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SUMMARY

This paper develops a numerical technique for determining the shape sensitivity parameters in steady metal-
forming processes such as drawing and rolling. The adjoint method is applied to the discrete non-linear
system of equations in the finite element model in order to determine the discrete matrix of sensitivity
parameters. In this work, two specific cases are considered. The first case involves determining the sensitivity
of the process power requirement to the process geometry and the second case invoives determining the
sensitivity of the internal state variable distribution in the final product to the process geometry. The process
geometry is assumed to be characterized by a finite number of shape parameters. The internal state variable
distribution in this case represents the resistance to plastic flow and is considered to be related to the quality
of the final product. Numerical exampies for a simple drawing process are presented to demonstrate the
efficiency of the algorithm.
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1. INTRODUCTION

Significant progress has been made in recent years in the numerical modelling of industrial
forming processes using high-powered computing facilities.! * These models are capable of
handling the complicated large deformations, material constitutive laws and boundary condi-
tions that arise in these processes. In the modelling of forming processes, generally a system of
governing equations including the balance of linear momentum, kinematic equations and
constitutive equations for the material are specified along with a description of the boundary
conditions. Then a forward solution for the deformation, stress and state variable fields through-
out the domain of interest is found. The computational modelling of these processes aids in the
design by providing the capability to predict certain aspects of a process before actually buﬂdmg
the physical facility to carry out the process.

These numerical models can also be used as bases for sensitivity analyses. In a sensitivity
analysis, the effects of changes in process parameters on the final product or on other process
variables are examined. Sensitivity analyses are used in the solution of inverse and optimization
problems®~? and for control.!° !2 The most simple sensitivity analysis can be performed by
simply solving the forward problem over the range of all possible combinations of process
parameters and examining the results. This works well if there are few process parameters that
can only vary over a very limited range, but becomes very inefficient if there are many process
parameters or if the process parameters may be able to take on many different possible values
since each solution of the forward problem is computationally intensive in itself. In these lattgzy
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cases, it is often desirable to find a matrix of sensitivity parameters which consists of derivatives of
solution variables with respect to input variables that are computed for a given set of input
variables. This would then provide a direction for updating the input variables in an inverse or
optimization probiem or for control purposes on-line. This matrix could be thought of as the
coefficient matrix for the linearized problem.

This paper describes a method for determining matrices of discrete sensitivity parameters for
steady metal-forming processes. The sensitivities that are investigated are shape sensitivities
which are used to analyse the effect of the process geometry. Two specific cases will be
investigated. The first case is to determine the effect of the process geometry on the power
required for the process and the second case is to determine the effect of the process geometry on
the state variables that define the state of the final product.

Significant effort has been devoted to non-linear sensitivity analysis in recent years. Tortorelli'?
compares the adjoint and direct differentiation methods used to formulate design sensitivities for
non-linear constrained elastostatic systems. The problem of shape design sensitivity analysis for
a variety of problems, both linear and non-linear, using the adjoint method is presented in
Reference 14. Non-linear structural design sensitivity analysis involving inelastic material re-
sponses is presented in References 15 and 16. In metal-forming applications, Wenner?® calculated
the process sensitivities for sheet-metal forming by using a simple plane-strain approach in the
problem formulation and Zhang et al.'” determined the design sensitivity coefficients for finite
deformation elasto-viscoplastic problems using the direct differentiation approach in a boundary
element context. Michaleris ez al.'® compare the adjoint and direct differentiation methods used
to formulate design sensitivities for steady and transient non-linear coupled problems with
applications to elastoplasticity.

In this work, a procedure similar to that presented in Michaleris et al.'® is used to determine
discrete shape sensitivity parameters for steady metal-forming processes. Specifically, the adjoint
method is used for deriving the sensitivity matrix for a coupled steady-state viscoplastic analysis.
An augmented Lagrangian is formed for each case and differentiated to give the sensitivity
coefficients in terms of adjoint state fields. The adjoint state fields that eliminate the implicit
derivatives in the functional are determined. The discretized sensitivities can then be computed in
an explicit matrix expression. The forward computational model that is used as a basis in this work
is a coupled, Eulerian, viscoplastic finite element formulation following that given in Reference 1,
but neglecting thermal effects. The elastic part is also neglected for simplicity and the deformation is
assumed incompressible. A unified isotropic flow theory is used for the constitutive relations. The
viscoplastic material behaviour is modeled using a scalar internal variable that represents the
isotropic resistance to plastic flow. The model used herein is that given in Reference 19. Finally, an
example involving a sheet-drawing process is used to investigate the efficiency and accuracy of the
sensitivity analysis. The results are compared with that of a finite difference approach.

