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This paper updates the status of efforts on the development of automatic mesh generation
techniques for general three-dimensional domains. The technical areas reviewed include:
(1) issues associated with automatic mesh generation of CAD geometric models, (ii) local
mesh modification procedures for improving mesh quality, (iii) advances in tetrahedral
mesh generators, (iv) generation of anisotropic meshes, (v) hexahedral mesh generators,
and (vi) implementation of automatic mesh generators on parallel computers.

1. INTRODUCTION

The development of techniques to improve the level of automation and reliability of
finite element methods has been central to its continued growth and use. A 1988 Applied
Mechanics Review article discussed the status of methods for the automatic generation
and control of finite element meshes. The current article is an update to that article which
focuses exclusively on the advances in the techniques for the automatic three-dimensional
mesh generation.

The emphasis in the 1988 article on three-dimensional mesh generation was on the
basic approaches for the automatic generation of simplex (tetrahedron) elements. Since
that time these have been a substantial number of additional papers devoted to this topic
(references [1, 2, 19, 48, 52] are three special issues of journals, a proceedings and a book
on the topic). Although the same basic approaches dominate tetrahedral mesh generation,
there are several areas of development which have been critical to the advancement of
these techniques. The first area, considered in section 2, is the ability to generate meshes
of three-dimensional models defined in CAD systems. The other areas are procedures
to improve the quality of the meshes created (section 3), imporvements to the meshing
algorithms (section 4), and the ability to create anisotropic mesh gradations (section 5).

A substantial change since the 1988 paper is the emphasis on the development
of automatic hexahedral mesh generation schemes. The more constrained nature of




hexahedral mesh generation has forced consideration of new technologies to account
for these constraints. Section 6 indicates the current approaches to the development of
automatic hexahedral mesh generators.

A final area of development of automatic mesh generation is the development of
automatic mesh generation procedures that operate on parallel computers. Efforts in this
area are summarized in section 7.

2. AUTOMATIC MESH GENERATION OF
MODELS IN CAD SYSTEMS

A key ingredient in the development of a complete automatic mesh generator is
the ability to successfully interact with the computerized representation of the geometric
domain to create a valid finite element mesh.

Definition: Automatic Mesh Generator — An algorithmic procedure which can create, under
program control and without user input or intervention, a valid mesh for geometric domains
of arbitrary complexity.

In the case of the curved domains the geometry of entities of the mesh, at least until
their relationship to the geometric domain is properly qualified, do not exactly match the
geometry of the geometric model. In these cases the application of decision processes based
on measures of how closely the mesh approximates the geometric domain are not able to
ensure the validity of the mesh. As an example, consider the simple two-dimensional
domain in Figure 1(a) which has one curved edge. The mesh in Figure 1(b) is an invalid
mesh of that domain since at point A the mesh on one portion of the curve incorrectly
connects to the mesh on another portion of the curve. On the other hand, the mesh shown
in Figure 1(c) is a valid mesh since the mesh did not connect across at point A. However,
it is clear that the maximum distance from any mesh edge to the boundary of the geometric
model for the mesh in Figure 1(c), ., is much larger than that in Figure 1(b), call it &.
Therefore, if one defines mesh validity in terms of maintaining a given distance tolerance,
6, and it is selected such that 6 < § < 8., one would incorrectly conclude that the mesh
in Figure 1(b) was valid, while the mesh of Figure 1(c) was not.

To address the issues of meshing curved geometries a definition of a triangulation
which is valid with respect to curved geometric domains has been defined:
Definition: Geometric Triangulation [46, 511 — Given a set P of M unique points, each
classified with respect to the geometry G, an n-dimensional geometric triangulation, A™ is
a set of N nondegenerate elements
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Figure 1. Simple two-dimensional example where
“distance” information would not identify the invalid mesh.
where sid" represents the ™ element, which is of dimension d; with 0 < d; < n, of the set.
The members of the set satisfy the following properties:
i. All vertices of each sf‘" e P

