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The p-version of finite element method for shell analysis

1. Fish, R. Guttal

Abstract A new quadrature scheme and a family of hierarchical
assumed strain elements have been developed to enhance the
performance of the displacement-based hierarchical shell
elements. Various linear iterative procedures have been
examined for their suitability to solve system of equations
resulting from hierarchic shell formulations.

1

Introduction

Since early seventies there has been a disagreement between
various sections in the finite element community over the
computational efficiency of higher order elements. On one hand
there was a clear mathematical evidence of the superior
theoretical rate of convergence (measured in terms of the
problem size) of the p-type methods for properly designed
meshes as demonstrated by Babuska, Szabo, and Katz (1981)
but on the other hand, it was commonly believed, primarily in
the engineering community, that the h-method is
computationally more efficient due to its superior sparsity. The
disagreement has peaked in the early nineties. For example, in
the First US Congress on Computational Mechanics, Bathe
presented numerical results conducted on Floyd pressure vessel
showing the superior performance in terms of CPU time of the
h-method even for problems for which the exact solution is
analytic. At the same conference Carnevali reported IBM
research division findings on similar problems suggesting
exactly an opposite trend.

In practice, computational efficiency of various finite element
versions depends not only on sparsity and theoretical rate of
convergence, but is a function of several other factors including
adaptivity and quality control, conditioning, distortion
sensitivity, locking, model preparation and model '
improvement, utilization of previous computations and coding
simplicity. Ironically, there is no general consensus on the
relative merits of some of these factors. For example, it has been
argued that for p-type methods the finite element mesh is
simpler, and thus the time required for data preparation is
substantially smaller. Unfortunately in automated
computational environment the cost of automatic mesh
generation of higher order elements is not necessarily lower
than that of the #-method (Shephard and Dey 1994).
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The p-method has been commended for its versatility in the
adaptive process due to its ability to exploit previous
computations and the elegance of hierarchical error estimation
process (Zeinkiewicz and Craig 1986). However, it is often
overlooked that the sequence of lower order finite element
meshes generated in the adaptive process can be utilized for
both solution and quality control processes by utilizing
multigrid technology (Brandt 1977). '

Contradicting observations were reported regarding the
sensitivity to element distortion. Holzer, Rank, and Werner
(1990) present experimental results indicating that higher order
elements are less sensitive to mesh distortion, while Ramm,
Stander and Matzenmiller (1989) in their review article on’
assumed strain shell formulation report that 4-node bilinear
shell elements are less sensitive to mesh distortion than their
quadratic counterparts.

In the realm of opposing views, there is a sound theoretical
evidence on superior conditioning of matrices arising from
orthogonal basis functions (Zeinkiewicz and Craig 1986), and
circumvention of locking with higher order elements as shown
by Szabo, Babuska, and Chayapaty (1989). Nevertheless, since
the overall computational efficiency is strongly linked to
the program architecture, it is not obvious what are the
contributing factors of these aspects.

The present work focuses on the computational aspects of
the p-version for shell analysis. The following aspects are
studied:

o How to enhance the performance of shell elements up to
the polynomial order of 4-5 using assumed strain
formulation.

e How to speed up the computation of element matrices by
utilizing previous computations and how to exploit
hierarchiality of the p-method via special quadrature
scheme.

o How to exploit the well conditioning of matrices arising
from the p-method by utilizing the multigrid like
technology with various acceleration schemes for thick
and thin shells.

Element formulation

2.1

Preliminaries :

Consider the geometry of a typical quadrilateral shell element
defined by the following relation:

X =11+ &)X, &) + (1= &) X6, &) (1)
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Assumed natural strain field
In order to alleviate membrane and shear locking primarily at
lower polynomial we define an assumed natural strain
interpolants B = {b%} in the following manner: Let
(NG,, NG,, NG;,) be the number of quadrature points for the
displacement based formulation. To enhance the element
performance, we introduce a special set of one-dimensional
shape functions [¢,(&), ¢, (£,), $(&,)] defined with nodes at
reduced quadrature points (cf_”, 52,, gix) where J€[1, NG, — 1],
Ke[l,NG, — 1], Me[1, NG, — 1].

