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ABSTRACT

This thesis generalizes the classical mathematical homogenization theory for heterogeneous
medium to account for eigenstrains. Starting from the double scale asymptotic expansion for the
displacement and eigenstrain fields, this study derives close form expressions relating arbitrary

eigenstrains to the mechanical fields in the phases.

Computational models and adaptive modeling strategies for obtaining an approximate solution
to a boundary value problem describing the finite deformation plasticity of heterogeneous struc-
tures are developed. A nearly optimal mathematical model consists of an averaging scheme
based on approximating eigenstrains and elastic concentration factors in each micro phase by a
constant in the macro problem subdomains where modeling errors are small, whereas else-
where, a more detailed mathematical model based on piecewise constant approximation of
eigenstrains and elastic concentration factors is utilized. The methodology is developed within
the framework of “statistically homogeneous” composite material and local periodicity assump-

tions.

For numerical examples considered, the CPU time obtained by means of the adaptive 2/n-point
scheme was 30 seconds on a SPARC 10/51 station as opposed to 7 hours using classical mathe-
matical hbmogenization theory. At the same time, the maximum error in the microscope fields in
the critical unit cell was only 3.5% in comparison with the classical mathematical homogeniza-

tion theory.
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CHAPTER 1
INTRODUCTION

In this thesis, we develop a theory and methodology for obtaining an app\roximate solution to a
boundary value problem describing the finite deformation plasticity of heterogeneous structures.
The theory is developed within the framework of “statistically homogeneous” composite material
and local periodicity assumptions. For readers interested in theoretical and computational issues

dealing with various aspects of nonperiodic heterogeneous media we refer to [14][16] [38][49].

In modeling heterogeneous media it is tempting to adopt a macroscopic point of view, which con-
siders the composite as a homogenéous medium with anisotropic properties that have to be deter-
mined. Several authors [40] applied anisotropic yield criterion developed by Hill [22] for elasto-
plastic analysis of fibrous composites. On the other hand Dvorak and Rao [12] and Lin et al. [33]
have shown that Hill’s anisotropic yield criterion (originally designed for metals) assuming that
hydrostatic stress does not influence yielding and that there is no Bauschinger effect is not valid

for fibrous composites.

Under these circumstances micromechanical analysis of composite materials, which provides the
overall composite behavior from the properties of individual constituents (réinforcement and
matrix) and their interaction, seems to be the only viable alternative. Most of the current microme-
chanical methods approximate the local fields within each phase either as uniform [1][7][9] or as
piecewise constant [2] [3][11][46]. Micromechanical approaches can be also classified into the fol-
lowing two categories: (i) those that require evaluation of instantaneous concentration function by
solving the rate form of an inclusion or unit cell problem [1][2][3][7][10][46], and (ii) those that
require evaluation of elastic concentration function only. The latter is based on the transformation
field analysis recently developed by Dvorak [7][8][11]. An excellent survey of these micromechan-
ical approaches for plasticity.of fibrous composites is given in [7][9] and references therein provide

good insight into this approach.

The challenge of solving structural problems with accurate resolution of microstructural fields
undergoing inelastic deformation is enormous. This subject has been an active area of research in
the computational mechanics community for more than two decades. Numerous studies have
dealt with the utilization of thé finite element method [19][20][27][30][31][341[41][46], the bound-
ary element method [18], the Voronoi cell method [17], the spectral method [1], the transformation

field analysis [8], and the Fourier series expansion technique [36] for solving PDEs arising from




the homogenization of nonlinear composites. The primary goals of these studies were twofold: (i)
develop macroscopic constitutive equations that would enable solution of an auxiliary problem
with nonlinear homogenized (smooth) coefficients, and (ii) establish bounds for overall nonlinear

properties [3][39][44][45][46][47].

Methods based on a multiple scale asymptotic expansion, which are parallel to micromechanical
approaches for linear systems appeared in the mid 70’s by the name of mathematical homogeniza-
tion. The mathematical homogenization method is advantageous in the sense that it provides con-
vergence characteristics of certain norms of interest in addition to the bounds of equivalent
material properties. The fundamentals of mathematical homogenization theory can be found,

among others, in [4][5][28].

For small deformation plasticity a mathematical homogenization theory has been established by
Suquet [44][45]. Finite element application issues were addressed in [19]. In these attempts the
uncoupling of scales was carried out for a linearized system in a similar fashion to that of the lin-
ear problem. References [2][3][46] represent the micromechanical approaches parallel to the math-
- ematical homogenization for plasticity [19][44][45] in terms of the formulation and computational

complexity involved.

Attempts at solving large scale nonlinear structural systems with accurate resolution of micro-
structural fields are very rare [13][19][28] and successes were reported for small problems and/or
special cases. This is because for linear problems a unit cell or a representative volume problem
has to be solved only once, whereas for nonlinear history dependent systems, it has to be solved at
every increment and for each macroscopic (Gauss) point. Furthermore, history data has to be
updated at a number of integration points equal to the product of the number of Gauss points in

the macro and micro (unit cell) domains.

To illustrate the computational complexity involved we consider an elasto-plastic analysis of the
composite flap problem [15] with fibrous microstructure as shown in Figures 1.1 and 1.2. The
structural problem is discretized with 788 tetrahedral elements (993 degrees of freedom), whereas
fibrous microstructure is discretized with 98 elements in the fiber domain and 253 elements in the
matrix domain, totaling 330 degrees of freedom. The CPU time on SPARC 10/51 workstation for
this problem was over 7 hourrs, as 6pposed to 10 seconds if von Mises metal plastiéity was used

instead, which means that 99.9% of CPU time is spent on stress updates. Under these circum-




stances it seems that the statement made by Hill [24] that “... for non-linear systems, the computa-

tions needed to establish any constitutive law are formidable indeed ...” is still valid 30 years later.

With the exception of [13][19][28] most of the research activities focused on small deformation
inelastic response of microconstituents and their interfaces. This is partially justified due to high
stiffness and relatively low ductility of fibrous composite materials. However, when hardening is
low and the stress measures are comparable to the inelastic tangent modulus, or in the case of thin

structures undergoing large rotations, large deformation formulation is required.

One of the objectives of the present work is to develop a mathematical homogenization theory
with eigenstrains, a counterpart to the micromechanical approach based on the transformation
field analysis recently developed by Dvorak [6]{8]. In Chapter 2 we derive a closed form expres-
sion relating arbitrary transformation fields to mechanical fields in the phases, which for the case
of piecewise constant transformation fields reduce to the form derived by Dvorak [6] on the basis
of the uniform fields concept. The mathematical homogenization theory with eigenstrains is then

extends to account for finite deformation and thermal effects in Chapter 3.

The second objective is to devise an efficient computational scheme that will enable to solve large
scale structural systems in heterogeneous media. An adaptive strategy is developed to ensure reli-
* ability and efficiency of computations. In Chapters 3 and 4 we employ an additive decomposition
of the rate of deformation into elastic rate of deformation, governed by hypoelasticty and inelastic
rate of deformation. Chapter 3 focuses on the 2-point approximation scheme (for two phase mate-
rials), where each point represents an average response within a phase. The local response within
each phase is then recovered by means of post-processing. In Chapter 4 we describe the n-point
scheme model, where # denotes the number of elements in the microstructure. Chapter 5 is
devoted to modeling error estimation and adaptive strategy. We devise an adaptive 2/n-point
model, where the 2-point scheme is used in regions where modeling errors are small, whereas
elsewhere the n-point scheme is employed. Numerical experiments conducted in Chapter 6 inves-
tigate the 2-point, the n-point, and the adaptive 2/n-point schemes in the context of finite deforma-

tion plasticity.



Figure 1.1 Finite element mesh for the nozzle flap problem

Figure 1.2 Finite element mesh for the fibrous unit cell




CHAPTER 2

MATHEMATICAL HOMOGENIZATION WITH EIGENSTRAIN FOR SMALL
DEFORMATIONS

In this section we generalize the classical mathematical homogenization theory [4][5] for heteroge-
neous media to account for eigenstrains. We regard all inelastic strains, phase transformation and
temperature effects as eigenstrains in an otherwise elastic body. We will derive closed form expres-
sions relating arbitrary eigenstrains to mechanical fields in a multi-phase composite medium. In

this section attention is restricted to small deformations.

2.1 Problem Definition

The microstructure of a composite material is assumed to be locally periodic (Y-periodic) with a

period represented by a unit cell domain or a Representative Volume Element (RVE), denoted by

©, as shown in Figure 2.1. Y-periodicity implies that all response functions, such as displace-

ments, stresses and strains, are periodic with periods proportional to the ratio of the representative

micro and macro structures, denoted by . Let X be a macroscopic coordinate vector in macro
domain € and y = x/¢ be a microscopic position vector in © . For any periodic function f, we

have f(x,y) = f(x,y+ky) inwhich vector J is the basic period of the microstructure and k

is a 3 by 3 diagonal matrix with integer components. Adopting the classical nomenclature, any Y-

periodic function f can be represented as

felx)=f(x, y(x)) .1
where superscript ¢ denotes a Y-periodic function f. The indirect macroscopic spatial derivatives

of £ can be calculated by the chain rule as

I3 = F o) = £+ () 2

FoB¥) = £ (0 )46 F (2.9) = ¢f. (%, ) @3

where the comma followed by a subscript variable x; or y; denotes a partial derivative with

respect to the subscript variable (i.e. f  =df/dx; and f y, = df /dy;). A semi-colon followed




by a subscript variable X; denotes a partial derivative with respect to the remaining x compo-
nents (2.2), but a full derivative with respect to y;, and vice versa when a semi-colon is followed
by subscript variable y; (2.3). Summation convention for repeated right hand side subscripts is

employed, except for subscripts x and y .

