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ABSTRACT

The paper investigates computational efficiency of various
finite element solvers, including the state-of-the-art iterative
methods based on multigrid-like and Modified Incomplete
Cholesky preconditioners, as well as sparse direct solver recently
developed at NASA Langley. These methods are compared to the
newly developed Finite Element Oriented Solver (FEOS), which
combines the advantages of the iterative and direct solution tech-
niques. Numerical tests are conducted for both well-conditioned
three dimensional problems as well as poor-conditioned problems,
such as thin shells. The proposed FEOS solver has been found to
possess a remarkable robustness and computational efficiency, by
far superior to its comprising ingredients.

INTRODUCTION

The performance of linear solvers in terms of CPU time for

symmetric positive definite systems can be approximated as

CNP | where N is the number of degrees-of-freedom, and C, B
are solution dependent parameters. The major advantage of direct
solvers is their robustness, which is manifested by the fact that
parameters C and B are independent of problem conditioning
(except for close to singular systems). Direct solvers are ideal for
solving small up to medium size problems (since the constant C
for direct methods is significantly smaller than for iterative solv-
ers), but becomes prohibitively expensive for large scale problems
since the value of exponent for direct solvers is higher than for
iterative methods. For large well conditioned three dimensional
problems the storage and CPU time requirements for direct meth-
ods are so large that serious consideration of competing methods
is'a virtual reality.

Recent years saw a re-emergence of iterative solvers in finite
element structural analysis due to increasing demand to analyze
very large finite element systems. Nevertheless, the major obstacle
that needs to be overcome before iterative solvers can be routinely
used in commercial packages is circumventing their pathological
sensitivity to problem conditioning, which is manifested by the

increase of constant C with degradation in problem conditioning.
Moreover, for linear static analysis any type iterative method
requires (except for the stiffness and preconditioner formation and
factorization) for each load case a new iterative process (whereas
in a direct solution, factorization is performed only once, and each
load case requires only forward reduction and back substitution).

This paper presents a Finite Element Oriented Solver (FEQS),
which exploits specific properties of the problem, including a
finite element discretization and estimated problem conditioning
in constructing a nearly optimal solution strategy. The FEOS is a
hybrid solver with built in strategist that combines multigrid-like
principles with efficient Incomplete Cholesky based smoothing
techniques and state-of-the-art sparse direct methods for solving
auxiliary preconditioned systems. Its major characteristics are
summarized below:
“Computational efficiency and robustness: FEQS is faster and
requires less storage than the sparse direct solver for wide range of
practical problems including those with distorted geometries,
unstructured meshes, strong anisotropies - all giving rise to poor
conditioned problems. .
*Fully automated: FEOS a priori selects an optimal solution strat-
egy based on the estimated conditioning, problem size, number of
load cases, etc.

Subsequent sections describe the building blocks of FEOS.
Numerical experiments comparing the performance of FEOS with
its basic constituents alone are given in the last section.

Consider a sparse symmetric positive definite linear system

Ay = u€ Rn feRe (1)
where A isthe nxn symmetric and positive definite matrix;
u and f are vectors of order n . Traditionally, the linear equa-
tion solvers employed have been envelope, band or frontal type.
The common idea behind all these methods is that zeros outside
the envelope of A are preserved in its Cholesky factor L. In
order to reduce the storage requirements for the factor, the linear



system is reordered to reduce the envelope, band or front size.
Among the effective envelope-reducing algorithms include the
reverse Cuthill-McKee (George, 1981), Gibbs-Poole-Stockmeyer
(Crane, 1976) and Gibbs-King (Lewis, 1982) ordering algorithms.
Generally, zero entries within the envelope structure are not
exploited as they are in true sparse solvers, and thus for large
problems envelope-type methods can be much more demanding
than true sparse solvers. Yet envelope-type methods have been
very popular primarily due to their simplicity and ease of reorder-
ing algorithms,

A true sparse solver attempts to reduce an overall storage and
arithmetic requirements by storing and computing only the logical
nonzeros of the factor matrix. By this technique the linear systerm
of equations is reordered to reduce the number of nonzeros in the
factor matrix irrespective of any envelope structure. Indeed, effec-
tive ordering algorithms for true sparse solvers, such as Minimum
Degree algorithm (George, 1987) generally scatter many of the
nonzeros away from the diagonal and thus are entirely inappropri-
ate for an envelope-type methods. Nevertheless, true sparse matrix
methods have not gained wide acceptance among the software
developers for large-scale applications primarily because general
sparse orderings were difficult and time-consuming.

