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Summary

A geometry based framework for hp-adaptive finite elements is presented. The framework builds
on a two level decomposition of the shape functions which directly support the specification of variable
p-order meshes. Numerical integration employs domain shape information as defined in a CAD system.
Simple two-dimensional examples demonstrate the effectiveness of the procedures which have been fully
implemented in three-dimensions.

1 Introduction

General structures to support sp-adaptive finite element methods is an area of active research [8].
In the procedures developed here, the problem input consists of a geometric model, (), describing the
problem domain, and a set of attributes tied to the geometric model. The finite element descretization
of Q¢ is called the mesh model, ;. Figure 1(a) depicts the interactions of the components of an
adaptive finite element system. The effective application of 4p version finite element methods requires a
framework that supports adaptively evolving meshes of variable p-order elements. It must also employ
appropriate geometry representations for p-elements covering large portions of the problem domain.

This paper presents the development of the two shaded modules of an automatic Ap-adaptive system
for curved three-dimensional domains. Section 2 presents a mesh topological hierarchy tied to the
geometric model and decomposed shape functions that allow the specification of variable p-order meshes.
Section 3 presents techniques to map the geometry of mesh entities to conform to the exact CAD geometry,
thus allowing the direct use of geometry in the construction of element level matrices and for adaptation
of the mesh [3]. The present paper considers only simplices. However, the procedures can as easily be
applied to non-simplex and mixed topology meshes [9]. Application examples presented in Section 4
show the efficiency of the decomposed shape functions and superiority of using exact geometry mapping
over “fitting”/interpolation techniques.
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Figure 1. Geometry based (a) hp-adaptive framework and (b) mesh topological hierarchy.

2 Geometry Based Mesh Topological Hierarchy for Variable p-Order Meshes

A boundary representation for Q,, consistent with that used for Q¢ provides a natural means to
support variable p meshes. Since individual volume finite elements will be limited to simple regions,
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bounded by simply connected faces, consideration of the topological entities for a mesh model can focus
on the basic 0 to d dimensional topological entities, which for the three-dimensional case {d=3) are:

Tor = {M{M°}, M{M*}, M{M*}, M{M*}} ()

where M {M?}, d =0,1,2,3 are respectively the set of vertices, edges, faces and regions defining the

primary topological elements of the mesh model $;. The association of mesh topological entities with
respect to the topological entities of the geometric model [11] is central to obtaining shape information
for individual mesh entities directly from the geometric modelling system by various procedures of the
adaptive system. Figure 1(b) graphically depicts the mesh topological adjacencies used as well as the
association of each mesh entity with the geometric model. The use of the topological hierarchy in the
specification of variable p-order meshes consist of the simple assignment of the desired polynomial order
information with each topological entity in the mesh. In general that means, each mesh vertex, M?,
mesh edge M, mesh face M}, and mesh region M?, can have its own specification of polynomial
order, including accounting for the possibility of different directional polynomial orders for the higher
geometric dimension entities of faces and regions.

The closure of a finite element of dimension d., {1., can be evaluated as
0. = {M},@(Mﬁe)} - {Mge,Mge{Mfe-l},...,Mge{Mf}} @

where M {M%} defines a first order adjacency of mesh entities [1] given by the set of mesh entities
of dimension d; adjacent to mesh entity Mid*'. For example, the mesh vertices bounding a particular
mesh region are denoted M?{M°}. The complete basis of an element is formed by shape functions
contributed by individual topological entities that belong to closure of the element [12].

This structure helps support a decomposition of the shape functions into the product of a mode shape
associated with a bounding mesh entity, Mz-d", and a blending term associated with the element entity,
M¢g-. These shape functions can be written as '

N, = (M, ad-) o (M) | ©)

where: ¥ (M;l" M g) is a blending function defined on the mesh entity, M2, written in its parametric
coordinate system, ;, which is specific to the mesh entity, M;.i" (but independent of the polynomial order
of the shape function). ¢(M;lj ) is a function written in the mesh entity Mf" parametric coordinate
system, &;, and is a function of the polynomial order of the desired shape function, but is independent
of zb(M J‘-i 7, M;i) , and thus is the same for all elements for which M ;i 7 is a part of (including elements

of different topology and/or dimension).

