A POSTERIORI FINITE ELEMENT ERROR ESTIMATION
FOR DIFFUSION PROBLEMS
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Abstract. We consider a posteriori estimates of spatial discretization errors of p*
order finite element solutions of two-dimensional elliptic and parabolic problems on
meshes of rectangular elements. We show that error estimates for piecewise bi-p polyno-
mial spaces obtained from jumps in solution gradients at element vertices when p is odd
and from local elliptic or parabolic problems when p is even extend to other solution
spaces. In particular, we establish that these error estimates converge at the same rate as
the actual error for finite element spaces that contain all two-dimensional monomial terms
of order p + 1 except for x£*! and x8*! in a Cartesian frame with coordinates (x1.x9).
Computational results show that the error estimates are accurate and robust for a wide
range of problems, including some that are not supported by the present theory. These

involve quadrilateral-element meshes, singularities, and nonlinearity.
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L Introduction. A posteriori error estimates are a standard ingredient of adaptive
finite element software. They are used to appraise the accuracy of computed solutions
and to control adaptive enrichment through 4 —, p—, and/or r-refinement. Successful tech-

niques for estimating spatial discretization errors of finite element solutions of elliptic and
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parabolic problems are often based on residual correction with p-refinement [13]. Using
this strategy, an error estimate is obtained in a space of piecewise polynomials having
higher degree than used for the original solution by solving a finite element Galerkin prob-
lem with solution residuals as loading. The error estimation problem may be localized to
the element level to avoid a global assembly and solution; hence, reducing computational
cost. Localization typically involves estimating solution gradients at element boundaries
[4, 6, 13] and the use of “‘superconvergence’’ properties [3, 5, 14, 15] to neglect errors at

certain points, lines, or surfaces.

Babuska and Yu [5] considered the solution of linear two-dimensional elliptic prob-
lems on squares using piecewise bi-p polynomial spaces and showed that error estimates
could be constructed from jumps in solution gradients at element vertices when p is odd
and from local elemental solution residuals when p is even. Yu [14, 15] proved that error
estimates computed in this manner are asymptotically exact; hence, they converge to zero
under mesh refinement at the same rate as the actual finite element error. Adjerid et al.
[2, 3] established similar results for the finite element method-of-lines solution of one- and
two-dimensional parabolic problems. These error estimates are efficient and suitable for

parallel computation, with the even-degree estimates requiring no off-element references.

Piecewise tensor-product spaces are not as efficient as serendipity [16] or hierarchical
[8, 12] approximations which have fewer degrees of freedom for the same order of accu-
racy. Herein, we show that the error estimates of Babuska and Yu (5, 14, 15] or Adjerid
et al. [2, 3] converge to the actual error for a wider class of finite element approximations.
The important consideration is that a solution space of order p contain all monomial terms
x84k of degree p + 1 except xf*! and x8*!. These spaces have ’slightly larger
dimension than the usual serendipity or hierarchical bases, but far less than the bi-p
spaces (cf. Fig. 1). In return, for the modest increase in solution complexity relative to
serendipity and hierarchical bases, the solution will be supported by a simple and asymp-

totically correct error estimate.
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After stating the linear elliptic and parabolic Galerkin problems under consideration
(82), we review the error estimation procedures of Babuska and Yu (5, 14, 15] and
Adjerid et al. [2, 3] for piecewise bi-p polynomial spaces (§3). The procedure for con-
structing more general finite element spaces for which the aforementioned error estimates
apply is described in §4. Establishing asymptotic correctness of the error estimates for
elliptic and parabolic problems using these new finite element spaces follows the earlier
arguments used for bi-p polynomial spaces. Because these proofs are lengthy and
involved, we have not duplicated the arguments but, rather, refer to the earlier analyses [2,

3,5, 14, 15].

Although many finite element spaces satisfying the theory can be constructed, we
show how to modify standard hierarchical spaces [12] by adding certain interior (‘‘bub-
ble’’) modes to them (§4). The error estimates of Babuska and Yu [5, 14, 15] or Adjerid
et al. [2, 3] may be used with these spaces to appraise the accuracy of finite element solu-
tions of linear elliptic and parabolic problems, respectively, on meshes of rectangular ele-
ments. However, using several examples, we show (8§5) that the error estimates work
more generally than the present theory would suggest. In particular, they appear be reli-
able and robust on some non-rectangular-element meshes, highly-graded meshes in the
presence of singularities, and nonlinear problems. Unfortunately, computational evidence
also indicates a performance degradation of the error estimates when elements are severely
distorted from rectangular or when meshes lack proper grading near singularities. Similar
effects were noted by Babuska and Yu [5]. Thus, additional theory and modification may

be necessary (§6).
2. Problem formulation. Consider the linear, scalar, two-dimensional parabolic par-
tial differential equation

o +Lu=fx), x=[;x]eQ, (2.1a)
with
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Lu = —i ZZZ 0x,(a; (X9, 1) + b (Xu, (2.1b)
j=lk=1

subject to the initial and Dirichlet boundary conditions

u(x0) =u’(x), xe QyoQ, (2.1c)

uxz2)=0, xedQ, r>0. (2.1d)

