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Abstract—This paper describes automated tools for the analysis of three-dimensional
composite unit cells via the finite element method. These tools include an automated
matched mesh generation algorithm, a constituent mesh volume ‘fraction adjustment
algorithm, and an iterative solver with efficient handling of the multiple right hand sides
necessary for homogenization analyses. The described algorithms are used to examine
the effect of the constituent volume fractions on the homogenized material properties.
The local stresses within a representative composite weave are also examined.

1. Introduction

Effective design with composite materials requires the ability to predict their behavior.
This behavior is partially influenced by the configuration of the constituents and other
small scale features such as microcracks and voids. This paper is concerned with general
automated methods allowing materials researchers and composite designers to understand
the effects of constituent geometric configurations on the functions which the material
must perform (e.g. support loads, resist deflection, transfer heat, or reflect radiation).

The large number of complex small-scale interactions in composites makes the
complete characterization of the overall behavior of composites for all permutations of
manufacturing and operation variables impractical. This has led to the development
of multi-scale approaches where overall composite properties are derived from smaller-
scale (more detailed) models of the constituents, and the effects of overall loadings are
transformed into effects on the constituents. As shown in Figure ?, the smali-scale
modeling process begins with the definition of constituent phases and their significant
features, the constitutive model(s) and associated property parameters of the solid phases,
and the boundary conditions needed for the analysis. The constituent geometric features
may be given either directly as idealized geometric features, e.g. cylindrical fibers, whose
size and position are controlled by parameters [?, ?] or by scanned sample data with given
discretization, noise processing and interpretation parameters [?]. The constitutive model
is chosen based upon the material constituents, the environment, loading and expected
lifetime and the tested property parameters obtained. The boundary conditions depend
on the formulation of the subsequent analysis. '




may be given either directly as idealized geometric features, e.g. cylindrical fibers, whose
size and position are controlled by parameters [29, 23] or by scanned sample data with
given discretization, noise processing and interpretation parameters [16]. The constitutive
model is chosen based upon the material constituents, the environment, loading and
expected lifetime and the tested property parameters obtained. The boundary conditions
depend on the formulation of the subsequent analysis.

After a representative model has been developed, an analytical or numerical solution
technique is employed to calculate the average material properties and constituent stress
concentrations. These approaches include analytical methods based on elasticity theory
for classical shapes (ellipsoids or circular fibers) included in infinite media. Such methods
are the Mori-Tanaka method [19], which entails a closed form solution, the Self Consistent
method [15], which entails numerical root finding, differential schemes [20], which entail
solving ordinary differential equations, composite moduli bounding methods [13], and
methods based on transformation strains [6]. These methods are characterized by quick
solution times, do not require complicated model generating procedures, and require only
material design parameters such as volume fractions and linear elastic moduli as input.
However, they are limited to specific inclusion geometries.

Numerical methods for solving unit cell problems are applicable to general constituent
geometries, and may be utilized wherever periodicity assumptions are valid (i.e. in
portions of the large-scale problem domain which are not near boundaries or regions of
high stress gradients). In regions of the large-scale problem domain where assumptions
about the periodicity of the solution are not valid, localized approaches such as multigrid
techniques [8] can be utilized. In areas of the large-scale model where periodicity
assumptions are valid the homogenization technique allows for great flexibility in the
choice of the included small-scale features, but at the expense of complicated model
building and meshing procedures and more computationally intensive solutions. The
generation of valid finite element meshes [26, 22] within the problem domain is critical
to the success of these analyses. The topological and geometrical complexity of three-
dimensional woven composite unit cells, and the need to analyze multiple unit cell models
to optimize microstructure for a given application make the ability to generate meshes
without user intervention a practical necessity. The difficulties inherent in generating
three dimensional finite element meshes of geometrically complex domains may be
greatly simplified by employing digital image based finite element techniques, as done
by Hollister and Kikuchi [16]. This method has been shown to provide good results for
the homogenization analyses they were performing, but the poor geometric representation
of material interfaces does notfdrirectly permit reliable computation of local stresses near
constituent boundaries. In reference [2] Dasgupta et. al. determine the thermal and
thermo-mechanical properties of a woven composite using discretizations which provide




a smoother representation of constituent boundaries. However, meshes and results are
shown for only a plain weave, and their modeling and discretization algorithms do not
appear to be applicable to more complicated weave patterns. The unit cell model may also
be used to determine the local stresses in the woven composite, as shown by Whitcomb
et. al. [30] in two dimensions.

The large number of equations resulting from the numerical modeling of three-
dimensional unit cells requires an efficient solution technique. The practical value of
detailed unit cell representations in the design process is very limited if the computa-
tional cycle for analyzing a single microstructure entails more than a couple of hours.
Application of direct equation solution methods, including state-of-the-art multifrontal
solvers, is inappropriate due to the very dense structure of the stiffness matrix. However,
the use of standard iterative methods is questionable due to poor conditioning caused
by strong heterogeneities and anisotropies. Moreover, the need for analyzing unit cell
models for multiple forcing functions (6 in classical homogenization, 24 in higher or-
der homogenization theory [10]) further complicates the efficient utilization of iterative
methods. In this paper a multilevel solution technique developed in [9, 11] is utilized for
solving the linear systems of equations arising from complex microstructures.

This paper describes a set of automated finite element modeling procedures for
performing homogenization analyses of woven composite unit cells. Sections 2 through 4
detail the description of the unit cell model, the generation of matched meshes on opposing
faces of the unit cell, and a procedure for controlling the unit cell constituent volume
fractions. Section 5 describes the solver features aimed a efficiently handling poorly
conditioned linear systems subject to multiple right hand sides. Section 6 discusses the
calculation of homogenized stiffness parameters, and section 7 discusses the determination
of local stress values in the unit cell models. Closing remarks are made in section 8.