The general form of {575} is given by:

NG —1

b:‘:xt Z b;‘:f(g, = z,-p éj; ‘:k) ¢I(é,) nosumoni

[=1

_ NG, ~1 NGy —1 _ _
bit= Y ) W& =C8=8,8) ¢(E)¢,(&)

I=1 J=1

i#j nosumonij (10)

2.24

Stiffness matrix calculations

Since the constitutive relations are expressed in material
coordinate system, the natural strains are transformed to
material coordinate system. From Egs. (4) and (5), the strain
components in material coordinate system are defined as:

= _ 06 ¢ ox, "' [ox Tt

=y = kaaXIE "[5—5— a2, 8)'=Tklx,5;j an
i j

or

==Te¢ 12).

and the element stiffness matrix can be cast into the classical
form:

K= j‘gnatr D¢ Enat a0
Q

where B™ is defined by Eq. (10) and
D'=T'D*T (13)

D# is the constitutive matrix defined in the Material coordinate
system. ’
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H3RANS - Hierarchical (3 — D) reduced transverse stiffniess,
Assumed Natural Strain element

For the purpose of examining the causes of somewhat stiffer
behavior of H3-type elements compared to their degenerated
counterparts (Stanley, Levitt, Stehlin, and Hurlbut 1992), we
consider a beam problem. For elastic isotropic beam the strain
energy is given by,

1
=Ej (Dgk*+ Dyt + Dyy?) dx (14)
L

where L is the element length; ¢, , and y are the membrane
strain, curvature and transverse shear strain respectively; Dy,
D,,, and D, are the bending, membrane and shear stiffness

constants given by,

Et?

5= D,=Et D;=k,Gt (15)
where ¢ is the thickness of the beam of a unit width; E the Youngs
modulus; G the shear modulus and k, the shear correction factor.

In the classical beam formulation the normal strains y are
a posteriori calibrated to maintain zero normal stress (plane
stress assumption), and thus have no contribution to the strain
energy in Eq. (14). It can be seen that as t — 0 the bending energy
becomes negligible in comparison to shear and membrane
energy giving rise to shear and membrane locking, if the element
cannot represent deformed state in which shear and membrane
strains vanish through out the element (Belytschko, Stolarski,
Liu, Carpenter, and Ong 1985).

In H3-type beam elements normal strains are computed
directly from kinematics. These values are not arbitrary and
cannot be calibrated to maintain plane stress condition. Thus
if two dimensional state of stress is considered, the resulting
strain energy takes the following form:

1. = _
Uzzj(DBKZ+DM52+8DC#+DSVZ+DuNZ)dx (16)
.

It can be seen that in H3-type flexural elements spurious
coupling between membrane and normal deformation exists
giving rise to a parasitic transverse normal strain energy, which
is of the same order of magnitude as that of the membrane strain
energy if the strains are of equal order. This phenomenon is
referred here as the transverse normal locking of H3- type
flexural elements.

To ameliorate the locking caused by the transverse normal
strains we propose to calibrate the constitutive behavior of
H3-type elements to match the strain energy corresponding to
H2-type elements without introducing zero energy modes. This
is accomplished by modifying coefficients in constitutive tensor
in the following way: :

D,=D, Dy=D, D.=0 D,=yD, (17)

where y is a stabilization parameter aimed at stabilizing the zero
transverse normal energy modes of H3-type flexural elements.

24

H2ANS - Hierarchic (2 - D) Degenerated Assumed Natural Strain
element with rotational degrees-of-freedom

In this section we attempt to formulate a degenerated assumed
strain shell element, which employs blending functions or
Lagrangian basis for geometry mapping and Legendre
polynomials for solution interpolation.

. As a starting point; the displacement field is expressed in
terms of mid-point translations u/(¢,,¢,) and mid-point
rotations 8, (&, &,) which are defined with respect to the fiber
coordinate system: ’

ul ul P 9

C3 foiaf 1
u, ={u; +3[ te) tell; -, 9, (18)
Us ) (@,50.5) U ) (.