We assume that micro-constituents possess homogeneous properties and satisfy equilibrium, con-
stitutive, kinematics and compatibility equations as well as jump conditions at the interface
between the micro-phases. The corresponding boundary value problem is governed by the follow-

ing equations:

G?j;xj +b, =0 in (2.4)
05 = Lyu(eg—Hg) in Q @3)
elSj = “&‘;x.) in Q 2.6)

colgj = uﬁ.;x.] in Q 2.7

up> =, on. I (2.8)

1 u

osn. =1 on T (2.9)

ig™tj t

where G& 8l€j and (x)lgj are components of stress, strain and rotation tensors; L

£is ; and ulgj are

ijk
components of elastic stiffness and eigenstrain tensors, respectively; b; is a body force assumed to

be independent of y; u$ denotes the components of the displacement vector; the subscript pairs

with regular and square parenthesizes denote the symmetric and anti-symmetric gradients

defined as

1 1
u(gi;xj) = j(”zg;xj + u};;x,-) and ”fi;xj] = i(uzg;x,- - u};xi) (2.10)

€2 denotes the macroscopic domain of interest with boundary I'; I, and I, are boundary por-

tions where displacements #; and tractions #; are prescribed, respectively, such that




r,nI’, = D and I' = T, UT,; n; denotes the normal vector on I'. We assume that the

interface between the phases is petfectly bonded, i.e. [C lgjﬁ j] = 0 and [u$] = O at the inter-

face, I';,,, where 7, is the normal vector to I';,; and [#] is ajump operator.
2.2 Asymptotic Analysis
In the following, displacements u$(x) = u;(x, y) and eigenstrains Lllgj(x) = Wy;(x, y) are
approximated in terms of double scale asymptotic expansions on 2 X ©:
(%, y) = ud(x, y) +qul(x,y) + ... @.11)
Wi, 3) = ng (e, y) + b, y) + ... 2.12)

Strain and rotation expansions on £2 X © can be obtained by substituting (2.11) into (2.6) and (2.7)

with consideration of the indirect differentiation rule (2.2)

1
g;(x, y) = Ee;jl(x, y)+ed(x, y)+cel(x, y)+ .. 2.13)

...,1 -1 0 1
wij(xa y)= E_,wij (x,y)+ (Dij(x, y)+ C.,(Dij(x’ y+.. (2.14)

where strain and rotation components for various orders of ¢ are given as

P 0 S = s s+1 —
g = &y;(u”), ef = g +e,w ), s=01,.. (2.15)
= 0 ws. = s s+1 —
w5 = 0y@°), of = 0 @)+, s=01,.. (2.16)
and
(W) = Uli vy €y (') = uf s 2.17)
o, () = Uix > ©,,(u’) = Uiy (2.18)

Stresses and strains for different orders of ¢ are related by the constitutive equation (2.5)

-1 - -1 = =



The resulting asymptotic expansion of stress is given as

1
c,(x,y)= 56,-;1 (x, ) +00(x, y) +coi(x, y) + ... 2.20)

Inserting the stress expansion (2.20) into equilibrium equation (2.4) and making'the use of (2.2)

yields the following equilibrium equations for various orders:

-2y. 1 -
0(¢™>): cij,yj =0 2.21
och: Gi_j}xj+68»,yj =0 (2.22)
o(cY: G?j,x~+ci1j,yj +b, =0 (2.23)

sy K +1 —
0(c%): Gij’xj+6fj’yj =0, =

1,2,... (2.24)
Consider the O(¢™2) equilibrium equation (2.21) first. Pre-multiplying it by #? and integrating

over a unit cell domain © yields

J u97l de =0 (2.25)
)

i l],}/'j

and subsequently integrating by parts gives

Je

where I'g denotes the boundary of ©. The boundary integral term in (2.26) vanishes due to the

@u?c;jlnj dF@—jG uly \Lijpitiliyy 40 = 0 2.26)

periodicity of boundary conditions on I'g . Furthermore, since the elastic stiffness Lz‘j % is positive

definite, we have

=0 = u? = ul(x) (2.27)

0
Uiy, i

and

ot (x,y) = ejl(x,y) = oj!(x,y) = 0 (2.28)




We proceed to the O(¢™!) equilibrium equation (2.22) next. From equations (2.15) and (2.19) fol-

lows

{L (8 (1) +8ykl(ul)_ul(<)l)},yj =0 on O (2.29)

To solve for (2.29) up to a constant we introduce the following separation of variables

U,'l(x: y) = Hikl(y){exkl(uo) +d(x)} (2.30)
where H;, is a Y-periodic function, d}} is a macroscopic portion of the solution resulting from
eigenstrains, i.e. if u,?l(x, y) = 0 then df5(x) = 0. It should be noted that both H;; and d}};

are symmetric with respect to indices k and [. Based on (2.30) O(¢™!) equilibrium equation

takes the following form:

{Lijkl((lklmn + lemn)gxmn(uo) + lemndr},lm (x) - ul(c)l)},yj =0 on © 23D

where

1
Iklmn = E(gmksnl + 8nk8171l)’ lemn(y) = H(k,y,)mn()’) (2.32)

and 5m % is the Kronecker delta. Since equation (2.31) should be valid for arbitrary combination of
macroscopic strain field 8xmn(u0) and eigenstrain field },Ll?l, we first consider U9, =0,
(%) #0 and then €, (%) =0, nY # 0 which yields the following two governing equa-

exmn

tions on © :

{Lijkz(H(k,y,)mndin(x)—ng)},yj =0 (2.34)

Equation (2.33) together with the periodic boundary conditions comprise a standard linear bound-
ary value problem on © . For complex microstructures the finite element method is often used to

discretize the system to solve for H;;;(y), which yields a set of linear algebraic system with six
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right hand side vectors [14][19]. In absence of eigenstrains, the asymptotic fields can be written in

terms of the macroscopic strain éij =€, j(uo) and the macroscopic rotation (—f)ij =m xij(uo) :

&; = &+ Gy + 0(Q) (2.35)
;= (T‘)ij+éijklékl+ 0(c) (2.36)

where
Giu(¥) = Hyzy 1u(¥) 237)

The terms G; ikl and Gijkl are known as polarization functions. It can be shown that the integrals

of the polarization functions on © vanish due to periodicity conditions.

The elastic homogenized stiffness l—,,' ikl follows from 0(¢%) equilibrium equation [14]:

= 1 1
Lijkl = @jGLijmnAmnkl do = @J.GAmniijnstAstkl do (2.38)
where
Aklmn = Iklmn + lemn (2.39)

A kimn 18 often referred to as an elastic strain concentration function and |®l is the volume of a

unit cell.

After solving (2.33) for H, , we proceed to (2.34) for finding d}} subjected to periodic boundary

mn’
conditions. Pre-multiplying (2.34) by H;, and then integrating the resulting equation by parts

with consideration of the periodic boundary conditions yields
0 =
j@ GijstLijkl(lemnd,L,Lm (x)-ug)doe =90 (2.40)

Rewriting this equation in terms of strain concentration function A;;; and manipulating it with

ijk
(2.38) yields



11

dj = I@l(L’Jk’ ijkl)—ljeGmnlemnstugz do (2.41)

where
~ 1

The superscript —1 denotes the reciprocal tensor. The 0(c0) approximation to the asymptotic

strain (2.13) and rotation fields (2.14) reduces to:

g = &;+ Gy +dfy) + 0(g) (2.43)

®; = B+ Gyu(Ey +dfy) + 0(q) (2.44)

Let P = {yM(y)}} be aset of C~! continuous functions, then the separation of variables for

the O(¢?) eigenstrains is assumed to have the following decomposition:

up(xy) = 3wy i) (2.45)
n=1

The resulting asymptotic expansion of the strain and rotation fields (2.13), (2.14) can be expressed

as follows:
£,(%, ) = E;(0) + Gy + T DA WD) +0(5) 246
n=1
W%, y) = By(x) + Gijr(3)Ey(x) + 2 DN (y) (P (x) +0(g) @247)
n=1

where Dl(]% (y) and E,(ﬁ%(y) are the eigenstrain influence functions, which can be expressed in

terms of polarization functions G;,(¥) and Gjxi(y) as follows

;ﬁ%()") = I I ymn( mnpq — mnpq)_lj.@GrquLrsle(n) do (248)
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-1
tﬂ(% (y) = I l t]mn(Lmnpq mnpq) J’® GrquLrskl\lf(n) d@ (2-49)
In particular, if ¥ is a set of piecewise constant functions such that