Our numerical experiments comparing envelope-type solvers
with recently developed sparse direct solver at NASA Langley
show that major shortcomings have been overcome, and that a
good implementation of the sparse direct solver outperforms enve-
lope-type solvers by orders of magnitude in both execution time
and storage requirements.

MULTIGRID PRINCIPLES

Since the pioneering work of Fedorenko (1962), multigrid lit-
erature has grown in astonishing rate. This is not surprising since
the multigrid-like methods possess the highest rate of convergence
among the iterative techniques for solving symmetric positive def-
Inite linear systems. The principal idea of multigrid consists of
capturing the oscillatory response of the system by means of
smoothing, whereas remaining lower frequency response is
resolved on the auxiliary coarse grid.

To clarify the basic priciples we will denote the auxiliary grid
functions with subscript 0. For example, u, denotes the nodal
values of the solution in the auxiliary grid, where
ug € R™, m<n . We also denote the prolongation operator from
the coarse grid to the fine grid by Q :

Q:R® > R® (2)

= T .
The restriction operator Q~  from the fine-to-coarse grid is
conjugated with the prolongation operator, i.e.;

Q" :R* s Rm (3)
The superscripts are reserved to indicate the iteration count.
Let 1’ be the residual vector in the i -th iteration defined by

' = f- Ayl (4)
where u! - is the current approximation of the solution in the i -
th iteration.

The problem of the coarse grid correction consists of the mini-
mization of the energy functional on the subspace R™ ,ie.:

%(A(ui+ Qui), ui+ Qu) - (£ ul+Qui) = minu) € R™ (5)
where (.,.) denotes the bilinear form defined by

u,veR" (6)

(u,v) = Z

j=1

A direct solution of the equation (5) yields a classical two-grid
procedure. Alternatively, one may introduce an additional auxil-
iary grid for v, and so forth, leading to a natural multi-grid
sequence. To fix ideas we will consider a two-grid process result-
ing from the direct minimization of (5) which yields

Aguy = QT (- Aub) (7)

where A, = Q AQ -is the restriction of the matrix A . The
resulting classical two-grid algorithm can be viewed as a two-step
procedure:

d) Coarse grid correction

= f- Aul
i 1T,
uy = A Q ol (8)

o H
u' = u'+Qu,

where Ul is a partial solution obtained after the coarse grid cor-
rection. Even though the auxiliary system of equations is much
smaller than that of the source problem, it’s solution for large
scale systems can be most efficiently obtained by means of sparse
direct solver.

b) Smoothing

uitl = e P (F- A (9)
where P is a smoothing preconditioner. For example, if the Jacobi
method is employed for smoothing, then

P = o (diag(A)) (10)
where @ is a weighting factor. A more efficient preconditioner of
the form of Incomplete Cholesky factor is described in the next-
section.

To assess the rate of convergence we can associate the error
vectors e, & defined by

el = y -yl gl = y-gi (H)
where u is the exact solution of the source problem. Then
error resulting from the coarse grid correction (&) can be cast into
the following form

g = (1 - QA(;IQTA)ei (12)
where I is the identity nxn matrix. Combining equations
(9),(11), the influence of smoothing on error reduction is given by:

ei+l = (1 -P'IA)éi (13)
and from the equations (12), (13) the error vector of the two-grid



process with one post-smoothing iteration can be expressed as:
gi+l = (I-P‘IA)(I-QA(;lQTA)ei (14)
Denoting
G=1-P'A
. T (15)
T =1-QA;1Q A

equation (14) can be rewritten in the following concise form

ei+l = GTel (16)
Itisessential tonote that T and S = I-T are A -orthogo-
nal projectors, namely:

(ATw,Sv) =0  Vw,veRn (17)
VI3 = ITvl +Isvi} (18)

which yields that
ITl, <1 (19)

Note that the projector T eliminates the effect of the prolon-
gation operator, i.e.:

TQ = 0 (20)
The rate of convergence of the two-grid method in heteroge-

neous media for one-dimensional problems has been assessed by
Fish and Belsky (1994), and has been shown to be governed by a

factor q2/ (4 - q2) , where

q= ( /d1d2)/%(dl +dy) 21

and d, represent the stiffnesses of the microconstituents. Note
that if the media is homogeneous and the mesh is uniform, then
d, = d, and one recovers the classical multigrid estimate, which
states that asymtotically the error reduces by a factor of three with
each new multigrid cycle. On the other hand if one phase is signif-
icantly stiffer than the other, ie.d, » d,, then the multigrid
method converges in a single cycle or very few cycles at most.

For poor conditioned problems it is necessary to accelerate the
rate of convergence of the multigrid method, Using (14) the reduc-
tion of errorin a single cycle s' = e’ +,1 -¢' canbe expressed as
linear function of the residual, ie.,s' = M 't , where M is
termed as mulfigrid preconditioner. Various forms of the second-
order acceleration schemes can be expressed as follows

ST ﬁkuk+(l _ﬁk)uk—1+ﬁkakM—lrk 22)

where acceleration parameters o, B are found by either (i) mini-
mizing the energy functional or L, norm of residuals, or by(ii)
conjugate gradient method, which imposes orthogonality condi-
tion of the form

(M‘IAM“r“”, rj) =0  Vi<k (23)

The major drawback of the multigrid method for general
unstructured meshes is the fact that it requires construction of
mesh hierarchy in the solution process. This linkage seems to be
undesirable for general purpose FE codes, unless it is utilized in

the adaptive context, where the sequence of meshes generated by
the process of adaptivity is exploited in the solution process. Alge-
braic multigrid (Ruge, 1987), on the hand, does not require formu-
lation of continuous problem, which corresponds to the given
algebraic system equations, and no grids are involved, but as a
result of that the efficiency suffers. Instead, FEOS automatically
constructs auxiliary mesh hierarchies from the source grid by
recursively simplifying the kinematics of the source grid.

INCOMPLETE CHOLESKY PRECONDITIONERS

Perhaps one of the most efficient smoothers for multigrid-like
methods i3 based on Incomplete Cholesky Factorization. By this
technique an approximate factorization of the stiffness matrix is
introduced without generating too many fill-ins. Such an approach
leads to the factorization of the type LDLY = A-E , where
E is an error matrix which is not explicitly formed. For this class
of methods the error is introduced by either prescribing the posi-
tion of elements to be rejected (Manteuffel, 1980) or by discarding
those elements in the factor which are smaller than specified toler-
ance (Axelsson, 1983). This rejection process often leads to an
unstable factorization that may result in a nonpositive definite
preconditioner. Several remedies have been proposed including
modification of factorization by making it more diagonally domi-
nant (Manteeuffel, 1980) or by correcting diagonal elements in
the factorization process (Axelsson, 1983).

Our experience with multigrid-like methods suggests that the
simplest version of Incomplete Cholesky Factorization, which
preserves the sparsity pattern of the source stiffness matrix and
ensures its stability by means of diagonal scaling, is the most suit-
able smoothing procedure. Heavier MIC-based smoothers, which
allow partial fill-ins suffer from duplication of computational
effort in the sense that they are acting on the same lower fre-
quency modes of error which can be adequately captured on the
auxiliary coarse mesh

PERFORMANCE STUDIES

The performance comparisons between the FEOS, PCG with
Modified Incomplete Cholesky (MIC) preconditioner and NASA
Langley sparse direct solvers were carried out on the SPARC 10
workstation. The numerical results are summarized in Table 1.
The convergence criterion for the FEOS and PCG solvers was
selected as 1.0e-8 in the relative residual norm. Note that the
sparse direct solver outperformed the envelope-type solver by
orders of magnitude for the problems considered, and therefore
the envelope-type solver’s results were not included in the Table.
Our numerical experimentation agenda included three 3D solid
mechanics problems (intersection of two cylinders - model 1,
inclusion problem - model 2, bracket problem - model 3) and two
cylindrical shell problems with thickness/span ratio of 1/100 for
model 4 and 1/300 for model 5. The finite element mesh for the
Model 3 is presented in Figure 1.