The variables x = [x;,x,]7 and ¢ denote spatial and temporal coordinates, d, denotes par-
tial differentiation with respect to o, and Q is a bounded piecewise rectangular domain
with boundary 0Q. The functions aj;(X), j, k =1, 2, and b(x) are smooth with L being
a positive definite operator. Our results also hold for elliptic problems upon neglect of

temporal dependence in (2.1).
The Galerkin form of (2.1) consists of determining u € H{ satisfying

VoUW +AVu)=Ww[f), t>0, (2.22)

AV u)=Awu%, r=0, forall ve H{, (2.2b)

where the strain energy and L2 inner products, respectively, are

2 2
Avu)=[[IT ¥ a;,(X00, vd,u + b(x)vu]dx,dx, (2.2¢)
Q j=lk=1
and
.u)= (v,u )() = J]‘ uy dxﬂixl (2.2d)
Q

As usual, functions in the Sobolev space H*, s > 0, have the inner product and norm

V) = 3 @eiorv deidiu), Null2= (), (2.2¢.f)
lalgs

where lal = o) + o, with o; and o, being non-negative integers. A 0 subscript on H'

implies that functions also satisfy (2.1d).

Finite element solutions of (2.2a,b) are obtained by approximating H! by a finite-

dimensional subspace S¥¥ and determining U SY¥ such that
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Vo, U)+AWV,U)=(V,f), t>0, (2.3a)

AV U)=AWVu®, t=0, forall VeSh»r. (2.3b)

Partitioning €2 into a mesh of rectangular elements A;,i=1,2,+, N, define SN? a5

SN = {weH Iwxe 0,@;), xed;, i=1,2 N} 2.4)

where Q,, involves polynomials of order p 21 that will be defined in §3 and §4 for bi-p

and hierarchical approximations, respectively.

3. Error estimation with piecewise bi-p polynomial approximation. The error
estimates of Babuska and Yu [5, 14, 15] and Adjerid et al. [2] involve solution spaces
SS’ ¥ on meshes of square elements with Q, defined as a tensor product of one-

dimensional polynomials through degree p. With

e(xt) =uxze) - U(x,t) 3.1
denoting the discretization error of the semi-discrete problem (2.3), we summarize their
results for obtaining H! error estimates E (-,t) for odd- and even-degree approximations

(cf. §3.1 and §3.2, respectively).

To begin, define [3, 14] a univariate interpolation operator 7 that maps functions in
H$ [-1,1] onto the space of univariate polynomials of degree p > 1. Letp =2/ — 1 or 2/
according to whether it is odd or even, respectively, and (i) place 2/ interpolation points
¥, i=12 -1, symmetrically disposed with respect to the origin; (ii) set £, = 1; (iii)

set & =0 when p is even; and (iv) determine the remaining point locations to satisfy

} V,n@E dE=0, s=0,1,p~1, (3.2a)

where )
Vpu1(®) = &+ - mgp! (3.2b)
and ()’ denotes total differentiation. These considerations imply that \4_1'p+1(§) is propor-

tional to the Legendre polynomial P, (&) of degree p [3].
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Continuing, let & denote the two-dimensional operator that interpolates functions in
H{ [-1,11x[-1,1] as tensor products of the one-dimensional interpolants T in the &; and
§, directions. Interpolants m on A; are defined as n; f (x) = ff (x(§,E,)), where x(§,E,)
denotes the bilinear mapping from the ‘‘canonical element’” { (€;,6,)|~1 <&, & <1} to

A;. We omit the elemental index i whenever confusion is unlikely.

3.1. Error estimates for odd-degree approximations. Error estimates of odd-

degree approximations are constructed by assuming

e(xt)=Exxt)=b 1OV, 41,1 + b)Y, 422(X) (3.3a)
with

Vour j ) =P ol =12, xeA,. (3.3b,c)

Assuming that u(x,t)e CY(Q), use (3.1) to compute jumps in the spatial derivatives of

e(x,t) at the vertices p;, k = 1, 2, 3, 4, of A; as
(05,6 (Pe:)]j = ~[0, U (B .1)]; = b1()[0, Wp1 1 (PL)]; + bolt )05, Wp +1,2(Pe)];»
J=12, k=12734, xeA, 34
where [g(p)]; denotes the jump in g at point p the x; direction.

The jumps [aij (pr,1)] i in the finite element solution derivaﬁveé are known in each

coordinate direction (j = 1,2) at each vertex (k = 1, 2, 3, 4) for elements not adjacent to

0Q. Thus, four solutions biks»bay,k =1,2,3, 4, can be obtained from (3.4) as
b1k O Wp+1,1PY; + b2 )0y W1 2(P)]; = —{0,, U (pe.1)];

i=L12 k=12234 xe4; (3.5

These, in turn, can be used with (3.3a) to compute four error estimates on A; which are

averaged to obtain

4
UECONE = 8T lIby e Wp 1,100 + by (W, 2MNIE, x€ A, (3.62)
k=1
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where the local ! norm || Il;; is defined like its global counterpart with A; replacing  in
(2.2). A global error estimate is obtained as
IE .0l = ﬁlus(‘,z ME;- (3.6b)
i=
When 4; is adjacent to 0€2, (3.6a) is obtained either by averaging (3.5) over the inte-
rior vertices of A; or by solving (3.5) in a least-squares sense using jumps at vertices

across all edges of A; except 0Q.