This decomposition provides complete flexibility of incorporating the variable polynomial order of the
shape functions based on the topological hierarchy during element level computations. The construction
of the blending and the entity functions is done such that the resulting shape functions meet the following
requirements:

1. Satisfy the polynomial order specified on each of the mesh entities in (2..
2. Satisfy the C° interelement continuity requirement.
3. Use a minimum of operations for evaluation and subsequent integration.

It is important to note that this approach will automatically, and simply!, satisfy the C° interelement
continuity requirements for variable p-order meshes. Computational efficiency of this decomposition is

1" For example it avoids the need to change sign for odd order shape functions on mesh entities common

to two elements.
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Figure 2. Cubic edge mode decomposition.

not obvious and is dependent on the choice of parametric coordinate systems for the mesh entities and
the blending functions.

Since shape functions (and their derivatives) evaluations in the parametric domain of the element,
&, requires evaluating functions in the parametric domain of bounding mesh entities, £;, a mapping
transforming ¢; to &; is required. The ™ is used to distinguish the parametric coordinates of the bounding
lower order entities. Barycentric coordinates to parameterize edges, triangular faces and tetrahedral
regions leads to trivial mapping between the element parametric coordinates and the bounding mesh
entity parameters, & = &;.

Consider the two possible decompositions of a cubic edge shape function shown in Figure 2 using
blending functions that are constant and quadratic over the specific edge. The more intuitive constant
blend over the triangle element leads to a rational blend expression, 1 (M}, M. 7) = T%ﬁf requiring 2
addition and 7 multiplication operations whereas the less obvious quadratic edge blend leads to a simple
polynomial blend expression, ¥ (M}, M}) = —2£¢;, requiring only 1 addition and 3 multiplication
operations. ‘ :

For simplices, the vertex, edge, face and region blending functions are givenby &;, -2£;¢;, £:¢;&, and
&:€;€,&; respectively. The indices 7, j, k identify the mesh vertices in the element topological hierarchy that
bound the particular entity. Details of expressions for blending functions for general element topologies
that match those for the simplex elements will be given in [9].

The selection of the entity functions, ¢, typically considers issues of sparsity and condition number
of the resulting matrices [2]. The use of orthogonal basis using integrals of Legendre polynomials are
popular [12]. An alternative basis that yields better conditioned element level matrices is given in [2].
Table 3 lists the entity functions required to construct the hierarchic basis for a triangular element with
p=5T. Detailed expressions for ¢ will be given in [9].

Comparison of operation counts shows that for a variable p-order mesh, the decomposed shape
functions can be evaluated as efficiently as their explicitly written form.

3 Construction of Element Matrices based on CAD Geometry

Element level matrices are typically evaluated by numerical integration carried out in the element
parametric domain [12]. For example, typical “stiffness” and “mass” matrix calculations can be

T The indices i and J are permuted to collect shape functions from the three vertices and three edges.
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Figure 3. Shape functions for a triangle with uniform p=5.
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represented symbolically as

X

T
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x \ &
Q. Q.
respectively where, &% = Qgg% with J(&) = 2% defining the Jacobian matrix of the mapping, x(£),
transforming the element parametric coordinates, ¢;, to the Cartesian coordinate system. For problems
with strong geometry dependence like radiation/scattering problems, the use of low order geometry
approximations, using “fitting”/interpolation techniques, for high p elements covering large portions of
the domain leads to loss of solution convergence rates and effectivity of estimated errors [4]. Results
presented here show the need for mesh geometry conforming to CAD geometry, in general, if coarse
elements with high polynomial order are to be used. ,
The geometry based mesh hierarchy provides an ideal means to construct the mapping x({) based
on the mathematical definition of the domain shape housed within the geometric modeler. For a mesh
entity, M2, on a model entity, G;l, the desired map can be obtained as