Proof. Substituting (20) and (21) into left hand side of (22)
yields:
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(23)
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Likewise, the right hand side of (22) gives:

Y [g¢,dQf h¢,dQ

I=1
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The dot product of integral decomposition was originally

proposed by Hinnant (1993). The quadrature based on dot
product integral decomposition is optimal in terms of number
of integrand evaluations for hierarchical systems. To clarify this
point we consider a one-dimensional case. Let g = {g;} and
h = {h;} be vectors whose terms represent the hierarchical
sequence with increasing polynomial order, where subscripts
on g and h denote the polynomial orders and i, je[0,p]. In
evaluating integrals of the form G, = {8 P,(&) d¢ and H,=
fh P,(&) d¢, where ke[0, i} and le[o ], the number of functlon
evaluations for (g, h) is (i + 1) and (j + 1), respectively. Thus
the total number of function evaluations for computing all the
integrals of the form G, and H, is (p + 1) (p + 2) as opposed
to 2(p + 1)* for uniform quadrature. It can be shown that
this estimate grows exponentially with the increase in the
number-of space- dimensions-

The major drawback of Dot product mtegral decomposmon

is the lack of symmetry, which leads to:

1. Non-symmetric stiffness matrix if g and h are of different
polynomial orders (such a situation may arise in the case
of material or geometric nonlinearity).

2. Redundancym evaluating each of the two integrals G and

J , which, except for the term involving constxtunve
tensor, should be identical.
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Symmetric dot product integral decomposition

In this section we present a variant of Dot product integral
decomposition which preserves the symmetry of the stiffness
matrix. Consider a typical stiffness term given by

»=|BiDB;] dQ
2 —
8ahy
In an attempt to obtain a symmetric dot product integral
decomposition, we decompose the integrand (g, h,) as follows:

(25)

h}=g,=BiL/" (26)
where L is a lower triangular Cholesky factor of the constitutive
matrix D. The resulting stiffness matrix is given by

L
Zj (L™B) ¢, J"*dQf LBy, ]2 dR2 (27)
I=1Q 2

Each of the integrals is integrated using Gauss quadrature: The
number of quadrature points as well as the maximum
polynomial order of the interpolating Legendre polynomials
in each direction depends on how well the integrand L" B, J**
is approximable by polynomials and what is their polynomial
order. We will refer to this integration scheme as Symmetric
Dot Product (SDP) Gauss quadrature. '

In case when the constitutive tensor D is not positive definite
an alternative integrand decomposition is employed. Let

84= BATIUZ h;=DJ"B, (28)

yielding
L L
Z [BIJ"2¢,d2{ D¢, ByJ"* dQ (29) :
=12 2 — ¢

hg

and further dot product integral decomposition of the second
term in (29) yields the following symmetric form:

L L
=5 Y [(BLJ") ¢,dQ-[ (D), ¢,d2- [ (B} ]'")§, dR2
I=1]=10 2 \T Q 30)

Note that if the constitutive tensor is constant,
D, ={,(D)¢,;$,d2 = DJ, reducing Eq. (30) to

L
Zj (BI]Y)¢,ds2:D-{ (B;J'*) ¢,d2 (31)
=10 2

In can be easily shown that if D # constant, stiffness matrix v
evaluations by means of Eq. (30) is more computationaily .
intensive because of the double summation involved.
Nevertheless, the triple integral decomposition (30) might be

useful in the following two scenarios:

o Thick laminated composite shells with multiple layers and
variable jacobian through the thickness.

e Small deformation nonlinear material analysis, where the
first term in (30) can be computed only once and then
reused in the nonlinear incremental iterative process.
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Qr~'and Q7 _, be the restriction and prolongation operators,
which transfer the data from level (i) to level (m — 1) and vice
versa. For the p-method it has a very simple form:

Q.7 '=[I 0]=qQr_T _ (39)

where 1 is the order n__, identity matrix, and 0 is order
(n, —n__,) zero matrix. Note that the restriction of the stiffness
matrix is given by:

_1=Q:_1KmQ:_1'7éKm_l (40)
A single V-cycle has a compact recursive definition given by:
2™ = MG™(r™, K™). (41)

where r™ is the residual vector. The V-cycle multigrid algorithm
is summarized below:

1. Loopi=0,1,2...
if i=0<d"=0
2. perform y, pre-smoothing operations

until convergence

,, d":= smooth(y, /'d", K™, f™)
where the left superscript and subscript denote the cycle
number and smoothing count respectively.
3. Restrict residual from level mto m — 1
-1 _ Q:—l(fm _ Kmhidm)
4. Coarse grid correction
If (m — 1) =lowest level, solve directly z™~!
= (Km—l)—l rm—l,
Eise z" h=MG™ ' (r™" L, K"}
5. Prolongate from level m — 1 to m
7,+1idm - y‘idm + wa:—l =
where ‘w is a coarse grid relaxation parameter, which
minimizes energy functional along the prescribed
direction v" =QT_ 2™, Note that for two grid methods
‘w=1if K""' = K", Otherwise