ii. For each i # j, interior (s?‘)ﬂ interior (sf") =0




iii. A™ is topologically compatible with G
iv. A™ is geometrically similar to G

The key differences between the definition of a standard triangulation and a geometric
triangulation are the last two items of topological compatibility and geometric similarity.
The basic ideal of topological compatibility is the existence of a set of mesh entities which
properly cover each of the edges and faces that bound the geometric model, and that fill
each of the regions. Figure 2(a) shows a model face covered by a compatible set of mesh
faces. Figure 2(b) contains a topological hole characterized by the fact that the three mesh
edges are used by only one mesh face on the model face.! Figure 2(c) depicts a topological
redundancy which is characterized by the four mesh edges each being used by three mesh
faces on the model face.

The simplest explanation of a geometrically similar mesh is one that in the limit of
refinement will exactly match the geometry of the domain. This simple definition is not a
workable one for the development of algorithms to evaluate and correct mesh validity. In
all but complex geometric cases, this requirement is satisfied if topological compatibility is
satisfied. However, since there is no a priori method to ensure that topological compatibility
alone will also ensure geometric similarity, it must be explicitly considered. One method
of ensuring geometric similarity employs the concept of parametric intersection [46, 51].

The process of ensuring a set of mesh entities is a valid geometric triangulation of a
geometric domain is a function of the mesh generation algorithm. If the initial mesh is
created with no concern for its validity; validity must be regained through the application
of a mesh assurance algorithm [46, 51].

An alternative approach to ensuring mesh validity is to create the mesh by the
stepwise discretization of the geometric domain, being sure to maintain the validity of
the discretization in each step of the process. The primary mesh validity problem that
arises in this approach is due to mesh entities which intersect in three space that were
valid in the parametric space of the geometric model entity. This is typically caused by
the fact that the geometry of the mesh entities is an approximation to that of the true
geometry. Figure 3 shows a simple two-dimensional example with one curved model edge
where the mesh entities on the individual model edges are valid, however, one of the mesh
edges classified on the curved geometric model edge intersects two other mesh edges.

Automatic mesh generators must interact with the geometric representation of the

domain being meshed. One approach to provide the geometric information needed is to
provide the meshing algorithm with a data file of the geometric model. Since automatic

! The nomenclature used in this figure, and others, of M Z-d represents the i1 mesh entity
of dimension d. ‘
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Figure 2. Mesh compatibility.



Figure 3. Two-dimensional example showing a self-intersecting boundary mesh.

mesh generators must at least interrogate the geometric representation for information
not inherently in the model’s data file, this approach necessitates the development of
those modeling functionalities within the mesh generator. An alternative approach that
more easily maintains consistency with the geometric representation directly employs
the functionality of the geometric modeling system in the mesh generation process. An
example of a mesh generator using such an approach is one [50] which interacts with the
geometric modeling system through a specific set of 21 geometric operators [21]. All the -
operators are keyed via the topological entities of vertex, edge and face. Approximately
half the operators request topological adjacencies. The remaining half are geometric
interrogations which are limited to determining pointwise quantities such as the points
of intersections and surface normals. This approach has been successfully applied with
multiple geometric modeling systems. Figure 4 shows a solid model defined in the
Parasolid solid modeler and automatically meshed using this functional approach.

There are several areas of technical compléxity that arise when working with general
geometric models. Five of the most important are:

1. Accounting for geometric entities which employ periodic or degenerate parameteri-
zations.

Accounting for trimmed geometric entities.

Near tangencies in the geometric model.

Curving finite elements to the model boundary.

Account for the adverse effects on the mesh of small geometric features.

DA

An example of the last of these is the small model edge shown in the geometric model
of Figure 5(a). This edge was introduced by the solid modeler to close off a face. If this
small edge is maintained during the mesh process, poorly shaped elements are obtained.
However, by the application of a procedure which locally modifies the mesh to allow a
mesh edge to span that edge and part of one of those adjacent to it [17], the element aspect




Figure 4. Solid model and automatically generated mesh
for casting of engine diffuser with gating.




ratio of the worst element is improved by 1000%, while the smallest dihedral angle is
improved from 0.45 degrees to 8.32 degrees.