2. DISCRETIZATION OF THE STEADY FORMING PROBLEM

The formulation for the direct metal-forming problem follows that given in Reference 1. The
notation used throughout is listed in Appendix III. Summarizing, consider a two-dimensional
domain B with boundary 3B where the material being deformed is flowing steadily through the
domain. The boundary value problem for equilibrium on B is regarded as a control volume
problem and is expressed in the following manner:

divT=190 on B

ei'u=ﬁ,~ on =8B1i l=1,2
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e (Tn)=1{ on §By; i=1,2
e (Tn) = B(uo; — u;) on 4By, i=12

where T is the Cauchy stress tensor, u is the velocity vector, 4; is the velocity specified on 8By, I; is
the traction specified on B,;, n is the unit outward normal vector on dB and e; form an
orthonormal basis for the two-dimensional space with i = 1, 2. Furthermore, the fourth equation
represents a hydrodynamic friction law where uy; is the tangential velocity of the tool on dB;; and
B is the coefficient of hydrodynamic friction. In general, § is a function of the temperature and the
normal traction, but in this analysis, it will be taken as constant for simplicity. The boundary
conditions must be specified on the entire boundary for each degree of freedom without overlap,
$0 0B,;.00B,;U0Bs; = 0B and 0B;ndB; = ¢ fori=1,2 and j #k.
in this analysis, elasticity will be neglected for simplicity. Furthermore, the deformation

1s assumed to be isochoric which is typical for metal plasticity. Therefore,

tr(D)=diva=19

where D = sym (Vu) is the rate of deformation tensor. The material is modelled by a unified
isotropic viscoplastic flow theory, where an internal state variable represents the first-order
resistance to deformation, such that

i=flo,s) T =2uD

where

¢=/3D'D o=/3T" T
T =T-3trDI=T+pl

Here s is a scalar internal variable which is related to the strength of the material and p is the
pressure. Note that from the above equations the effective viscosity is u. = 6/3¢.

In forming the finite element model, the equilibrium equation is converted to a weak form by
applying the divergence theorem and substituting in the constitutive relations. The stress is
decomposed into deviatoric and pressure components, with the pressure being indeterminate
from the kinematics due to incompressibility. The assumption of incompressible deformation
defines a constraint equation on the solution of the velocity field. This forms the second
variational equation. These two equations can be put into matrix form by discretizing the domain
and defining finite element interpolations for the velocity and pressure fields. The incompressib-
ility constraint is known to sometimes cause ill-conditioning which causes spurious pressure
modes. Several techniques have been proposed to avoid such behaviour.?’~2% The consistent
penalty method is shown to be acceptably accurate and efficient for incompressible media,?° and
therefore is applied in this study. In this work, a discontinuous pressure field is used which allows
the nodal pressures to be expressed easily in terms of the nodal velocities and eliminated from the
system of equations. So the system is reduced to a non-linear system of equations of the matrix
form (see Appendix I for details)

ﬁ(ﬁ, §:) =f | (1)

where @ and § are vectors of the nodal velocities and state variables, respectively, and fis the force
vector.
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In addition, an evolution equation for the state variable s is required to describe the evolution
of the material state that arises during deformation. This can be expressed as

$=g(Es)

where overdot denotes a material time derivative and & is the effective rate of deformation. Since
steady problems are being considered, s = Vs-u. Now a boundary value problem for the state
variable can be expressed as

Vs-u=g(s) onB
s=§ on 0B

where § is the initial value of the state variable on the entrance boundary JBs.

Converting this to a variational form and substituting in finite element interpolating functions
for the velocity and state variable fields gives a non-linear system of equations of the matrix form
(see Appendix I for details)

R(@,§ =0 Q)

Equations (1) and (2) are a coupled system of non-linear equations for nodal velocities & and
nodal state variables 3. A staggered procedure has been found to work well for solving this system.
The basic algorithm is described as follows:

(i) Guess @ and §, and keeping § constant solve equation (1) for @ by the successive-
substitution approach until within the radius of convergence and then finish solving with
a Newton—Raphson method combined with a line search scheme.
(i) Holding @ constant, solve equation (2) by the Newton-Raphson method for 8.
(iii) Check global convergence criteria (both @ and § satisfy equations (1) and (2) to within some
tolerance), if not, go back to step (i) using the updated values of @ and § as the new guess.

