitutive model in a biphasic problem, the previous material param-
eters are adopted for the solid phase, and used te simulate the biphasic unconfined compression
- creep-test. This-is the problem discussed-in-Chapter 6, except that the rigid platens are considered

to be lubricated here. This simpler boundary condition will allow the comparison between 3-D
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results of the v-p formulation and axisymmetric results of the MP formulation using a relatively

small number of elements (Fig. 7.5).

Applied Force
F = O'OTL'd /4

Rigid
Platen :
hq - SR \ Finite Element
S o Domain 4

Soft Tissue Sample
Fixed
Platen

%

Figure 7.5 Schematic representaﬁon of the unconfined compression
creep test of a cylindrical disk of soft hydrated tissue.

For this biphasic exémple‘, material properties of Section 7.1 are selected alone with the
permeability function adopted in the first example of Chapter 6 [44], with ¢(s) = 0.2. As for the
loading, an axial force corresponding to a normal traction of 0, = 1MPa in the reference config-
uration is applied in a 10-second ramp and held constant. The deformation unposed by the r1g1d
platen is 31mulated by representing the vertical nodal velocities at the loaded surface asa smgle
(unknown) degree of freedom.

The dimensions are sy = 2mm and d, = 6mm. Finite element meshes are shown in
Fig. 7.6; 9-node MP rectangles are used in the axisymmetric analySis and 10-node v-p tetrahedra
are used in the 3-D analysis. The 3-D mesh has 328 tetrahedra, 757 nodes and 1776 degrees-of-
~ freedom, either solid velocity or pressure. Time steps varying from 0.5 to 5 seconds are adopted in

both analyses, with smaller times being used during the ramp stage and the beginning of the creep.

Figure 7.7 shows pressure isosurfaces at 20 and 500 seconds. The surfaces within the 3-D

mesh have the cylindrical shapes which are expected for this axisymmetric problem. They are
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Figure 7.6 Axisymmetric-and-3-D finite element meshes for the unconfined
: compression problem.
almost circumferential near the boundary, and perturbations occur only at 500 seconds in the
region with the coarsest refinement. Relative velocities at 20 seconds are represented in Fig. 7.8.
. . . -6 o . . .
The maximum amplitude is 2.5x10 "m/s, and the directions are radially oriented, once again

demonstrating the good behavior of the v-p tetrahedra.

“0.0

Figure 7.7 Pressure isosurfaces at 20 s and 500 s for the unconfined compression problem.

Since 3-D results do not vary with radial position, linear plots can be used in the compa,,ri-

son with the axisymmetric solution (Fig. 7.9). Excellent agreement exists in terms of pressure,

elastic stresses and stretches. Note that values are plotted in the current configuration in order to
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Figure 7.8 Relative velocities at 20 s for the unconfined compression problem.

allow the verification of equilibrium in the vertical direction. Moreover, the material anisotropy is
noticeable from the radial and axial valuesb of stresses and stretches: large magﬁitudes of stress in
the radial direction are accompanied by smaller deformation when compared to the deformation in
the ‘akxiél diréction. One characteristic that différer_xtiates line‘ar and nonlinear analyses is the
increase in the radial stress O near the axis, 'Which isa resuit of the considerable reduction of
the samialé’s current héight; :
7.4 Closing Remarks -

A three-dimensional cbxllst"i’t\i‘tive model that considers the noﬁiihéarity, anisétropy and
heterogeneity of articular cartilage has been implemented in the finite element program. Simulta-
neously with the validation of the implementation, results of single-phase and biphasic examples

have been used to assess the response obtained from an exponential Helmhoitz free energy func-

tion. The results, although limited, demonstrate some of the capabilities and limitations of this

functional form. The emphasis has been in computational mechanics and implementation aspects

of the problem. This preliminary study precedes a more elaborate investigation'which would
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Figure 7.9 Pressure, elastic Cauchy stresses, and stretches versus deformed radius for the uncon-
fined compression problem with a transversely isotropic material. NOTES: (a) pressure (b) cir-
cumferential stress, (c) radial stress, (d) axial stress, (e) radial stretch, and (f) axial stretch. Results
obtained using 10-node v-p tetrahedra (symbols) and 9-node MP quadrilaterals (solid lines).
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include experiments to determine material parameters and to validate the exponential form. Fur-
ther studies must also examine physical and mathematical restrictions to determine the range of
deformation for which this exponential form is adequate to model the three-dimensional behavior

of articular cartilage.



CHAPTER 8

Summary, Conclusions and Suggestions for Future Studies

This thesis addresses compuiational models for the 3-D, nonlinear analysis of soft
hydrated tissues sucli as articular cartilage. A biphasic continuum description has been used to rep-
resent the soft tissue as a tvvo-ph_ase mixture of an incompressible, inviscid fluid and a hyperelas-
tic, transversely isotropic solid. The theoretical foundations of this theory have been reviewed with
emphasis on constitutive modeling. Alternate mixed -penalty and veloc1ty pressure finite element
formulations have been used to solve the nonlinear biphasm oovermng equations, 1ncludmg the
effects of strain-dependent permeability and a hyperelastic solid phase under finite deformation.
The resulting first-order nonlinear system of equations is discretized in time using an implicit finite
difference scheme, and solved using the Newton-Raphson method.

The objective of developmg the nonlinear formulations is to enable the 3-D analysis of tis-
sue layers in diarthrodial Jomts under physiologically relevant loading condmons The formula-
tions are general and have been used to develop quadnlateral and triangular elements in 2-D and
hexahedral and tetrahedral elements in 3-D. Numerical examples including those representative of
soft tissue material testing and simple human joints have been used to validate the formulations
and to illustrate their applications. Using these examples, the formulations have been compared for
robustness, flexibility in interfacing with automatic and adaptive meshmg, and computational effi-
ciency. Whﬂe not the central focus of this work, important mSights have been gained from selected
linear blphasw analyses. |

The mixed-penalty ﬁmte element formulation has been extended to nonhnear problems n
 this thesis. The weak form is constructed via the weighted residual method from a penalized form
of the coritinuity equation for the mixture, the linear momentum equations for the solid and fluid

phases, and the traction boundary conditions for the two phases. Primary field variables corre-

spond to solid and fluid velocities, interpolated with continuous functions, and pressure, which is
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discontinuous between elements. Pressure coefficients are eliminated at the element level, result-
ing in a system of nonlinear first order equations for the time-dependent tissue response.