3. MESH IMPROVEMENT METHODS

Many automatic mesh generators employ local mesh operations to eliminate local
geometric invalidities, improve the element shapes, and/or locally make the mesh finer or
coarser. The geometric parameters defining the shape of the elements in real space have a
specific influence on the ability of that mesh to solve the problem of interest.

There is a limited amount of theoretical information available on the influence of
angles of straight sided elements on the convergence of the solution [3]. In addition, a few
numerical studies have measured the effects of element shapes on specific element types
for specific situations. Although these analyses and studies are limited, a number of useful
element shape quality measures have been defined. Commonly applied shape measures
for straight sided simplex elements? are aspect ratio, ratio of inscribed to circumscribed
sphere, smallest dihedral angle and largest dihedral angle. Shape measures in the case of
curved boundary elements and elements with four sided faces appear less straight forward.
For example, Habraken and Cescotto [22] examined seven distortion measures and found
four to be sufficient to detect all types of mesh distortion for eight-noded quadrilaterals in
the application they were considering. A general and direct means for gaining a handle on
element distortion is to monitor the variation in the Jacobian determinate in the element.

Given a mesh where there are elements of undesirable shape, the hierarchy, with respect
to ease of application and ability to ensure shape improvement, of local mesh operations is:

vertex repositioning

swapping of mesh entities

mesh entity split or collapse operations
local retriangulations

L=

Vertex repositioning can be applied to meshes with elements of any topology. However,
with the exception of a small number of specific options, the majority of available
swapping, splitting, collapsing and local retriangulation procedures are for the simplex
elements of triangles and tetrahedron.

Vertex repositioning algorithms employ one or more criterion to control node motion.
The classic criterion is related to a central difference operator for the Laplacian operator
on a structured quadrilateral mesh. This approach, when applied iteratively to unstructured
meshes is referred to as centroidal smoothing, since it reduces to placing the vertex at the

2 Straight sided simplex elements have a constant Jacobian determinate over the element.
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Figure 5. Example of small feature elimination; (a) geometric model with small feature,
(b) final mesh with influence of small feature removed, (c) and (d) mesh in the vicinity

of small feature without and with the elimination of adverse influence respectively.
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Figure 6. Edge removal.

centroid of the nodes to which it is connected. Improvements to the process are possible in
which one conceptually employs spring stiffnesses to further control the node point motion
[27]. Since these methods improve the mesh based on an indirect criterion they are not
assured to improve the mesh quality. However, their computational efficiency and ability
to produce well shaped elements without abrupt changes in the mesh make them popular.
Since, in the case of concave domains, specific implementations can take a valid finite
element mesh and make it invalid, the more reliable implementations of these procedures
employ motion limiters which are based on the direct measurement of element shapes.

Additional vertex repositioning procedures have been proposed based on the satisfac-
tion of specific variational operators and local applications of optimization of the shape
of connected elements [36].

The most local of swappmg procedures for simplex elements relies on the basic
property that a sét of n + 2 points in ®® may be triangulated in, at most, two ways [29].
In three dimensions these swaps are commonly referred to as 2-to-3 and 3-to-2 swaps.
Although it has been shown that these two options are sufficient to convert a general
triangulation into a Delaunay triangulation [24], more powerful swapping operations are
desired when other mesh optimization criteria are being locally applied.

Briere de I'Isle and George [16] have proposed an edge removal technique as part of
an algorithm. In edge removal a mesh edge M} inside a model region which is bounded by
vertices M and M} can be eliminated by retriangulating the polyhedron of all connected
tetrahedrons. The polyhedron is retriangulated by: (i) triangulating the polygon of all
mesh vertices of the polyhedron which are neither M} 9 nor M?, and (ii) connecting the
new mesh faces to M} and M (Fig. 6).
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Multi-face removal is a procedure that reverses edge removal, in other words, it
considers a configuration that could have resulted from edge removal and obtains the
starting configuration. Methods for the valid application of multi-face removal are given
in reference [13].