3. MATRIX FORMULATION OF SHAPE SENSITIVITY PARAMETERS

The shape sensitivity problem can be defined in terms of the forward analysis. In this case, the
same governing equations and boundary conditions are prescribed, but now part of the boundary
6B which represents the process geometry is variable. The shape of 8B can defined by a position
vector %(£) which can be parameterized by ' Co

e %(0) = b a(®), %x€dB, i=12 a=1Ns 3)

where b;, (or b in direct notation) are the shape design parameters, @, are shape functions, & is
a measure of distance along 3B, and N3 is the number of discrete points used to parameterize the
boundary 6B. Summation is assumed on the repeated index «. Now the non-linear system of
governing equations (1) and (2) becomes

k(@3 b) =) R e
h(,5b) =0 V ®
where b is added to the list of variables. It should be noted that in many cases only one

component of the position vector X(¢) will be variable, i.e.i = 1 or 2. So to be more general, let Ny
be the total number of shape design variables.
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3.1. Case I: Shape sensitivities of power requirement

Let the process be driven by the tool contacting the workpiece on part of the boundary 0B". In
the case of drawing, B’ would be the exit region where the tool pulls the workpiece through the
die and in rolling, it would be the roli~workpiece interface, for example. The power required to
drive the process is

P= { t-u'dA
Jom

where P denotes power, t is the traction vector and u’ is the tool velocity on dB'. Generally, the
tool velocity on B’ is a constant over the contact area. For example in rolling, it is just the roil
surface velocity, and in drawing, it is the exit velocity with which the workpiece is being pulled.
Therefore, the above equation can be simplified using the finite element discretization as

,
=[] cas]-rmw
B

where T’ and @ are the vectors of nodal forces and velocities on B'. The shape sensitivity
parameters for the power are then

T
_§£=§?]W=Fi (6)
db | db

where @ is assumed to be held fixed to give the desired process speed and B = [df'/db].
Therefore, the matrix of shape sensitivity parameters of interest is B since &' is assumed to be
prescribed.

The shape sensitivity parameters B can be computed using a finite difference approximation of

Alslmo (BAD ='(t,b + Ab) — T'(¥', b)) (N
where T’ is found by solving the forward problem in each case and the tractions &' depend
implicitly on the shape parameters b. For problems where there are a large number of design
parameters, i.e. N is not small, this problem requires a large number of computations since the
forward problem needs to be solved Ny + 1 times to determine B. Therefore, an alternative
approach requiring less computations is desirable.

Since the tractions on 0B’ depend on the shape parameters b, these tractions can be considered
as unknowns. If no boundary condition is prescribed on 0B, equation (4) becomes

k@50 =TEbh) =Eb) + @b - ®
with
t=t+7

where  is the vector of nodal tractions prescribed on 0By, T is the vector of unknown nodal
tractionis on 6B’ and the asterisk denotes that this is a different system from that in equation (4).
The part of the force vector due to the unknown tractions on 0B’ is the part of interest. Therefore,
defining a rectangular matrix Q such that Qff(t,b) =0 and QF3E b) =T b) gives

Qk*(ui,5,b) =T'(¥,b) ©®
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where I"(%, b) is the subvector of the force vector F*(F, b) which contains only the elements which
depend on ¥'. Now the sensitivity coefficient matrix B can be defined as

dfr  of'dt’  of [6R*dﬁ ok* ds dl—c*]
B=——_-=—_—_——:'+—:"‘ '—»:.__—'—i-_:__—*j’_ p (10)
db &t db b cadb ¢5db db
While the matrices [0k*/du], [ok*/65], [6k*/6b] and [0f/0b] are explicit derivatives and can be
computed readily, the matrices [6*/6b], [65/6b] and [4¥/0b] are implicit derivatives which
cannot be computed directly. The adjoint method can be used to eliminate these implicit
derivatives so that the shape sensitivities B can be determined directly.