2. Unit Cell Model Description

The definition of the geometry of the unit cell representing the chosen composite
weave geometry is needed as input to the automated unit cell analysis. The overall shape
of the unit cell is a rectangular prism. Boundary conditions and other analysis attributes
are associated with this basic model. For example, homogenization analysis requires that
the displacement fields vary identically over opposing faces of this prism [14]. However,
geometric model creation and mesh generation operations must be performed with respect
to the geometry of the constituents of the weave structure. This weave structure is
complex, and may be comprised of matrix, fiber bundle, and void geometries as shown
in Figure 2, and may also contain cracks in the matrix material. Consideration of both
the basic unit cell model and the geometric model of the weave geometry components is
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Figure 2. Typical composite weave with fiber bundles, matrix, and void geometries.

necessary in the modeling and analysis process. The weave characteristics and analysis
attributes of the composite being modeled may be altered to optimize the composite as
shown in Figure 3.

The schematic in Figure 3 depicts the inputs and outputs (arcs) for each function
(boxes) used to implement the automated homogenization "Solution Technique" of Figure
1. The “Geometric Modeler” (top of Figure 3) provides a non-manifold boundary
representation [18] of the composite weave geometry comprising the unit cell. This
representation is comprised of both topology, which describes the relationships of the
model entities, and geometry, which describes the shape of the model entities.

The “Matched Mesher” function (middle right of Figure 3) uses the geometric model
information and constraints dictated by the periodic boundary conditions to automatically
create a three-dimensional mesh of the composite weave. A set of “Mesh Copy Opera-
tions” is used to create matching surface mesh topology and geometry on opposing faces
of the unit cell. The mesh matching requirements are specified via the rectangular prism
“Unit Cell Template” (middle left of Figure 3), and are independent of the composite
weave geometric model. The topology of the composite weave geometric model is asso-
ciated with the topology of the unit cell template by the “Classify on Unit Cell” function
shown in Figure 3. After the mesh has been generated, mesh queries and manipulations
are performed via the “Generic Mesh Database Operations” [1] indicated on the right
side of Figure 3.

The unit cell template is also used to automatically “Identify Moveable Constituent
Topology™, as indicated in the center of Figure 3. This function determines the topological
entities of the given “Target Constituents” in the composite weave model for which the
associated mesh may be altered to “Adjust Constituent Mesh Volumes” to the given
“Target Volume Fractions” by the subsequent function shown in Figure 3.
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Figure 3. Details present in the automated finite element
based homogenization analysis of composite unit cells.

The “Material Property” function (lower left of Figure 3) forms the constitutive rela-
tions for each constituent in the composite. The necessary constituent material properties
are selected from a relational material property database indexed by compound, form,
manufacturer, environment, or other factors. Alternatively, the properties are computed
from a lower scale analysis of the average properties of micro-constituents. Complete
definition of material properties also requires inter-scale transformation geometries to
provide local coordinate systems orienting non-isotropic material models. Data from the
geometric modeler is used to associate the material properties (and other analysis at-
tributes [24]) with the geometric model topology. Associating these properties with the
geometric model makes them independent of the mesh, and the mesh can therefore be
altered without requiring their respecification.




The “Kinematic B.C. Attributes” function (lower right in Figure 3) specifies the
appropriate boundary conditions for the homogenization analysis. These attributes and
the constitutive relations are associated with the correct finite element mesh entities
and formatted as necessary for the finite element solver by the “Associate and Format”
function shown at the lower center of Figure 3. The resulting system of equations is
provided to the finite element solver (“FE Solver” at the bottom of Figure 3), and the
resulting solution data is supplied to appropriate post processing routines.

3. Matched Mesh Generation

Since the homogenization modeling is performed via the finite element method, the
necessary periodic boundary conditions are specified to the equation solver in terms
of nodal displacement requirements (multi-point constraints). Since the displacement
solution field is not constant over a cell face, the displacement of a given node, referred
to as the subordinate node, on one face of the unit cell is defined as a function of the
displacements of specific nodes, referred to as control nodes, on the opposing unit cell
face. That is

NCO‘ﬂ
=) aju (1
7=1

where u; denotes the displacements of the ith subordinate node, uj denotes the dis-
placements of the 5* control node, a j are weighting values, and N, is the number of
control nodes associated with the current subordinate node. The displacement function
for a given node is written in terms of the shape functions of the element face which
contains the projection of the given node on the opposing unit cell face, as shown in
Figure 4.  This approach requires an expensive search process to determine within
which element faces the projected node lies. The projected point must also be located
in the parametric ({1, £2,&3) space of the element face to express the displacement of the

Figure 4. Projection of node from back face of unit a
cell to an element face on the opposing unit cell face.
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Figure 5. Determining control-subordinate relationships for the weave
geometric model. (a)Typical relationships on the unit cell template.
(b)Corresponding relationships on the weave geometric model.

subordinate node in terms of the control nodes. The complexity of this calculation is
increased if higher order polynomial element geometry interpolations are utilized.

Specification of the periodic boundary conditions is substantially simplified if the -
finite element nodes on opposing unit cell faces match. In this case the periodic boundary
condition for a given subordinate node reduces to

Uy = U (2)

where wu; is the displacement of the sole control node. With a priori knowledge of
the correspondence between nodes on opposing faces of the unit cell, no searching is
required and it is not necessary to locate a projected point in real space within the

parametric space of an element face.