In three dimensions, a mesh region can be split into four new regions, a mesh face
into three new faces, and a mesh edge into two new edges. Mesh entity splitting adds a
vertex connecting the boundary vertices of the polyhedron to the new vertex. In the case
of a mesh region, the polyhedron is the mesh region itself. In the case of a mesh face or
a mesh edge, the polyhedron is built from the union of all mesh regions connected to the
face or edge, respectively. Figure 7 displays the three types of splits in three dimensions
and indicates for each one of them the change in number of mesh regions. If the mesh
entity to be split is in a model region, all boundary faces of the polyhedron are fully visible
from the split vertex and splitting is therefore always possible. If the mesh entity is on the
model boundary and the new vertex has to be snapped to the model entity it is classified
on, splitting may not be geometrically possible. T
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Figure 7. Mesh entity splitting in three dimensions.

Edge collapsing removes one vertex from the triangulation (one of the two end vertices
of the edge). Edge collapsing retriangulates the polyhedron of all mesh regions connected
to one end vertex (collapsed vertex) by connecting the boundary faces of the polyhedron
to the other end vertex (collapsing vertex) (Fig. 8).
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Figure 8. Edge collapsing in three dimensions.
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Figure 9. Some cases where edge collapsing in
three dimensions is not possible due to topology.

Edge collapsing cannot be performed if at least one of the new mesh regions is
geometrically invalid. Figure 9 graphically illustrates some of the cases where edge
collapsing is not possible.?

3 The nomenclature used in this figure of Mz-df C ij indicates that Mz-d", which is the

+ mesh entity of dimension d;, lies on, and is uniquely associated with GC?" , ' which is the
4% geometric model entity entity of dimension d;. Note that mesh entities are associated
with the lowest order geometric model entity on which they lie and that d; < d;.
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The last option for locally improving the mesh is the application of a local retriangula-
tion procedure, where a local retriangulation procedure is any procedure which eliminates
a set of mesh entities in a local region and retriangulate that region to obtain an improved
mesh.

The application of any of the combination of local mesh modification procedures can be
used to improve a given triangulation. Issues on which operations to apply and when for the
purposes of reaching a given goal are not necessarily straight forward. The following list
indicates some of the basic issues on what is known, and not known, on the application of
the mesh local improvement techniques just considered to three-dimensional triangulations:

1. Mesh motion is the most highly constrained of the improvement techniques, thus it
will not be able to improve the mesh in situations where other procedures can.

2. Properly applied mesh entity swapping algorithms can be used to convert a triangulation
into a Delaunay triangulation. The application of another criteria to drive the process
only leads to local optimum. However, in three dimensions Delaunay triangulation
can produce poorer meshes than other criteria. For example, starting from a Delaunay
triangulation, a “superior mesh” can be obtained by performing swapping based on
locally maximizing the minimum angle [25]. An alternative strategy that is likely to
be better, particularly in the case of anisotropic refinement, is to locally minimize the
maximum dihedral angles on an element-by-element basis.

3. The mesh entity splitting and collapsing, and the local retriangulation procedures are
the most flexible of the local mesh modification procedures. However, these procedures
do locally alter the mesh gradation and must be applied with care.

One strategy that has been found to be reliable and more powerful than other strategies
[13] has two major steps. The first step is to apply a straight forward vertex repositioning
technique with the constraint that a vertex is moved in the direction indicated only so
long as the shape of the worst shaped element connected to it is improving. The second
step applies the more powerful tools of swapping followed by splitting and collapsing
to eliminate the small number of elements which have a shape measure below a desired
threshold. Although this strategy lacks any proof of convergence to a given goal, it has
been found to produce superior mesh improvements, particularly when the criteria used to
drive the second step is minimizing the maximum dihedral angle.

4. ADVANCES IN TETRAHEDRAL MESH GENERATION

The development of automatic three-dimensional tetrahedral element mesh generators
has a Jong history (see [2, 19, 47, 48, 52] for recent general information on the topic).
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The basic strategies which dominate the creation of elements in these mesh generators are
Delaunay triangulation and element removal by the advancing front method.

