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The efficiency of Parallel Discrete Event Simulations that use the optimistic protocol is strongly
dependent on the overhead incurred by rollbacks. This paper introduces a novel approach to
rollback processing which limits the number of events rolled back as a result of a straggler or
antimessage. The method, called Breadth-First Rollback (BFR), is suitable for spatially explicit
problems where the space is discretized and distributed among processes and simulation objects
move freely in the space. The BFR uses incremental state saving, allowing the recovery of causal
relationships between events during rollback. These relationships are then used to determine
which events need to be rolled back. This paper presents an application of BFR to the simulation
of Lyme disease. The results demonstrate an almost linear speedup—a dramatic improvement
over the traditional approach to rollback processing.

1. INTRODUCTION

Discrete Event Simulation (DES) is an attractive simulation technique which has
been used in modeling communication systems, electronic circuits, battlefield sce-
narios etc... As the size and the complexity of the simulations increases, so does
the demand for use of more powerful computing systems such as parallel machines.
Moving to a parallel or distributed platform increases the complexity of the sim-
ulation engine. In sequential DES, the physical system is represented by a single
Logical Process (LP). Parallel Discrete Event Simulation (PDES) [Fujimoto 1990]
brings with it multiple processes. The physical system is viewed as a set of Physical
Process (PP). In PDES, each PP is modeled by an LP. The LPs work together to
simulate the underlying physical system by sending event messages between each
other. The computational challenge is to keep the simulation consistent among the
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processes.

Each Logical Process is composed of state variables, a priority event queue and
a clock, which keeps track of the local virtual time (Ivt) of the process. The LPs
process events asynchronously according to the timestamps of the events. The
clock and the state variables are updated during the processing of an event. LPs
can communicate with each other by sending event messages. When an LP receives
an event message with a timestamp lower than its lvt, a causality error occurs,
because it is possible that the incoming event will change the state of the LP in
such a way, that the state of the LP at the current lvt will no longer be correct.
Two major protocols have been developed to deal with causality errors.

The conservative protocol proposed by Chandy and Misra [Chandy and Misra
1979] prevents causality errors from occurring by allowing the LPs to process events
only when it is absolutely certain that there is no event in the system with a times-
tamp smaller than the timestamp of the event about to be processed. The conser-
vative approach derives its performance from lookahead, the ability to determine
the minimum delay between dependent events. The lookahead is application de-
pendent and can sometimes be hard to determine. It can also vary throughout the
simulation.

The optimistic protocol, on the other hand, does not constrain the LPs’ ability to
process events. However, when causality errors occur, the protocol enforces recovery
from them. Time Warp (TW), introduced by Jefferson, [Jefferson 1985] is the best
know protocol of this type. The processing of events is done optimistically, hoping,
that no causality errors will occur. When an event with a timestamp smaller than
the current lvt is received (such a message is known also as a straggler), the LP
is rolled back to the last state saved just before the timestamp of the straggler.
The event is then processed and the computation is restarted. If messages where
sent out between the timestamp of a straggler and the lvt at which that message
was received, antimessages have to be sent to cancel the original messages released.
Upon receiving of an antimessage, the LP checks if the corresponding event has
been processed; if it has, a rollback occurs, otherwise the event is annihilated.

There a several issues that need to be addressed in Time Warp. A major one is
the amount of memory that TW-based simulators consume because of periodic state
saving. The basic memory management tool in TW relies on the Global Virtual
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Time (GVT) calculation. The GVT is the minimum of the local virtual times of
the Logical Processes and of all the timestamps of the messages sent but not yet
received. Any information saved with a timestamp smaller than the GVT will not
be needed for rollback, so it can be discarded. Deleting obsolete information is
referred to as fossil collection. Often, fossil collection will not be able to reclaim a
sufficient amount of memory for a simulation to proceed efficiently.

