A GEOMETRY-BASED ANALYSIS FRAMEWORK

Mark W. Beall
Mark S. Shephard
Scientific Computation Research Center
Rensselaer Polytechnic Institute
Troy, NY 12180-3590

SUMMARY

This paper provides an overview of an analysis framework which operates directly from a general
geometry-based specification. The framework is designed using object-oriented methodologies to allow for
easy extension to analyze new problem classes and introduce additional adaptive control techniques.

INTRODUCTION

The numerical analysis of a physical problem can be seen as a series of idealization steps, each of
which may introduce errors into the solution. The manner in which these errors can be understood and con-
trolled is through error estimation and solution adaptivity. Since adaptive control should be applied to each
idealization step, the numerical analysis procedures must operate from the original problem definition
which is best described with respect to a geometric model. This paper provides a brief overview of an anal-
ysis framework which operates directly off such geometry-based problem specifications.

To increase the usefulness of the framework, it is designed for easy extension to include new analysis
capabilities and adaptive idealization control techniques. This extensibility is aided by the application of
object-oriented programming techniques. .

We can identify three levels of description that arise in the analysis of a physical problem (Figure 1).
The highest level description is that of the physical problem. The physical problem description is posed in
terms of physical objects interacting with their environment. Since we often want to estimate the response
through modeling we idealize the behavior in terms of a mathematical problem description. The mathemat-
ical problem description consists of a domain definition (geometry), a description of the external forces act-
ing on the object and the properties of the object (attributes), and, in the classes of physical problems
considered here, a set of appropriate partial differential equations which describe the behavior of interest.
Construction of a numerical problem from a mathematical problem involves another set of idealizations.
From a single mathematical problem it is possible to construct any number of levels of numerical problems,
which are idealizations of one another.

) Primary . Primary - .
Physical g Mathematical At Numerical
Problem | J4°21ZAMON__ | problem ~Ledlzation . | Problem
Physical L Geometry L Weak Form of PDE
Environment = ég'ébmes I> Matrix Algebra
Secondary Secondary
Idealization Idealization

Figure 1. Idealizations of a physical problem to be solved.

The framework described in this paper starts at the level of a mathematical problem description,
allowing multiple numerical problems to be formulated, solved, and the solution related back to the original
problem description. The analysis framework is designed to be extended. It is possible to add new problem
types that can be solved as well as adding new solution techniques. Current implementation efforts are
focused on finite element discretizations. However, the framework is designed to be general to utilize other
types of numerical solution procedures.

Since the analysis framework must take a problem description consisting of a geometric model and
attributes and construct a solution to the problem specified, it is important to understand abstractions for the
various types of data that the framework uses. As outlined in the next section, geometry-based descriptions
are best suited to meet these needs. The following section briefly introduces the process of performing
geometry-based analyses.

DATA COMPONENTS OF A GEOMETRY-BASED ANALYSIS FRAMEWORK

The structures used to support the problem definition, the discretizations of the model and their inter-
actions are central to the analysis framework. The two structures of the geometric model and attributes are
used to house the problem definition. The general nature of the attribute structures allow them to also be
used for defining numerical analysis attributes. The analysis discretizations are housed in the mesh struc-
ture which is linked to the geometric model. The final structure is the field structure which houses the distri-
butions of numerical solution results over the domain of the problem.

Geometric Model

The geometric model representation used by the analysis framework is a boundary representation
based on the Radial Edge Data Structure (Weiler 1988). In this representation the model is a hierarchy of
topological entities called regions, shells, faces, loops, edges and vertices (Figure 2). This representation is
completely general and is capable of representing non-manifold models that are common in engineering
analyses. The use of a boundary representation is very convenient for attribute association and mesh gener-
ation processes since the boundaries of the model are explicitly represented.

ModelRegion
* .
* ModelShell MeshEntity
0.2],
* ModelFace
GeometricModel . * | ModelEntity
ModelLoop
*
* *
ModelEdge
Attribute
. 2
ModelVertex

Figure 2. Boundary representation.

The geometric model classes support operations to find the various model entities that make up a
model and to find which model entities are adjacent to a given entity. Other operations relating to perform-
ing geometric queries are also supported. The details of these operations are not important in the current
context. Much more important is the fact that there are associations between the ModelEntity class and
both the Attribute and MeshEntity classes. These associations are central to being able to support general-
ized adaptive analysis procedures that operate from a general problem definition.