Error estimates computed in this manner are asymptotically correct as indicated by

the following theorem.

THEOREM 1. Ler Q be a rectangle that has been partitioned into N rectangular
h; 1 % h; 5 elements A;, i =1,2,---,N. Let positive constants ¢ and C exist such that

Pagjii k) j

h; ;

cs <C, j=12, k=1,23,4, i=12,--N, 3.7

where huqj; 1) is the length of the edge of the element adjacent to A; in the x; direction
and sharing vertex k. Further let ue H} ~HP*?* and U e S§? be solutions of (22)

and (2.3), respectively, where p 2 1 is an odd integer. Then

lle .OIE = IECOIE + O (hP+Y (3.82)
where h = max max (h; j) and
i=1,2,---N j=1,2
[0, Upi.t)] :
2 4 X; Pt J
IECONE = ———=3 h; i;. : (3.8b)
: 4(2p Z 1 é ,?:':1 L+ (g, /b Y

Proof. Adjerid et al. [2] and Yu [15] established convergence, respectively, for para-
bolic and elliptic problems on square domains. The extension of their results to rectangu-

lar domains and elements is straight forward. [J

3.2. Error estimates for even-degree approximations. When p is even, we con-

struct a Galerkin problem for ¢ by replacing u in (2.2a,b) by U + e to obtain
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(v.0,e)+A(v,e)=g(tyv), t>0, (3.9a)
Av.e)=Avu®-U), t=0, forall ve H{, (3.9b)

with
geV)=@.f)=-@w,o,U)-AWU). | (3.9¢c)

The trial function (3.3) is again used to approximate ¢ while the approximation of the test

function v is selected as

Vit) = Y, u1 i BE( moa 211 (X)), J =1,2, x€4;, (3.102)
where
9 = 220 o) = y,®, tetL (3.10b0)

and §;(x), j =1, 2, is a bilinear mapping of A, to [-1,1]1x[~1,1].

The functions Vp+1,;(X) and V;(x), j =1, 2, vanish on the edges of A;; thus, the

computation of E(x,t) is local to A; and is obtained as the solution of

Vi, E); + Aj(V,,E) = g;(t,V;), t>0, (3.11a)

A(VLE)=A;(V;u®-U), =0, j=1,2 (3.11b)
where the subscript i denotes a local inner product whose domain is restricted to A;. This
problem may be further simplified by (i) neglecting the off-diagonal diffusion coefficients
aj, J #k, and the reaction term b(x) as being higher-order; (ii) approximating the diag-
onal diffusion coefficients aj i, J =1,2, by their values at element centroids; and (iii)
using the symmetry of v, ;(x) and V;(x), j = 1,2, to obtain the uncoupled constant-

coefficient initial-value problem on A;

b'(t) +rjbj(t) =G;(t), t >0, (3.12a)

(h; j/2)72P+3 Aj(V; %) = U (,0)
1 ’
% (€8 mod 201) dE1dEn
-1

j=1,2, (3.12b)

b; (0) = —
’ @; i (h; (i mod 2)+1/2) }
!




where

11
. [ [ 0P E)8CE moa 2 dEE,
rj = ——t , (3.120)
G
J WA ENBE moa 2yr) dE1dE,
2141

(h; ;12y~%+3) AR
(i (; mod 2)+1/2)

G;(t) = s (3.12d)

11
| [ W& )8E G moa 2+1) dE1dE,
2141

and ; ; denotes the value of g i.j»J =1, 2, at the centroid of A;.

Further simplification is afforded by neglecting the time derivative in (3.12a) to
obtain

(h; j12)72P+1 g:.V;)

bj(t)z , t>0, j=1,2

a: .(h‘.. : mo /2) 11
JTG med 2 ffcz(ij)5(§u mod 2y+1) 4514 &,
S151
3.13)

Thus, error estimates may be determined as solutions of either local parabolic (3.12) or
elliptic (3.13) problems. Both methods produce asymptotically correct results as indicated

by the following theorem.

THEOREM 2. Let the mesh and solution structure be as described in Theorem I and
let p 22 be an even integer. Let b;, j = 1, 2, be solutions of either (3.12) or (3.13) that
are used to obtain an error estimate according to (3.3). Then, there exists a constant
d > 0 such that

le C.OlE = IE C.OIE + 0 %+, ¢ >3, (3.14a)
where

11

N 2
IECOIf = 3 3 07500 ;2% i moa 2ur/D) | [ 0¥E)dE1dEy.  (3.14b)
i=1j=1 11
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Proof. cf. Adjerid et al. [2, 3] for parabolic problems and Yu [14] for elliptic prob-

lems on square domains. Again, the extension to rectangular meshes is straight forward.

a

4. Error estimation for other finite element bases. With sufficient smoothness, the
convergence rate of finite element solutions is determined by the highest degree polyno-
mial that can be interpolated exactly. Thus, piecewise bi-p polynomial approximations
contain many higher-order terms that do not increase the convergence rate. Different
bases of order p, such as serendipity [16] or hierarchical [8, 12] approximations, typically
lead to (i) better conditioned stiffness matrices, (ii) reduced computational complexity, and
(iii) simpler implementations. Unfortunately, the error estimation procedures (3.6, 8, 12-

14) are not asymptotically correct when used with these spaces.