_ In the adjoint method, an augmented Lagrangian is defined in terms of adjoint variable fields.
The adjoint variable fields are then defined so as to eliminate the implicit derivatives. Following
the method of Arora and Cardoso,'* let q; represent the general functions for which the
sensitivities are to be determined. In this case, §; is defined as

3:(8,5,8) =f1(¥,b) = Q,k¥(@55), [=12Ng, J=12N (11)

where Ny is the number of nodes on the boundary with the unknown tractions which are to be
minimized, i.e. §B’, N is the total number of nodes for the velocity interpolation and summation is
assumed on index J. The state equations are equations (4) and (5) where a velocity or friction
boundary condition is prescribed on 3B’ which represents the desired process speed for which the
shape sensitivities are being determined. Then the augmented functional can be expressed as

L(& @5 8 b) = §,®,5 b) + Wi@,35,b, o) + W5(@5,b,5) (12)

where
Wi, 5 b, 5°) = [f(b) — k@5 b)] (13)
Wi(@, 5 b,5) =5 [h(5s5b)] (14)

and where & and §* are admissible adjoint fields which are to be determined. The adjoint fields are
found by specifying

JL oL : N
hdnaf =9 . 1
= 0 and %= : o ( 5}

and solving simultaneously for &* and §°. Then the sensitivity parameters can be determined from
—_ = (16)
thus reducing a total derivative to a partial derivative. Evaluating these equations gives .. ..

B = = Kf + KIK, - KHUH) 7\ (F, — K) + KK, - KHH) 7 (F - K)o

Sl 8

+ K*(HK 'K, - H)7'H, + KX KX 'K, - K) 7' H, (17)
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where
?=Qf‘; ki-0Z, xr-oX
K’J“'Z'%’ Ku=; Ks:i“_l;’ szg
HF‘Z‘%» Hu=§; H:%Z!

The vector g consists of the elements §; where I = 1, 2Np.. The matrices X, and H; are the tangent
matrices used in the Newton—Raphson solution of the forward problem and would therefore
normally already be computed. The matrices X, and H, are also tangent matrices which can be
computed directly. The matrices X, F,, and Hy, can be found efficiently using a finite difference
approximation. It should be noted that this is different and more efficient than the computation
required in equation (7) because these are partial rather than total derivatives. Whereas the
calculation indicated in equation (7) requires solving the forward problem N4 + 1 times, the
matrices Ky, Fy, and H,, only require evaluating the vectors k, T and h N4 + 1 times holding #, 3,
and ¥ fixed. Finally, the matrices K¥, K¥ and K¥ are just submatrices of X, K, and K; with
modifications only in the rows and columns where the boundary conditions are different. Details
for the calculation of X, K, H, and H, are given in Appendix II. This procedure is sometimes
referred to as the semi-analytical method of sensitivity analysis.?®

3.2. Case 2. Shape sensitivities of state variables

The adjoint method is aiso used to determine the sensitivity of the state variables in the final
product with respect to the geometric parameters. The method follows that used in the previous
section. In this case, the sensitivity parameters of interest are

c==
db

where §' is the vector of nodal state variables on the boundary in the exit zone 0B.. Since §' is

a subvector of §, a rectangular matrix R can be defined such that'§" = RS. :
As in the previous case, the adjoint method can be used to determine the design sensxtmty

matrix. In this case, the general functions for which the sensitivities are to be determined are

F8) =5, =Rys;, I=1,Ny, J=1LN

where Nj_is the number of nodes on the exit boundary 0B.. The state equanons are exactly the
same as in the previous example with 7; in place of g;. So the augmented Lagranglan is

L@ &5 b) =73 + Win,s bu")+W (usbs")

where W3 and W3 are defined in equations (13) and (14). As before, #* and & are found by
satisfying equatlons (15), but now replacing the augmented Lagrangian L with L. Then the
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sensitivity parameters can be determined using an equation analogous to equation {16):

y
€= 2 =R[(K — K,H] 'H) " (F, - Ko) + (H.K 'K, ~ H) " Hy ] (19)

where T is the vector of the elements r; where I = 1, Ny ; the matrices K, K, H,, H,, X, and F,,
and H, are the same as defined in the previous section.

The procedure to calculate the sensitivity matrices B and C in equations (17) and (18) is briefly
described as foilows:

(1) Solve the forward problem and store @, §, k, h, f, K, and H..