The simplicity of developing a mesh generator using the circumsphere containment
properties of a Delaunay triangulation has been the major attraction of this approach.
However, there are a number of critical issues that must be addressed in the development
of a Delaunay-based automatic mesh generator. The most obvious issue in the case of
general domains is to recover a valid representation of the surface of the domain. A second
important issue is dealing with the finite accuracy of real calculations in the application
of the circumsphere test. The third issue is ensuring the computational efficiency of the
method, particularly the computational growth rate for meshes with large numbers of
elements. Current implementations employ a number of devices to deal with these issues.
Boundary recovery procedures include forcing point insertion such that the surface triangles
are not disturbed, introducing new points on the boundary to recover missing portions
of the boundary, to applying local mesh modification operations to recover the missing
surface triangles without concern for maintaining a Delaunay triangulation. Devices to deal
with finite precision calculations include employing circumspheres ¢ larger or smaller than
the exact values such that all errors are one sided and can be handled, and converting all
locations to an integer coordinate system and performing only integer calculations. Devices
to control computational growth rate range from using secondary searching structures, to
first creating a coarse triangulation and performing intelligent point insertion into known
entities. References [4, 7, 8, 10, 20, 45, 55] discuss the various issues associated with
three-dimensional Delaunay triangulation.

Advancing front mesh generators [23, 30, 32, 34, 37, 38] are element removal mesh
generators which employ a specific set of heuristics to create elements working from the
boundary, referred to as the front, into the interior. The heuristics used in these algorithms
address the order in which faces are removed from the front, where new points are placed
on the interior, and when to connect to existing entities on the front to remove a face.
The computational efficiency of these procedures is dictated by how well the validity and
nearness checks of a proposed removal are performed. The computational growth rate is
controlled by using secondary structures, such as a background grid, octree, alternating
digital tree, etc., to limit the number of mesh entities on the front that must be checked.
The computational effort of a specific set of checks is a strong function of the ordering of
the operations and the ability to employ the most efficient geometric operations.

A secondary structure which has proven popular for use in the development of mesh
generators is the octree structure. Although there are major differences in the various
octree-based meshing approaches published [9, 26, 39, 45, 50], the consistent aspects of
these procedures are:
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1. The octree structure is used to localize many of the meshing processes.

2. Those octants containing portions of the object’s boundary receive specific considera-
tion to deal with the actual boundary of the object.

3. The corners of the octants as well as points defined by the interaction of the boundary
of the object being meshed with the octants’ boundaries are used as nodes in the mesh.

4. The mesh gradation is controlled by varying the level of the octants within the octree
through the domain occupied by the object.

The most critical of these issues is dealing with the interactions of the object’s boundaries
and the octree. Techniques used here range from allowing only specific interactions,
to basing the process on accurately determined intersections coupled with procedures to
ensure a valid geometric triangulation. Although straight forward, allowing only specific
interactions severely limits the complexity of domains that can be properly handled.
Dealing with accurate intersections leads to geometric approximation complications and
difficulties in dealing with close object-to-octant boundary interactions that can lead to
poorly shaped elements. By the proper selection of algorithmic steps, these issues can be
addressed providing meshing procedures capable of meshing general objects (Figs. 4 and
5(b) were generated with an octree-based mesh generator).

5. ANISOTROPIC MESH GENERATION

There are a number of important physical problems where the variations of the solution
parameters are strongly directionally dependent. In these cases it is desirable to employ
a mesh with high aspect ratio elements such that the short dimension of the element is
aligned with the direction of high variation of solution parameters. The problem is that
most of the automatic tetrahedral meshing procedures are best suited for the creation of
isotropically refined meshes. Therefore, it is desirable to have specific procedures that can
produce the appropriate types of anisotropic refinements.