To reduce the amount of memory used, the state of a simulation does not need
to be saved after each event [Lin et al. 1993]. The side effect of the decreased
checkpointing frequency is the increased cost of performing a rollback. Figure 1
illustrates that side effect. When a rollback occurs for the time just prior to event eg,
the LP has to restore the state s, since it is the last state saved before the occurrence
of eg. As a result events es—es have to be recomputed. Obviously performance
might suffer. Setting up the appropriate checkpointing interval involves balancing
the time it takes to save the state, the time is takes to coast forward (reexecuting
correct events after the rollback) and the amount of memory an LP consumes.

It is also possible that an LP runs out off memory even when checkpointing is done
infrequently. When a memory stall occurs, memory reclaiming algorithms are used
[Preiss and Loucks 1995]. Some techniques involve discarding information saved in
the hopes that it will not be needed. When the deleted objects are messages, as in
Message Sendback [Jefferson 1985, the messages sent back will trigger rollbacks at
the original senders, thus reclaiming some memory. Gafni’s Protocol [Gafni 1988]
extends the class of objects that can be reclaimed to output messages and state
vectors. When an output message is reclaimed, a corresponding antimessage is
sent out. This might cause a rollback at the receiving LP. Gafni’s Protocol also
allows state vectors to be reclaimed, thus making an LP rollback to the previous
state. Similarly, artificial rollback [Lin and Preiss 1992] is used to rollback a process
when the available memory is exhausted. All of the above techniques rely on the
rollback mechanism. By contrast, Pruneback [Preiss and Loucks 1995] is a less
intrusive method. It simply deletes some saved states without rolling back the LP.
The drawback is that when a rollback occurs, additional coasting forward might be
needed.

When the state of the LP is large, saving the entire state can be too costly.
If additionally the occurrence of an event changes only a small subset of state
variables, then the incremental state saving, developed in SPEEDES [Steinman
1993b], can be efficient. In this state saving method, the part of the state that is
affected by an event is saved within the event structure. Upon rollback, the affected
events are undone and the modified state variables are restored.

Obviously performance is also an issue in TW. The major source of performance
degradation is the cost of rollbacks. The time spent on processing events that
will later be rolled back is pure overhead. So is the time spent restoring the state
(especially in incremental state saving) and coasting forward. Two most general
categories of rollback cost reduction can be classified as follows: (i) protocol modifi-
cation, and (ii) problem partitioning that defines allocation of parts of the physical
system to LPs and the associated issue of mapping of LPs to processors. Sec-
tion 2 will sketch both categories. Section 3 describes the traditional approach to
simulating spatially explicit problems. This approach will be used as the basis of
comparison for the new Breadth First Rollback (BFR) algorithm described in sec-
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tion 4. This new algorithm is designed to minimize the impact of rollbacks. BFR
is applicable to spatially explicit problems where the space is discretized. In such
problems, objects are located in the space and are allowed to move freely. Incre-
mental state saving is used to expose dependencies between events. Our current
application is described in section 6.1. Sections 7 and 8 will summarize the results
and discuss open problems.

2. RELATED WORK
2.1 Protocol Innovations

One way to improve performance of Time Warp is to decrease the cost of rollbacks
by lessening the impact that a rollback of one LP has on the LPs communicating
with it.

Lazy cancellation [Lin and Lazowska 1991] can be used to reduce the number of
antimessages sent. When a rollback occurs, the LP does not automatically send
antimessages corresponding to the positive messages that have been sent after the
time to which the computation is rolled back; rather it recomputes the states from
the rollback time. If the processing of events causes the same messages to be sent,
then there is no need to cancel them, and the cost of canceling “good” messages is
saved. Also, the spread of the rollback in minimized. If, however, there are changes,
antimessages have to be sent. The idea is that if during the recalculation phase
after rollback, if the message would be sent anyway, then it is better not to send
any antimessages. These antimessage could cause the receiving LP to roll back
unnecessarily. Lazy cancellation, of course, involves comparing messages, which is
not always easy.