In the velocity-pressure formulation implemented in this thesis, the fluid phase velocity is
eliminated from the governing equations through the fluid linear momentum equation. The weak
form is obtained via the weighted residual method by introducing the lirrear momentum equation
for the mixture, the contrnuity equation, and traction and fluid flux boundary conditiorls into the
weighted residual statement. The primary field variables are solid velocity and pressure, each
irlterpolated by continuous functions. With respeci to this formulation, the contribution here in has
been the evaluation of its performance compared with the mixed-penality formulation. To this end,
various 2-D and 3-D ﬁmte elements have been rmplernented and validated. |

An 1mportant result that helped to make the discussion of the nonlinear formulations more
concise is the equivalence between penalty and mixed-penalty formulaﬁons for blphasm continua.
The equivalence is based on the concept of the dxscrete divergence operator whlch in this study,
has been mcorporated into the penalty formulation of Suh et al. [105]. “The resulting approach is
more general than the reduced/selective mtegranon approach used in that reference, for which the
equrvalence can only be demonstrated for a few elements such as the bilinear quadnlateral

A significant contribution of this work is the implementation and testrng of a biphasic
mﬁferial model with'a tranéversely isotropic hyperelaeiic solid phase. This model assumes a pref-
erential material direction with properties that are distinct from those in planes perpendicular to
the preferred‘ direction, and allows for asymmetric behavior in tension and compression. The theo-
retical foundations for this model have been reviewed, and an exponential form has been sug-
gested. Through trial arld error,‘ a set of material parameters has been identified to represent the
response of soft tissues in re.nges of deformation and stress previously observed experimentally.
After demonstrating the behavior of this constitutive model in simple tension and compression, a
sample problem 'off.*unconﬁned compression is used to forth'er validate the finite element imple-

mentation and demonstrate the effects of this material model.
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An important aspect of this thesis is the comparison of alternate formulations for nonlinear
biphasic problems and alternate elements, particularly 3-D elements for which such studies have
not been previously attempted. Over the course of this study, various example problems were con-
sidered to make these comparisons, ranging from material testing conﬁgurations, such as confined
and unconfined compression, to first order approximations of joint problems such as the shoulder.
Through these examples, observations of the alternate formulations and elements have been made.
It has not been possible to draw final conclusions, but it is expected that these observations will
_ guide the next set of studies and formulations. These observations are summarized in the para-
graphs which follow.

In the confined compression problem, the two formulations have different performances in
creep and stress relaxation and show different sensitivities to mesh refinement. For example, the
creep response of the velocity-pressure formulation is poor compared with the mixed-penalty for-
mulation if the comparison is done on a per-element basis. In contrast, for the stress ;elaxation
problem, both formulations give accurate solutions using the same mesh. The difﬁculties found
for the velocity-pressure formulation are associated with oscillations of the solid phase strain and
stress at early times and near the loaded surface that prevent the convergence of the nonlinear solu-
tion.

‘For problems such as unconfined compression, with perfectly adhesive or lubricated plat-
ens, good accuracy is obtained using both formulations with relatively coarse meshes (for exam-
ple, seven subdivisions/elements in each direction) and for both creep and stress relaxation
problems. Despite the value of the confined compression creep problem to validate biphasic finite
elements, it appears from the unconfined compression and shoulder examples that numerical diffi-
culties observed in that problem are not representative of physiolo gically realistic problems where
the load is typically distributed over the two phases. Therefore, performance evaluations of the
finite elermment formulations should not belimited to-the-behavior-shown-in-the-confined compres-

sion creep problem.
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A drawback of the velocity-pressure formulation is that it produces ﬁﬁid and relative
velocity fields that are not as accurate as in the mixed-penalty formulation. However, when com-
putational time is considered, a significant advantage has been observed for the velocity-pressure
formulation. This advantage is a result of the smaller number of degrees of freedom required to
achieve comparable accuracy in the nonlinear analyses. Therefore, since analysis costs increase
substantially for 3-D problems, preference has been given to this formulation in the examples. It
should be noted that such computational comparisons may be premature and there are many other
computational issues which may affect this comparison‘, such as the use of adaptivity, parallel
methods and so on.

Dynamic problems constitute a good reason for continued consideration of the mixed-pen-
alty formulation, despitc: the better performance of the velocity-pressure formulation for quasis-
tatic problermns. Dy'ﬁarnic problems, including wave propagation in tissues, arise in biomechanical
studies such as the correlation between brain damage and the impact caused by car collisions. For
dynamic problems, the extension of the velocity-pressure formulation would require that either the
fluid inertial terms be neglected (in which the fluid velocity can be eliminated algebraically) or the
fluid momentum equation be integrated in time. The former is an acceptable assumption in soil
mechanics, where the porosity is around 0.3, but an impractical one for soft hydrated tissues,
where the porosity is 0.75 or more. The introduction of inertial terms in the mixed-penalty formu-
lation, on the other hand, is comparatively easier because the quasistatic linear momentum equa-
tion is not used to eliminate the fluid velocity field in the governing equations.

FUTURE STUDIES

Important issues can be addressed in future studies to improve the performance of the non-
linear finite elements, and t.hus‘ make the simulation of large problems in joint biomechanics more

tractable. Since these problems aré compléx and multi;diSciplinary, the suggestions listed below

cover different aspects of the computational implementation.”

Augmented Lagrangian Formulation
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The author has observed in numerical examples that the current version of mixed-penalty
~ formulation has a negative impact on the Newton-Raphs;on method, preventing it from achieving
its quadratic rate of convergence. This can be improved with the implementation of augmented
Lagrangian methods in the mixed-penalty formulation. These methods, first developed for con-
strained optimization, have been applied successfully to finite element formulations in incom-
pressible elasticity in order to reduce solution costs of large constrained problems [64]. The
application of augmented Lagrangian methods implies rewriting the weak form so that the conti-
nuity condition can be approximated by linear constraints, which are then imposed by combining
penalty and Lagrangian multiplier terms. In this way, the solution of the system of equations
requires a sequence of solutions, which use increasing penalty parameters determined from the
Lagrangian multipliers. This means that some compressibility is initiaily allowed in the iterative
process, with penalty parameters gradually increased to enforce the constraint. Based on results
reported for nonlinear incompressible elasticity, it is anticipated that the additional effort required
for augmented Lagrangian methods will be compensated by faster rates of convergence when
compared with the standard mixed-penalty formulation.

A New Variant of the Mixed-Penalty Formulation

A new variant of the mixed-penalty formulation was identified at the completion of this
thesis research. In this variant, the fluid velocity unknown is replaced by the relative velocity asso-
ciated with fluid flux within the tissue. The choice of this field as primary variable has the advan-
tage of eliminating the need to calculate the gradients of the volume fractions and, therefore, the
need to calculate the second derivatives of the interpolation functions. This represents a substantial
economy for the cornputation of the finite element matrices and strongly motivates the implemen-
tation of this variant in the near future. Due to the relevance of this result for the present study, a
brief derivation of this variant is presented in Appendix E.