1 if y, € em

yMW(y,) = { . (2.50)
0 otherwise

and ©M) js the subdomain T} within a unit cell, ¢(") the subdomain volume fraction given by

¢ =|eM)|/|6| and satisfying Zﬁ _ 1c(ﬂ) = 1, then (2.46) and (2.47) reduce to:

n
e’ = IG(P)I'[e(mgij 0 = &+ Gl(ﬂ)lgkl-‘-nngl(ﬁc?)“l(c?)Jr 0(c) 251
1 n
= — = ® (R H{pM)
(Dl(]p) B |®(P)|J®<p>®ij 40 = COij+Glﬂdgk!+nz="1DUkl Hi+ 009 @2
where
DZ(JF/)CTI]) = C(n)Gz(ﬁfzn(Lmnpq_Zmnpq) ]Gg},)qL(nk) (2.53)
D I(J%) = C(n)Gl(J%n(Lmnpq‘zmnpq) lGr?p)qL}(*?k)l 2.54)
and
(m A(n)
(Gl]kl? l]kl) = lQ(ﬂ)M@m ijkl’ z]kl) do© 2.55)

We will refer to the piecewise constant model defined by (2.51) and (2.52) as the n-point scheme
model. Equation (2.51) has been originally derived by Dvorak [7][8] on the basis of transformation

field analysis. Finally, we integrate the O(¢?) equilibrium equation (2.23) over ©. The

J Gl Gy dO term vanishes due to periodicity and we obtain:.
J
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0 —
(l GIJ o! d@) +h,=0 on  Q (2.56)

Substituting the constitutive relation (2.19) and the asymptotic expansion of strain tensor (2.43)

into the above equation yields the macroscopic equilibrium equation
1 g 0
(@ j o LijiCA timnEmn * Orimninn = Hi1) d®)x +b; =0 2.57)
7

Finally, if we define the macroscopic stress G ij as

0
=15 j ¥ dO (2.58)

then the equilibrium equations (2.56) and (2.57) can be further simplified as follows:

where [L.. is the overall eigenstrain given b
ij g g y

_ 1 =
My = ‘@Lij}d fQLkzmn(Gmnpngq—u,%n) doe (2.60)

by A -1 and manipulating (2.60) with (2.38) and (2.41), the overall

Replacing G mnpq ~ ‘mnpgq

eigenstrain field can be expressed as

— 1
;= @IQBW;L,?, de 2.61)
where

Equation (2.61) represents the well-known Levin’s formula [32] relating the local and overall

eigenstrains, and B; ikl 18 often referred to as the elastic stress concentration function.
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2.3 2-Point Scheme for Two Phase Composites

As a special case we consider a composite medium consisting of two phases, matrix and reinforce-

ment, with respective volume fractions c¢™) and ¢ such that ¢ + ¢(f) = 1. Superscripts
m and f represent matrix and reinforcement phases, respectively. ©Um) and O denote the

matrix and reinforcement domains such that ® = @™ U ©(). We assume that eigenstrains
and elastic strain concentration factors are constant within each phase. This yields the simplest
variant of (2.51) and (2.52) where n = 2. The corresponding approximation scheme is termed as

the 2-point model. The overall elastic properties are given by [14]

f
Lijw = Y, ¢OLE L+ G (2.63)

1jmn
r=m

and the overall stress reduces to:

5, = cmol + ol 2.64)
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CHAPTER 3
THE 2-POINT SCHEME FOR FINITE DEFORMATION PLASTICITY

r+ Az
For finite deformation analysis the left superscript denotes the configuration: [1 is the current

t
configuration at time 7 + Az, whereas [1 is the configuration at time ¢. For simplicity, we will

t+ At
often omit the left superscript for the current configuration, i.e., [1 = O

3.1 Basic Assumptions

To extend the small deformation formulation to account for finite deformation effects the follow-

ing assumptions are made:
A1: Phase stress objectivity

We will assume that the principle of objectivity is satisfied for each phase. Then the Cauchy stress

rate for phase r is given as:

o) = &M +&  where &Y = APS — cPAR 3.1

where the superposed dot represents the material time derivative. The rate of deformation and

spin tensor components, denoted as élgj(r) and (i)lgj(r) , respectively, are defined as

r)
isx;)

and (Dlgj(’)(x) = vf-(.r : (3.2)

¢ —
8%, (X') =V z,xj]

where Vlg(;i is the phase velocity gradient. The asymptotic expansion of the phase velocity is given

as
V() = v, y) = V)7 p) + vl V() + G

o] z(jr ) is the objective rate of the Cauchy stress in phase 7, which represents the material response

due to deformation, whereas Al(jr ) = 9?,(12 ){Cﬁg ) }_1 represents the rate of rotation.
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Remark (1): The choice of rotation %I(j’ ) depends on the microstructure. For fibrous composites it

is natural to assume that R z(jr ), represents the fiber rotation from the configuration aligned along

. ! X . .
the unit vector m; to the current configuration aligned along the vector m;. Thus

=)

m; = R 'm; and ", (’){9{“)} m;=R;;'m (3.4)

J

Following Lee [29] it can be shown that /_\,(jr) is related to the spin and rate of deformation tensors

by:

Ry = O +efpmm, - Pmem, (3.5)

The choice of rotations in textile and particle composites is less obvious. We refer to [25] for the
discussion on various choices.

A2: Additive decomposition of hypoelastic and inelastic rate of deformation

~ The theoretical and practical reasons favoring additive decomposition over multiplicative decom-
position for fibrous composites were discussed in [37]. In the present work we adopt the additive

decomposition of rate of deformation into elastic eél(jr ) and inelastic rate of deformation ul(jr) ,

which gives

&r) = egl(jr)+ul(]r) (3.6)

i

Furthermore, we will assume the hypoelastic constitutive equation relating the objective Cauchy

stress rate with rate of elastic deformation:

~(r r

6 = LI (efp - 1nfp) 3.7
A3: Midpoint integration scheme for micro- and macro-coordinates

In a typical time step f + Af, the configuration of the macro- and micro-structure may be

expressed as a sum of the configuration at the previous step ¢ and the displacement increment:
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A = 4 Auf (3.8)
t+ At t ~
y; = y; + AL (3.9

The macroscopic displacement increment Au? is found from the incremental solution of the
macro-problem, whereas displacement increment in the RVE is given by:

A (x,y) = {Aéij(x) + A(T)ij(x)}yj + Auil (x,y) (3.10)
The first term in (3.10) represents the contribution of macroscopic solution, whereas the second

term Auil (x, y) accounts for oscillatory Y-periodic field. Figure 3.1 schematically illustrates the

decomposition of the deformation field in the RVE.

Strain and rotation increments are integrated using the midpoint rule to obtain a second order

accuracy:
Ae o L dAu? N dAu? -
y= 2 at+At/2 at+At/2 (3.1)
X; X;
A < L dAu? aAu}) i1
ij = 9 5t A2 _at+At/2 (.12)
xj Xi
where the midpoint coordinates are defined as
r+AL/2 1,: 1+ At .
=0t X (.13)
t+AL/2 11 1+ At
Y= i( y; + ;) (3.14

Similarly, the periodic portion of the solution increment Auil is obtained by integrating (2.30)

using the midpoint rule:

t+At/2
imn(

Au! = H YI(AE,  (x)+Adh (x)) (3.15)

where the increment of inelastic strain is defined in Chapters 4
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A4: Additive decomposition of material and rotational response

There are several formulations aimed at extending the small deformation formulation to account

for large deformation effects. One of the most popular approaches is known as the co-rotational

method where all the fields of interest are transformed into the rotated R -system [25]. In the R-

system, the form of constitutive equations is analogous to small deformation theory. A simpler
approach, proposed by Hallquist [21] and improved by Hughes and Winget [26] to preserve incre-
mental objectivity, is based on the additive incremental decomposition of material and rotational

response. The latter procedure is adopted in the present work.

For two phase material, the integration scheme [25] decomposes stresses and back stresses as fol-

lows:

A VA A
o = 60 + A, B = R 'sfp REP (3.16)

1l

t+ At
ogl(jr)

[N ta !
&P + Aafp, &) = R ‘afp RYp 617

where Ocl(jr ) is the back stress. The midpoint rule is utilized to compute the phase rotations [25]

-1
Rip) = 8+ (8- 00[p | Bof G.18)

Remark (2): For homogeneous materials the integration scheme [25] uncouples the material and

rotational responses. In the present formulation phase rotations in each phase, R z(jr) , depend on
phase eigenstrains, which are unknown prior to stress integration, and thus material and rota-

tional responses are fully coupled and have to be updated simultaneously.
A5: Constant phase volume fractions

For the 2-point scheme derived in this chapter we will assume that phase volume fractions remain
constant throughout the analysis. This is apparently true in the case of elastic fibers undergoing

small strains and incompressible matrix material. In addition, we assume that the elastic proper-

ties of the phases are independent of temperature. Based on the first-order approximation meth-
ods, such as the Mori-Tanaka method [35] and Self Consistent method [23], the strain
concentration factors and eigenstrain influence functions can be assumed to be constants through-

out the entire analysis. These assumptions will allow us to carry out the entire analysis without
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updating the configuration of the unit cells. For the n-point scheme model, described in Chapter 4,

these restrictions will be removed.