Matched meshes are generated by first discretizing the weave geometric model outer
boundary entities which are defined as “control” entities, and then copying the meshes
to the matching “subordinate” weave geometric model entities. In order to generate
a matched mesh of the weave geometric model, it is therefore necessary to identify
the control-subordinate relationships of the weave geometric model outer boundary
topological entities. For convenience, the outer boundary of the weave geometric model
is denoted as dM. The control-subordinate relationships are determined by associating
the topological entities of M with the predetermined control and subordinate topology
of the unit cell template.

One unit cell template face of each opposing pair of faces is specified as the control
face, and the other is specified as the subordinate face. One of the three such pairs of
faces is indicated on the unit cell template shown in Figure 5(a). Periodicity in each
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Figure 6. Edge meshing procedure. (a)Control edge is meshed.
(b)Mesh vertices from control edge are copied to subordinate weave
edge. (c)New mesh edge is created on subordinate weave edge.

direction normal to the faces of the unit cell requires that parallel edges of the box-shaped
unit cell template undergo the same variations in displacement and must have identical
meshes. One unit cell template edge in each group of four parallel edges is specified as
the control edge, and the other three are designated as subordinate edges. One of the
three such control-subordinate edge groups is shown in Figure 5(a). All eight vertices of
the unit cell undergo the same displacement, and (trivially) must have identical meshes.

Each M face associated with a control face of the unit cell template is identified as
a control face, and the matching OM face is identified as a subordinate face, as shown for
a typical pair of weave geometric model faces in Figure 5(b). If a M edge lies within a
control face of the unit cell template, then it has one matching dM edge lying within the
opposing subordinate face of the unit cell template. If a M edge lies on a control edge
of the unit cell template, it has three matching edges lying on the parallel subordinate
edges of the unit cell template, as shown for one group of dM edges in Figure 5(b). The
OM vertices similarly inherit control-subordinate designations. '

Generating meshes in a hierarchic manner (i.e. meshing vertices first, then edges,
faces, and volumes) allows the periodicity requirements to be easily satisfied during
the meshing process, since discretizing the weave geometric model face boundaries first
ensures that the necessary matching meshes can be generated in their adjacent faces.

The control OM edges are meshed first, as shown in Figure 6(a).  As described
in reference [3], the edge meshing is done such that the resulting discrete edges are of
approximately the same size éswréquésted by the user. The meshes on the control edges
are then copied to the subordinate weave edges. This is done by first creating a new
subordinate mesh vertex as shown in Figure 6(b). A new mesh edge is then created and
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Figure 7. Weave Face meshing. (a)Boundary mesh is copied
into the parametric space. (b)Delaunay insertion method is used in
the parametric space. (c)Face mesh is copied back into the real space.

classified on the subordinate weave edge, as shown in Figure 6(c).

The weave faces are then meshed by a surface meshing algorithm which discretizes
the model faces in their parametric spaces [3]. The weave face boundary mesh is first
copied into the parametric space, as shown in Figure 7(a). The surface mesh is then
created using a Delaunay insertion method as illustrated in Figure 7(b). After the surface
mesh has been created in the parametric space, it is copied back to the weave face in the
real space by obtaining the corresponding zyz coordinates for each of the mesh vertex
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Figure 8. Micrograph of a planar weave composite.

parameter values as shown in Figure 7(c). The matching mesh on the subordinate weave
face is created by also copying the temporary mesh to the corresponding subordinate
weave face.

The region meshing process is comprised of three steps [5, 25]. In the first step an
underlying variable level octree is created to reflect mesh size control information during
the region meshing procedure. The octants residing far enough inside the model interior
are then meshed using templates. Finally, a face removal procedure is used to connect
the surface triangulation to the interior elements.

4. Control of Constituent Volume Fractions

The efficiency of the analysis process is increased by using the fewest number of
degrees of freedom which can achieve the desired accuracy for the requested parameters.
In finite element analyses the solution accuracy is affected by both discretization error
and geometric approximation error. Discretization error is caused by the projection of
the solution field into a finite dimensional space. If this error is dominant, then the

discretization must be suitably refined to improve solution accuracy.

Geometric approximation error is caused by the piecewise approximation of curved
model geometry. The presence of curved geometries in composite microstructures is
illustrated by the cross-sectional view of a planar weave composite shown in Figure
8. The matrix and fiber bundle geometries are clearly visible in this image, as are the
individual fibers comprising the fiber bundles. The weave geometric models presented
in this paper consist of fiber bundle and matrix constituents only. The smaller-scale
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Figure 9. Mesh volume error example. (a)Circular
geometric model of radius 7. (b)Inscribed mesh.

modeling of the fibers within the bundles is done via the Mori-Tanaka method. Since the
fiber bundles are convex in cross-section and are curved to form the weave, geometric
approximation creates errors in the constituent volume fractions calculated from the finite
element mesh. The mesh constituent volume fractions, CCF L are defined as

VFE
CFE _ ‘cons (3)
‘ Veell

where V. is the volume of the elements classified inside the constituent regions of
the geometric model, and V. is the total volume of the unit cell. The errors in the
mesh volume fractions can be sizeable, as illustrated by the circular geometric model of
radius r in Figure 9(a). The circle is discretized such that there are four finite element
mesh edges of equal length around the circumference as shown in Figure 9(b), and each
edge is of length \/2r. The resulting mesh area is 2r2 and the “lost” area not contained
within the mesh is 72 — 2r?, as indicated by the shaded portions of Figure 9(b). The

area error of the mesh is therefore —36%.