(2) Compute X and H,.

(3) Perturb a design variable b, by a the small value Ab and calculate the following vectors
without solving the system equations:

() k, h and T with applied velocity boundary conditions on JB'.
(i) Qk* without applied velocity boundary conditions on dB'.

(4) Use the vectors computed in (1) and (3) to determine the corresponding components of the
matrices K, Fy, Hy, and K using a finite difference approximation and repeat procedure (2)
until all design variables are perturbed and all the elements of the matrices defined.

(5) Extract the equivalent components of the matrices K} and K¥ from K, and K, and compute
the remaining components associated with unknown boundary conditions on B'.

(6) Calculate the sensitivity matrices using equations (17) and (18).

4. NUMERICAL EXAMPLES AND DISCUSSION

A series of numerical experiments are presented to demonstrate the level of computational
accuracy and to show the results for the sensitivity parameters. A simple example of a steady
metal-forming process, plane-strain hot drawing, is used in this study. In the first numerical
experiment, the solution of the forward problem is analysed to investigate the accuracy and the
effect of the penalty parameter on the solution. Also, the effect of the die shape on the power and
on the state variable field is demonstrated. In the second and third numerical experiments, the
sensitivity matrices B and C as defined in Sections 3.1 and 3.2, respectively, are computed and the
results are compared to those obtained using a finite difference approach. The geometry and
the boundary conditions of the workpiece for the drawing problem used in each example are
shown in Figure 1, where 4B = 0B;, + 0B,,; 0B’ = 0B,, + 0By,; 0B’ = 0B,, + 0B,,; and
0B = 6B, + 0B 1y Symmetry is assumed about the centerline at y = 0. The co-ordinates x’ and
y are tangent and normal co-ordinates on 4B, respectively. Specifically, on surface 0B the velocity
is constrained to bein the horizontal direction with no friction; on surface B’ the drawing speed
is applied in the horizontal direction; surfaces dB” are free surfaces; and on surface 4B the normal
velocity is zero and a friction condition is applied in the tangential direction. The domain of
interest is divided into 36 eight-node elements for a total of 169 nodes for the velocity field
interpolation. The pressure field is interpolated with three-node discontinuous pressure elements.
Although this mesh is quite coarse, it was found to give reasonable accuracy and is useful for
demonstrating the algorithm. The constitutive model presented in Reference 19 is assumed and is
given in Table I. The material in these examples is taken to be 1100 Aluminum at 450°C and its
material parameters are listed in Table II. The parameter s, is the initial value of s.
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Figure 1. Geometry and boundary conditions for the sample drawing problem

Table . Constitutive equations

1/m
Flow equations: =4 [sinh (5 .(SI)] ,
Evolution equation: . s .
§=|he{l ——*sign 1—;; é
where I dex 0
. = P Ro

R = gas constant, § = absolute temperature
A, Q, &, m, hy, a, § and n are material
parameters. '

Table II. Material parameters for 1100 Al at

450°C
So 29-5 MPa
y] 413x 107 %sec™!
& 7-00
m 023348
§ 189 MPa
n 0-07049
he 11156 MPa
a 1-3

4.1. Experiment I: Forward préb'le;ﬁv

The accuracy of the sensitivity parameters will depend on the accuracy of the solution to the
forward problem about which the sensitivity parameters are being determined. Therefore, the first
numerical experiment is with regards to numerical accuracy of the forward problem. The
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forward-problem solution is also useful for demonstrating the effect of the process parameters on
the solution for specific cases as will be shown.

The penalty parameter in the consistent penalty method used to impose the incompressibility
constraint is known to affect the accuracy and stability of the solution in the viscoplastic problem.
This numerical behaviour can have a large effect on the sensitivity analysis. So it is important to
choose a valid penalty parameter that gives a stable and accurate solution. In the following
examples, the friction factor is taken as f = 10® Pasm™'. The reduction of the drawing process is
50 per cent as shown in Figure 1 and the drawing speed of the workpiece is 0-005 m/sec. In Figure
2, it is shown that the penalty parameter does not affect the resuits for the velocities much when
the penalty parameter 1, used is in the range of 10*°-10'°. In this range, the incompressibility
constraint was found to be satisfied well too. In Figure 3, the residual for equation (1) is plotted as
a function of the penalty parameter. To be specific, this residual is defined as

R=(k@3-DTk@s -1

The accuracy of the finite difference approximation used in determining the sensitivity parameters
decreases as the residual function increases. The upper limit for acceptable accuracy in the finite
difference approach is shown. This is based on the size of the elements of Ab used in the finite
difference approximations which are of the order 10~° m. To maintain accuracy, the upper limit
for the penalty parameter is therefore 10**. Therefore, the penalty parameter that is taken for the
problems herein is A, = 10'*. This is about four orders of magnitude higher than the typical
pressure.