Elements with Equal-Order Interpolation for the v-p Formulatiom—

A result derived by Murad and Loula [74, 75] for the linear displacement-pressure (or

velocity-pressure) formulation was left unexplored in this thesis: that elements not satisfying the
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LBB condition can still have a convergent long term solution. Based on this result and the work of
Reed [85], these authors suggested the use of elements with equal interpolation for pressure and
velocity/displacement, followed by the smoothing of the pressure field. It remains to be investi-
- gated if equal-order interpolation is feasible in nonlinear analyses and, if so, which post-process-

ing technique must be employed.

Adaptivity

For physiological problems the short-time response is importanf and substantial mesh
refinement under and near the contact region is required. This suggests reallocating nodes to
obtain the necessary element gradation, a procedure already developed for single phase materials
using the Arbitrary Lagrangian-Eulerian (ALE) finite element formulation [39]. However, aspects
such as small thickness of the cartilage layer and moving contact loads considerably restrict the
ALE formulation, demanding other forms of adaptivity that allow the change of element interpola-
tion (p-adaptivity) and element size (h-adaptivity).

The implementation of adaptivity is the reason behind tests with the 10-node velocity-
pressure tetrahedron since most resources regarding automatic 3-D mesh generation and h-adap-

tivity favors tetrahedral elements. Furthermore, the velocity-pressure formulation is particularly

- attractive for adaptivity. Simple nonlinear finite element matrices, straightforward extension to

higher-order interpolations, and absence of penalty terms are strong motivations offered by this
formulation for the implementation of p-adaptivity.

Triphasic Theory

The cost-efficiency provided by the velocity-pressure formulation provides an opportunity
for the implementation of the triphasic theory. This theory has an additional ion phase and is
appropriate for modelling the swelling of articular cartilage. Results of this theory can also com-

plement the biphasic theory providing mechanical properties under various physico-chemical con-

ditions for articular cartilage.”
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APPENDIX A

Derivatives of the Heimholtz Free Energy Function for Hyperelastic Transversely

Isotropic Materials

This appendix contains the expressions of the first and second derivatives of the Helm-
holtz free energy function used to compute the elastic Cauchy stress tensor, Eqg. (3-33), and the
elasticity tensor, Eq. (3-34). Similar expressions have been independently developed by Weiss

2 -1
[116] for single-phase materials, adopting C*" instead of CC  used here.

A.1 Invariants for Transverse Isotropy

Table A.1 lists the scalar invariants derived by Ericksen and Rivlin [30] for transversely
isotropic materials in terms of the right Cauchy-Green deformation tensor C° , and the structural
tensor in the reference configuration M, = m,® m, with m being the vector of preferred
direction in the reference configuration. The right-hand-side of this table contains the derivatives
of the invariants with respect to C". The first three invariants, called principal invariants of C°,

are the coefficients of the characteristic equation:

2 2,3 2,2 2
det(C’ =21 = () - () +L,(A) =13 =0, (A-1)

where Kj ,J=1,2,3, denotes the principal stretches. According to the Cayley-Hamilton theorem“

[40], every tensor must satisfy its own characteristic equation,

53 52 S
C’ -1,C +,C°-1,1 = 0. | (A-2)

This equation allows us to obtain the following identity used to abbreviate the expressions of the

derivatives:

¢ = -l-(cs SLC 1). (A-3)
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Table A.1 Invariants and corresponding derivatives with respect to
the right Cauchy-Green deformation tensor

Invariants Derivatives with respect to c’
. o
I,=uC S —==1
oC
2 2 ol
L=ilweh —uc”] Lari-c
oC
ol 2 -1
I, = det C° — = 11-1,CC+C% = 1,C°
ac’ -
ol
I, =My C — = M,
oC
) ' ol
Ig= My C —-MC+CM

A.2 First Derivative of the Helmholtz Free Energy Function

The derivatives of the invariants presented on Table A.1 are used to obtain the first deriva-
tive of the Helmholtz free energy function with respect to c:
a A5

-1 -
a-c— = (VLW 1=V, CHLYSC + WMo+ W' (M C +C° M), (A4)

where v denotes the partial derivative with respect to the invariant / Iz In the case of isotropic

materials, Eq. (A-4) reduces to a more familiar expression

A8 __1 .
g‘/’ (w1+11v/2>1 wzc +LyC (A-5)
c’

-1
or.making use of Eq. (A-3) to r,eplac,e,CS o

a,\s $ S | S s _s2 »
-a?_ (y/1+11y/2+12qf3)1 (1;/,2+11y/,3)C +1;/’3C . (A-6)
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A.3 Second Derivative of the Helmholtz Free Energy Function

The second derivative of the Helmholtz free energy function with respect to C’ is

* obtained from Eq. (A-4), and is given by

(A-T)
3 [av

N S s 2 s
SZ‘E(SE) = (1;/’24- Vi +2111,(/,21 +Ily/’22) 1®1
— (W[ 18C+C @1
S S S—1 S‘l \1
+I3(y/’31+11y/‘32) 1®C +C ®1/,'
(W + W) Q@M+ M ®1)
+ (W 1 Wsy) (10 (MC + C M) + (M(C+ C M) ®1]
+v,,CC®C
-1 -1
-13»,1/532(03@(:5 +C® CSJ
T s s s
~ Y (COM +M,®C)
— VL [C°® (MC + CMy) + (MC*+ M) ® €]
-1 -1

+13(wf3+13q/f33)(cs ®cC’ )

S s=1 5-1
+I31;/’43 C ®OM,+M,®C

Ly [05”1 ® (M.C°+C°M) + (M,C*+C°M Cs'l]
*3Vs3 (MoC + C M) + (MyC + C M) ®
+ 1;/544M0 ®MO
Y My ® (M, +C M) + (MyC* +C M) © M(]
S (M +CM) ® (M,CC+C
+ W (MyC +C My ® (MgC +C My
- "”,Szl
+ Ly
3Vl

+ l;/ss (MyI+IM,),
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where ulsij, i,j = 1,...,5 denotes the second derivatives with respect to the invariants J o1 I

I, = 2(6,8,+6,6,) ad [I = l(cs'lcs'1 cs—lcs'l)
U1 1748 = 5(8140;3+ 6;54) - an Ul = 5\CuCm+CmCua.