Lazy re-evaluation [Fujimoto 1990] has been used to determine if a straggler or
antimessage had any effect on the state of the simulation. If after processing of the
straggler or canceling of an event, the state of the simulation remains the same as
before, than there is no need to re-execute any events from the time of the rollback
to the current time. The problem with this approach is that it is hard to compare
the state vectors to determine if the state has changed.

Both lazy cancellation and lazy reevaluation assume that a rollback at one LP
is not likely to affect others. Conversely, the Wolf calls protocol [Madisetti et al.
1988] was designed to minimize the impact that an LP’s rollback has on others.
It assumes, that a rollback at an LP will most likely trigger rollbacks of other
processes. When an LP rolls back, it checks which neighboring LPs are likely to be
affected. It then sends a message to these LPs letting them know that a causality
error has occurred. If an LP receives such a message, it will stop processing of
events. The big disadvantage here is that correct computation might be held back
unnecessarily.

Limiting the optimism in a simulation can also reduce the chance of an expensive
rollback. Window based algorithms [Reiher et al. 1989; Dickens et al. 1994] set a
limit as to how far ahead into the future LPs can proceed without synchronizing.
This prevents LPs to get far ahead of others and incur frequent rollbacks. Unfortu-
nately, window based algorithms do not distinguish between useful and erroneous

work.
Breathing Time Warp [Steinman 1993a] is composed of two phases: time warp
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and breathing time buckets. In the first phase, the simulation progresses as in Time
Warp until the predetermined number of events is reached. Then, the simulation
switches to the next phase—breathing time buckets. In this phase events are pro-
cessed but their messages are not released. The event horizon determines the length
of the second phase. The event horizon is the timestamp of the earliest new event
generated in the current phase. After both phases are completed, the messages are
released and the GVT is calculated.

2.2 Problem Decomposition

The Local Time Warp (LTW) [Rajaei et al. 1993] approach combines two simu-
lation protocols by using the optimistic simulation between LPs belonging to the
same cluster and by maintaining a conservative protocol between clusters. LTW
minimizes the impact of any rollback to the LPs in a given cluster.

Clustered Time Warp (CTW) [Avril and Tropper 1995; Avril and Tropper 1996]
takes the opposite view. It uses conservative synchronization within the clusters
and an optimistic protocol between them. The reason behind this method is that,
LPs in a cluster share the same memory space, so their tight synchronization can
be performed efficiently. Two algorithms for rollback are presented: clustered and
local. In the first case, when a rollback reaches a cluster, all the LPs in that cluster
are rolled back. This way the memory usage is good because events that are present
in input queues, and that were scheduled after the time of the rollback, can be
removed. In the local algorithm, only the affected LPs are rolled back. Restricting
the rollback speeds up the computation, but increases the size of memory needed,
because entire input queues have to be kept.

The Multi-Cluster Simulator [Schlagenhaft et al. 1995], in which digital circuits
are modeled, takes a different look at clustering. First, the cluster is not composed
of a set of LPs; rather, it consists of one LP composed of a set of logical gates. These
LPs (clusters) are then assigned to a simulation process. This approach is taken
because assigning an LP to a single logical gate would result in high scheduling
overhead.

3. SPATIALLY EXPLICIT MODEL AND THE TRADITIONAL APPROACH

The research presented in this paper concentrates on a class of problems known as
spatially explicit, problems that have a structure which naturally contains spatial
information. In general, the application consists of a multidimensional space, which
is discretized into a multidimensional lattice. Each lattice node can contain infor-
mation which characterizes a given area. There are also mobile objects inhabiting
the space. There are two general classes of events in the system: local and non-local.
A local event affects only the state of one lattice node and the objects present in it.
A non-local event, for example the Move Event, which moves an object from one
location to the next, affects at least two nodes of the lattice.