In homogenization analyses, the results presented here indicate that the CF# values
influence the evaluation of the homogenized material parameters more strongly than
does the discretization error. The Cf'# errors must therefore be reduced to improve the
analysis accuracy. There are several methods by which these errors may be reduced. The
simplest method consists of refining the mesh to improve the approximation of the model
geometry. This process dramatically increases the number of degrees of freedom in the
domain, as illustrated by the meshes of a base one planar weave geometric model shown
in Figure 10. Only the mesh faces classified on the interior fiber bundle surfaces are
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Figure 10. Solid mesh of base one planar weave model. Only mesh faces on interior bundle
surfaces are shown. (a)Coarse mesh of 21,850 elements. (b)Fine mesh of 154,020 elements.

shown in these figures. The mesh in Figure 10(a) contains 21,850 elements and 4,608
nodes. The mesh fiber bundle volume fraction, C’bF £ of this mesh is 0.2527, which is in
error by -19.4% when compared to the geometric model fiber bundle volume fraction of
0.3137. The mesh in Figure 10(b) was created through uniform refinement and contains
154,020 elements and 28,858 nodes. The fiber bundle volume fraction is 0.298761, which
is in error by —4.8%. The approximation of the fiber bundle volume fraction by the finite
element mesh improved, but still underestimates the fiber bundle volume fraction of the
geometric model, and the number of degrees of freedom in the domain increased by a
factor of greater than 6. The memory requirements and large increases in solution time
for the highly refined meshes needed to adequately approximate the fiber bundle volume
fraction make this an expensive method.

Another approach for reducing the errors in CCF £ values entails making adjustments

to the geometric model such that the constituent volume fractions of the geometric model
are higher than the constituent volume fractions of the actual composite material. The
constituent volume fractions of the finite element mesh generated within this model then
more closely approximate the constituent volume fractions of the composite material.
This method requires iterations of the model construction and mesh generation processes
to reduce the CI'F errors to a given level. Further, since CF'¥ values are a function of
discretization size, meshes of different degrees of refinement require the construction of
different geometric models to obtain the same C'I'F values.

The chosen method for reducing the CZ# errors involves the modification of an
existing mesh. This method begins with an initial mesh which is valid and of acceptable
element shape quality, and relocates the mesh vertices classified on the surfaces of the
constituents under consideration to correct C£'# values of those constituents. The mesh
vertices are relocated in a manner such that the validity and quality of the mesh is
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maintained. In the current implementation, the quality of the mesh is measured by
the largest dihedral angle [17]. Although this Cf* adjustment method is an iterative
procedure, it does not require the creation of a new finite element mesh for each iterative
step. Instead, the same mesh topology is used throughout the process with changes being
made only to the locations of specific mesh vertices.

The values of the desired mesh bundle volume fraction, E’—b, and the bundle volume
fraction of the existing mesh, C’{ £ are utilized to determine how the mesh should be
altered. Since the area A of an ellipse is given by [27]

A= / r(6)2d6 (4)

where 7 1s the distance from the bundle centerline to a point on the bundle surface and € is
the angular measure around the ellipse, the volume of a given fiber bundle is proportional
to the square of the radius of the elliptical bundle cross-section

Vi o r2(9,s) (5)

‘where V3 is the volume of the bundle, and s is a parametric measure along the bundle
centerline. Using equa_tion (5), the new bundle radius K required to achieve the desired
fiber bundle volume V3 is expressed as

R(9,5) x \/7, G

The new bundle radius E is therefore calculated as a function of the current bundle radius

R(8,s) = 1/-‘% (0, 5) %

If all of the fiber bundles in the geometric model are of the same cross-sectional geometry,
equation (7) may be expressed in terms of the volume fraction measures 'y and C’bF B

R(0,5) = ® r(0,s) (8)

where ® = /C,/CE¥® is the bundle volume adjustment factor.

The new position of each mesh vertex on the bundle surfaces is calculated as a
function of the bundle volume adjustment factor, @, as illustrated for a typical ellipsoidal
bundle cross-section in Figure 11. The current positions z; of the vertices in the inscribed
surface discretization of the bundle cross-section are located distances rri from the center
of the bundle cross-section, as shown in Figure 11(a). If the bundle volume adjustment
factor is greater than one, each of the mesh vertices is located radially outward from
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Figure 11. Cross section of an ellipsoidal fiber bundle. (a)Inscribed
discretization, and distance to mesh vertex. (b)Distance to relocated vertex.

its current position to its new location X; at a distance £; from the bundle center, as
shown in Figure 11(b). The coordinates to which the vertex is relocated are therefore

calculated as
X=z+(®-1)r )

where r denotes the vector from the bundle center to the current location of the vertex.
Scaling the bundle cross-section by ¢ in this manner maintains the original shape of the
bundle cross-section, as can be seen by examining the aspect ratios of the ellipses in
Figure 11. The aspect ratio «; of the original discretization is calculated as

aj=—1 (10)

79 cos fy
and the aspect ratio aj; of the adjusted discretization is calculated as

IEsl

= — 11
o Es cos D
Substitution of equation (8) in equation (11) results in
1
ap = ——— (12)
79 COS 9

After moving a given vertex to the new position determined from equation (9), the
validity and quality of the mesh is evaluated. If any of the dihedral angles affected by
the vertex movement exceed the largest dihedral angle in the original mesh, a new vertex
position is determined by bisecting the distance the vertex was moved and again checking

the quality of the mesh. The vertex relocation procedure is repeated until a location is
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found for which the mesh quality does not degrade. The vertex is returned to its original
location if after five distance bisections no location can be found for which the quality of
the mesh does not degrade. This process permits the bundle surface mesh to be altered
anisotropically if the movement of mesh vertices is constrained in some manner. Such
constraints are caused by the proximity of geometric model entities, or by the topology
and geometry of the mesh surrounding the fiber bundle surface.