APPENDIX B

Gradient and Divergence Forms in the Weight Residual Statement

This appendix provides the intermediate matrices associated with the gradient and diver-
gence of the interpolation functions. Special attention is dedicated to the gradient of the solid vol-
ume fraction, which arises in the nonlinear penalty formulations when fluid and solid velocities are
chosen as field variables. After a brief review of the notation and conventions, specialized expres-
sions, valid for isoparametric elements of any polynomial order, are presented for two-dimensional
(2-D) and three—idimensional‘(}D) problems in Cartesian coordinates, as well as for torsionless

axisymmetric problems in polar cylindrical coordinates.

B.1 Notation and Conventions

The commé. conventibn, where a comma followed by indices stands for differentiation in
space, is used throughout the apbpendix. The indices determine the coordinate component, the coor-
dinate system and, in some cases, the conﬁgura&én with which they are associated. For instance,
upper case indices (K, L, M), lower case indices (i, /), and gréek indices (4, 17, {) — varying from
one to thé number of spatial dimensions, ngy; — indicafe material (X ), spatial (x;) and parent
‘coordinates (& u ), respectively. To improve clarity, the superscript identifying the phz;se is dropped
from the coordinates. The usefulness of the comma convention is ai:parent in Eq. (B-1) and
Fig. B.1, where components of the deformation gradient and the trar_xsformation matrices from ref-
erence to-current, parent to current, and parent to reference coordinates are expressed in Cartesian
coordinates,

axi ox. aX %

S 1
k=5 k=57 SNiaTsEr o Xk uTIE - ®B-D
K=hKTIRy Tt IE v~ 3E,

F

For polar cylindrical coordinates, indices are replaced with the coordinates themselves. We use

lower case letters (r, 8 and z) for the radius, the angle and the elevation of a point in the current
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configuration, while upper case letters (R, @ and Z) are the corresponding coordinates in the refer-

ence configuration.

y L

Figure B.1 Element in the parent coordinate system
(4, also called natural or parametric system), and in the
reference (B) and current ($) configurations.

The summation convention is used throughout the appendix, with indices varying from
one to ny. In what follows, v denotes a vector-valued function defined in a finite-dimensional sub-
space 7}, while g denotes a scalar-valued function defined in a finite-dimensional subspace R;,.

‘Within each finite element, these functions are interpolated in terms of nodal values as

v = NY°, - g¢=nN%", . o (B-2)

- where the superscript a specifies element node numbers, and its repetition implies summation
from one to the number of nodes per element, Nype- For the pressure fields, the index a refers to
pressure nodes or coefﬁcients, the repetition implying summation over their number per element,
Ny OF Ny The same scalar functions. N? are used to interpolate each component of v, as 1mphed

by Eq (B=2);. The finite element&are 1soparametric with respect to-the kinematic vanables ‘with

functlons N? bemg also used to mterpolate the coordinates of a point within the element

X = NaXaandx=Nx).
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In 1nost of this appendix the terms axisymmetry and axisymmetric refer to a torsionless
axisymmetric model in cylindrical coordinates. For this particular case, the expressions are
obtained directly from the tensor forms of the finite element matrices, avoiding the distinction
between covariant and contravariant coordinates and bases. The final expressions are written using
the physical components, with no summation being implied by the repetition of the subscripts 7, 6,
and z, or R, ©, and ‘Z in a monomial. In contrast, the summation convention is alwayo used for
Cartesian coordinates, with the distinction between 2-D and 3-D expressions being made when

necessary.

B.2 Condensed Representation of Tensors

The arrangement of the elements in matnn BL , one of the mtermedxnte matrices devel-
oped in this append1x depends on the way the second P101a-K1rchhoff stress and Lagrangian strain
tensors are represented in the FE 1mp1ementatlon It is typical to condense these symmetnc ten-
sors, together with the fourth-order elasticity tensor, in order to reduce the number of algebraic
operations. This process affects the matrices in the next sections and requires a formal correspon-
dence between tensor components and array elements that will be established below. The ‘oompo-
nents of the second Piola-Kirchhoff stress tensor are packed in vectors of 6 and 4 components for
3-D and axisymmetric problems, respectively. An under-tilde is used to distinguish the condensed

representation from the tensor symbol,

Sll
S S S S22 SRR
11 Y12 “13
S33 S@@
S = S21 Szz S23 s 'S = 3 r » lS = : . ’ (B'3)
S S
S S S 12 ZZ
31 ¥32 V33 S S
' ’ 13 RZ
—— - S 5,2,3 g ~

The same representation could have been adopted for the Lagrangian strain tensor E.

., - T
However, it is advantageous to define the condensed vector E so that the vector product £~ §
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gives the same result of the double contraction E : S . This yields the following representations for

the strain tensor:

,

Ell

E22
, E = E33 r, E
2E12

2E
« 2F

13

23 °

m B

RR

txy

006

Iy

zz
2E,

(B-4)

Major and minor symmetries of the elasticity tensor are considered to convert this fourth-

order tensor into a square matrix. For linear materials under infinitesimal deformation, this means

rewriting the tensor relationship S]S3 = C: E’ into the equivaleht form .SSE = C}ES. For hyper-

elastic materials, the constitutive law is expressed in terms of admissible increments of the second

Piola-Kirchhoff stress and the Lagrangian strain tensors, SSIS3 =1/2C:3C° = C: 8E° (see

Egs. (3-34) and (4-101)), yielding the relationships

’for 3-D:

85,
8'S22
| 85y | _
8S
55,4

(N 8S23/

12

and for axisymmetry:

&S RR
35g0
3S 77
0S5

Cit C1122 C1133 Cuirz Cipis Crizs

Co222 C2233 Coo12 Coo13 Coans

C1333 C3312 C3313 Oz

Ci212 Ci213 Cions

Sym. Cis13 Cians

Com)
Crrrr Czree Crrzz Crrrz
_ Coo00 Coezz Coorz
Sym. Czzzz Czzrz
Crzrz]

SE
8E,,
8Ly,
25E

28,

11

e

28, )

3Epp

dE 5o

3E,,

20E,,

(B-5)

(B-6)




155

where Cp, ., are components of the elasticity tensor, with K, L, M, N = 1,..,n_, (see also

Appendix D).

B.3 Gradient of a Scalar Field
The gradient of a scalar field is obtained by introducing the interpolation function and col-

lecting nodal values, that is

a
Vq = g% = q“g-xjy : (B-7)

In Cartesian coordinates, making use of the chain rule of differentiation, we obtain

dq a aN* a oN* aéu
v =% 3% =9 38 3 B9
J J (T2
or using the comma convention,
a a
q,j—qu}=quL§#,j, : (B-9)

-1 N : — : e
where 5;“. =%, = ( x}.N l-l) is obtained by numerical inversion, a procedure valid for
elements based on any polynomial interpolation.