The simulation currently runs on an IBM SP2, a distributed memory machine.
We show results for up to 16 processors. The model was designed in an object
oriented fashion and implemented in C++. The communications between processes
use the MPI [Gropp et al. 1994] message passing library.
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3.1 Partitioning

The space in our application is discretized into a two-dimensional lattice. Similar
discretization is used, for example, in personal communication services [Carothers
et al. 1995], where the two-dimensional space is discretized into hexagonal or square
cells. In these simulations, each cell is modeled by an LP. In some simulations, it
would be prohibitively expensive to assign one LP to each spatial entity, so then
the entities are “clustered” into a single LP, similarly as in circuit simulations.

In case of spatially explicit problems, the issue of partitioning the space between
LPs is of importance. There are two possibilities: either one LP is assigned to
each lattice node (which results in high simulation overhead), or the lattice nodes
are clustered together and the resulting clusters be assigned to LPs. Our first
implementation used the latter approach and assigned spatially close nodes to a
single LP, with TW used between the LPs. This would be similar to the CTW,
except that our implementation did not have multiple LPs within a cluster, making
the simulation of space more efficient. To achieve better performance, the space
can also be divided into more LPs than there are available processors [Deelman and
Szymanski 1996).

3.2 Protocol and Memory Management

The Time Warp protocol has been chosen for the simulation engine. The LPs in
this simulation are called Space Managers, because they are responsible for all the
events that happen in a given region of space. If the Space Manager determines
that an object moves out of local space to another partition, the object and all its
future events are sent to the appropriate Space Manager.

Because the state information is large, incremental state saving of information
necessary for rollback was used. When an event is processed, the state information
that it changes is placed into the event’s local data structure. The event is then
placed on a processed event list. Events that move an object from one LP to
another are also placed in a message list (only pointers to the events are actually
placed on the lists; the resulting duplication is not costly and speeds up sending of
antimessages). If an object moves to another LP, the sending LP saves the object
and the events that it is sending in a ghost list to be able to restore this information
upon rollback.

When a rollback occurs, messages on the message list are removed and cor-
responding antimessages are sent out (using aggressive cancellation). Then the
events from the processed event list are removed and undone. Undoing an event
which involved sending an object to another process entails restoring the objects
from the ghost list and restoring the future events of the object to the future event
queue. For local events, the parts of the state that have been changed by the events
have to be restored. During fossil collection, the obsolete information is removed
and discarded from the three lists: the processed event list, the message list and the
ghost list. We have chosen aggressive cancellation to stop the erroneous simulation
on the communicating LPs as soon as possible.

Unfortunately, the traditional approach did not perform as well as expected,
especially for large problem sizes, because when a rollback occurred in a cluster,
the entire cluster had to roll back.
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Initial results obtained for a small-size simulation were encouraging (Figure 2);
however, the speedup was not impressive for larger simulations (Figure 3). The per-
formance degradation is caused by the large space allocated to individual processes
for the increased problem sizes. When a rollback occurs, the entire space allocated
to an LP is rolled back. To minimize the impact of the rollback, the space was di-
vided into more LPs, while keeping the same number of processors. Figure 4 shows
the runtime improvement achieved with this approach. For the given problem size,
the optimal number of LPs was 16 (Figure 5), and the best efficiency was achieved
with 8 processors.

4. BREADTH FIRST ROLLBACK

To improve performance, the nodes of the lattice belonging to an LP (cluster) are
allowed to progress independently in simulation time; however, all the nodes in a
cluster are under the supervision of one LP. When a rollback occurs in a LP /cluster,
only the affected lattice nodes are rolled back, thanks to a breadth-first rollback
strategy. This results in an inter-cluster and intra-cluster Time Warp.

The main innovation in BFR is the different forward and rollback processing.
All future information is global to the lattice cluster, but information about the
past is distributed among the nodes of the spatial lattice. The future information
is centralized to handle the proper and fast scheduling of events, and the past
information is distributed to limit the effects of a rollback. From the point of view
of the future, a partition is treated as a single LP, whereas, from the point of view
of the past, the partition is seen as a set of LPs (one LP per lattice node). The
performance of the new method results in a close-to-linear speedup.