_ va(fm _ Km71+‘idm)

va K™y™
6. Perform y, post-smoothing operations

i

(42)

Hdm= smooth(yz,.ll‘ﬁ,l"d’"‘, K™, ™)

A variant of the standard V-cycle multigrid method (Brandt
1977) has been proposed by Bank, Dupont and Yserentant
(1988). The method termed as hierarchical basis multigrid
technique (HBM), is similar to the standard multigrid V-cycle,
except that a smaller than the normal subset of unknowns is
updated during the smoothing phase at a given level. HBM takes
advantage of the fact that smoothing mainly affects highest
oscillatory modes of error, and thus relaxation sweeps are
performed on the block by block level keeping the rest of the
degrees of freedom fixed. It has been shown by Bank, Dupont
and Yserentant (1988) that the rate of convergence of HBM

method has a logarithmic dependence on the problem size as
opposed to multigrid method which has an optimal rate of
convergence independent of the mesh size and spectral order.
The key question is whether the benefit from reducing the cost
of smoothing process over weighs the suboptimal performance
of HBM in comparison with the standard multigrid method
for thin and thick shells.

4.2
Two parameter acceleration of muitigrid method
For ill-conditioned problems, such as thin shells, it is desirable
to accelerate the rate of convergence of the multigrid like
methods. In this section we present a two parameter acceleration
scheme that requires a small fraction of computational effort,
but at the same time is efficient in expediting the convergence
of the multigrid like methods (MG and HBM).

Let ‘r™ be the residual vector at the end of i* m-level multigrid
cycle. The incremental multigrid solution for the next cycle
7" = MG™('r™,K™) is used as a predictor in the two parameter
acceleration scheme. The solution in the correction phase is
then updated as follows:

+lv=iaizm+iﬂiv (43)
i+ldm=idm+i+lv (44)

where parameters (o, 'f) are obtained by minimizing the
potential energy functional;

E(xdm+ld‘2m+lB'V)TKm('dm+X{Z'Zm+'BIV)

— (d" + a'r™ + BT — min (45)

The resulting algorithm is summarized below:

Step 1

Ozm; = MGm(Orm’ Km)

Ov — OY = O
Ox - Kmozm
(f7,°z™)
B=0; ‘a= W (46)

Step2 Doi=0,1,2,...until convergence

ia _ (ix?izm) (ix’iv) -1 (irm’izm) i>0 (47)
B L% (yp'w] (™)

+1v=iaizm+iﬂiv

i+ldm (dm t+l

+1Y=iaix+iﬁiy
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H3SOL-SDP

H3ANS-SDP
H3AMS-SDP
H3SOL-UNIF
H3ANS-UNIF
H3SOL-HBLOCK

[x<[+ H]>]olo

Rt = 100

100.0

31.6¢

10.0¢

Relative error (%)

3.2F &

’Diaphragm
1.0 ol

Pinched cylinder (1 element)

L = 600.0 ft.
R = 300.0 ft
E =3.0x 1066

Poisson Ratio = 0.3
f= 1A per unit length

0.1

)
CPU time ()

Fig. 3. Comparison of quadrature schemes for H3R-type (9 =1)
elements for pinched cylinder problem

O} H3SOL-SDP  H=10001t
11| H3ANS-SDP A1 =100.0ft
A H3AMS-SOP R2 = 200.0 ft
1| H3SOL-UNIF E=3.0x 1066
% |- HSANS-UNIF " Poisson Ratio = 0.3
X | H3SOL-HBLOCK Self Weight = 100.0
RA = 100 ,
Frustum of a cone under self weight ( 1 element)
100.0 T et T
p=2 p=2
p=2
E316¢ .
8
o
2 p=7
o .
f:’ 10.0  Diaphragm! 1
il - = R1 p = 8
H )
=8
D R2 p=8 "
3.2 L . .
o] 0.1 1.0 10.0
CPU time (s}