The terms x£*! and x8*! are the only monomials missing from a bi-p polynomial
approximation for it to contain a complete (p + 1)-degree polynomial (cf. Fig. 1). As
indicated by the following theorem, these are the only monomial terms needed to make
the error estimates of §3 asymptotically correct when the other monomial terms of degree

p + 1 are present in the solution space SV¥.

THEOREM 3. Under the conditions of Theorems 1 and 2, let O, (4;) be the restriction

of SNP 1o A; (¢f. (2.4)) and let M, (4;) be a space of complete polynomials of degree p
on A If O, satisfies

M,cQ,cM,,, M, cQ, y{x§*, x8*) “4.1)

then the error estimates (3.8) or (3.14) apply when D is odd or even, respectively.

Proof. Again, the proof closely parallels those of Adjerid et al. [2, 3] and Yu [14,
15]. O

Conditions (4.1) may be used to construct many solution spaces where the error esti-

mates of §3 are asymptotically correct; however, let us focus on the hierarchical basis of
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Szabo and Babuska [12]. Letting

55
O =020, %O =\EL[p ©at k=235 @2
3

be the one-dimensional basis, then the two-dimensional hierarchical basis with respect to

the canonical square element contains

i.  the four vertex shape functions

N8 = 0LEDILED, NayELEy) = SLETOLED, (4.3a,b)

N3E18) = 6 (EoLE), N 2E1ED = 61, (EDOE; (4.3c,d)

ii. the 4(p - 1) edge shape functions

N{GLE) = 0L EDBEED, NEELE) = BLEDDE,, (4.4a,b)

N§ELED = 81 EDBSED. NEELED = BLEDEE), k=23, . p; (ddcd)

iii. the (p - 2)(p - 3)/2 internal shape functions

No G162 = 464, DI EDTLEDPLED, (4.52)
NG €18 = N§ ELEIP(ED, N (E1ED) = NEELEDP 1ED, (4.5b,c)
NG €1k = NS GE)P o), NG Epty) = NEELEIPIEDP ED,  @d.5de)

N§EpEp) =N EEpP 28, o, NP2 k) =NEELEDP 4G
(4.55,g)

The four vertex shape functions (4.3) are the usual bilinear shape functions that vanish on
the two edges opposite the vertex to which they are associated. Edge functions (4.4) are
present in the basis for p 2 2. They are nonzero only on one element edge and decrease
linearly in a direction normal to this edge. The interior ‘‘bubble’ functions (4.5) are
present when p 24 and vanish on all element edges. The monomial terms that are

present in this hierarchical approximation when p = 4 are shown in Fig. 1.
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4

g8 &8

885 Y S

FIG. 1. Pascal triangle showing the monomial terms present in a bi-p polynomi-
al, a p-degree hierarchical polynomial, and a modified p-degree hierarchical
polynomial satisfying conditions (4.1) forp =4,

The hierarchical basis (4.3-5) does not satisfy conditions (4.1) for p 2 3; however,
the space 0, obtained by adding the interior shape functions associated with the hierarchi-
cal basis of order p + 1 and the hierarchical basis of order p does satisfy (4.1). As shown
in Fig. 1, the only terms missing from this modified hierarchical space are £f*! and E§*!.
As an example, we list the minimal sets Q,, p =1, 2, 3, 4, that satisfy (4.1) in terms of

the hierarchical basis (4.3-5)

le{vaN27N3aN4}: (4.63)

Q=0 U{NE N2 N2 N}, (4.6b)
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Q3=0 (N{, N3, N3, N3P N b, (4.6¢)

Q4=03 UIN{ NI N§, NF Y UINE, NG L. (4.6d)
As noted, the sets Q0 and Q, are identical to the usual hierarchical basis (4.3,4). The set
Q3 differs from the usual hierarchical basis by the bubble function Nd , which is normally
associated with the hierarchical basis of degree four. Likewise Q, contains the internal
modes N¢ and N§, which are usually associated with a fifth-degree basis. The addition
of these internal modes in a finite element software system is simple and results in a
minor loss in efficiency relative to the standard hierarchical basis. In return for this extra

effort, the solution will be supported by a simple asymptotically correct error estimate.

5. Examples. We consider five examples that illustrate the performance of the error
estimation procedures for both odd- and even-degree approximations by solving elliptic
and p-arabolic problems having (i) smooth solutions, (ii) solutions with line and point
singularities, (iif) nonuniform and highly-graded quadrilateral meshes, and (iv) nonlinear-
ity. The assumptions of Theorems 1-3 are violated for all examples; thus, indicating that

the estimation procedures apply more widely than the theory suggests.

Accuracy of the error estimates is measured by the global and local effectivity indices

IE )l IE GOl
6 = — ei = _'—, ] =1, 2, T N. (5~1)
le ol leGom, "

If E is an asymptotically correct estimate of ¢ then 6 should converge to unity as the
mesh is refined. The estimate is, furthermore, robust if  does not appreciably differ from

unity for a wide range of mesh spacings and polynomial degrees.
Example 1. Consider Poisson’s equation

Au =f(x), xeQ, (5.2a)

on the quadrilateral domain Q with vertices at (0.5,-0.5), (2.0,0.4), (2.5,1.2), and (0.0,2.0).