x=x(w(E) ©)

where u; represents the parametric coordinate system of G?. The derivative of the mapping can be
evaluated as 5¥ = %% Figure 4 depicts the concept for the mapping of a triangular mesh face using

the three coordinate systems. x(u), % are queried on a pointwise basis from the geometric modeler.
The implicit assumption in this process is that the model entities have an underlying continuous, non-
degenerate parametric space. For mesh entities classified on model entities that do not have an underlying
parameterization, the shape of the mesh entity is constructed based on blending shapes of bounding lower
order entities that conform to the shape of model entities that they are associated with. The use of blends
is only required for higher order mesh entities where the blends exactly match the lower order boundary
entities, thus eliminating any geometric approximation. The technique used to construct u;(¢;) depends
on the association of an A ,‘j" with the geometric model.
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Figure 6. Construction of U(¢) for (a) untrimmed and (b) trimmed model faces.

Mesh Edges: Fora M} on a Gf" ; d;j = 1,2, (Figure 5), the mapping can usually be given by a linear
interpolation® between u values at the vertices

ui(€) = ui(1,0)6 + (0, 1)&; ©®

For a M} inside a G;’-’, the shape of the mesh edge is a straight line joining the vertices in the Cartesian .
coordinate system. ' ,

Mesh Faces: The construction of u;(¢;) for M? on G needs to account for the possibility of trimmed
model faces which do not span the entire parametric domain of the underlying surface as shown in
Figure 6(b). u;(¢;) is given by linear interpolation of the # values at the vertices of the M? classified
on untrimmed G%. For example, for a triangular M? (Figure 6(a))

ul(f) : U(l, 07 0)51 + u(07 l) 0)52 + u(07 07 1)63 (7)

The linear interpolation of vertex values does not work if the G? is trimmed because the curves defining
the mesh edges, in the parametric space of the G?, may not be straight in that space. Consider the
situation shown in Figure 6(b) where the construction of u;(&;) must account for the curved shape of the
boundary between B and C. Techniques based on the Boolean sum interpolation theory can be used to
‘blend the boundary curves [5, 6]. Using the scheme described in [6] yields

) = 31( g )+ (722 )ma- o0+ (22 a0+ (12 Jace

J 1—-¢3

; ( & )n(l &)+ ( & )m@l) — E1i(1,0,0) — £&u;(0, 1,0) — £5ui(0,0, 1)}
1- 63 1- §1

where p(t), ¢(t),7(t); t € [0, 1] define the shape of the curves AB, BC and CD respectively.

®

3 In some cases higher order interpolants are required to avoid poorly shaped elements {10].
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For M? inside G? with no underlying parametrization and one or more bounding edges classified on
a curved model boundary, the positions of the bounding vertices and the shapes of the bounding edges
are blended to obtain x(¢;) as

i6) = 51( g ) e+ (72 Jra- 0+ (£ - e+ (12 e

§1 £s
# (e )R- @+ (12 ) 26 - 6:01.0,0) - £00,1,0) - 50,0, 1)

where P, (), R define the shapes of the bounding edges. For mesh faces classified inside model regions
with none of the bounding edges classified on a curved model boundary, x(¢) is given by linear
interpolation of the vertex coordinates :

)]

xl(é]) = xi(]-)O) 0)61 + z’.i(O? 17 0)52 + xi(070’ 1)&3' (10)