Attributes

In addition to geometry, information that describes such things as material properties, loads and
boundary conditions (Shephard 1988) is needed. This other information is described in terms of tensor val-
ued attributes that may vary in both space and time. Attribute information is organized into a directed acy-
clic graph (DAG). There are three basic types of nodes in the graph. The leaf nodes of the graph are
information nodes. These nodes hold the actual attribute information (e.g. an information node might
define a vector with a certain variation in space and time). Above the information nodes are two types of
grouping nodes which allow for the flexible combination of attributes to form analysis cases which drive
the numerical analysis process.

Tensor valued attributes only make sense when applied to and associated with a geometric model
entity. During this process the graph is traversed, and when the information nodes are encountered at the
leaves of the graph, attribute objects are created. These attributes are a particular instance of the informa-
tion represented in the attribute graph. One reason for the distinction between the information nodes and
attributes is that the interpretation of the information node can depend on the path in the graph traversed to
get to that node. Thus one information node may give rise to multiple attributes with different values.

A simple example of a problem definition is shown in Figure 3. The problem being modeled here is a
dam subjected to loads due to gravity and due to the water behind the dam. There are a set of attribute infor-
mation nodes that are all under the attribute case for the problem definition. When this case is associated
with the model, attributes (indicated by triangles with A’s inside of them) are created and attached to the
individual model entities on which they act.

Information Nodes

type:load Geometric
name:water load . Model

value:(f(z),0,0) ~ - Attributes

Case ~
A

:load
type:problem definition ntyge: eravity -

name: ... value: (0,0,9.3) =

\» type:stiffness

name: concrete |
f=f(z) type: density value: ...
name:concrete |
value: ... ~——

type: displacement
name:base

value: (0,0,0) T T ‘%Ak

Figure 3. Attribute example.

Nodes in the attribute graph have another important property. They can represent an object that is to
be created when the attribute graph is traversed. This object is called the image of the attribute and repre-
sents the run time interpretation of the information of the attribute node and its children.

Mesh

The representation used for a mesh is similar to that used for a geometric model (Beall & Shephard
1997). A hierarchy of regions, faces, edges and vertices makes up the mesh. In addition, each mesh entity
maintains a relation, called the classification of the mesh entity, to the model entity that it was created to
partially represent as indicated in Figures 2 and 4. This representation of the mesh is very useful for mesh
adaptivity. Also understanding how the mesh relates to the geometric model allows an understanding of
how the solution relates back to the original problem description. The topological representation can be
used to great advantage in performing adaptive p-version analyses as polynomial orders can be directly
assigned to the various entities (Shephard, Dey & Flaherty 1996).

i ModelEnti
GeometricModel * MeshRegion ty
0.2 N
*
MeshFace *
Mesh > * {1 MeshEntity
o —
MeshEdge
2
*
MeshVertex

Figure 4. Mesh representation.

Field

A problem with many “classic” finite element codes is that the solution of an analysis is given in
terms of the values at a certain set of discrete points (e.g. nodal locations or integration points). However
the finite element discretization actually has more information than just the values at these points, there is
also information about the interpolations that were used in the analysis. Therefore, when the standard pro-
cess of storing just the discrete pointwise values is maintained, information is lost after the analysis is run.
Without knowing the specifics of the analysis code it is impossible to reconstruct the interpolations used
and one can not define the values at general locations. This makes it much more difficult to use the solution
in a subsequent step in the analysis (e. g. error estimation, or as an attribute for another analysis). The anal-
ysis framework eliminates this problem by introducing a construct known as a field.

A field describes the variation of some tensor field over one or more entities in a geometric model.
The spatial variation of the field is defined in terms of interpolations defined over a discrete representation
of the geometric model entities, which is currently the finite element mesh. A field is a collection of indi-
vidual interpolations, all of which are interpolating the same quantity (Figure 5). Each interpolation is asso-
ciated with one or more entities in the discrete representation of the model.

Interpolation 2

Field 1 = {Interpolation 1,

Interpolation 1 Interpolation 2, ...}

Figure 5. Example of a field.