One possibility is to simply provide directionally based mesh control information
(which in general must be a second order tensor) and to employ a meshing procedure
which can create elements using that information. Such approaches have been used in
conjunction with advancing front mesh generators and have proved useful in creating
some degree of anisotropy in the mesh. A similar approach is to mesh in a distorted
coordinate system using an isotropic mesh generator and to map the mesh back to create
an anisotropic mesh. Such procedures have been used with Delaunay mesh generators
when the mapping could be easily defined, and with octree meshes when the anisotropy
could be aligned with the axes of the octree.
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In the special case of the strongly anisotropic refinement desired in the problems with
boundary layers, more specialized techniques have been developed. In these problems the
strongly anisotropic refinement is needed in the immediate vicinity of the boundary and it
needs to be well structured. This need can be met in that small region by the appropriate
growing of the surface triangulation into the domain on the boundary layer surfaces in
a direction more-or-less normal to the boundary [11, 28, 33, 40]. Figure 10 shows a
boundary layer mesh generated in the vicinity of an engine nacelle.

boundary layer mesh

SN #vertices 44,315

)\ /\[ =% #edges 298,967
IS y =t #faces 503,416
OSSR | #elements 248,763
A= #BlLelts 174,834

Figure 10. Boundary layer mesh for engine nacelle.

Other procedures can be employed in different situations. For example, there are a
number of simulations where portions of the geometric domain are thin compared to the
mesh size required in the other directions. However, a few elements in any direction
through the model, including the thickness direction, are needed to obtain the desired
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solution accuracy. If the domain is uniformly thin, the desired anisotropic mesh can be
obtained by repeating the surface mesh on one side to the other side one time for each
required layer. If the model contains variations in the thickness, including possessing
thick sections where an isotropic mesh is desired, an alternative approach is needed.
One possibility is to (i) apply a mesh generator that produces an isotropic mesh through
the domain, (ii) determine the thin portions of the domain, and (iii) apply a specially
constructed set of local mesh modifications to produce the desired anisotropic mesh
refinement [18]. Figure 11(a) shows a mesh created by an isotropic mesh generator in
a geometric model with thin sections. Figure 11(b) shows the mesh with anisotropic
refinement in the thin sections that was created by applying an appropriate set of local
mesh modifications to the original isotropic mesh [18].

6. HEXAHEDRAL MESH GENERATION

The topology of the elements to be generated has a major influence on the type of
mesh generation approach possible. Most of the literature in the area of automatic mesh
generation has focused on the generation of simplex elements of triangles and tetrahedra
because of their more fundamental geometric properties. Since many analysis procedures
require, or prefer, quadrilaterals in two dimensions and hexahedron in three dimensions,
there is a desire for automatic mesh generators that can effectively generate meshes of
these element topologies.

In two dimensions it is reasonably straight forward to automatically generate all, or,
if preferred, nearly all, quadrilateral meshes, while the automatic generation of hexahedral
elements in three dimensions continues to be a challenge which has not yet been satis-
factorily resolved. There is a fundamental difference between the properties of polyhedra
decomposition in two and three dimensions which is at the heart of the difficulty. In two
dimensions any n-sided, simply connected, convex polygon can be decomposed into n
convex quadrilaterals by (i) introducing a point on the interior of the polygon, (ii) splitting
each original edge of the polygon into two, and (iii) introducing edges between each of
the edge split points and the point introduced on the interior (Fig. 12).

In three dimensions it is possible to decompose convex polyhedron with n-trivarient
vertices into n convex hexahedra, where a trivarient vertex is defined as one with exactly
three edges emanating from it. On such polyhedron, each face is subdivided as above, an
additional point is introduced on the interior and edges are created from that point to the
points introduced on each of the faces of the polyhedron (Fig. 13).

However, the same is not true if the polyhedra has non-trivarient vertices such
as a pyramid. To match-up with the tetrahedron, wedge, and hexahedron shown in
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Figure 11. The application of local mesh modifications
to create anisotropic mesh refinement in thin sections.

Figure 13, the quadrilateralization of the surface would need to be as indicated in Figure
14(a). However, no method of generating a set of valid hexahedra with that surface
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Figure 12. Decomposition of convex polygons into quadrilaterals
through edge-splitting and connecting to an interior point.

quadrilateralization is known. On the other hand, the pyramid can be split into two
tetrahedron, which can each be decomposed into four hexahedron using the trivarient
polyhedra decomposition procedure (Fig. 14(b)). However, this is not acceptable since the
six quadrilateral configuration resulting on the original quadrilateral face of the original
pyramid will not match the desired four quadrilateral subdivision that is desired to match
the previous subdivision. The only clear solution is to first decomposed the original domain
into tetrahedra and subdivide each of them. However, the elements created in this manner
are highly distorted.