Breadth-First Rollback is designed for spatially explicit, optimistic PDES. The
space is discretized and divided among LPs, giving each LP the responsibility for
a set of interconnected lattice nodes. Making the simulation as fast as possible
requires optimizing two processes: speeding up the forward simulation process and
reducing the impact of a rollback on an LP. The forward computation will progress
fastest when there are few LPs per processor, because context switching will be
minimized. To reduce the impact of a rollback, its depth and breadth must be kept
to a minimum. The rollback should not reach further into the past than necessary,
and the number of events affected at a given time has to be minimized. To achieve
the latter, a property of spatially explicit problems is useful: if two events happened
to nodes so far apart that one event cannot affect the other (given the current logical
virtual time (lvt) of the LP and the time of the rollback), then at most one of these
events needs to be rolled back when a causality error occurs.

Local events, as defined in section 3 are easy to roll back. Assume that a local
event e at location ! and time ¢ triggers an event e; at time ¢; and location I (by
definition of a local event). To process a rollback which impacts event e, only the
state of location [ has to be restored to time just prior to time ¢. While doing that,
e; will be undone as part of restoring the state of . If, however, the triggering
event e is non-local and triggers an event e; at location I; # [, then restoring the
state of [ is not sufficient—it is also necessary to restore the state of [; just prior
to the occurrence of event e;. Regardless of whether an event is local or non-local,
the state information can be restored on a node-by-node basis.

To show the impact of a rollback on an LP, consider a straggler or an antimessage
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arriving at a location (z), marked in the darkest shade in Figure 6. The rollback
will proceed as follows. The events at z will be rolled back to time %,, the time
of the straggler or antimessage. Because incremental state saving is used, events
have to be undone in decreasing timestamp order to enable the recovery of state
information. Since the rollback involves undoing events that happened at z, each
event processed at that node will be examined to determine if that event caused
another event to occur at a different location. If an event e at location z is being
examined, and it is determined that it triggered an event e; at location z1 # z,
then location z; has to be rolled back to the time prior to the occurrence of e;.
Only then is e undone (this breath-first order of processing events motivated the
name to the new method).

Objects can move only from one lattice node to a neighboring one, so that a
rollback can spread from one site only to its neighbors. The time of the rollback at
the new site must be strictly greater than the one at site z, assuming a non-zero
delay between causally-dependent events. This assumption is justified in spatially
explicit problems because of a finite speed of objects. The breadth of the rollback
is limited by the speed with which simulated objects move in space.

Figure 6 shows potential waves of rollback, from the initial point of impact
through three more layers of rollback. Often, the size of the affected area will
usually be smaller than the shaded area in Figure 6, because events at one site will
most likely not affect all their neighboring nodes. Obviously, if an event at location
z triggered events on a neighboring LP, antimessages have to be sent.

It is interesting to note that each location belonging to a given LP can be at
a different logical time. In fact, events in a given LP may not be processed in
an increasing-timestamp order. If two events are independent, an event with a
higher timestamp can be processed ahead of an event with a lower timestamp.
A similar type of processing was mentioned briefly in [Steinman 1992] as CO-OP
(Conservative-Optimistic) processing. The justification is that the requirement of
processing events in timestamp order is not necessary for provably correct simula-
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tions. It is only required that the events for each simulation object be processed in
a correct time order.

Consequently, when an event is processed, the local time of the lattice node where
the event is scheduled to occur is checked. If that time is greater than the time of
the event, the node has to roll back.