For axisymmetry, the gradient is given by

q, aN,
Vg=3o0t=1 o I, (B-10)
Lz QN
a a . .
~ where N’j =N, é,u,j with j = r,z; u=1,2.

B.4 Gradient of a Vector Field
The gradient of a vector is given by

_ov
Ve %

= 2. (B-11)
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In Cartesian coordinates the final expression is similar to Eq. (B-9),

a a
Vi =Y N"} = v, N" T (B-12)
The gradient for axisymmetry uses the operator V = e i +e li +e =— fof cylindrical coor-
rar 0réf 2oz
dinates, with e , e 5, and ¢ P constituting an orthogonal basis, and is given by
~ - a,.a a,.,a
Ver " V2 er,r ) er,z
. a
W=, =] . YL (B-13)
r Ny
v, ey
Var Tled Laye L e
Lz,r 24,2

where the dot stands for null elements, and vf and v? are physical components of the nodal velocity.

B.5 The Divergence of a Vector Field

For Cartesian coordinates, the divergence can be obtained from Eq. (B-12), yielding

Vv =tr(Wy) = v, ;= v? N%, (B-14)

3l
and, for axisymmetry, from Eq. (B-13),
al ,.a Na a,.a ‘
Vv = vr(N,r+TJ+VzN,z' (B-15)
An intermediate vector k is defined in the v-p formulation in order to factor out the nodal
velocities from the divergence, thS =V (N Y as given by Eq. (4-76). This vector is imme-

diately assembled from Egs. (B-14) and (B-15), and has the following nonzero components in the

axisymmetric case:

W= N W= N | ®-16)
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B.6 The Deformation Gradient F°

In Cartesian coordinates, the expression of the deformation gradient is analogous to

Eq. (B-12), except that the derivatives are taken with respect to the reference configuration

S a a a a
Fig=xg=%Ng=x N, éu,K’ (B-17)

1

- b\~
b ( X?{N #) is obtained numerically. In the axisymmetric case, the

where 5# x = Xgy

matrix of the deformation gradient is given by

a..a a,.a
R *Ty N,R * rN,Z ’
a .
Fs = VXx = . % . = . N:rb . , (B‘Ig)
N R
Z,R ‘iz a,a a., a4
2 N,R LI 4 N,Z_

where»NfzK = Nf‘uzj with X = R, Z; U

i
=~
[\

K
B.7 The Matrices B; and B

The intermediate matrix B arises in nonlinear elasticity and should be understood as part
of the effort to replace a tensor double contraction with a matrix product (Eq. (4-105)). This aspect

is hidden in the following definition

sym

'I" .
B, %u'= [FS VX(Sus)] ; (B-19)

1 2 nn [ 4 > . . - .
where BL = [[BL] s [BL] ) enns [BL] i :] , with {BL]a being the sub-matrix associated with
node a. Since the symmetric tensors with which [BL} % is multiplied in the large deformation
stiffness matrix and in the elasticity vector are condensed in matrix form, we must rearrange its

components in a similar way, that is in columns of condensed vectors. Following the same strategy

used to condense the Lagrangian strain tensor E  in Section B2, each column of the sub-matrix is

built according to the formats
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a T
By = [Biys By Byys (Biy#By)), (Byy+By)), (Byy+Byy)|  for 3-D, and

T (B-20)
a
1B} = [Byy, By (B +By)] for 2-D.
After factoring out the nodal components Su’ in Eq. (B-19), we obtain for 3-D and 2-D
N a A
F?IN,I ’
F,,N o | -
27,2
. Fls Na Flele
a . . 24
{B,} = B, {B,} = PN | (B-21)
LR NG+ FNG i @22
2Tl e s .a
s a4 s .4 _FilN,2+Fi2N,1_
FilN,S +FiNy
S S 1,8
_Fl.21v‘f3 +F3N

where the partial derivatives of N? refer to the reference configuration. For axisymmetry, the col-
a . T

umns are arranged in the format {B;} = [B rr Boo» Bzz (Bpz+ BZR)] , yielding
; :

a ) ' H r . -
FiRN,R Fs Na
. Na : : R ,R
a o a .
{BL} = 9O R s {BL} = ’ (B-22)
r s .a z FszNaZ -
Fo N 7 @
’ F_N° +F _N*
FopNg+FopN g L RS2

:EQS.V'(B-ZI) and (B-22) are much shorter than the exb'ressions presented by Bathe in terms of nodal
displacements [71.
In the linear theory the assufnption"of infinitesimal deformation is eyquivale’n"t to FP=1 ,

and matrix BL‘ éimpiiﬁéé to the familiar matrix B used with linear finite elements. For 3-D and

# " 2.D Cartesian coordinates, réspectively, results



159

N,l . .
. Na . ~ =
2
. . Na N’al )
a - ,3 a _ a .
[B] - 5 [B] = e N » (B'23)
a ya, 2
2 1 a a
N - A RS
3 A
a a
* N3 N,

where partial derivatives are computed with respect to the reference configuration. In the axisym-

metric case, we have

a
N-’R .
Na
(B1* = | MR , (B-24)
* Z
a
L Nz ‘N,R_

where the columns refer to the degrees of freedom  and z, respectively.

B.8 Gradient of the Solid Volume Fraction

The penalty and mixed-penalty formulations require the gradient of the solid volume frac-
tion, which depends upon the Jacobian determinant J®. That gradient'arises from the following
divergence terms in the weighted residual statements (Eq. (4-31)):

-1
V. (6% =¢° V' +v Vo' = ¢° V-vs+vs-(VX¢st )
‘ o (B-25)
V. (¢fvf) = ¢f Vol V¢f = ¢f Voot (VXQ)SFS ),
where the fact that the biphasic mixture is saturated is considered in the last equation. The above -

divergences are used to define the following intermediate vector 1% in Chapter 4:
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T
B v =7 (6%%), (B-26)
. ~ -1
with no summation implied by the superscript . Using the relationship ¢ = ¢ ; , the gradi-

ent of the volume fraction can be written as

N ‘p(s) S ¢?} S—T S
VX¢ = - —S'E VXJ = - ;; F VxF N (B-27)
J .

and the problem is now reduced to the g:ompufation of VXFS . We will return to Egs. (B-25) and

(B-27) later when dealing with axisymmetry.
B.3.1 Cartesian Coordinates
For Cartesian coordinates, it is convenient to proceed with index notation and rewrite
VxF s as
(FfK) L= 0 8 gl L Fiun Sk Sn Lt ¥ Sk (B-28)

a . ' . .
where Xum =% Na i and the expression for 6#’ gz, can be shortened by using the definition of

the cofactor matrix

Suxr = Xgy )