Another manifestation of the difficulty of all hexahedral mesh generation is demon-
strated by the construction of dual graphic of such meshes. The specific dual construction,
referred to as the spatial twist continuum [35], clearly demonstrates that for a given quadri-
lateralization of the surface of an object, there must be specific paths through the mesh
of hexahedra which share common faces, and that in fact, the constraints on the surface
quadrilateralization are such that it is not in general possible to generate an all hexahedral
mesh for just any given surface quadrilateralization.
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(a) unworkable surface (b) 2 tetrahedron to
quadrilateralization 8 hexahedron

Figure 14. Decomposition of a pyramid.
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The approaches being taken to develop automatic hexahedral mesh generators are
attempting to address the added constraints of hexahedral mesh generation by various
means. Three alternative approaches being taken are:

1. Grid based techniques.
2. Medial axis with mapping in the subdomains.
3. Element removal with consideration of the constraints of the hexahedral meshes.

The basic concept of the grid based approach is to fill the interior of the domain with
a uniform grid of hexahedra such that the exterior boundary of the cells is approximately a
distance of one cell length from the boundary. The mesh is then completed by connecting
the interior cells to the boundary in such a manner that only hexahedral elements are
added. A key aspect of such an approach to creating an essentially uniform mesh, is
ensuring that the interior cells can be connected to the boundary such that only hexahedra
are introduced. Such a procedure has been developed [44] that deals with a specific set
of situations that arise.

The basic assumption in the medial axis based methods is that the medial axis will
decompose the domain of interest into simple enough regions that specific mapping
templates can be applied to each resulting subregions in such a manner that hexahedral
elements are formed. The medial surface of a three-dimensional object is the locus of the
center of an inscribed sphere of maximal diameter as it rolls around the interior of the
object. Maximal inscribed spheres are always in contact with two or more points on the
boundary of the object. By its definition, the medial surface is always equidistance from
multiple surface entities, defining, in some sense, a decomposition by middle surfaces.
Figure 15 shows a simple two-dimensional object and its medial axis. Issues that have to
be addressed in the development of this hexahedral mesh generation approach include:

1. Generation of a medial axis of the domain.

2. Conversion of the medial axis information into a set of regions which can be filled
with hexahedra by a mapping procedure.

3. Ensuring that the mapped meshes of each of the generated regions can be properly
matched.

A key unknown in the development of such approaches is the second step of being able
to convert the medial axis information for general domains into a set of regions that can
be filled with a valid set of hexahedra of acceptable shape and configuration to match to
neighboring regions. References [41, 42] discuss some of the issues and progress made
on the development of these approaches.

The application of element removal procedures in the generation of hexahedral ele-
ments is far more complex than that of tetrahedral mesh generation due to the constraints of
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Figure 15. Two-dimensional example showing its medial axis.

hexahedral meshes. One tool introduced to deal with some of the complications that arise
are wedges and seams [6] which close-up gaps in some cases, and drive problem situations
to the boundary, altering the faces quadrilateralization to eliminate the problem. Even with
these tools, deriving a set of heuristics to apply hexahedral element removal using only
local information has proven difficult. To more directly address the constraints of hexa-
hedral mesh generation, specific consideration on how to employ the dual representation
of the spatial twist continuum [35] has received attention. Since a surface quadrilateral-
ization already dictates a specific set of constraints on the mesh, procedures employing
the spatial twist continuum information already dictated by the surface quadrilaterals are
under consideration [5, 54].

7. PARALLEL MESH GENERATION

Scalable parallel processing techniques are becoming central to the solution of large
scale simulations consisting of tens of millions of finite elements. Therefore consideration
must be given to the parallel generation of meshes to ensure mesh generation does not
become a serial computational bottleneck. Another reason for parallel mesh generation
is the shortage of memory on a single sequential machine when dealing with very large
meshes. On a parallel machine, the memory problem is addressed by distributing the mesh
over a number of processors, each of which stores its own portion of the mesh.