Fig. 4 Comparison of quadrature schemes for H3R-type (g = 1)

elements for frustum of a cone

Each figure contains six plots:

o () HSOL-SDP corresponding to Symmetric Dot Product
Gauss quadrature for displacement based element.

e ([J) HANS-SDP corresponding to Symmetric Dot Product
Gauss quadrature for assumed natural strain element.

e (/) HAMS-SDP corresponding to Symmetric Dot Product
Gauss quadrature for assumed material strain element.

o (+) HSOL-UNIF corresponding to Uniform Gauss
quadrature scheme for displacement based element.

o (*) HANS-UNIF corresponding to Uniform Gauss
quadrature schenie for assumed natural strain element.

e (x) HSOL-HBLOCK corresponding to Hierarchic Block
Gauss quadrature scheme for displacement based element.

To preserve hierarchical structure of the stiffness matrix the
displacement based shell element has been integrated to
accommodate for highly varying metric tensor components
ax,/ d¢;. For numerical examples considered, the number of
integration points for Block Gauss quadrature was selected as
P + 3ininplane direction and g™ + 1 in transverse direction,
where p™* and g”* are the maximum polynomial orders of the
corresponding block in inplane and transverse directions,
respectively. '

- Similarly, for SDP-Gauss quadrature applied to displacement
based elements, the order of interpolating Legendre
polynomials P,(£) is selected as (p, + [) i€[1, 2] in inplane
directions and (g + m) in transverse direction. The
corresponding number of integration points are (p; + [ + 1) and
(g + m+1) in inplane and transverse directions, respectively,
where (p,, p,) are the polynomial orders of the integrand in
inplane directions (&, £,) and q is the polynomial order in
transverse direction (&,). Selection of integers [ and m is dictated
by the variation of the metric tensor Jx;/0¢, in inplane and
transverse directions respectively. For example, in case of
constant inplane jacobian (the pinched cylinder) we used I =1,
m =0 and [ =2, m =1 for the case of variable inplane jacobian
(frustum of the cone).

In case of HAMS elements the order of interpolating
Legendre polynomials is selected such that their polynomial
order does not exceed the maximum polynomial order of the
basis functions to ensure effectivity of selective polynomial
order reduction. On the other hand for lower order blocks the
polynomial order for Legendre polynomials is selected the same
as for displacement based elements to partially preserve
hierarchiality. Thus the order of Legendre polynomials for
HAMS element is defined using the following rule:

e For a given integrand with polynomial orders (p;, q)

The inplane polynomial order of P,

={pi+l if p+1<p™ (48)

p™* otherwise

The order of Legendre polynomials in transverse direction
is selected as g + m.

o The number of inpiane integration points is selected as
p™ + 1, and g™ + 1 in transverse direction.

It is evident from Figs. (1-4) that among the displacement
(HSOL) based elements, SDP and HBLOCK quadrature schemes
are computationally more efficient than the uniform (UNIF)
quadrature. The difference between HSOL-SDP and
HSOL-HBLOCK is not significant and it can be deduced that
for displacement based elements SDP and HBLOCK have
a comparable performance. It is apparent from the Figs. (1-4)
that HAMS-SDP has higher computational efficiency than
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Table 2. Effect of radius to thickness (R/f) ratio on iterative methods.
Three cyclinder assembly modeled with 36 (H2AMS) elements

(Rmin/t = 100)

Solver {R min/t = 1000)
MG-GS-ACC(4,6,8) 300/25 13728/1144
HBM-GS-ACC(4,6,8) 271/37 47879/6537
MG-ICC-ACC(4,6,8) 235/12 1191/97
HBM-ICC-ACC(4,6, 8) 250/33 1476/294
PCG-ICC 330/144 1115/660
Direct 536/1 536/1

performance of the iterative procedures deteriorates, due to
increase in the condition number. Assuming that deterioration
in conditioning does not affect the accuracy of direct solution
due to round off errors, the direct solver has outperformed the
iterative procedures for very thin shells (R/t = 1000).