1
= [ oottty ]

Tp, -1 (B-29)
=~ F Xy, +FIORX )1 &,

J

=- = 5;;,K+J[C°f( XK,#)],n én.L'

where J is the Jacobian of the isoparametric map from parent to material coordinates,

J = det(F)' = det(X K ﬂ) , and its gradient with respect to material coordinates is given by

Vil =J FLVF, o B30

or, in index notation,
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Tp= Xy o | (®-3D)

The gradient of the Cofactor matrix is introduced next. Denoting K, K; (, K3) and gy, fy (; i 3) the
circular permutations of the indices K and 4, varying from 1 to ngy, it follows |

for 3-D:

(B-32)

[COf(XK'l, ,LL,_)] 7 = XKZ, ,lenXK s My + XKZ, ﬂ:XKy By (XKz, ﬂsnXK:;, iy * Xsz #3XK3v HaM

from: COf(XKl, /‘Lx) = Xsz #zXKé» ty XKZ, p.3XK3, i’
and, for 2-D:
[Cof(X o= (—1)vK1 +'ulX : (B-33)
K,u'" p Ky, myn?
’ K+
from: Cof(X X, 'ui) = (-1) Xg. W

. . . s f
The above equations can now be used to write the expression of the vectors b~ and A .

Introducing Eq. (B-28) into Eq. (B-27), and that result into Eq; (B-25)1 yields

S

)
S S - 0 M S
(¢vy) ;= = v Vi (R pn Sk Smon ™ % S kD) Xk, i X1, - (B-34)
where
.
SukL = = Xaamg Sgn Snom Su i+ FLCMXE I L &y (B-35)

Finally, making use of Eqgs. (B-25), (B-26), and (B-34), we obtain the generic components of
£’ and hfz

{1 = —% (V=N (5, oy G S % S ) X 5L )
S EO— (B-36)

(Y =N Y
J J
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B.8.2 Axisymmetric Case

For axisymmetry, the derivation must resume with the expression of the gradient VyF g

Using the operator V = ¢ aa +eg 1889 aa for cylindrical coordinates, we obtain the follow-

ing expression for this third-order tensor:

. 1) . - 1
TR * TR (R R TRz * T zz
VxFS = . (1) . + (L) . ig + . Lz .
R/.R RJ,R R R (B-37)
LRR " %zR S Zpz * Zzzl
e R - ) i
¢,®e,Qey e;Qe,®e, ‘ e, Qe e,
where the indices i = 7, 6,z and K = R, 6, Z are determined by the numbers of the row and col-

~-T
umn in the above matrices. The components of the gradient VXJS =JF . VXFS are given by

R(r\ 71
P =77 R, +rZRZ +zRRR ozl s (R)’R],
Fy=0, (B-38)

r
S _ .8 A
Jz=J [r,RZR,r+r,ZZZ,r+z,RZR,z+Z,ZZZ,z+'—,- ],

where 1, = T un é;z,K én,L"' o 6#, gk and Z g = Z.un,éﬂ,K ’g’n’L+z’u 5/—1; k1 With
KL=R Zand u,n=1,2. »
Finally the components of B and k' are obtained by introdﬁci’ng Eq. (B-38) into Eq. (B;

27), and that result into Eq. (B-25), yielding:

{r%} _—..QS[N" +Na(—-—(J R, J,SZZ,‘;))},

" ’ (B-39)
il - @ ¢O ’ Nas ; S |
{h }Z=F[NZ—F(J’RRJ+J,ZZ,Z) s

and
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Ky =N+ -}
r r (B-40)
(W} =N 1}






APPENDIX C

Finite Element Matrices

This appendix examines FE techniques that take advantage of the similarity between oper-
ations with solid- and fluid-phase degrees of fre;adom in the penalty formulations. The FE matrices
implemented for 3-D and axisymmetric problems were obtained following simple guidelines.
First, the original expressions in index notation were manipulated to identify zeros and redundant
terms. As a result, costly numerical computations were avoided by matrix partitioning and rear-
rangement of element DOFs. Second, tensor symmetry was explored to pack components in con-
- densed matrices, as seen in Appendix B. And finally some matrices were decomposed into
" products of intermediate matrices that were created to minimize the number of operations.

This appendix uses the simplified index notation for Cartesian coordinate systems, with
lower indices referring to coordinate components and upper ones referring to node numbers. Table
C.1 summarizes the indices whose repetition implies summation in their fange of variation (see also

Section B.1).

Table C.1Indices and ranges

Index Refer to Range
a,b Kinematic node » Lcsltype
c, d Pressure coefficient (MP) ' Laltpe
c, d Pressure node (v-p) Ltpy
i, ] Direction (current configuration) Lesntgy
K, L Direction (referenCe conﬁguration) 1,...,risd

C.1 Order of the Degrees of Freedom in Matrices and Vectors

To take advantage of the presence of null sub-matrices, displacement and velocity vectors

are partitioned into sub-vectors containing solid- and fluid-phase degrees of freedom. In each sub-
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vector, as illustrated below for velocities, DOFs are first grouped according to their directions and

then, within a group, ordered by node number:

& al
se &1 Vi
e _JV ae _ . o _ )
VoE g [ Vo= - v, = : , c.1
4 o : an”e . (‘)
v y, *
Ry 4
o = s,f; i =1,

The order described represents a rearrangement of the usual ‘node-then-degree-of-freedom’ order
and leads to significant savings when the permeability. tensor is isotropic. The same arrangement is
used for the solid-phase DOFs in the v-p formulation, with nodal i)ressures replacing nodal fluid

velocities, even though the benefit in this case is smaller.
C.2 Nonlinear Elasticity Vector
The elements of the nonlinear elasticity vector are obtained using Eq. (4-105):-
se, @ T,? s
(¢}, = [ 1BLY. Spa, . (C-2)
9

a ; RN

where {B} are the columns of matrix B , which is specialized in Appendix B. The arrange-
; ,

ment of these columns must be consistent with the order of the solid velocity DOFs, yielding the

following partitioning:
‘ ' ‘ 1 Mope
B, = [BLI BLn“]’ where BL,- = {{BL}, {BL}, p]. (C-3)
; . . ) i : i

C.3 Tangent Stiffness Matrix

In Section 4.7 the tangent stiffness matrix is presented as a sum of two matrices: the large

deformation and the geometric stiffness matrices, K~ = K;_e +K : . We follow the procedure pre-
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sented by Bathe in reference [7] in order to decompose the integrand of K ;e into a product of three

matrices:
se T ‘
K = [ B CB a2, (C-4)
e
yielding, for a generic element,
se. ab T 4 b
[K(l; = [ {BLY C{BL} day. (C-3)
2 ) J
QO

Matrix By is the same intermediate matrix used in the previous section, and the arrangement of the
elements of matrix C is described in Section B.2.