Efficient parallel algorithms require a balance of work load among the processors -
while maintaining interprocessor communication at a minimum. Key to determining and
distributing the work load and controlling communications is knowledge of the structure
of the calculations and communications. Parallel mesh generation is difficult to effectively
control since the only structure known at the start of the process is that of the geometric
model which has no discernible relationship to the work load needed to generate the
mesh. On the other hand, the more useful structure to discern work load and control
communications is the mesh which is only fully known at the end of the process.
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Lohner, et al. [31] have parallelized a two-dimensional advancing front procedure.
The approach taken is to subdivide (partition) the domain (with the help of a background
grid) and distribute the sub-domains to different processors for triangulation. The interior
of subdomains are meshed independently. Then, the inter-subdomain regions are meshed
using a coloring technique to avoid conflicts. Finally, the “corners” between more than
two processors are meshed following the same basic strategy. A “one master-many
slaves” paradigm has been chosen to drive the parallel procedures. This approach has
been extended to three dimensions with some modifications [53]. A load balancing
phase follows the initial domain splitting (at the background grid level). The interface
gridding incorporates mechanisms (i) to avoid degradation of performance by using fine
grain parallelism, and (ii) to reduce the number of processors when there is too much
communication overhead. Results show scalability of the method.

Saxena and Perruchio [43] describe a parallel Recursive Spatial Decomposition (RSD)
scheme which discretizes the model into a set of octree cells. Interior and boundary cells
are meshed by either templates or element removal in parallel at the octant level meshes.
This requires no communication between octants. The main difficulty for this meshing
approach is to guarantee that a boundary octant can always be meshed regardless of the
complexity of the model. Parallel results have been simulated on a sequential machine.

An octree-based parallel three-dimensional mesh generator has been developed by de
Cougny, et al. [14, 15] in which the parallel computations are controlled through the use
_of the octree structure. The lack of initial structure and ability to accurately predict work
load during the meshing process underlies the selection of algorithmic procedures in this
parallel mesh generator. The octree structure supports the distribution and redistribution
of computational effort to processors.

In this procedure the surface triangulation is first generated on each of the model faces
using a Delaunay-based mesh generator. When there are not a sufficient number of model
faces for effective parallelization based on the number of processors being employed, faces
are split with the portions meshed on separate processors.

Figure 16 gives a two-dimensional graphical depiction of the region meshing portion
of this mesh generator. First a variable level octree which is consistent with the surface
triangulation, and other mesh control information, is generated. The octants are classified as
interior, outside, or boundary. Those classified as outside receive no further consideration.
Interior octants too close to the surface triangulation are reclassified boundary. This
reclassification avoids the complexities that may lead to poorly shaped elements in that
neighborhood. Interior octants are meshed using templates. Face removal procedures are
used to connect the boundary triangulation to the interior octants.
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Figure 16. Graphical depiction of the basics of the presented mesh generator.

Figure 17. Final repartitioned mesh for parallel mesh generation example (the gray
scale indicates which of the 8 processors contain the mesh entities).

The key to parallelization of the meshing process is a parallel distributed octree
structure and maintaining load balance during the meshing process by the repartitioning
of the portions of the domain remaining to be meshed. Dynamic repartitioning enables
redistribution of the load among processors as evenly as possible at key stages of the mesh
generation process [12, 49]. Figure 17 shows a mesh generated in parallel on 8 processors.
The speed-up on the 8 processors was just over 6.
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8. CLOSING REMARKS

This paper has provided an update to the 1988 review article on the automatic
generation and control of finite element meshes. In the past seven years there has been
substantial progress on the development of automatic mesh generation capabilities for three-
dimensional domains. Today there are a number of procedures available to automatically
generate such meshes when tetrahedral elements are used. Although automatic mesh
generators for hexahedral elements are not yet fully developed, investigations on the
development of such procedures is underway. Procedures to automatically generate meshes
on parallel computers have been developed.
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