Let f (x) and Dirichlet boundary conditions be selected such that the exact solution is
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Uy xy) = e 72 (5.2b)

We solve (5.2) on uniform quadrilateral-element meshes having 100, 225, 400, 625,

and 900 elements using bi-p, modified hierarchical (cf. (4.6)), and standard hierarchical
(cf. (4.3-5) piecewise polynomial approximations of orders 1 to 4. Errors and global
effectivity indices in the H! norm are presented in Tables 1-3 for piecewise bi-p, modified
hierarchical, and standard hierarchical approximations, respectively. Results for bi-p and
modified hierarchical approximations are good with effectivity indices in excess of 0.85
for virtually all mesh-order combinations. Results for this problem, which has a smooth
solution and reasonable quadrilateral meshes, also indicate that the effectivity indices of
both approximations are converging to unity under mesh refinement. On the contrary, the
results of Table 3 for the standard hierarchical basis do not indicate asymptotic correctness
of the error estimates for p =3,4. Recall (cf. §4.) that the modified and standard

hierarchical bases agree when p < 3,

We also solve this problem on a chevron-patterned mesh obtained by mapping the

vertices

_J _k (1) 1, ifkell,n - 1] —_ o
S =t 0 itk —on v S k=12 n =W,

(5.3)

of [0,11x[0,1] onto corresponding vertices in € by a bilinear transformation and forming
quadrilateral elements. We solve problems with p=12,34and N =100, 225, 400,
625 using bi-p approximations. Errors and global effectivity indices are displayed in
Table 4. Results for piecewise modified hierarchical approximations are similar. While
effectivity indices are in excess of 0.8, convergence under mesh refinement on these qua-

drilateral meshes is less clear than on uniform quadrilateral-element meshes.

Example 2. Consider Poisson’s equation (5.2a) on a unit square with f (x), the Neu-
mann boundary conditions on x3=0,1, and the Dirichlet boundary conditions on

x1 =0, 1 specified so that the exact solution is
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TABLE 1
Errors and effectivity indices for Example 1 using
piecewise bi-p polynomial approximations.

p 1 2 3 4

N fle li; 8 fle il 8 llell; 8 fle ll; 8
100 0.294 0.823 [ 0283(=1) | 0.972 | 0231(=2) | 0.653 0.159(=3) | 0.941 |
225 0.199 0.890 | 0.130(-1) | 0.987 | 0.716(-3) | 0.777 0.332(4) | 0972
400 0.150 0.926 | 0.738(-2) | 0.992 | 0307 (=3) | 0.845 0.107(—4) | 0.984
625 0.120 0.947 | 0475(-2) | 0.995 | 0.1 58(-3) | 0.887 0.444(-5) | 0.990
900 0.100 0.960 { 0331(-2) | 0.996 | 0922(-3) | 0.914 0215(-5) | 0.993

TABLE 2
Errors and effectivity indices for Example 1 using
piecewise modified hierarchical polynomial approximations.

p 1 2 3 4
N fle ll; 8 flell; 9 llell, 8 lle lly 9
100 0.294 0.823 0.284(-1) | 0966 | 0237(=2) | 0.483 0.176(=3) 0.850

225 0.199 0.890 | 0.130(-1) | 0.983 | 0.725 -3) | 0.673 0.350(—4) | 0.927
400 0.150 0.926 | 0.739(-2) 0.990 | 0.310(-3) 0.779 0.110(—4) 0.959
625 0.120 0.947 | 0475(-2) | 0.994 | 0.1 59(-3) | 0.841 0452(-5) | 0974
900 0.100 0960 | 0.331(-2) | 0.996 | 0925(-3) | 0.881 0.218(-5) | 0.982

[~

TABLE 3
Errors and effectivity indices for Example 1 using
Diecewise hierarchical polynomial approximations.

p 3 4

N lle iy 9 [le iy 9
100 0.463(=2) 0.903 0.693(~3) 0.289
225 0.140(=2) 1.090 | 0.143(-3) | 0.303
400 0.580(-3) 1.208 | 0.452(4) | 0313
625 0.291(-3) 1.288 | 0.183(—) | 0.321
900 0.165(=3) 1344 | 0.876(-5) | 0327

u(xxy) =x372, 5.4
This one-dimensional solution has a line singularity at X5 =0. Numerical results using
piecewise bi-p and modified hierarchical approximations are virtually identical, so results
are only presented for bi-p spaces (of degrees 1 to 4). Computations are performed on
uniform meshes and meshes graded near the singularity having 100, 225, 400, 625, and

900 elements. The graded meshes are uniform in the x direction and have vertices in the
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TABLE 4
Errors and effectivity indices for Example 1 using piecewise
bi-p polynomial approximarions on chevron-patterned meshes.