3.2 Implicit Integration of Constitutive Equation

For the elastically deforming reinforcement the only source of eigenstrain rate is due to tempera-

ture effects, i.e., },Ll(]f ) = eéij(f ) where eéij(f ) is the thermal rate of deformation in reinforcement

domain. The eigenstrain rate in the matrix phase is comprised of both the thermal, eéij(m) ,and

the plastic, péij(m)r rate of deformation effects, such that ul(Jm) = (-)éij(m) + péij(m)' The phase

thermal rate of deformation can be expressed as
6gij(r) = glcjne (3.19)

where 8 denotes the temperature and E.,l(jr) are components of the phase thermal expansion ten-
sor.
Combining the rate form of (2.51), (3.7), (3.8), (3.16) and Assumptions 3 and 4 it can be shown that

the following relations for the phase stresses hold:

t+ At

f

ta -

o) = 6N+ RIAE, - Y OUHAWD, r=mf (3.20)
s=m

where Auﬁ ) is the overall phase eigenstrain increment to be defined later in this section and

Rl(ﬁ‘)l = Ll(JrI)q(Iqul-l-G})’;])kl) } s = m f (3.21)
S = m, (3.21)
Qz(]rks[) = Ll(jrp)q(srslqul_DI()rqsgl)

Consider the yield function of the following form:
1 1
(I)(m)(gl(jm) — az(jm)’ yim)y = z(GI(JZ") - (xlgjm))Pijkl(Glfctln) - (x;(?ﬂ)) - §{ y(m)3y2 (3.22)

where Y (™) is the yield stress of the matrix phase in a uniaxial test, which evolves according to the

hardening laws assumed; OLI(]?") corresponds to the center of the yield surface in the deviatoric
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stress space, or simply the back stress. Evolution of the back stress is assumed to follow the kine-

matic hardening rule. For von Mises plasticity, P, ki 182 projection operator which transforms an

arbitrary second order tensor to the deviatoric space:

1

Py = Tijer =390 (3.23)

For simplicity we assume that the plastic rate of deformation in the matrix phase follows the asso-

ciative flow rule:

L (m) _ ‘ _
I = ac(.m)x = x,gm)x('"l R = P (o - off) (3.24)
i

We adopt a modified version of the hardening evolution law [25] in the context of isotropic, homo-

geneous, elasto-plastic matrix phase. A scalar material dependent parameter § (0<B<1) is

used as a measure of the proportion of isotropic and kinematic hardening and A s a plastic

parameter to be determined by the consistency condition (3.22). Accordingly, the evolution of the

yield stress Y (") and the back stress O(l(]m) can be expressed as follows:
yom = 2_2}’ y ()3 (m) (3.25)

o 2(1—P)h i
aft) = = s 2P (o — o)A | (3.26)

where B = 0 corresponds to a pure isotropic hardening; B = 1 is the widé/ly used Ziegler-

Prager kinematic hardening rule [48] for metals; A is a hardening parameter defined as the ratio

between effective stress rate and the effective plastic strain rate.
Integration of (3.24), (3.25) and (3.26) is carried out using the backward Euler scheme:

t+ At t t+ At
(m) = ‘g(m)
£ pel] +

= & () ARLm) (3.27)

ATy (m) = tY(m)+g¥ FH A () AL 328




t+ At N 2(1~ )h
(xl(jm) = OCI(JZ").;. B ijkl(

t+ At

where AL =

phase rotation increment follows from (2.52), (3.19) and (3.24):

H-AtGé’l”) _ t+At0(£’ln))A>\‘(m)
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(3.29)

Alm) — t?u(m) , and tdl(]m) is the rotated back stress defined in (3.17). The

f
Ao = AB;+ GIhAE + DI P, (05 — ai) AL + % DIFFEAS  (3.30)

s=m

In the following we omit the left superscript for the current step ¢ + Af. Using the backward Euler

scheme for the rate form of G z(jm) in (3.20) and (3.27) yields the following relation for the Cauchy

stress in the matrix domain:

olm = Gl - QL K (I AN

i
where | G l(]m) is a trial Cauchy stress in the matrix phase defined as
(O =8 + RiE) Az - 2 OfIELY A
The process is termed elastic if:

2
(o8 = Af )P, O - afp) -5 LY <0
' AX™ =

Otherwise the process is plastic, which is the focus of our subsequent derivation.

Subtracting (3.29) from (3.31) we arrive at the following result:
- Ia
ofm —alm) = (I, + AN @) 1(, o8 - afr)

where

(@l_]kl Qz;?t )Pstkl+ (1 B)th]kl

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)
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The value of AL is obtained by satisfying the consistency condition which assures that the

stress state in the plastic process lies on the.yield surface at the end of the current load step. To this

end, equations (3.28) and (3.34) are substituted into the yield condition (3.22),

CI)(m)(Gl(jm) — ocl(]l”), Y(m)) = 0, which produces a nonlinear equation for AL | A standard

Newton’s method is applied to solve for AL .

-1

oPim)

AN, = Mim)_{aAMm)} ®m) (3.36)
AR

where k is the iteration count. It can be shown that the derivative 0®(")/9AA™) required in

(3.36) has the following form:

4Bh{Y(m)2

9 — 6BAAAM) 337

0Pl m m m
BAM’”) z(] )Cl]k)(GIE ) - OL£ ))

The expression for Cf b k? is derived in Appendix A. The converged value of AAUM) s then used to

compute the phase stresses. The overall stress is computed from (2.64).

3.3 Consistent Linearization

While integration of the constitutive equations affects the accuracy of the solution, the formation
of a tangent stiffness matrix consistent with the integration procedure is essential to maintain the
quadratic rate of convergence if one is to adopt the Newton method for the solution of nonlinear

system of equations on the macro level {43].

The starting point is the incremental form of the constitutive equations (3.20):

cl(]r) G(r)+Rl klAskl z,kz)xim)AMm)— 2 Q(rsl)g]((s)Ae (3.38)

s=m

Taking material time derivative of (3.29), (3.30) and (3.38) yields:
afm = ol + Q%Ml{ R A0 4 p

,]pq(o(m - ag’g))A}b(m)} (3.39)



Awf) = A(o,]+Gl]klAekl+D,(fk’?>{N,§’”)k(’")+Pk (G0 — alm) AR}

+ 2 DHE0

sl = a§,>+R< Ay — QUL R A 4 Py (56 — um) AN}

- 2 QYfELYo
s=m
Subtracting (3.39) from (3.41) for ¥ = m yields:

f
; . 2 ( ) PA(m)
o - aip) = ‘51757 + Rt 3 opeipe

s=m

=k (O = AT + (S - afp) AN}
where

famy thm) 8(6}].’”)_al(]m))
! v dAw{)

Adgm
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(3.40)

(3.41)

(3.42)

(3.43)

Combining (3.40), (3.42), (3.43), (A.8) and (A.9) with the consistent linearizations of Aékl and

AW (given in Appendix B (B.11)) yields:

G(’”)—OC(’") = Ly + AMDWENTS v + 680 + 35 A"™)

where

vSklst = (GU/(cZQn ilmn)(M[mn]st + GmnMVM(uv)st) + RklmnM(mn)st

GSkl Z {( U/(dpq_ UI((lpq ggﬁ? ;clst)}a(s)

WS = —WE(olm—-aim)

(3.44)

(3.45)

(3.46)

(3.47)
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and Wl ] k? U i 7, and U }g’l’}gn are defined in (A.13), (A.8) and (A.9), respectively. It remains to

eliminate A" from (3.44), by utilizing the linearized form of the consistency condition (3.22) and

equation (3.28) which gives

. . ABR{Y(m 123"
(m)(sm) — g {m)y - -
Ry(oym - o) - =g ¢ BRART 0 (3.48)
Substituting (3.44) into (3.48) results in
A = TStV x, + 6510) (3.49)

where

9 — 6BRANM) R I (T + AMMW (2 -1
I"/((m) = ( p ) 1j ( ki 2) (3.50)
4Bh{Y(m)}2— (9—6BhA7\,(m))N(m)(] +A}\'(m)W(m) ) 7» .

mnst

and thus (3.44) can be simplified as

Cl(]m) - agn) = V*Sijklvl(c), 5T e§ij9 (3.51)

where
Sikt = iy + AL m)Wz]mn) Skt + 3Smn L S0, i) (3.52)
655 = Ui + AW 0 7108, + 28,0, 0005 ) (3.53)

Finally, by substituting (3.49), (3.51), (A.8) and (B.11) into (3.41), we get a closed form expression

relating the phase Cauchy stress rate G l(]-r ) with the macroscopic velocity gradient v,? and the

temperature rate 6

o(r) D( . d(’)e (3.54)

where
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D(kl - Rz(]mnM(mn)kl+ Ul]pq(M[pq]kl+ qum”M(mn)kl)

and
f
dip = 3 (URDool - e
s=m
+( Uszq pamn Qz(rz;znn))( R (m)r(m)es + AL man e‘Spq) (3.56)

The overall consistent instantaneous stiffness Dijk ; is obtained from the rate form of (2.64) and