After the mesh vertices on the bundle surfaces have been moved to their new posi-
tions, a constrained Laplacian smoothing [7], utilizing a specific element shape parameter
[4], is employed to improve the shapes of the altered elements. The surface and edge
smoothing techniques usually employed in automatic mesh generation algorithms would
pull the vertices classified on the bundle surfaces back to the surfaces of the geometric
model, thereby restoring the original constituent mesh volume fractions. Therefore, in the
current implementation only the mesh vertices classified on the interior of the geometric
model regions are subjected to smoothing operations.

The following example demonstrates the ability of the algorithm to adjust ObF Etoa
prescribed value. The geometric model for this example was created with the Shapes™
[31] geometric modeler. The example consists of a unit cell containing a single cylindrical
fiber bundle. The unit cell is of height ~ = 2, width w = 2, and length [ = 5. The
fiber bundle is of radius » = 0.5. The exact bundle volume fraction, Cj, is 0.19635.
The initial mesh of the unit cell model is shown in Figure 12.  The exterior of the
mesh is shown in Figure 12(a), and the interior mesh faces on the surface of the fiber
bundle are shown in Figure 12(b). The C/' of this mesh is 0.13421, which represents
a -31.6% error. The mesh volume fraction correction algorithm was then used to adjust
the mesh to the correct bundle volume fraction. The exterior faces of the adjusted mesh
are shown in Figure 12(c), and the interior mesh faces classified on the surface of the
bundle are shown in Figure 12(d). In this case the topology and geometry of the volume
mesh outside of the bundle region prevented some mesh vertices from moving to the full
extent of the relocation prescribed by the volume fraction adjustment algorithm without
degrading the mesh quality. Three iterations of the mesh volume fraction correction
procedure were required to raise the bundle volume fraction to within 1% of Cj. The
value of the mesh volume fraction at the end of each of the three iterations is listed in
Table 1.  Section 6 contains examples of composite weave geometries where similar
improvements were obtained.

5. Iterative Solution of Unit Cell Problems

The Generalized Aggregation Method (GAM) is utilized for solving the unit cell
problems. These problems are characterized by a large system of linear equations with
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Figure 12. Single fiber bundle example meshes. (a)Exterior mesh faces of initial mesh
(31.6% bundle volume fraction error). (b)Initial mesh faces classified on interior fiber
bundle surface. (c)Exterior mesh faces of adjusted mesh (-0.3% bundle volume
fraction error). (d)Adjusted mesh faces classified on interior fiber bundle surface.

multiple right hand sides and multi-point constraints, and may be written as

Q' EQun =Q'f (13
“where K is thie umit cell stiffness matrix, i 1S a forcing matrix given by

f=- / BTDdg (14)

- 8
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Mesh Move Iteration Mesh Bundle Mesh Bundle Volume
Volume Fraction Fraction Error (%)
(desired = 0.19635)

initial mesh 0.13421 -31.6

1 0.18209 -7.3

2 0.19369 -1.3

3 0.19579 -0.3

Table 1. Mesh bundle volume fraction and percent error at each iteration
of the volume fraction correction of the single fiber bundle example.

B is a strain-displacement matrix, # is the unit cell domain, D is the small-scale
constitutive tensor, and ¢) is the multi-point constraint matrix relating the control degrees
of freedom wu, to the set of all degrees of freedom u as

U= Qup, 15)

Further details are contained in [9].

5.1 Solver Description

GAM is a multilevel solution scheme based on the multigrid philosophy, which
captures the lower frequency response by solving an auxiliary coarse model, whereas
the higher frequency response is resolved by smoothing on the source grid. As such
GAM possesses an optimal rate of convergence by which the CPU time grows linearly
with the problem size. Unlike the multigrid method GAM does not require construction
of auxiliary grids. Furthermore, because of the adaptive control of the structure of
the preconditioner GAM is insensitive to problem conditioning in terms of number
of iterations. In GAM the auxiliary coarse model is directly constructed from the
source grid by decomposing the whole set of nodes into non-intersecting blocks to be
referred to as aggregates, and then for each aggregate assigning a reduced number of
degrees of freedom. By doing so one reduces the dimensionality of the source problem,
while maintaining the compatibility of the solution. Theorems quantifying the optimal
approximation properties aimed at ensuring that the coarse model will effectively capture
the lower frequency response of the source system and at the same time will be sparse
and rapidly computed have been described in [9].

- 5.2 Multiple Right Hand Sides
A combination of two mechanisms is employed to provide a rapid solution for linear
systems of equations (13) with multiple right hand sides:
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1. Construction of the preconditioner aimed at reducing the overall cost of the itera-
tive process at the expense of increasing the computational cost of computing the

preconditioner;
2. Acceleration of the GAM scheme with the block conjugate gradient method.

5.2.1 GAM Preconditioner for Problems with Multiple Right Hand Sides

One of the key aspects of the GAM scheme is a selection of the coarse model cut-
off frequency parameter 7, below which all the eigenvectors of the eigenvalue problem
on the aggregate are included within the prolongation operator. In order to make this
parameter dimensionless, the eigenvalue problem on each aggregate a is formulated in
the following manner:

iaéa — }\aQaéa (16)
where D® is the diagonal of K.