An interesting consequence of tﬁe DOF ordering. considered in this work is that the spar-
sity of the geometric matrix, K, disappears; this matrix is now formed by non-zero sub-matrices
along its diagonal. Nevertheless, this requires that we abandon the decomposition presented by

- Bathe in favor of a new one. To do so, interpolation functions are introduced in the integrand of the
5. Sym -s s. . Tsym

second term in Eq. (4-103), that is tr( (Vyw?) Sg[Vx(du)] ) : and the nodal values of

w'® and Su’ are factored out of the expression. The remaining terms inside the integral are then

arranged in sub-matrices, yielding

k . e

. G . k(r)
g L 2 L ] - G -
.« . kg G

for 3-D and axisymmetric problems, respectively. In Eq. (C-6), dots represent null sub-matrices,

and the elements of the sub-matrices kg are given by

k™ = [ NS NpdQy  with KL= 1,.ny, €
fox -

0

and
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x1” = J(NaS N+ LN @@)dﬂo,'

fon R2
(C-8)
(z) .
lkg j NSy Nd,  with KL =RZ.

The computational advantage obtained by avoiding a sparse matrix reinforces the decision to keep
a unique order of the DOFs at element level. However, the main justification for this ordering

comes with the capacity matrices examined next.
C.4 Capacity Matrices for the Penalty Formulations
The capacity matrix of the mixed-penalty formulation is provided by Eq. (4-38):
Yop = BY; +7,, (C-9)

‘Matrix Yi (Eq. (4-39)) requirés the compﬁtation of two other matrices. The first matrix

has the partition

A%= s Al = “Ai AZSJ [Ai AZJ] (C-10)

The elements of sub-matrix A? , .= s,f, are provided by Eq. (4-32):
ca a
[4%1; = [ a0 (n%y Saq,, (C-11)
a .
‘with .{ha}‘ being an element of the intermediate vector & developed in Appendix B. The sec-
13

ond matrix, H®, has its components determined using Eq. (4-34):

d
= [ 2T aq, ~ (C-12)

For an isotropic permeability tensor (or equivalently, an isotropic drag tensor ¢ = ¢1),

matrix Y; defined in Eq. (4-33) can be partitioned for 3-D and axisymmetric problems as
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yz » * _.y2 L * _ )
yz . L d _..yz * yz . —yz L 4
Y = 72 Tyopa| 27 (C-13)
yz L 3 L d s yz L
m.
Sym Yy L d yz-

respectively, with the elements of sub-matrix y, given by

[y,] ? = fNa§NbJSd!20. (C-14)
(o

C.5 Capacity Matrix for the v-p Formulatibn

From Eq. (4-78)s, the “generalized” capacity matrix is given by

0 -a’

Y,, = P, (C-15)
€ €
Ay ~Hyp

The elements of matrix Aip are computed using Eq. (4-77):
A1 = [ A (e

[45,]; = [ 2 {h; : (C-16)
fox :

where vector A is given in Section B.5. The elements of matrix H jp for an isotropic permeability

are readily derived from Eq. (4-74):
B = [xVaC-vadra
[4,,] _jx K- VAT dQ,. (C-17)
%

The equations in this appendix; together with the ones-in Appendix B, correspond to the matrices

implemented in the biphasic finite element program.






APPENDIX D
Restrictions Imposed on the Exponential Helmholtz Free Energy Function
This appendix examines basic aspects for the preliminary acceptance of the exponential
Helmbholtz free energy function studied in Chapter 7. These aSpects include the existence of a nat-

ural state, the stress-strain relations under infinitesimal deformation, and the extension-tension (E-

T) condition for stretches in the principal directions of the material.

D.1 Existence of a Natural State

A natural state corresponds to an unstressed reference configuration. Incorporating this con-

dition into the elastic Cauchy stress tensor for transverse isotropy, Eq. (3-33), yields

S S S
v, +2y,+y, =0,
,1 2 3 ’ (D-1)
S S
Wyt 2 Vs = 0.
For the exponential function defined by Egs. (7-1) and (7-2), the above equations produce the conditions

n=0o¢,+2xa
1 b
2 (D-2)
o, = —20:7,

which reduce the nufnber of parameters in the exponential function from nine to seven.
D.2 Stress-Strain Relations under Infinitesimal Deformations
For infinitesimal strains, the stress§strain relation can be expressed as:
7-ce L (-3

T T
S . —
where o, = ["11’ Oy G330 O13» O3> ‘723]’ and € = [811* €390 €330 281y, 2843, 2823}

__are condensed vectors of the stress tensor and the infinitesimal strain tensor, respectively; and € is

the condensed matrix of the elasticity tensor. When the preferred direction coincides with the

direction X, , the matrix C for transverse isotropy has the general form
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— -

C1111’(:1122;:1122 0 0

(:1122 C2222 (:2233 0 0 0
C = Cll«22 C2233 C2222 0 0 R (D-4)
i 0 0 0 Cp,, 0 0

0 0 0 0 Cg, O

1212
0 0 0 0 0 C

2323]

with Cogyy = (Cypppy - Coa33) /2. The inverse of C is the compliance matrix, which can be

expressed using engineering coefficients as

v V. |
L -2 o 0
El‘ 2 2
Vv V.
-2 Ei -2 0 0 o0
El 2 2
v Vv,
I B Ei 0o 0 0 |
cl=| E E E . (D-5)
0 0 0 51- 0 0 |
12
1
0 0 0 0 == o
GIZ
0 0 0 0 _ B
2(1+v23)

where E; and E, are the Young’s moduli in the preferred direction and directions perpendicular
to it, 'respectively;. G, is the shear modulus in planes containing the preferred direction; Vi, is
the Poisson’s ratio for the transverse strain in the X o direction when the body is stressed in the X 1
direction; and V,3 is the Poisson’s ratio in the planes of isotropy. Other Poisson’s ratios in Eq. (D-

5) are determined from the symmetry of the compliance matrix, that is Vo1 /Ey = v, /E; .

__One way to obtain the relationships between the coefficients of C_and the parameters of

the exponential function is through the linearization of the elastic Cauchy stress tensor, Eq. (3-33).