Assumption Ab:

0 ,
Gj=D VE x, T 49 (3.57)

ijk
where

Dy = cmDim +cODI),  d; = cmdim +cDdlf) (3.58)

The overall consistent tangent operator is derived from the consistent linearization of the weak
form of the macroscopic equilibrium equation (2.59). Consider the internal force vector expressed

in terms of the quantities defined in the deformed configuration

int = j N, aQ (3.59)

where N, is a set of shape functions in the macroscale.

t
Prior to linearization, the internal force vector is defined in the reference configuration €2 as
int — -1& t
fint = J'fQNiA’ o Syl 4 (3.60)

where J X is the jacobian between the macro-configurations at times # and t + At; F ]m is the

macroscopic deformation gradient defined as



27

_ _ A 1t _t
ij— xj, f = xj’ o and ij— X, X = xm’,M,Xj (3.61)
Linearization of (3.60) yields
d cint _ - 1 !
=i = jQ {ijc J A+ Fo16,0 + ;5,7 1d'Q (3.62)
Substituting (3.57) into (3.62) and exploiting the kinematical relations jx = Jxvg .
> X
F ,;l} = -F ;;11"10 %, and the finite element discretization Vg’ 5 = N, B, xlq' g yields:
fipt J' Nia, 2 DijiuNyp, 5, d22 qB+J Nia, o Q6 (3.63)
Dijiy = Dyjq+ 85— 846 (3.64)

where Dij ¢ and d jj are defined in (3.58); dp denotes the velocity degree of freedoms associated

with the finite element mesh. The first integral in (3.63) represents the consistent tangent stiffness

matrix for the macro-problem.

Remark (3): For the purpose of linearization it is convenient to approximate phase rotations within
a unit cell by a constant field such that (bl(jr ) = (T),'j. The resulting rotated stress and back stress

rates are given as

A(r) = -~ A (m) i .
Gij —Aco,-kc,gjf>—cl(,§)Acokj, oif | = A(Dika/(qm)—al(]?l)Awkj (3.65)

Therefore, (3.45) to (3.47) can be simplified as

vSijkl Rt}mnM(mn)kl {Sm(c(m) - at(n’;?)) + Sjn(cz(rlzz) - (Xl(n’?))}M[mn]kl (3.66)
2 Q{mPEL) (3.67)
Sy = =0 5 (of) — o) (3.68)



28

and W) = £ jj1 in (344), (3.50), (3.52) and (3.53)- ng,gl and d§j’> in (3.55) and (3.56) are writ-

ijk
ten as
DYy = R M nyi—(83,05) + 81, SEIM 1
—Qﬁ,%? (REDTED S+ ARP g ¥ pgkt) (3.69)
and

f
&P = QNG S, + ALy o5, )~ S OED 670
S=m



(a) Undeformed
configuration

(b) Macroscopic
strain-contribution

o

i
z

(c) Final deformed
configuration

Figure 3.1 Decomposition of deformation in the microstructure
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CHAPTER 4
THE n-POINT SCHEME FOR FINITE DEFORMATION PLASTICITY

In this section we consider a unit cell model discretized with n elements. The n-point scheme
model assumes that eigenstrains are piecewise constant, i.e., they are constant within each ele-
ment, but may vary from element to element. Our starting point (Chapter 4.1) is a rate form of the
governing equations representing the finite deformation plasticity of periodic heterogeneous
media. Implicit integration of constitutive equations followed by consistent linearization are pre-

sented in Chapters 4.2 and 4.3.

4.1 Governing Equations

The governing equations consist of: equilibrium (2.4), kinematics in the rate form (3.2), boundary

conditions (2.8), (2.9), and the constitutive eqﬁation in the rate form

. — &5 S 55 65 AS

where

6 = ) a ‘

07 = Lip(Eg—E8x) “4.2)
L; ikl denotes the instantaneous stiffness properties. In the following, we adopt Jaumann rate, i.e.,

S _ S
Double scale asymptotic expansion of the velocity field (3.3) provides the starting point for the
asymptotic analysis. Substituting the asymptotic expansions (2.20), (3.3) into constitutive equation

(4.2) based on the Jaumann rate yields:

A
s _ 2 1 —-r+1 —
r=-1
where I}, is the velocity gradient given as
-1 = 0 = ps+1 =
Iy = Vi x, and I = v,i,x[ +V1§,yl’ s=0,1,... (4.4)
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Further assuming that O(¢™!) Cauchy stress vanishes, ijl = Lijklvl(c), y; = 0, yields

v? = v0(x) provided that Ljjx; is not singular. We proceed to the 0(¢™1) equilibrium equa-

tion (2.22):
0 =
Gij, yj(x7 y)=0 (4.5)
To solve for (4.5) up to a constant we introduce the following separation of variables:
70
vi(x, y) = Hyy{vE () +da(x)} (4.6)

Note that plastic effects are now hidden in the Y-periodic function ﬂ-[ikl(y), whereas d]?l

accounts for temperature effects only.

Pre-multiplying (4.5) by the Y-periodic function # ;;,(y), then integrating over the deformed unit

cell domain © and carrying out integration by parts yields
= 0 =

Linearization of (4.7) is carried out by taking the material time derivative, (b = 0. For this pur-
pose we express the integrand of (4.7) in the reference configuration, say at time 7,

Q = ‘ -1 O d . = i -
}[ikl, ijl] do }[ikl, 5 _’ij O Jy d © where fjm yj;ty,,, denotes the deformation gra

dient in the unit cell and J y is the corresponding jacobian. By utilizing equations (2.2) and (2.3) it

canbe shownthaty , =x_, .
J5 Ym I X

Consequently, linearization of (4.7) yields:
—1.<0 -150 “1=07 Vv =
L@”{ikz, o (FnjOQTy+ Fol6)], + 7,100 ,)d'® = 0 (4.8)

Substituting (4.2), (4.3), (4.4) and (4.6) into (4.8) and exploiting kinematical relations J y = J yl]?k

and f;,} = —,‘F;llllloj gives:
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j@ "]—[ikl, yj{(Lijmn + Tijmn)lgm - Lymnimne}dg =0 4.9)

where
lon = (9,9, + .‘}[mst’yn(y))v (x) +}[mst v (y)d (x) (4.10)
(Iijmn = Smn08+ (Slmcjon 6]mGlOn 8m(sﬁ)m_sjno-zom) (411

Since (4.9) is satisfied for arbitrary macro-fields v? . (x) and d Set(x) we can obtain two integral

equations in ©:

+lemn) (5, 6 +4H

ms - nt mst, y,

jg}[ikl,yj( i )d® = 0 (4.12)

-9 .
j@}[ikl, yj{(‘[’ijmn + Tijmn)}[mst, ynde - Lijmnimne}d('9 =0 (4.13)

Equation (4.12) is solved using the finite element method for H ;k1- Note that equation (4.12) is

solved for nine right hand side vectors corresponding to nine uniform velocity gradient fields as

opposed to six constant strain modes in the case of small deformations.

After solving (4.12) for H ikl d g can be obtained from (4.13) as

dg = |@!(LZJH ijkl)—ljg}[rkl, yersuv&uvéde 4.14)
where
~ 1
Lijkr = @J@(Li]’kﬂ' Tijkl)d@ (4.15)
- 1
Lijur = @J@(szmn + T i) Hpups, y, 40 (4.16)

Once # ;;; and d g are computed, the O(¢%) approximation of €5 and ®F, denoted as €;; and

®;;, are given as



g = ﬁlijklv,?, ot aije
0, = }lijkl V](c), X, + &UG
where
1
A (¥) = Q(SikSﬂ*’ 050:) + H i,y yu(Y)
A 1
Ajjkl (y) = E(Siksjl_gjksil) + 5"[[,', yj]kl(y)

= 7 7 -1 a
& = }[(i, yj)kl(Lklpq - Lklpq) J.Q }[prs, yq[’rsuv&uved@

A — ~ -_— _1 -
a;; = Hy y 11 Lripg = Lripg) j o s 3y LrsuvGuy 040

4.2 Implicit Integration of Constitutive Equations

We start from the constitutive relation for a typical element p in ©:

P =

{L,(,%)z(é;&%’)—&i?)G) if pe 6
)

LONE -E[P0 - 2f)  if pe O

y

For elements in the matrix phase (4.23) can be written as

Gfp) = LA, v, ., + (aff - EfP)0 - R (PP}

m, X

Applying the backward Euler integration scheme to (4.24) gives

1. — —
oiP) = 6P+ LI A0, (AR, + AB,,,) + (aff) —EP)AB — R{PAAP)}

and exploiting the equation for the back stress in element p (3.29) yields

O =) = U + A0 910 )50

~mn

where
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(4.17)

(4.18)

(4.19)

(4.20)
421)

(4.22)

4.23)

(4.24)

(4.25)

(4.26)




2
Soz(ﬁn)n = l(]%)vpuvmn B)hP;]mn “@.27
[N [N _ —
S0 = 6 - afh) - L) LA (A, + AD) + (aff) —E[EHABY (428

I, N
in which G ,(npn) and (x,(npn) are the rotated stress and back stress defined in (3.16) and (3.17) where

the A(Dl(]p) is given as

Aolp) = API(AE, + AB,,) +alPIAe (4.29)