The solution for the case with the penalty parameter i, = 10'! is now examined. Since the
reduction is 50 per cent, and the drawing speed is 0-005 m/sec, the entering speed of the plate on
the boundary where the material is drawn into the control volume domain is expected to be
0-0025 m/s due to incompressibility. This was found to be satisfied well. The velocity distribu-
tions shown in Figure 4 for the centerline and for the surface of the workpiece are both found to
be close to the value that would be obtained for a slab flow. This is a reasonable result for this case
with low friction and low die angle.

In this work, the sensitivity of the required power and of the internal state variable to the die
shape are being examined. To demonstrate the effect of the die shape on these quantities, the
results for four typical die shapes are presented. The four die shapes considered are straight,
concave, convex and sigmoidal and these are shown in Figure 5. The power required for each of

032 at the middle of the contact zone
8 03
xd
= L
A
8 0.28
?5_ L
0.26 - on the surface at the entrance
0 24 L I L Il L 1 L 1. L H
6 8 10 12 14 16

logig A,

Figure 2. Effect of the penalty parameter on the computed velocities
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Figure 6. Power requirement for various die shapes
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Figure 7. State variable distribution through the thickness for various die shapes

thickness in the exit are shown for the four die shapes in Figure 7. It is clear to see that the die
shape has an effect on the internal state variable dlstnbutlon in the final product

4.2. Experiment II: Force sensitivities

Let the force sensitivity matrix be defined in dimensionless form as

_df @M _boy

db . d(b/by) fo

where b, is the thickness of the strip in the entrance (in this example, 0-01 m), f, is the order of the
initial input force (in this case, 10° N), and f and b are the normalized vectors of ¥ and b,
respectively. Equation (17) is a complicated expression for B. Therefore, it is desirable to
investigate if a simplified approximate form can be found that may save computational time. This
can be accomplished by observing that in many cases, the matrices K, and H, are very small -
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compared to the other matrices. If these terms are neglected, the force sensitivity matrix is
significantly reduced to

-~

b
B, = -2 [K¥ + KMK,) "' (F, — Ku)]
0

where B, is the simplified dimensionless force sensitivity matrix. Computing the sensitivity matrix
using this simplified form will be referred to as the simplified adjoint method.

Consider the case with 14 design variables which consist of the y-co-ordinates of the nodes on
0B (the co-ordinate of the node common to boundaries 8 and 3B/ is taken to be fixed and the
co-ordinate of the node common to boundaries 48 and 4B is variable). The vector b is used to
represent the normalized values of the y-co-ordinates of the nodes on 3B in the following results
(Figures 8-11). The die shape is the same as shown in Figure 1. Figures 8 and 9 show the resulting
force sensitivities for different nodes on which the load is applied and for different design shape
parameters, respectively. Results from the Adjoint Method (AM), the Simplified Adjoint Method
(SAM) and the Finite Difference method (FD), ie. using equation (7), are in good agreement.
Differences between these methods result from the finite difference approximations used in
computing some of the derivatives.

< F
3155 3 N
o T e T
v f $ ====94
= 1F £
R~ b o AM L+ D
a' 05:_ X SAM
3 b
- Ok 8
I .
205k a =
é r 2 2
2 R SR S TUTIR T [ |

0 1 2 3 4 5 6 7 8

nede number on drawing zone (/)