1 2 3 4

p
| N lledl; 0 llell; 8 flely 6 llell, %
100 0.342 0.888 1 0301(-I) | 0.897 | 0.221(-2) | 0.797 0.145(-3) T 0.
225 0.245 0.932 | 0.156(-1) | 0.895 | 0.868(=3) | 0.875 0438(—4) | 0971
400 0.187 0.936 | 0.857(-2) | 0.864 | 0.338(-3) | 0.927 0.125(-4) | 0922
625 0.153 0.950 | 0.578(-2) | 0.861 | 0.191(=3) | 0.945 0.591(-5) | 0933

X, direction at
Xo; =(GmPB, j=0,1,-n, (5.5
with n=VN. As suggested by Szabo and Babuska [12], we select

B=@ +1/2)/(3/2 - 1/2) to match the singularity of the solution and recover the optimal

O (hP) convergence rate in H! under 4 -refinement.

Exact errors and global effectivity indices in H! are presented in Tables 5 and 6 for
uniform and graded meshes, respectively. A priori estimates indicate that the discretiza-
tion error behaves as O (k) on uniform meshes of spacing h = 1/n. A posteriori error
estimates based on p -refinement, such as those of §3, would, therefore, not be expected to
perform well under these conditions. The results of Table 5 confirm this. While
effectivity indices for p # 3 are not bad, convergence under 4 -refinement is either non-
existent or very slow. As shown in the upper portion of Fig. 2, poor results are due to
large errors and local effectivity indices on elements adjacent to x, = 0. Results with
highly-graded meshes (cf. Table 6 and the lower portion of Fig. 2) substantially improve
performance. Global effectivity indices appear to converge to unity and local errors are

closer to an equilibrated state.

Example 3. Consider a Dirichlet problem for Laplace’s equation on a unit square

with the data selected so that the exact solution in polar coordinates is

W) = u(r,9) = r%sin(%q)), (5.6)




-17 -

TABLE § - _
Errors and effectivity indices for Example 2 using piecewise
bi-p polynomial approximations on uniform meshes.

p 1 2 3 4
N llell; 8 lledl; 8 fle dl; 8 llell; 8|
100 | 0.480(-1) 0.875 ] 0.665(=2) | 0.988 0.298(=2) | 0373 | 0.I61(=2) | 0.824 |
225 0.333¢-1) 0.885 | 0.443(-2) | 0988 | 0.199(-2) | 0373 | 0.107(-2) | 0.824
400 0.256(-1) 0.891 | 0.333(-2) | 0.988 | 0.149(-2) | 0373 | 0.806(-3) | 0.824
625 0.209(-1) 0.896 | 0.266(-2) | 0988 | 0.1 19(=2) | 0373 | 0.645(-3) | 0.824
900 0.177(-1) 0.899 | 0.222(-2) | 0.988 | 0.993(-3) | 0373 | 0.537(=3) | 0.824
TABLE 6
Errors and effectivity indices for Example 2 using piecewise
bi-p polynomial approximations on highly-graded meshes.
p 1 2 3 4
N lle 1, 0 fleil; 0 flell, 8 fledly 8

100 0.392(-1) 1002 | 0.I31=2) | 0.9957 | 0.129(-3) | 1.380 | 0.200(—<4) | 1.031
225 0.263(-1) 1001 | 0.592(=3) | 0.9971 | 0.396(—4) | 1.268 | 0.422(-5) | 1.020
400 0.198(-1) 1001 | 0336(-3) | 0.9979 | 0.170(—4) | 1.208 | 0.138(-5) | 1.015
625 0.158(-1) 1000 | 0.216(-3) | 0.9983 | 0.876(-5) | 1.149 | 0.576(-6) | 1.012
900 0.132(-1) 1.000 | 0.151(=3) | 0.9987 | 0.510(-5) | 1.126 | 0.281(-6) | 1.009

which has a point singularity at the origin.

We initially solve this problem using piecewise bi-p approximations on uniform
meshes having 100, 225, 400, and 625 elements. Exact errors and global effectivity
indices are presented in Table 7. Local errors and effectivity indices on a 400-element
mesh are presented in the upper portion of Fig. 4. As with Example 2, solutions on uni-
form meshes concentrate errors in the element adjacent to the singularity. The a posteriori
error estimates cannot performs well under these conditions and poor global effectivity

indices result.

Results are also obtained using piecewise bi-p and modified hierarchical approxima-
tions on locally graded meshes that were generated by refining the element closest to the
singularity of a uniform N -element mesh. Refinement of the element nearest the singular-

ity consists of generating n elements along each coordinate axis according to the distribu-
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FIG. 2. Local errors (upper-left) and the difference between the local effectivity
indices and unity (upper-right) for Example 2 on a uniform 900-element mesh
using piecewise bi-p approximations with p = 2. Similar data for computations
performed on a highly-graded mesh are shown at the bottom.
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TABLE 7
Errors and effectivity indices for Example 3 using piecewise
bi-p polynomial approximations on uniform meshes.