Note that the instantaneous concentration factors ﬂl(ﬁ()l, .QLI(J )l/ al(]P) and &l(JP) computed from
(4.19) to (4.22) depend on the instantaneous material properties (see (4.12)), which in turn depend
on vector of plastic parameters A} in O, A\ = [ALMD, ALD)) ., A?\,(nf)]T. Substituting
(4.26) and (3.28) into the yield function (3.22) for each element in em) yields a set of 7 nonlinear
equations @ =[O, ©2) | &N with n,, unknown plastic parameters. The system of

nonlinear equations is solved by the Newton method:

-1

adP)

AMP) | = Akﬁ)_{anm)} ol (4.30)
AMP)

A typical term in the jacobian matrix is given as

(P2
9D = XP] +AMP)(@(P) 1- X(PTI) 469th{Y 1 (431)
dAL(M) by Lhim 9 — 6BRALP)
where
(pm) as}’("p”) (p) (p)
me” = aAK(n)_SPn s?mnpq(cpz - aP% ) (4.32)
ag'fnp;l) a( G(p)_ a(p)) 0.4(p) ) dalp)
x past - pq
IAAT - 9AR™ m'W(aAM (A +A“’“)+an<n>Ae) 433
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In equation (4.33) a(tﬁ p) tﬁt,(nel))/ OALM) depends on the derivatives of f‘lé%)st and aé%) with

respect to AL | Evaluation of these derivatives is not trivial and hence the following approxi-

mation is employed:

(p) ~'q(P
m% ﬂp%s agg) alf (4.34)

resulting in the block diagonal approximation of the jacobian matrix

0P P) 4Bh{Y(P)}2
(P)y(p) 4 IOV TS 4.
AN SP“(N Xy 9—6BhAx<p>) @3
where
5(,(}’) = ( +Ax(p)@(p) )~ @’(Tfn)p (G(p)_al()%)) (4.36)

At each modified Newton iteration step the residual vector @ is evaluated and the instantaneous
concentration factors are recomputed from (4.12). The iterative process proceeds until the residual

‘norm ”@"2 vanishes up to a certain tolerance. The updated stress, yield stress and back stress for

elements in ©(™) are calculated from (4.25), (3.28) and (3.29), respectively. For elements in o,

stresses can be obtained using (4.25) with ALP) = 0. Finally, the macroscopic stress follows from

(2.58).

4.3 Consistent Linearization for Incremental Homogenization Scheme

The instantaneous consistent stiffness properties are derived from consistent linearization of the

constitutive equations. For elements in ©("), taking the material time derivative of (4.25) and
(3.29), and making use of (B.11) yields:

A (p)
Gip) = G + L) 14,0 (Aekl+A0)kl)+ﬂlmnpq Mqulv,g{xl}

]mn
. ; (P) . .
# LI, TARIAS + (alf) ~EGNO~ READ-P,,,, (617 - ap)Ar®}

and
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o) = af}’) M{x(p)}ﬂ’up (c(p)_al()%))Ax(p)}

Substituting (B.11) into (4.37), then subtracting (4.38) from the resulting equation yields

G(P)_a(p) A(P) A(p)

ymn mnpq

‘805,‘2,,{(0(") a(p)mp) + (6 — a) AP

where in analogy to (4.34), we approximate 4,52} = 0 and alp) = 0.

From equations (A.8), (A.9) and (B.11) it follows that

LA (p) ;
Gy = z]mn(“qngggt Mstklvk X; + a(p)e)
12 (p) A (D)E
oy = (xUz(ﬁrz (A "gfgs) Mstklvl(c), x,+ar(npn)e)

- Substituting (4.40) and (4.41) into (4.39) and collecting terms of & z(]p) - dl(Jp ) gives

; S — -1y = = Q.= 50m
S = &ff) = (Ljeg+ AN @ B BV, + 6%u® + 25 ™)
where
kalst = {(GUiyrzm - ocUlg?r;n)ﬂ”ggl)lV + nglmnﬂngrglzv }Muvst
Gh‘kl ( U/%?mn - U}dmn (pn) + L/((%r%n (ar(npn) - Z;l(npn))

X‘E‘kl ]((Przm(c;(m) — a(m))

FLELAAE), Mpgrh o + (0] -EED8)
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(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

The value A" can be computed from the linearization of consistency conditions (see also Chap-

ter 3.3) which yields

) = Y= y0 + =B
AP = YR (Errse vy x, ¥ o5u9)

where

(4.46)
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(9 - 6BhA7L(P))N(p)(I k1+A7»(P)go(P))'
Y = (4.47)
ABR{Y P32 — (9 — 6BRANP) R )L, + ARP o ) N1 =

and then substituting (4.46) into (4.42) yields

- < - = 0 = €
Gl(]p)_al(jp) = EiuVi x, + =0 (4.48)

where 2 ijkt and egij have identical structure to | § ijkl and G‘Sij in (3.52) and (3.53) except that

the symbols S are replaced by Z, and I'(") by Y(P).

Substituting (4.46), (4.48) into (4.37) yields

6P = DipIvR  + AP0 for pe OMm (4.49)
where
Q)z(ﬁc)l = (SUl(j )n’q( n)stMszkl + Lz(ﬁnn’qmpnququl
_L(p) LR (p)r 1+A7‘ P) A Vgqul) 4.50)
and

‘[z(]p) = cUl(jfzn)n&r(npn) + Lz(]%n{(ar(npn) - ir(npn)) - X r(npn)Yﬁ)%)Gqu - Al(p)Pman 65‘pq} (4.51)

Similarly, the stress rate for elements in o) s given by

GV = DvY  + 408 for ne 6 (4.52)
where
Q)l(]?( Ut(]Tr]r?n "lenn)StMstkl + Ll(}?n)n ’ql(nnnququl (4.53)
and

4D = R + L, (@ - &) (454
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The overall instantaneous stiffness D; ikl is obtained from the rate form of (2.64), equations (4.50),

(4.51), (4.53) and (4.54):

5. = 0 :
Gij = DyjpVie x, +4;0 (4.55)
where

n n

Dyt = Z c(“)ﬂ)l(j%, and d.. = z c(”)zfl(]m (4.56)
n= 1 n= 1

¢(M) denotes the ratio between the volume of element 1| and the volume of the unit cell at time

t+ Ar.

Finally, linearization of internal force vector yields:

d .. — ) .

Dijer = Dyjr+ 06— 840, (4.58)
where the first integral in (4.57) represents the consistent macroscopic tangent stiffness matrix for

the n-point scheme model.

Remark (4): Approximating the piecewise constant phase rotations by a constant field in the entire
unit cell domain as in Remark (3), (4.43) and (4.44) can be simplified as

kalst = L£?) a8 Muvst - {Skn(cz(npl) - Ocl(npl)) + 6ln(Gﬁgfz) - OC{,,%)) }M[mn]st (4.59)

mn” tmauv
BE‘kl = Ll((?n%n(ar(npn) - ar(npn)) (4.60)

where (3.65) has been used. For elements in O0m) (4,50) and (4.51) can be written as

Q)z(ﬁc)l = Lz(ﬁrzn ﬂr(npn)ququl—{ Skn(ci(npl) - ar(npl)) + 6ln(clﬁcir)n) - Ocl((gz))}M[mn]st

—L ) (RS E g + AMPIP g E k) (4.61)

and
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dP) = L) (@)~ &8 = X068, = AMPIPpg oF, F (4.62)
On the other hand, for elements in ©(/) (4.53) and (4.54) are given by
@1(11}3 = Lz(;r'n)n '/qlgnT}’l)ququl - (Sincr(nT}) + 8jncz(rq;lz))M[mn]kl (4.63)

and

afz(jn) = Ll(]1}n)n (ar(n111) - gl(nnn)) (4.64)



CHAPTER 5
ADAPTIVE MODEL CONSTRUCTION

In Chapters 3 and 4 we presented two schemes for modeling inelastic behavior of composite struc-
tures: the 2-point scheme and the n-point scheme. In the n-point scheme we employed a piecewise
constant approximation of the eigenstrain field, whereas in the 2-point scheme the eigenstrain
field and the elastic concentration factors in each phase are approximated by a constant. For the
Nozzle Flap problem considered in [15] (see also Figure 1.1) the 2-point scheme is over three
orders of magnitude faster than the n-point scheme. For linear problems the 2-point scheme with
post-processing [8][11][15][16][19][20] is identical to the n-point scheme, whereas for nonlinear

problems there is no such guarantee [42].

If we assume that the n-point and the 2-point schemes are optimal in terms of accuracy and speed,
respectively, then it is natural to attempt to merge the two in a single model. In such a hybrid
model, the 2-point scheme should be only used in regions where the modeling errors are small,
whereas elsewhere the n-point scheme should be employed. We will refer to such a hybrid model-

ing strategy as the adaptive 2/n-point scheme.
51 Modeling Error Estimation
2-
The modeling error e P! associated with the 2-point scheme can be defined as follows

P = vt v 5.1)

where 0 = Q X ©® and
i 112 — l 2 1N 10 ~
Ifig = @(i;g{f aodsz (5.2)

V is an appropriate solution measure; the superscript ex refers to the exact solution within the

" framework of the mathematical homogenization theory, i.e., assuming solution periodicity. For

eétimation of errors resulting from lack of periodicity we refer to [16][38].
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The key questions are: (i) how to estimate vex, (ii) what is a suitable measure for v, (iii) how to
make the process of error estimation efficient, and (iv) how to utilize the model error estimation

for adaptive construction of the 2/n-point model.