Figure 8. Sensitivity parameters, 5}, I =1, 7, where I is the node number on the drawing zone. Compares results for the
AM, SAM and the Finite Difference FD method -
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The computational time for the sensitivity analysis is on the same order as that for solving the
direct problem. Specifically in the presented example, the CPU time on a Sun SPARC-10 Model
30 is 58-30 sec for solving the direct problem. For the sensitivity analysis, the CPU time is 95-68
sec by the adjoint method, 84-59 sec by the simplified adjoint method and 381-46 sec by the finite
difference approach. It should be noted that in determining the sensitivity parameters it is
necessary first to solve the direct problem about which the sensitivity parameters are determined
(step (1) in the procedure given above). The times listed above for the sensitivity analysis include
the time to solve the direct problem. If this is subtracted out, the time that is left is the time it takes
to compute the sensitivity parameters for a given @ and 5 (steps (2)<6)) in the above procedure.
For the adjoint method, this is only 37-38 sec and for the simplified adjoint method, it is 26:29 sec.
The adjoint method for the sensitivity analysis is very efficient and becomes crucial for problems
with a refined mesh or for more complicated forming processes.

4.3. Experiment III: Internal state variable sensitivifies
The internal state variable sensitivity matrix can be defined in dimensionless form as

_ 88 _d(E)s0) _bo .
db  d(b/bo) so

where s, is the initial internal state variable of the material and § is the normalized vector of §'.
Figures 10 and 11 show the resulting internal state variable sensitivities. These results are for the
nodes on which the workpiece is drawn out of the domain and different design shape parameters,
respectively. Results. from the adjoint method and the finite difference approach are in good
agreement. As in the previous case, the computation by the adjoint method is quite efficient. In
fact, the matrix C is needed for the computation of B as can be seen by comparing equations (17)
and (18).

4.4. Discussion

The resulting sensitivities in Figures 8 through 11 show the significance of the forming-process
geometry to the input force and the internal state variable. The input force relates to the
manufacturing cost. The internal state variable in general relates to the material properties, such
as grain size, hardness and strength (see Reference 19 for details of the model used herein). The
optimization of the process geometry is a process design problem and is referred to as shape
optimization. In process design problems, the sensitivities provide important information for the
optimization algorithm which is often based on a gradient method for minimizing an objective
function. In highly non-linear problems, such as the one considered in this paper, verifying the
accuracy of the numerically computed sensitivities becomes especially important. The accuracy of
the sensitivities computed in equations (17) and (18) depends on the accuracy of the convergence .
of the system equations (as shown in Figure 3) because of the finite difference approximation for
K., F, and H,. Our numerical experience indicates that the numerical study of the forward
problem and the convergence study carried out in Experiment I is useful for a confident sensitivity
analysis based on the presented formulation. In addition, the tool shape (design curve) should be
accurately interpolated for computing the first-order shape derivatives such that the finite
difference approximation produces little computational error in equations (17) and (18). This is
because the boundary conditions on 3B depend on tangent directions which will in turn depend
on the interpolation of the tool shape. '
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Figure 10. Sensitivity parameters, C;7, I = 1, 7, where [ is the node number on the exit zone. Compares resuits for the
AM and the FD method
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Figure 11. Sensitivity parameters Cy;, I = 1, 14, where I is the design variable number. Compares results for the AM and
the FD method

5. CONCLUSION -,

Numerical algorithms for computing shape sensitivity parameters for specific applications in
steady-state metal forming have been presented. The adjoint method and in the case of force
sensitivities, a smlphﬁed adjoint method ‘have been found to be efﬁc1ent and to glve acceptably
accurate results. .

In future work, the algonthms for computmg the sensmwty parameters denved herem w1ll be
mcorporated into global optimization and inverse algonthms for optimizing process geometries
in steady metal-forming applications. Preliminary test cases in this area performed by the authors
have shown promise. More complex geometries and thermal effects’ will be considered in the
future. Eventually, when the model is found to be sufficiently realistic, experimental dies with
predicted die shapes will be fabricated and tested. -,
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APPENDIX I

The two-dimensional steady forming problem described in this study is discretized by the finite
element formulation. The kinematic equations are expressed in the form

k@5 =EK+GM GNa=f

and the constitutive equations

where

K=Y K% K= L UelOii¥aiWh i + Yz W5 ) dV

m=1

2 Gl Gl = | WETFAY
_ M ; _ 1 . M
-3 omp sg- [ veiay
m= P J By
_ M . e .
f= Y 5 -f’};;=LB Ly dS

M
=Y R B (b 2§ 0169147 0V

The plane domain B is divided into M finite elernents of area B, m = 1, M M, is the number of
surface elements; Y7 is an element shape function for mterpolatmg the veloc1ty field; Y™ is an
element shape function for interpolating the pressure field; n, and n, are the number of nodes per
element used in the velocity and pressure interpolations, respectively; 4, is a penalty parameter for
unposmg the 1ncompress1b1hty constraint; and the evolution function g(s s) used herein is shown
in Table 1. In addition, repeated indices indicate summation, the Greek subscnpts denote node
numbers and the Roman subscnpts denote nodal degrees of freedom I