p 1 2 3 4

N fleil; 8 lle Il; 8 lle ll; i llell 0 __|
100 0.466(-1) 0.6430 T 0.237(-1) [ 0.191 0.162(-1) | 0.310 0.122(-1) | 0.041 |
225 0.357¢-1) 0.6482 | 0.181(-1) | 0.191 0.124(-1) | 0311 0.929(=2) | 0.041
400 0.296(-1) 0.6512 | 0.149¢-1) | 0.191 0.102(-1) | 0.311 0.767(-2) | 0.041
625 0.256(-1) 0.6531 0.129(-1) | 0.191 0.882(-2) | 0.311 0.660(-2) | 0.041

tion (5.5) and generating a diagonal from the upper right vertex of the smallest square ele-
ment to that of the original square element. As shown in Fig. 3 for N =25 and n =4,
this process creates a mesh with N square and 2(n — 1) trapezoidal elements. Results in
Tables 8 and 9 use the following combinations of N and n: 400, 10; 625, 15; 900, 20;
and 1225, 50. Values of B are selected as 1/(2/3) for p =1 and (p/2)/(2/3) for p > 1.
Local errors and effectivity indices are presented for piecewise bi-p approximations with

p =4 in the lower portion of Fig. 4.

The severe grading has reduced the local error on the element adjacent to the singu-
larity and this has substantially improved the performance of the global and local
effectivity indices. As with Examples 1 and 2, results for p =3 are poorer than those for
other orders. Effectivity indices are closer to unity with bi-p approximations than with
modified hierarchical approximations. Additional equilibration of loading on the edges of
odd-order approximations may be necessary to improve the performance of the error esti-
mate [11]. A similar degradation of performance was observed by Babuska and Yu [5]

with first- and second-order approximations in the presence of singularities.

Example 4. Consider the convection-diffusion problem
W —Au +u, +u, =f(xt), xel0,11x[0,1], ¢>0, (5.7a)

with f (x,t), the initial, and the Dirichlet boundary conditions specified so that the exact

solution is




=20 -

TABLE 8 .
Errors and effectivity indices for Example 3 using piecewise
bi-p polynomial approximations on highly-graded meshes.

p 1 2 3 4
N flell, ] llell; ] lle l, ) llell 9

418 0.161(=1) 1.082 | 0.137(= 0960 | 0.272(-3) | 1.98 | 0.420(=4) | 1.076 |
653 0.138(-1) 1055 | 0.113(=2) | 0999 | 0.227(-3) | 1.811 0.343(~4) | 1.105
938 0.123(-1) 1.045 | 0.974(-3) | 1.023 | 0.198(=3) | 1712 | 0.298(~) | 1.113
1273 0.111(-1) 1.040 | 0.864(=3) | 1.038 | 0.177(=3) | 1.654 | 0.266(—) | 1.114

TABLE 9
Errors and effectivity indices for Example 3 using piecewise
modified hierarchical polynomial approximations on highly-graded meshes.

p 1 2 3 4

N lle ], 9 lledl; 8 lle iy 9 fleil; 8
418 0.161(-1) 1082 [ 0.160(=2) | 0840 | 0.347(=3) | 1.723 0.696(—4) | 0.652
653 0.138(-1) 1055 | 0.132(-2) | 0.871 | 0.288(-3) | 1.567 0.577(4) | 0.661
938 0.123(-1) 1.045 | 0.114(-2) | 0.889 | 0.250(-3) | 1.480 0.504(—4) | 0.661
1273 0.111(-1) 1.040 | 0.101(=2) | 0.900 | 0.223(-3) | 1.429 0.451(—4) | 0.660

u(xx9,t) = £[1 - tanh(10x, + 2x, — 10t - 2)]. (5.70)

We solve this problem on 0 <t < 0.5 using uniform meshes having 100, 400, 900,
and 1600 square elements with piecewise bi-p and modified hierarchical polynomial
approximations of orders 1 to 4. Temporal integration utilizes the backward-difference
software system DASSL [10] with error tolerances of 1076 for p = 1, 2, 107 for p = 3,
and 10719 for p =4. Such small tolerances minimize temporal discretization errors rela-

tive to the spatial errors that we are studying.

Exact errors and effectivity indices in H! obtained using (3.8, 14) at t = 0.5 are
presented in Tables 10 and 11, respectively, for piecewise bi-p and modified hierarchical
approximations. The results again indicate convergence of effectivity indices to unity
under mesh refinement. The error estimates have a good range of applicability with
effectivity indices in excess of 0.9 for virtually all computations. Once again, perfor-
mance is poorer when p = 3. Results are slightly better with modified hierarchical than

with bi-p approximations.
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FIG. 3. Structure of a highly-graded mesh with N =25 and n = 4 for Example 3.

Example 5. Consider the nonlinear reaction-diffusion equation
u — Au — qu*(1 - u), xe[0,11x[0,372], ¢ >0, (5.8a)
with ¢ 20 and the initial and Dirichlet boundary conditions specified so that the exact

solution is

W o) = [1 + ¢ 920 +x2 =0l (5.8b)

This solution represents a wave front moving normal to the line x; = —x, with speed

Vg 12.

We solve (5.8) with ¢ =20 on 0 < ¢ < 0.5 using the meshes and piecewise polyno-
mial approximations specified in Example 4. Temporal tolerances are selected as 107 for

p=1,10"for p =2, and 10713 for p =3, 4.