The value of the parameter v determines the effectiveness of coarse grid correction.
In the limit as ¥ — max A%, the auxiliary problem captures the response of the source
system for all frequengies and therefore the two-level procedure converges in a single
iteration even without smoothing. On the negative side, for large values of ~, the
eigenvalue analysis on each aggregate becomes prohibitively expensive and the auxiliary
matrix becomes both large and dense. At the other extreme, in the limit as v — 0 the
prolongation operator contains the rigid body modes of all the aggregates only, and thus
the auxiliary problem becomes inefficient for ill-posed problems.

For problems with multiple right hand sides the value of v should be increased to
reduce the number of iterations, and consequently to reduce the overall computational
Cost.

5.2.2 Block Conjugate Gradient Accelerator

The system of linear equations with s load cases given in (13) can be expressed in
a block structure as

KU=F . (17
where U = [uy,ug,...,u,), F = [L,L,...LJ and u;, f. are the %" load vector and
the corresponding solution, respectively. The matrix i € £"*" is the global stiffness

matrix which is symmetric, positive definite and sparse.
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The forcing functions are orthonormalized using the Gram-Schmidt procedure to
obtain E(E =FH m) and to ensure that the resulting set of forcing functions is linearly
independent

1—1
—0 ;50 .
G, =11=> 4F,  i=1,...s (18)
5=1
where T
i —0
i=(Z) 1 (19)

and ¢; is the set of parameters which normalize f_z The original problem K U = F' can
then be transformed into K U = F where F = F H, and H,, is an upper triangular
matrix of the form:

F(Sl ’)/12 SN e ’)/12 ]
b9 :
H, = : (20)
0 55—1 75—1
0s |

The block conjugate gradient acceleration scheme described below utilizes the GAM
cycle as a preconditioner. To clarify ideas consider the following energy functional

OU) = [P1(w) Palus) - sluy)] 20

where®;(v;) = Jul Ku; —ul /- The corresponding block residual matrix B, € ®"** at

the i step is R; = ' — KU, and the corresponding solution U i1 € R is defined as

Uiy = U + V0 4 (22)

where V; € £"*¥ spans the subspace of search directions, and A; € R¥*¢ is the matrix

representing the step length determined by the minimization

I(U; + Vi1 A)

=0 23
A, (23)

which yields K,T_H R, = 0. The subspace V,,, is subsequently constructed by
Vian=2;+V,B, (24

where the parameter matrix B; € R°* is determined from the block conjugacy condition
ZZTH KV, =0, and Z, is the predictor from a single GAM cycle. The complete algorithm
is summarized below.

Step 1: Initiation
=0 BE=F

BOZO
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Step 2: Do i=0, 1, ... until all right hand sides converge
7, = GAM(R;, K)

(BF1zi1)B; = BTz,
Vi = 4, + VB,
Xy = KV,

(Vig Xi1)A; = Bl Z,
Uiy = U + Vi A

R, = R, — X; 1 4

Convergence is checked for each right hand side. If one of the right hand sides converges,
it is removed from the iterative process. Once all the right hand sides have converged,
the final solution is recovered as

U =

1<

i, (25)

5.3 Multiple Point Constraints

The GAM scheme can deal with multi-point constraints in a conventional way if all
the elements containing at least one “subordinate” node form a separate aggregate. Each
multi-point constraint can then be represented as follows:

us =1Lu, (26)

where u, are the subordinate” degrees of freedom, and T is a transformation matrix
representing the multi-point constraint data:

6. Calculation of Homogenized Stiffness Parameters

The effect of € on the homogenized stiffness parameters of a composite material s
easily seen in an analysis of a single bundle unit cell. This model consists of a cylindrical
fiber of radius r = 0.5 embedded in a block of matrix of length [ = 2, width w = 2, and
height ~ = 2. The isotropic matrix material modulus and Poisson’s ratio were chosen as
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Figure 13. Finite elemer_\t meshes of the single fiber bundle model. (a)93
vertices and 284 elements. (b)576 vertices and 2,549 elements. (¢)4,156
vertices and 21,951 elements. (d)20,615 vertices and 110,638 elements.

6.89 msi and 0.33, which are representative of Titanium. The isotropic bundle material

modulus, shear modulus, and Poisson’s ratio were chosen as 37.9 msi, 15.7 msi, and 0.21
..... are representative of a silicon carbide fiber.

t

A series of meshes of increasing levels of uniform refinement was generated, as

shown in Figure 13. The coarsest mesh, shown in Figure 13(a), contains 93 vertices
and 284 elements. The mesh shown in Figure 13(b) contains 576 vertices and 2,549
elements. The mesh shown in Figure 13(c) contains 4,156 vertices and 21,951 elements.
The finest mesh, shown in Figure 13(d), contains 20,615 vertices and 110,638 elements.
Homogenization analyses were performed with each of the four meshes, and also with
the volume fractions of the four meshes corrected to within +0.5% of the correct volume
fraction for the geometric model.
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Number of Mesh Bundle | Mesh Bundle Gss (x107 psi) | Gss
Vertices Volume Volume Fraction Difference
Fraction Error (%) (%)
93 0.14998 -23.61 1.4906 -8.79
93 0.18409 -6.24 1.5976 -2.24
93 0.19263 -1.89 1:6244 -0.6
93 0.19623 -0.06 1.6357 0.09
576 0.18440 -6.09 1.5972 -2.26
576 0.19351 -1.45 1.6257 -0.52
576 0.19630 -0.02 1.6345 0.02
4,156 0.19334 -1.53 1.6248 -0.57
4,156 0.19633 -0.01 1.6342 0.00
20,615 0.19558 -0.39 1.6318 -0.15
20,615 0.19635 0.00 1.6342 0.00

Table 2. Mesh bundle volume fraction and homogenized material
stiffness differences for the discretizations shown in Figure 13.