The linearization provides:
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_ Cos _ Com .
17 T T @y == 2 n,
0 ) 0
1 C2222 _
’ (D-6)
1 ,
%= %‘B[(C““‘CZZZZ) +2(Cp33=Cyypp) +4(Cpa3=Crp) 1
Ci122=Con3 ‘ - Ci012-Cas
&g = , o, = —=2 L2907
6 4(20 / zao

Except for ao' and n, the remaining parameters can be associated with linear material properties.
In this context, ¢, & and «, specify the material anisotropy of the exponential function under
infinitesimal deformation; these parameters are zero for isotropic materials.

The requirement that the matrix C is positive definite leads to the following conditions

[63]: |
(Copp C‘zzzz’k Cia12 Ca329) >0, ' O-7
Cim - Cizﬁa >0, (D-8)
2Cf122 <Cii Coppp + C32233)} ‘ o (D-9)

which, 'through Eq (D-6), can also be expresséd in terms of the parameters of the exponential

function.

D.3 Restrictions Imposed by the Extension-Tension (E-T) Condition

In Fig. D.1 a unit cube is stretched along its principal directions m, ¢ and u, with m being

the preferred direction of the material. The principal elastic stresses on the deformed cube are
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S
S

Po 2.2
O-Em = ";{%'—n [Wi + W,Sz (lt + )“u) + W;lz
t*u

2 S s 2‘
t;{'u+ W,4+ 21{/,51’"] ’

2044 2 2 2.2
Glsit = ﬂ—{ [ W,Sl + W,s2 (/’Lu + lm) + W,S.’Sluﬂ’m] ’ (D-10)
w’m

S
2004
S 0 2 2 2,2
Oy = S ;t:‘ [qffl + z;r’sz(ﬂ.mﬁ-ﬁ.t) + y/;,lmxt) ,
m

Figure D.1 Unit cube stretched along its principal directions. The preferred direc-
~ tion m, indicated by a double arrow, coincides with a principal direction.

where Glsim is the stress in the plane normal to the preferred direction, 0';3 ; and G;u are the
stresses in two orthogonal planes containing the preferred direction, and Am; A, and 4 are the
corresponding stretches. The above equations can be used with the Extension-Tension (E-T) con-
-.. dition (Séction 3.5) to establish restrictions on the exponential function. Two situations are of par-
ticular interest in the case of transversely isotropic materials: |

Stretch Prescribed-along the Preferred Direction

Introducing A, = A,and A, = A_ = 1 into Eq. (D-10), and making use of Eq. (7-3),

yields the principal stress in the preferred direction:
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S

n)(lz—n n+a, (X -DTA -1

O'Em = 2“0(2(2414'15 —;27:1— e s (D-11D)
and the confining principal stresses:
s s (12—1) [n+a,(A-1)] (A -1)
GE! = O'Eu = Zaoab—;vz—m— e , (D-12)
where @, = Q3+ &5+ g and @) = 0, + 205 + Q.
Stretch Prescribed Perpendicularly to the Preferred Direction
For 4, = A and 4, = A, = 1, the principal stress in the direction « is
s n (AF=1) [(n+a (=11 (A-1)
(A=~ -
O-Eu = 2&0(2063 +-—2)——2';2—:1—- e ’ (D-13)
AN
and the principal confining stresses are
s A1) ea-D]E-1)
L (A - -
Ogm = 205005[)——————/12’1+1 e ) (D-14)
s Q221 e (R-1]E-1) :
Op, = 20 (0, +20t3) e : (D-15)

AZn-&-l

The imposition of the (E-T) condition upon Egs. (D-11) and (D-13), together with the

assumption of a positive &, produces the inequalities

n
a, +Q.+ 0, +—>0, (D-16)
37T %5 Y
222 |
%50 D-17
oy +—>0. D-17)

22
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If the (E-T) condition is complemented with the requirement that a longitudinal elongation
is accompanied by tensile transverse stresses (a requirement not always valid for collapsible mate-

rials such as foams), the following inequalities result from Egs. (D-12) and (D-15)

oy +205+ >0, , (D-18)
@ +20,>0. (D-19)

where, again, a positive o, has been assumed.




APPENDIX E

A Variant of the Mixed-Penalty Formulation

.In the rrlixed;penalty (MP) formulation, the need to compute the gradient of the porosity,
and thus the second-order derivatives of the interpolation functions, can be élixninated by replac-
ing the ﬁuid velocity unknown. Thé outline of the resulting formulation that uses solid velocity
and a new “relativé” velocity as unknowns is presented in this appendix. We refer to Chapter 4 for
a complete description of the equations and terms used in this appendix.

The elimination of the gradient of the porosity from the finite element equations starts
with the continuity equation. Using the relationship ¢>S =1- ¢f , the penalty form of the continu-

ity condition, Eq. (4-1), becomes:
s f,f s r . S
V-[v+¢ (v —v)]+,—8-=0. ‘ (E-1)

A new velocity vR is then defined based upon the relative velocity of the fluid

wR o= -}-%(vf-— ) , : (E-2)
o : ‘
so that Eq. (E-1) now reads
V-(vs+vR)+%=O, (E-3)

The replacement of the fluid velocity by VR requires rewriting the linear momentum equation for
the fluid, and redefining boundary conditions. Making use of Eq. (E-2) in the momentum equation
for the fluid in Table 3.2, yields

Vp+¢ ¥ =o0. E-4
As for boundary condition, the following equation replaces the condition for fluid velocity used in

Chapter 4:
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. .R '
vR(x, Hn=g, for xeTl o~ (E-9)

where gR denotes prescribed values on I” o2 cr.

To obtain the weak form, the momentum equation for the mixture, Eq. (4-53), the momen-
tum equation for the fluid phase, Eq. (E-4), the new form of the continuity equation, Eq. (E-3), and
boundary conditions ngen by Egs. (4-57) and (4-58) and aré‘introduce.d inio tﬁe weighted residual

statement yleldmg

[0 1V (op-pD1-w" [Vp+ v ]+q[V (v+v)+ﬁ}}d9
Q
s R ‘ (E-6)
+jw -(t-an)dF—Jw -n{p-p)ydl = 0,

r, Iy .

t t
where the boundary I” = is defined such that I" 2y I o =Tand I” a0 r 2 = J.The weighting
function wR must satisfy the homogenous form of the boundary condmon for the trial solutions

The weak form is then obtained by applymg the divergence theorem to Eg. (E-6)

I{H((sz) a;)~V- (ws+wR)p+wR-CvR—q[V~ o+ VD) +%]}d9
Q §
s R E-D
=jw.tdr—jw -n pdI. |
r, r,

¢

In contrast to Eq. (4-15), developed using fluid velocity, the above equauon does not have the vol-
 ume fraction gradxents so its dlscretxzatlon leads to standard ﬁmte element matnces that require

only the first derivative of the interpolation functions.