GEOMETRY-BASED ANALYSIS PROCESSES

The framework represents the analysis process as a series of transformations of the problem from the
original mathematical problem description through to the sets of algebraic equations approximately repre-
senting the problem (Figure 6). This transformation starts at the mathematical problem description level

Problem Analysis Assembler

Discrete
System

Continuous
System

Figure 6. Analysis transformation process.

which contains the geometric model and the attributes which apply to that model. The attributes for a par-
ticular problem are specified by a particular case node in the attribute graph. All of the attributes under this
case node are used for the given problem. An instance of a ContinuousSystem is then transformed to an
instance of the class DiscreteSystem which represents the discretized version of the model and attributes
and the weak form of the partial differential equation (PDE). This transformation is done by an object that
is an instance of a class that is part of a hierarchy of analysis classes. The particular analysis class that is
used depends on the selected weak form of the PDE to be solved.

For each problem definition it is possible to define any number of analyses. An analysis is defined by
combining a problem definition with one or more cases that contain the rest of the information needed to
perform the analysis. Here an analysis is defined by combining a problem definition case with a numeric
case (which contains information relating to the specific numerical techniques used to solve the problem)
and a meshing case (which contains information describing the parameters needed to generate a mesh for
the model being used). The responsibilities of an Analysis class are to:

1. Create a DiscreteSystem of a type appropriate for the problem.

2. Interpret attributes associated with the geometric model and appropriately create StiffnessContributors,
ForceContributors and EssentialBCs and add them to the DiscreteSystem.

3. Create an AlgebraicSystem with an appropriate solver.

4. Invoke the solve method of the AlgebraicSystem.

The DiscreteSystem class represents the problem in terms of contributions from a set of objects that
live on the discrete representation of the model. These objects are called SystemContributors. There are
three types of SystemContributors: StiffnessContributors contribute coupling terms between degrees of
freedom of the system, ForceContributors contribute terms to the right hand side vector, Constraints set
specific values to given degrees of freedom (e.g. setting the value of a certain degree of freedom to zero).
The SystemContributors are created by the Analysis object and correspond to an interpretation of attributes
consistent with the weak form that the Analysis implements. For example, in a heat transfer analysis, mate-
rial property attributes will give rise to StiffnessContributors, applied heat fluxes will give rise to ForceCon-
tributors and prescribed temperatures will give rise to Constraints. Typically a SystemContributor
corresponds to a mesh entity classified on the model entity where the attribute is applied.

The Analysis class creates all of the SystemContributors and adds them to an instance of a Discrete-
System. There is a hierarchy of DiscreteSystem classes that represent different time orders of PDEs. This
transformation of the problem from the ContinuousSystem to the DiscreteSystem allows the various solu-
tion routines to work on a representation that is independent of the type of problem being solved.

The next step in the solution process is to set up and solve the linear algebra. The setting up of the lin-
ear algebra consists of transforming a DiscreteSystem into an AlgebraicSystem. This transformation is han-
dled by an Assembler object. Essentially an Assembler maps the contributions of each StiffnessContributor
and ForceContributor in a DiscreteSystem into the correct entries in the global stiffness matrix and global
force vector in an AlgebraicSystem.

Each type of operation that needs to form a global matrix or vector must use an assembler (either
defining a new one or using an existing one). The base class Assembler provides the operations needed to
do the perfrom the process of assembling the global system through it’s assemble method (this method is
only accessible to subclasses of Assembler). Each derived class must implement the operations that need to
be carried out on the matrices returned by the ForceContributors and StiffnessContributors and then call the
base classes assemble method.

REFERENCES

Beall, M. W.; Shephard, M. S. (1997): A general topology-based mesh data structure. International Journal
for Numerical Methods in Engineering, to appear.

Shephard, M. S. (1988): The specification of physical attribute information for engineering analysis. Engi-
neering with Computers, Vol. 4, pp. 145-155.

Shephard, M. S.; Dey, S.; Flaherty, I. E. (1996): A straightforward structure to construct shape functions for
variable p-order meshes. Computer Methods In Applied Mechanics and Engineering, to appear.

Weiler, K. J. (1988): The radial-edge structure: A topological representation for non-manifold geometric
boundary representations. M.J. Wozny, H-W. McLaughlin, J.L. Encamacao, editors. Geometric modeling
Jor CAD applications, North Holland, pp. 3-36.