The most relevant stiffness parameter for the single bundle model is the parameter
corresponding to the axial stiffness of the bundle. For the model under consideration the
fiber bundle axis is aligned with the z direction, making the G'33 term of the homogenized
material stiffness matrix G of greatest relevance. The values of G33 computed using the
various discretizations were compared to (33 computed with the finest mesh adjusted to
0.0% bundle volume fraction error.

The percent differences between the G335 values and the (33 value of the finest mesh
are listed in Table 2.. This data may be examined in two manners. The first entails
viewing the homogenized axial stiffness parameter differences as a function of the C’bF E
error. The CbF £ of each mesh was adjusted to match the initial C'bF £ values of the finer
discretizations and also to C}. The change in the value of the axial stiffness parameter
for a given mesh corrected to different CbF £ values shows the effect of improving the
geometric approximation only. This data shows that all of the discretizations adjusted to
within £0.5% of C produced nearly the same axial stiffness parameter. In particular,
the coarse discretization and the fine discretization produced results which differed
by only 0.09%. This result indicates that it is possible to use coarse discretizations
and achieve accurate results if the geometric approximation error is controlled. This
shortens the analysis cycle since it is much quicker to generate coarse discretizations and
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also much quicker to perform the homogenization analysis on the coarse discretization.
The CPU time required for the mesh generation and homogenization solution of the
coarse discretization was 444 times faster than the time required for the most refined

discretization.

Examining the homogenized axial stiffness differences for meshes corrected to within
+0.5% of the same Cgm E shows a small change in this parameter with increasing mesh
refinement. When all the discretizations were corrected to within £0.5% of C3, changing
the number of mesh vertices by two orders of magnitude resulted in only a 0.09% change
in the homogenized axial stiffness parameter estimate. In contrast, changing the volume
fraction of the coarse discretization by less than 2% resulted in a 0.69% change in the
homogenized axial stiffness parameter accuracy, indicating that the analysis of this model
is affected more by the geometric approximation error than by the discretization error.

The second example consists of a base two satin weave composite [21]. The
parameters used to construct the geometric model of this weave were taken from a series
of micrographs of a representative sample of the composite. The design target bundle
fraction was 0.55. The matrix material is an amorphous glass composed of silicon,
oxygen, and carbon. The matrix was modeled as a transversely isotropic material with
degraded properties to represent the through-thickness matrix cracks in the as-processed
composite. The axial Young’s and shear moduli of the matrix are 11.5 msi and 4.0 msi.
The transverse Young’s and shear moduli are 8.1 msi and 3.3 msi. The Poisson’s ratio
is 0.26. These values will be compared with specimen test data in future work [28]. The
fibers are a ceramic material. The axial Young’s and shear moduli of the fiber bundles
are 16.6 msi and 6.55 msi. The transverse Young’s and shear moduli of the fiber bundles
are 16.2 msi and 6.52 msi. The Poisson’s ratio of the bundles is 0.24.

Meshes of varying amounts of uniform refinement were generated within the con-
structed geometric model. The coarsest mesh, (Figure 14) contains 2,380 vertices and
11,050 elements, the mesh created with one level of refinement (Figure 15) contains
10,475 vertices and 52,509 elements, and the finest mesh (Figure 16) contains 62,436
vertices and 338,253 elements. Meshes of each of the three levels of uniform refine-
ment were also generated with the mesh volume fraction corrected to within £0.5% of
the target volume fraction of 0.55. The mesh faces classified on the interior fiber bundle
surfaces of each of the volume fraction corrected meshes are shown in Figure 17. The
number of mesh vertices and mesh volume fraction data of all of the meshes are listed

in Table 3.

Homogenization analyses were performed and the in-plane stiffness parameters were
examined. For the modeled composite weave the in-plane fiber bundle directions
correspond to the z and z axes, with the y axis normal to the plane of the composite.
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Figure 14. Coarse mesh of base two satin weave model.
(a)External mesh faces. (b)Fiber bundle surface mesh faces.
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Figure 15. Medium mesh of base two satin weave model.
(a)External mesh faces. (b)Fiber bundle surface mesh faces. ;
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Figure 16. Fine mesh of base two satin weave model.
(a)External mesh faces. (b)Fiber bundle surface mesh faces.

The in-plane material parameters are therefore the values of G11, Gs3, G55, and G13.

The homogenized stiffness parameters were compared to the values calculated using
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(b) ()

Figure 17. Fiber bundle surface mesh faces of meshes corrected to 0.55
volume fraction. (a)Coarse mesh. (b)Medium mesh. (c)Fine mesh.

the finest discretization corrected to 0.17% CbF E error. The in-plane normal stiffness
parameter data determined from these analyses are shown in Table 3, and the in-plane
shear and Poisson effect stiffness parameter data are shown in Table 4. The values for
the coarsest and finest discretizations differed by at most 1.64% when adjusted to within
+0.5% of the correct bundle volume fraction.