In Table 4 the influence of various popular smoothing
procedures (GS - Gauss Seidel; JPCG - Jacobi pre-conditioned
conjugate gradient and ICC - Incomplete Cholesky) on the
performance multigrid-like solvers {MG-ACC and HBM-ACC)
is examined. One smoothing iteration of each procedure is
incorporated. The experiments are conducted on the pinched

. cylinder problem modeled with 16 elements with R/t =10;

R/t = 100 and R/t = 300. For either of the multigrid procedures
one Incomplete Cholesky (ICC) smoothing has been found to
be optimal in terms of CPU time for both thin (R/t = 100)

and very thin (R/t = 300) shells. For relatively thick shells

(R/t = 10) the weaker Gauss Seidel smoothing is found to be
optimal in terms of CPU time.

InTable 5 we study the performance of multigrid solver
(MG-GS-ACC) for the case where the coarse mesh represents
the state of plane stress (p =8, g = 1) while the fine mesh
represents 3-D model with (p =8, g =3). The coarse grid
relaxation parameter defined in Eq. (42) is used for efficient
coarse grid correction. Alternatively, one can recompute and
factorize the stiffness matrix corresponding to g = 1 with a 3-D
constitutive model and then incorporate it for coarse grid
correction. For a relatively small problem considered (12
elements, 2208 dofs for g = 1) no significant difference in terms
of CPU time has been found between the two methods.
Numerical experiments indicate that HBM-ACCis not
particularly well suited for transitioning between different
mathematical models.

Table 4. Influence of smoothing procedures of Multigrid- P
like solvers. Pinched cylinder modeled with 16 (H2AMS) H
elements, Multigrid-like solvers with (4,6,8) levels

Solver Gs1  JPCG-1 ICC '

;
MG-ACC(R/t = 10) 37/12 57/17  61/6 :
HBM-ACC(R/t = 10) 23/10 29/11  32/12 ;
MG-ACC(R/t = 100) 115/43  295/97 110/21
HBM-ACC(R/t = 100) 117/72  157/76 110/58 ;

MG-ACC(R/t = 300)
HBM-ACC(R/t = 300)

7971315 1359/445 245/59
632/412  447/221 310/182

Table 5. Study of Multigrid-like solvers for transitioning
from plane stress to 3-D models. pinched cylinder modeled
with 12 (H3) elements, Multigrid-like solver MG-GS-ACC
with 2 Gauss Seidel smoothing

Element NDOFS Direct 2D ~3D Recomputed
H3RAMS (q=3) 4416 1203 904/55 877/41
H3SOL (g =3) 4416 . 1203 789/48  906/46

Figures 7 and 8 depict the rate of convergence of varieus
elements for the pinched cylinder and the 3 cylinder assembly
problems respectively. Percentage relative error in the energy
norm is plotted versus the total CPU time required to solve
the problem. SDP quadrature scheme for integration of element
stiffness matrices and the best solution procedure for a given
polynomial order are adopted for all elements. It is evident
that H2AMS and H3RAMS have the best performance in
degenerated and 3-D categories, respectively.

6
Summary and conclusions
Research efforts have been made to optimize the computational
efficiency of the p-method for shell analysis. A new quadrature
scheme and a family of hierarachical assumed strain based shell
elements have been introduced. Various linear iterative
procedures have been examined for their suitability to solve
linear system of equations resulting from hierarchic shell
formulation.

In Figs. 9 and 10 we compare h and p versions of finite
element analysis for the two shell problems, a pinched cylinder

Table 3. Effect of radius to thickness (R/t) ratio

Solver Ri= 10 2(,) 0 10e 30, 1000 on iterative methods. Pinched cylinder modeled
MG-GS-ACC(4,6,8) i e S 1 797als sooaigey  With 16 (HIAMS) clements x
HBM.GS-ACC(4.6,8) ~ 2310 33/16 - 37/19 - 117/72 - 632/412 5098/3357 .
MG-ICC-ACC(4,6,8) 61/6 657  68/8 110721 245/59  610/171 :
HBM-ICC-ACC(4,6, 8) 3212 3815 45/20 110/58 310/182 862/517

PCG(4,6,8) 148/24 164/36 187/52 425/232 827/458 1953/1329

PCG-ICC so22 60/34  65/42 130/135 258/324 623/860

Direct 221 2421 241 2421 2421 24201

MG-ICC-ACC(6, 8) 1s5/5  1s8/6  158/6  177/12 235/33  416/98

HBM-ICC-ACC(6,8) 130/7  134/9 13912 171/30 271/87  541/238

PCG(6, 8) 171/12  184/19 20030 370/133 532/255 11121481
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