Mesh Regions: The volume mapping for a tetrahedron is obtained by blending the boundary faces
and edges [7] as

wi(§) = (1= )G () + (L= &)E(€) + (1 - &)F(€) + (1 - £0D: (¢)
~(-b-aWi(¢) - 1-a-&n(¢) - (1-& - )ai(¢) ay
~(1-&-&5(¢) -(1-&-e)R(¢) - (1- & - &)(¢)

where P,Q,R,S,T,W and D, E, F,G define the shapes of the bounding edges and faces respectively

nvert
with ¢ defining the face(edge) parameters normalized such that > & = 1. For example, for face £, = 0,
k=0
- 31 - & i & _ — - & - &2
4= Erarey e = EFeTe) s = Eany and foredge & = & = 0, § = gy, 6 = FETR
For mesh regions with no bounding edges or faces classified on a curved model boundary, the mapping
is obtained by linear interpolation of vertex coordinates

x‘t(é.j) = wi(lv 0707 0)61 + mz(Ov 136,0)52 + xi(07 0> 1’ 0)53 + IBZ(O, Oa 071)54 (12)

4 Application Example

Two numerical examples based on the solution of Poisson’s equation are presented. The first one
compares the efficiency of the decomposed shape functions for a variable p mesh presented here with
explicitly evaluated shape functions for a uniform p code. The second one compares solution convergence
using cubic Lagrangian interpolation and mapping conforming to exact geometry for curved domains.




First consider the solution of the problem shown in Figure 7(a). For a uniform 8 by 8 mesh with a total
of 128 triangular elements with uniform p=8, the use of decomposed shape functions increases element
matrix computation time and the total solution time by approximately 15% and 0.7% respectively. The
increase is primarily due to the local searching to determine the local indices for lower order mesh entities
in the element topological hierarchy. However, for the same & mesh, a series of runs with p varying
linearly from p=1 at x=0 to p=8 at x=1 through p=5 at x=0 to p=8 at x=1, the decomposed shape function
required an average of one-half the time required by the explicitly evaluated shape functions for element
matrix computation using uniform p=8. The total solution time required using the decomposed shape
functions was one-quater of the total solution time required using explicitly evaluated shape functions
with uniform p=8. The decrease is primarily due to two reasons. First, for the variable p mesh, integration
over low order elements require fewer points compared to uniform p mesh where all elements must be
integrated based on p=8. Secondly, variable p meshes require fewer global dof to achieve the same level
of error compared to uniform p meshes. The decomposed shape functions directly allow variable p-order
meshes which can provide significant computational advantages.

Next consider the problem in Figure 7(b). The exact error in the finite element solution, e = u — Upp,
is measured in the natural norm for this problem [12], a(e,e) = a(u,u) — a(upy, up,), with a(u,v) =
[ (u2 4 u2)dQ defining the square of energy in the solution and in the usual L, norm [12] defined by
Q

{lell 12;2 = [ (u — up,)>d9. The error versus the total number of degrees of freedom plotted on the log-log
Q

scale (Figure 8(a)) shows the theoretical slopes [12] of ~1 and —% in L, and energy norm respectively,
for uniform h-refinement of one quarter of the domain. Figure 8(b) plots the error convergence for
uniform p refinement using one curvilinear triangle to model a quarter of the domain. To account for
non constant Jacobian, an integration scheme of order 2p+I was used for p order elements® to ensure
accuracy of integration using Cubic Lagrangian interpolation of element geometry. Solutions obtained
using cubic Lagrangian approximation for geometry results in a significant loss of convergence compared
to those obtained with integration done based on CAD geometry for p>3. The loss in convergence rate is
due to a poor approximation of the true domain geometry by Cubic Lagrangian interpolation. It cannot
be attributed to integration errors because in that case the errors should have been larger with the CAD
geometry mapping because of the use of rational blends.

5 Closing Remarks

This paper presented flexible and efficient hierarchic shape functions tied to mesh topological
hierarchy which are crucial to achieve p-adaptivity in a variable p environment. The paper also presented
a technique to make the domain geometry, as defined within a geometric modeler, available to various
components of the sp adaptive framework. Examples presented corroborate earlier findings about the
importance of domain geometry for p refinement using coarse elements [4].
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