Exact errors and effectivity indices at ¢t = 0.5 appear in Tables 12 and 13, respec-

tively for piecewise bi-p and modified hierarchical approximations. Results are
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indices and unity (upper-right) for Example 3 on a uniform 400-element mesh
using piecewise bi-p approximations with p = 4. Similar data for computations
performed on a highly-graded 418-element mesh are shown at the bottom.
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TABLE 10 ‘
Errors and effectivity indices for Example 4 using
piecewise bi-p polynomial approximations.

p 1 2 3 4

N llef, | © llelt; 8 lleth 9 flell; 8
100 0478 | 0.739 0.101 0.885 | 0.192(-1) | 0426 | 0.356(-2) | 0.9
400 0235 | 0.928 | 0.255(-1) | 0.970 | 0.252(-2) | 0.754 | 0.238(-3) | 0.979
900 0.157 | 0.968 | 0.114(-1) | 0.987 | 0.756(-3) | 0.880 | 0.477(~4) | 0.991
1600 | 0.118 | 0.981 | 0.642(-2) | 0.992 | 0320(=3) | 0.930 | 0.152(—4) | 0.995

TABLE 11 .
Errors and effectivity indices for Example 4 using .
Piecewise modified hierarchical polynomial approximations.

D 1 2 3 4

N lle il 8 lledl; 8 lle ll; 8 llell, 6 |
100 0.380 0.858 | 0.957(-1) | 0972 | 0.I86(-1) | 0.556 0.350(=2) | 0.970
400 0.195 0956 | 0.252(-1) | 0990 | 0.251(-2) | 0.848 0.237(-3) | 0.992
900 0.131 0980 | 0.113(-1) | 0995 | 0.753(-3) | 0.930 0.476(-4) | 0.996
1600 0.984(-1) 0.989 | 0.640(-2) | 0.997 | 0.319(-3) | 0.960 0.152(—4) | 0.998

comparable to those of Example 4, except that effectivity indices for p = 3 are much

closer to unity here than there.

6. Discussion. We show that a posteriori estimates of spatial discretization errors of
piecewise bi-p polynomial finite element solutions of two-dimensional elliptic and para-
bolic problems (2, 3, 5, 14, 15] extend to other spaces of order p. The finite element
space must contain all monomial terms of degree p + 1 except the principal terms x£*!
and xﬁ“. If so, then estimates involving jumps in solution gradients at element vertices
when p is odd and from the solution of local elliptic or parabolic problems when p is
even are asymptotically correct on rectangular-element grids. The error estimates are
stated for arbitrarily structured grids of quadrilateral elements and computational results of
§5 show that they may be asymptotically correct in situations that are not supported by the

present theory.

The error estimates are simple to construct and require at most nearest-neighbor
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TABLE 12 '
Errors and effectivity indices for Example 5 using
piecewise bi-p polynomial approximations.

p i 2 3 4

N llell; 8 el 8 llelly 8 lell; 8
100 0.278(-1) 0.949 0.924(=3) 0.995 0.295(—4) { 0.920 0.898(-6) | 0.999
400 0.137(-1) | 0977 | 0.231(-3) | 0.999 0.369(=5) | 0966 | 0.562(-7) 1.000
900 0.909(=2) 0.985 0.102(-3) 0.999 0.109(-5) 0.979 0.111(-7) 1.000
1600 0.681(-2) 0.989 0.577(-4) 1.000 0.462(-6) 0.979 0.351(-8) 1.000

TABLE 13
Errors and effectivity indices for Example S using
plecewise modified hierarchical polynomial approximations.

p 1 2 3 4

N fle lly 9 lle il 8 e ll; 9 el L
100 0.446(-1) 0.985 0.226(~1) 0.967 0.107(=3) 1.106 0.530(-5) 0.867
400 0.219(-1) 0.996 0.561(=2) 0.990 0.128(—4) 1.031 0.297(-6) 0.961
900 0.146(-1) 0.998 0.249(=3) 0.996 0.377(-5) 1.014 0.574(-7) 0.982
1600 0.114(-1) 0.999 0.140(-3) 0.998 0.160(-5) 1.008 0.180(-7) 0.990

information from the finite element solution; hence, they are efficient for both serial and
parallel computation. Temporal superconvergence appears to be robust; thus, there is little
advantage of using the parabolic error estimation procedure relative to the elliptic pro-
cedure for even-order approximations. An exception might occur when using error esti-

mates to control mesh motion (r-refinement).

Focusing on spatial error estimation, we ensured that temporal errors were negligible
relative to spatial errors. In a practical computational system, however, the temporal and
spatial errors must be related. One way of doing this is to maintain the local temporal

error per step at a small percentage of the total error [7, 9].

Several theoretical extensions of the error estimation procedures described herein are
necessary. For example, the performance of the error estimates in the presence of singu-
larities and singular perturbations needs investigation. The latter situation involves small

diffusivities (1] whereas the error estimates rely on diffusion dominance. At the very
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least, error estimates become less robust near singularities and in the presence of singular

perturbations. A theory is needed for nonlinear problems and vector systems. Likewise,

convergence analyses are needed on meshes of arbitrary triangular and quadrilateral ele-

ments. The error estimates can be easily extended to three-dimensional cubic elements

and the present theory holds in this case. However, analyses are needed for meshes of

tetrahedral and hexahedral elements.
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