APPENDIXII T S S

The derivatives in equations (17) and (18) are computed as follows:

(1) K matnx
- K,=K+GM'GT+R, .-
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where

44 ) m

. K’;»;.=j e DynDaFadV
B, €

(2) K, matrix

=

ol Js

0 e m m
K= Y KL KL, —j 2 e by 4V
B,
(3) H, matrix

M
= Z H:.’ H::,—'J\ D:Z/z lu!ﬁd/ﬁ——— m]llf"'dV
m=1

(4) H, matrix

@
Z HL,, Hi, = J (Spyg vz — % -Du nilvzdV

APPENDIX III

Notation

The following notation is used throughout this paper. Vectors denoting field variables, such
as velocity, are expressed in lower case bold, for example u, and tensors are denoted with upper
case bold, for example T. Scalar quantities or components of vectors and tensors are in italics,
for example, ;. Vectors of nodal point quantities (column matrices), for example the velocities
at the finite element nodes, are denoted in lower case bold with an overbar, for example .
Matrices are denoted in upper case bold and are clearly indicated as matrices in the text to
differentiate from tensors. The operator tr( ) is the trace operator; div( ) is the divergence
operator and V{( ) is the gradient operator. The inner product is always denoted by a dot ().
For vectors, the inner product is written as u- v and is defined in component form as u;v; where
summation is implied on repeated indices. For tensors, the inner product is defined as
A-B = (ATB) where superscript T denotes the transpose. Lower case Roman subscripts indi-
cate degree of freedom (co-ordinate direction), lower case Greek subscripts indicate node
number, and upper case Roman subscripts indicate the position in a matrix. In addition, the
following symbols are used in this paper. :

» b, b vector of shape design parameters in dimensional and
© dimensionless forms
B domain of interest
. dB boundary of B
BBS, dB. boundaries on the entrance and on the exit of the domain
6B’ B boundary on which the load is applied, boundary on the
s tool contact zone
aBl,, 6B2,, dB5; boundaries with velocity, traction and fnctmn boundary
conditions
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boundary with a free surface, boundary with zero trac-
tion in the x-direction and zero velocity in the y-direction
shape sensitivity matrices

dimensionless shape sensitivity matrices

simplified approximation of B

rate of deformation tensor

nodal force vector, part of nodal force vector acting on
0B’

dimensionless form of f’

nodal force vector for system with no boundary condi-
tion prescribed on 0B

matrices of derivatives as defined in Section 3.1
discretized state variable evolution equation

left-hand side of discretized weak form of the equilibrium
equation with and without a boundary condition pre-
scribed on 0B’

augment Lagrangians used in computing B and C

unit outward normal on B :

total number of nodes for the velocity interpolation
number of shape design parameters

number of nodes on the boundary with the applied load
0B’

number of nodes on the exit boundary 4B,

pressure

power required to perform the ‘deformation process | _
vectors of general functions for whlch the sensmvmes are
to be determined : -
rectangular matrices for extracting desired components
of the sensitivity matrices - -
internal state variable field and its value prescribed on
3B, o S
vectors of nodal state variables and nodal velocities ™
vectors of nodal state variables on B, in dimensional
and dimensionless forms

vectors of admissible adjoint vanables

traction :
prescribed components of the tractions and velocmes on
boundaries 0B;; and dB,;

. vectors of nodal tractions on ¢B,; and dB’

Cauchy stress tensor and deviatoric Cauchy stress tensor
velocity '

tool velocity on 0B’ where the load is applied for per-
forming the deformation and nodal velocities on 0B’
state equations used for forming augmented Lagrangians
coefficient in relative velocity friction law

effective rate of deformation (/% D-D)

effective stress (/3 T'-T")
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11,
12,
13.
14,

16.
17.
18.
19.
20.
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22,
23.
24.

25.

26.
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A, penalty parameter used to enforce the incompressibility

u. effective viscosity
®, Ui, U7 shape functions
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