It is appropriate to recall that as the number elements in the unit cell is increased the solution

. . -pt . .
obtained from the n-point scheme, denoted as P , approaches the exact solution, i.e.,

. -pt o
lim v'?" = v Even though the rate of convergence may not be monotonic, it is reasonable to

n—oeo
assume that for sufficiently large n the modeling error associated with the 2-point scheme can be

approximated as

e2-pl - E2-pt _ ”vn-pt B v2-pt”D (5.3)

We now turn to the second issue: the choice of v. In this context it is essential to interpret the 2-
point scheme approach as consisting of two steps: analysis on the macroscale and post-processing
* on the microscale. In the first step, a nonlinear macro-analysis is carried out using the finite ele-
ment method which utilizes the 2-point scheme. Consequently, the macroscopic deformation his-
tory is stored in a database at macro-Gauss points. In the post-processing step, the deformation
field in a unit cell corresponding to critical macro-points is extracted from the database, and then
subjected onto the unit cell as an external loading. Finally, the n-point scheme is employed to solve

for selected unit cell problems.

Based on the above interpretation of the 2-point scheme, it follows that if the macroscopic defor-
mation field obtained with the 2-point scheme is identical to one obtained with the n-point

2-pt
p , should indicate zero error. In other words, v

scheme, then the model error estimator, F
should be a measure of the macroscopic deformation field, whereas [1 = £2. Possible deforma-

tion measures are: the macroscopic deformation gradient tensor, F (the component form is

defined in (3.61)), and/or incremental deformation measures represented by a pair Ag, A®. The

former accounts for accumulation of errors

E%—pt _ “Fn-pt_FZ-pt”Q (5.4)

whereas the latter controls the incremental errors




42

2- —n- _2-pil2 _n- _2-pl2
EY = JﬂAe" P AP+ AT - ABE g (5.5)
In Chapter 6 we will show that in a confined deformation pattern, where small plastic zones are

encompassed by elastically deforming solid, the modeling errors, £ >pt , are very small, whereas

2-pt
in large plastic zones dominated by matrix deformation, the modeling errors, E P might be sig-

nificant. For simplicity, we adopt the incremental estimator (5.5).

We now turn to the computational efficiency issue. Estimation of modeling error based on equa-
tions (5.4) and (5.5) necessitates solution of the n-point scheme model. As indicated earlier the

computational cost of the n-point scheme model is enormous, and hence, only an estimate of

2- 2-
E-F , denoted £ bt , will be evaluated. The philosophy behind our modeling error estimator is

somewhat similar to that employed for estimation of discretization errors, namely, if the mathe-
matical model (or discretization) is locally altered, then in absence of the pollution errors the solu-
tion outside the local region is not significantly affected, and thus the bulk of the error can be
computed on the local level. This process avoids the need for solving an auxiliary global problem

and replaces it by solving a sequence of problems on small local domains.

When the aforementioned procedure is applied for estimation of discretization errors, the compu-
tational cost of solving the local problem is relatively low, reducing the cost of discretization error

estimation to one of a manageable size. Unfortunately, this is not the case for estimation of model-

.ing error E 2_pt. Even though the aforementioned process involves multiple solutions of small
local problems (for example, on the macro-element domains), the cost of applying the n-point
scheme on each macro-element is formidable in a large scale computational environment. There-
fore, the costly n-point scheme should be utilized only for those macro-elements which have been
identified as “having potential to be critical” by some simple cost-effective engineering-based cri-
teria. One possible engineering criterion is the magnitude of the deformation, measured by a norm
of one of the macroscopic strain measures. When this norm exceeds some critical value, the corre-

sponding macro element is tagged for a-posteriori model error estimation.
5.2 Adaptive 2/n-Point Scheme
We now focus on the adaptive 2/n-point model construction. Consider the 2/n-point model at time

t~2-pt 1
t, consisting of the 2-point scheme model in the portion of the macro-domain £2 PP='Q and
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t n-pt t~2-pt  t,n-pt t
the n-point scheme model in the remainder Q"7 such that Q77" U 'Q""" = 'Q. The goal is

. . _— . t+Ar - 2-pt
to adaptively construct the 2/n-point model at time # + A7, consisting of subdomains Qr

2-pt ot t

1+ At _ 2-pt .. t2-pt L
= ké) 82, beasubdomain in Q consisting of . 7 macro-

and Q" P et !

cr

Q

t~2-pt
element subdomains . £2, P¥ which have been tagged as critical by the aforementioned engineer-

ing criterion, as shown in Figure 5.1.

T,-2-pt T, -2-pt . .. T~2-pt
Let CrAS P and CrA(D P be the macro- strain and rotation increments on ch . P at T<t.The

[4 [4

first step in the adaptive process is to post-process the unit cell solution at time 7 for all macro-ele-

2.
ments on ;Q 3 Pt by utilizing the n-point scheme model outlined in Chapter 4.

t 2-pt
Let Crrez'p ! be the residual for all the elements on ch v P defined as

At 2- 2-
p2pto = 1 tf pt tf pt (5.6)

cr € crJg e crJ e

t 2-pt . . .
where - f, P% is the corresponding internal force vector. In the second step, for all elements in

t

2-pt
52, ' the incremental nonlinear problem defined as

r:rt = (5.7

cr €
is solved twice: first, by using the 2-point scheme model, and second, by utilizing the n-point

scheme model with initial conditions obtained via post-processing. The estimated error on

t~2-pt . e .
82, = is computed by utilizing equation (5.5)

2-pt — gn-pt g2-ptf 2 ®-rt o2-rt
EAep - JllcrAee P _crAee P " Lo snd + ”crAO‘)e P _crAO‘)e P ” o (G}
where the strain and rotation increments are evaluated by solving equation (5.7).

The total modeling error is then estimated as




crn

Exri=| % (Eizp’)2 (5.9)

ee Qi
. . . g t~2-pt
To steer the process of adaptivity we define the modeling error indicator 1,. on .£2, PP as

E3:pt
e = 5.10
U Ap. (5.10)

where

|Ag2-Pt + A2 P/ S+ (EXP)?

o’

(5.11)

rR’ =

. . . . t~2-pt
PRY represents the average incremental deformation in a single element located in 52 P We

2-
replace the 2-point scheme model by the n-point scheme model for all the elements on C;Q 3 P! for

which M. 2 fol. A typical value for tol is between 1% to 10% depends on the accuracy require-

ment.
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Q

t+ At
cr

Figure 5.1 Adaptive model construction
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2-pt
e

t+ At

Q
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CHAPTER 6
NUMERICAL EXPERIMENTS

Our numerical experimentation agenda consists of three examples. The first is used to validate our
finite deformation plasticity formulation. The second and the third examples test the proposed
adaptive 2/n-point scheme in a deformation pattern with large plastic zones dominated by matrix
deformation as well as in a typical confined deformation pattern, where a small plastic zone is

encompassed by an elastically deforming solid.

6.1 Uniform Macro-Strain Loading

The objective of the first example is to carry out a qualitative assessment of the large deformation
formulation. The primary “suspect” is equation (3.10) which decomposes displacement field in the
microstructure into two parts: the macroscopic part which comes from the integration of the non-
periodic macroscopic strain and rotation increments (the first term in (3.10)) and the periodic
microscopic part (the second term in (3.10)). Note that solution update in the unit cell domain

directly from the asymptotic expansion of the displacement field (2.11) is not feasible, because in

the limit as ¢ — 0, only the macroscopic part has contribution. On the other hand, if u! is con-

sidered only, then the nonperiodic finite deformation patterns are not accounted for.

As a test problem we select a macro problem subjected to the state of uniform strain field (or linear
displacement field). A unit cell consists of a stiff elastic cylindrical fiber embedded in a compliant
plastically deforming matrix. The phase properties are given below:
Fiber: Young’s modulus = 68.9 GPa, Poisson’s ratio = 0.21
Matrix: Young’s modulus = 6.89 GPa, Poisson’s ratio = 0.33, yield stress = 24 MPa,
isotropic hardening modulus = 0.689 GPa, § = 1.