There is also little change in the stiffness parameters with large changes in the
number of degrees of freedom in the model, indicating that the homogenization analysis
is affected more by the amount of geometric approximation error than by the amount
of the discretization error. :

The results of this example again show that it is possible to achieve accurate
homogenization results with coarse finite element discretizations if the CI'® values are
adjusted to the correct values. The total CPU mesh generation and solving time required
for the coarsest discretization was 44 times faster than the time required for the finest
discretization.
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Number | Mesh Mesh Bundle | Gqy (G11 (333 (33
of Bundle | Volume (x107) | Difference | (x107) | Difference
Vertices | Volume Fraction Error (%) (%)
Fraction (%) .
2,380 0.3905 -29.00 1.3099 |-11.5 1.3085 |-11.6
2,380 0.4460 -18.91 1.3651 | -6.54 1.3636 | -6.60
2,380 0.4593 -16.50 1.3783 | -5.64 1.3769 | -5.69
2,380 0.5526 0.47 14715 [0.74 1.4688 | 0.60
10,475 | 0.4441 -19.25 1.3582 |-7.01 1.3570 | -7.05
10,475 1 0.4594 -16.5 1.3734 |-5.97 1.3723 | -6.00
10,475 | 0.5515 0.28 14649 |0.29 1.4635 |0.24
62,436 | 0.458 -16.7 1.3690 | -6.28 1.3677 | -6.31
62,436 | 0.5509 0.17 1.4607 |0.0 1.4600 | 0.0

Table 3. Mesh sizes, mesh bundle volume fractions, and in-plane normal homogenized stiffness
parameter values of the discretizations of the base two satin weave geometric model.

Number Mesh Bundle | G5 (x5 Difference | G13 (13 Difference
of .| Volume (x109) (%) (x10%) (%)
Vertices Fraction Error

(%)
2,380 -29.00 4.5536 -8.05 3.7119 -12.94
2,380 -18.91 4.7007 -5.07 3.9193 -8.08
2,380 -16.50 4.7387 -4.31 3.9694 -6.91
2,380 0.47 5.0334 1.64 43233 | 1.39
10,475 -19.25 4.6717 -5.66 3.8825 -8.94
10,475 -16.5 7115 -4.86 3.9399 -7.60
10,475 0.28 4.9753 0.47 4.2853 0.5
62,436 -16.7 4.6904 -5.28 3.9182 -8.11
62,436 0.17 4.9520 0.00 4.2639 0.00

Table 4. Mesh sizes, mesh bundle volume fraction errors, and in-plane
shear and Poisson effect homogenized stiffness parameter values of
the discretizations of the base two satin weave geometric model.
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7. Determination of Local Stresses

A thorough analysis of a given composite weave must also include the calculation of
the local stresses in the weave which result from loadings on the larger-scale homogenized
material. These local values aid in the design of composite microstructure by indicating
areas of high stress which may lead to failure of the composite. The meshes generated by
the procedures described in this paper conform to the model geometry, and are therefore
capable of producing reliable local stress data.

The local unit cell stresses corresponding to the strain field £ existing at a given
point in the larger—scale model are given by

o= A& (28)

where ¢; are the stresses at the i** integration point in the unit cell model, and A; is the
stress concentration matrix relating the strain field at a given point in the macroscopic
model to the stresses at the :*? integration point in the unit cell model [12].

The following example of local stress calculation uses the base two satin weave
composite unit cell of section 6. The homogenized material stiffness parameters were
used to calculate £ corresponding to a 100 ksi uniaxial stress in the x-direction. This
direction corresponds to the warp direction of the unit cell.

The results of applying equation (28) to every integration point in the coarse mesh
adjusted to 0.47% C’bF £ error (shown in Figure 17(a)) are shown in Figure 18. This figure
represents an exploded view of the unit cell, with the groups of elements comprising the
matrix (at the left), warp bundles (at the top), and weft bundles (at the bottom) separated
for clarity. Linear elements were used for the homogenization analysis of this example,
and the elements in this figure are colored according to the values of the maximum
principal stress calculated at their single integration points. The correspondence between
the colors and the stress values is shown by the color bar at the top of Figure 18.

The stresses in the warp bundles show concentration “bands” near the crossovers
where the warp and weft bundles are woven together. This is due to the load carrying
capacity of bundles being reduced when their axes do not align with the loading direction,
and the load therefore being transferred to the neighboring bundles which are aligned in
the loading direction. The matrix material shows bands of stress values due to additional
reinforcement by the transverse stiffness of the weft bundles. The peak stress in the
warp bundles is 148.0 ksi.

The medium mesh (Figure 17(b)) adjusted to 0.28% C{F error was also analyzed
to examine the effect on the peak stress. The local stresses calculated with the medium
mesh (Figure 19) exhibit the same characteristics as the coarse mesh. The peak stress
in the warp bundles is 160 ksi.
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Figure 18.  Maximum principal stress values in a base two satin weave composite
resulting from a uniaxial x-direction stress of 100 ksi applied to the homogenized
material (Coarse mesh). The peak stress in the warp bundies is 148.0 ksi

8. Conclusions

This paper presented a system for the efficient three-dimensional homogenization
analyses of complex composite materials. These capabilities include a matched meshing
algorithm which simplifies the specification of periodic boundary conditions, and an
iterative solver algorithm capable of efficiently handling the multiple right hand sides
required for homogenization analyses. An algorithm was also developed to correct the
mesh volume fraction, and the effect of the mesh volume fraction error on the values
of homogenized material stiffness parameters was shown to be greater than that of the
discretization error. Acceptable homogenization results may therefore be obtained with
coarse discretizations if the mesh volume fraction is controlled. The reliable calculation
of local stresses permitted by the mesh conforming to the model geometry was also
demonstrated.
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Figure 19. Maximum principal stress values in a base two satin weave composite
resulting from a uniaxial x-direction stress of 100 ksi applied to the homogenized
material (Medium mesh). The peak stress in the warp bundles is 160 ksi.
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