We consider a uniform transverse tension, transverse shear and longitudinal shear loading condi-
tions. The overall principal Green strain does not exceed 25% in all three cases. Figures 6.1 to 6.3
show the contribution of macroscopic and microscopic fields to the total deformation field in the
unit cell. It can be seen that each of the two contributing parts alone significantly distort the circu-

lar fiber cross section, but their sum recovers the original fiber shape, as expected in a matrix dom-

inated loading condition.
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6.2 The 3D Beam Problem

To validate the computational models and adaptive strategies proposed we comprise a test case,
where a significant portion of the structure is subjected to the matrix dominated deformation in a
load or stress control mode (as opposed to displacement control). This is the worse possible sce-
nario in terms of accuracy for the 2-point scheme. The problem configuration is shown in Figure
6.4. The macro problem is discretized with 5635 tetrahedral finite elements. The microstructure is

the same one used in the previous example. The fiber direction coincides with the beam’s longitu-
dinal direction. In the region of length I, from the fixed end the beam is subjected to the shear

deformation (which is the matrix dominated mode) whereas in the remainder of the problem

domain, [, length, the beam is in pure bending, which is a fiber dominated mode of loading. The

phase properties are summarized below:
Fiber: Young’s modulus = 37.92 GPa, Poisson’s ratio = 0.21
Matrix:  Young’s modulus = 6.89 GPa, Poisson’s ratio = 0.33, yield stress = 24 MPa,
isotropic hardening modulus = 0.689 GPa, 8 = 1.

The loading is applied in 15 load steps. The maximal vertical displaéement at the free end is over

- one third of the length of the beam and the stresses exceed the elastic limit in all macro-elements.

The problem is solved using the 2-point scheme with micro-history recovery, the adaptive 2/n-
point scheme, and the n-point scheme for a comparison purpose. Figure 6.5 shows the evolution of
the normalized estimated local error in the vicinity of the fixed end as obtained with the 2-point
scheme (equation (5.10)). It can be seen that the maximal normalized local error in the region dom-
inated by matrix deformation is 40%. In a region dominated by the fiber deformation the error
does not exceed 3%. The distribution of the local principal stress error in the critical unit cell
(denoted by point A in Figure 6.5) as obtained with the 2-point scheme and micro-history postpro-
cessing is shown in Figure 6.6. It can be seen that the normalized error in the unit cell is of the
same magnitude as the normalized local error in the macrostructure. Figure 6.7 illustrates the evo-
lution of the normalized local error in the macrostructure obtained using the adaptive 2/n-point
scheme model. The maximal normalized local error is less than 1% and the normalized error in the

unit cell follows the same trend as shown in Figure 6.8.

We conclude that the adaptive 2/n-point scheme model outperforms the 2-point scheme model in
terms of accuracy (0.8% maximal error as compared to 40%), and the n-point scheme model in

terms of CPU time as it is 14 times faster than the n-point scheme.
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6.3 The Nozzle Flap Problem

For the final numerical example, we consider a typical aerospace component where only a small
region experiences inelastic deformation. The finite element mesh describing the macrostructure
of the Nozzle Flap is shown in Figure 1.1. We consider two types of microstructures: (i) the fibrous
unit cell (as in the previous example) and the plain weave fabric microstructure shown in Figure
6.9. The fibrous unit cell contains 98 elements in the fiber domain and 253 elements in the matrix
domain. The fiber volume fraction is 0.27. The plain weave microstructure has 370 elements in the
fiber bundle and 1196 in the matrix domain. The bundle volume fraction is 0.25. The phase proper-
ties are:

Fiber, fiber bundle: Young’s modulus = 379.2 GPa, Poisson’s ratio = 0.21

Matrix: Young’s modulus = 68.9 GPa, Poisson’s ratio = 0.33,

yield stress = 24 MPa, isotropic hardening = 14 GPa, f§ = 1.

The Nozzle Flap is subjected to an aerodynamic force (simulated by a uniform pressure) on the
back of the flap. We assume that the pin-eyes are rigid and a rotation is not allowed so that all the
degrees of freedom on the pin-eye surfaces are fixed. The loading takes the solution well into the
. inelastic region in the vicinity of the pins: 15% of elements experience inelastic deformation in the

- case of fibrous microstructure, and 29% in the case of plain weave.

The problem is analyzed using the adaptive 2/n-point scheme model. Figure 6.10 shows that the 2-
point scheme model yields the maximum normalized local error in the macrostructure below 1%
(for the plain weave microstructure). Hence, if the tolerance for switching from the 2-point scheme
to the n-point scheme is higher than 1%, adaptive strategy selects the 2-point scheme model in the
entire macro problem domain. The normalized local error in the unit cell located at Point C of Fig-
ure 6.10 is 2.5% for fibrous microstructure and 6.5% for the plain weave, as shown in Figures 6.11

and 6.12.

For the problem with the fibrous unit cell, the CPU time on a SPARC 10/51 is 30 seconds for the
macroscopic analysis and 120 seconds for postprocessing a single point. For the plain weave
microstructure, the macroscopic analysis consumes 30 seconds, whereas postprocessing takes 510
seconds per point. On the other hand, the n-point scheme consumes 7 hours of CPU time for
fibrous composite and over 55 hours of CPU time for plain weave. Memory requirement ratios are
approximately 1:250 for the fibrous unit cell and 1:1200 for the plain weave in favor of the 2/n-

point scheme (or 2-point scheme).



j (A€ + A®) ydt

Figure 6.1 Deformation of unit cell under transverse tension

j (At + A®) ydt

Figure 6.2 Deformation of unit.cell under transverse shear

,j(,Ae +A®)ydt

Figure 6.3 Deformation of unit cell under longitudinal shear
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Fixed end
u=0

Figure 6.4 Finite element mesh for the 3D beam problem
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Fixed end

Figure 6.5 Distribution of the normalized local error with the 2-point model

Normalized error of effective stress

Effective stress

Figure 6.6 Effective stress and normalized error at point A with the 2-point model
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Figure 6.7 Distribution of the normalized local error with the 2/n-point model
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Figure 6.8 Effective stress and normalized error at point B with the 2/r-point model



(a) Geometric model (b) Finite element mesh

Figure 6.9 Geometric model and FE mesh of the plain weave unit cell
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Figure 6.10 Distribution of the normalized local error in the nozzle ﬂap with Plaih

weave unit cell
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Figure 6.11 Effective stress and normalized error for fibrous unit cell
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Figure 6.12 Effective stress and normalized error for plain weave unit cell
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CHAPTER 7
CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

An alternative to the classical mathematical homogenization theory for finite deformation plastic-
ity problems, which provides a comparable accuracy to the classical theory but at a fraction of
computational cost, has been developed. For the numerical example considered, the speedup fac-
tor was several orders of magnitude as compared to the classical theory, whereas the maximum

error in stresses was less than 3% (Chapter 6.3).

The present work by no means represents a complete account of all theoretical and numerical
issues related to inelastic analysis of heterogeneous media. First, the present theory is no more
accurate than the classical mathematical homogenization theory, but provides a comparable accu-
racy at a greater speed. It is important to note that assumptions of periodicity and uniformity of
macroscopic fields within a unit cell domain, which are embedded within the two theories, may
yield inaccurate solutions in the vicinity of boundary layers or areas of high stress/strain concen-
tration such as cracks or shear bands. The remedies to this phenomenon, ranging from changing
the size of the unit cell to carrying out an iterative global-local analysis, have been recently
reported in [38][49] for linear elastic problems. Secondly, various failure modes, other than matrix
plasticity, such as delamination, debonding, or matrix cracking have not been accounted for in the
present thesis. These aspects, together with issues of stability and uniqueness and multiple time
scales in rate sensitive constitutive equations at the micromechanical and macromechanical levels,

are among the topics of our future investigation.
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APPENDIX A
DERIVATION OF 8(0};”) - oclgm»/an(m)

Consider equation (3.34):
_ t A
oim —ofm = (L +AM™ @ )7, o8 - 6f)
Taking derivative of (A.1) with respect to AL yields:

J
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where the last term can be written as
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The rotation 93’(”’,2 of phase r is defined in (3.18) as
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The derivative of 9{,(71’,2 is calculated using the chain rule:
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(A.1)

(A2)

(A3)

(A4)

(A.5)
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in which

IRiin (1))-1 )
JA@() = (28mp B Awﬂfp) (Sqn + 9{qn ) A7
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Consequently, equation (A.4) can be expressed as
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Similarly, we have
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Taking derivative of (3.30) with respect to AA™) yields:

dAmi™ - 0
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Substituting equations (A.8), (A.9) and (A.10) into (A.3), and then inserting the result into (A.2),

gives
clm) (m) = m) _ ofm)
2 (ol ~ o) = Cll(of) - ofp) A1)
where
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APPENDIX B
LINEARIZATION OF Ag;; AND Awy

We derive the equations for Ag;; and A(—bi j consistent with the midpoint integration of rate of

deformation and rotation. The left superscript f + At is omitted.

Taking material time derivative of (3.11) and (3.12) yields:

dAuf
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758 T 5 g RN

The material time derivative of the first term in the parenthesis of (B.1) can be written as

J

aAu}) j
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where

where
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Consequently, (B.2) can be expressed as
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Substituting (B.5) into (B.4)-gives
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d[ oAu? 1 JAu? av?
EaHAt/ij = 6im_iaHAt/zx 9 A2 (B.6)

m J

Equation (B.6) can be further simplified as
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where the following equality has been utilized.
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We have
0
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A

Substituting (B.10) into (B.1) and preforming the same procedure for A(T;)ij, we obtain the final
expressions for Aéij and A(i)ij as
5. — 0 a — 0

Note that in the case of backward Euler integration M ikl = 0,0 il