5. CHALLENGES OF THE NEW APPROACH

To implement BFR, some changes had to be introduced the model. A major mod-
ification was made to the Move Event in response to the following question: If an
object is moving from location (z,y) to location (1, y1 ), where should the event be
placed as “processed”? If it is placed in the processed event list at location (z,y),
and location {z1,¥1) is rolled back, then there would be no way of determining that
the event affected location (z1,y1). If it is placed at location (z1,y1), and location
(z,y) is rolled back, a similar difficulty arises. Placing the Move Event in both
processed lists is also not a good solution, because, in one case, the object is mov-
ing out of the location, and, in the other case, it is moving into the location. This
dilemma motivated the of split of the event into two: the MoveOut and Moveln
Events. Hence, when an object moves from location (z,y) to location (z1,31), the
MoveOut is placed in the processed event list at (z,y), the Moveln at location
(x1,y1). When the move is non-local, (location (z1,1) belongs to another LP),
the MoveOut is placed in the processed event list at location {z,y). The Moveln
event is then sent to the appropriate process. When this event is received and
processed, it will be placed at location (z1,y1). Upon rollback, if a MoveOut to
another LP is encountered, an antimessage is sent together with a location (z,y)
to which the original message was addressed, to avoid searching the lattice nodes
for this information.

Since the MoveQut Event indicates when a message has been sent, no message list
is necessary. Another affected structure is the ghost list. In the original approach,
objects and their events were placed on the list in the order in which they left the
partition. In BFR, the time order is not preserved. Objects are placed on the list in
any timestamp order because the nodes of the lattice can be at different times. The
non-ordered aspect of the ghost list poses problems during fossil collection. The list
cannot be merely truncated to remove obsolete objects. The solution, again, is to
distribute that list among the nodes. This is useful for load balancing, as described
in the final section. However, the ghost list is relatively small (compared to the
processed event list), so it might not be necessary to distribute the list if no load
balancing is performed. It is only necessary to maintain an order in the list based
on the virtual time at which the object is removed from the simulation.

Additionally, the trigger information about the event must be preserved. In
the original implementation, when an event was created, the id of the event that
caused it was saved in one of the tags (the trigger) of the new event. When an
event was undone, the dependent future events were removed by their trigger tags
from the future event queue. In BFR, it is possible that the future event is already
processed, and its.assigned location has not been rolled back yet. It is prohibitively
expensive to traverse the future event list and then each processed event list in the
neighborhood in search of the events whose triggers match the given event tag. The
solution is to create dependency pointers from the trigger event to the newly created
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event. This way, a dependent event is easily accessed, and the location where it
resides can be rolled back. Pointer tacking has been previously implemented for
shared memory machines [Fujimoto 1990] to decide whether an event should be
canceled or not. In addition, it is also necessary to determine if a dependent event
has been processed or not, to be able to quickly locate it either in the future event
queue or in a processed event list.

One more change was required for the random number generation. In the original
simulation, a single random number stream was used for an LP. Now, since the
sequence of events executed on a single LP can differ from run to run (because
the sequence of executed events is not necessarily the same), the same random
number sequence can give two different results! Obviously, non-repeatability cannot
be accepted. The solution that we found was to distribute the random number
sequence among the nodes of the lattice. Initially, a single random number sequence
is used to seed the sequences at each node. From there, each node generates a new
sequence

With BFR, time is not uniform across the space, so the global virtual time
(GVT) calculation cannot be invoked based upon the distance of the local virtual
time (lvt) from the previous GVT (as in the original version). Instead, it is invoked
after a certain number of messages has been received from other processes since the
previous GVT.

6. EXAMPLES

The following code constitutes the skeleton of the Breath-First Rollback (unopti-
mized, for clarity).

rollback_space(t,x,y) // rollback location x,y to time t {
For every event E processed at x,y after and including time t {
// the events are undone in the order opposite
// to the one in which they were processed
// update the local virtual time (1vt) to the time of the event
if ( E.eventTime < 1lvt ) {
lvt = E.eventTime;
}

// make sure to undo the dependent events first
while there exists an unprocessed dependent event D of E {
// (E triggered D)
if (D is at location (x1,y1) != (x,y) ) {
if ( time of (x1,y1) >= D.eventTime ) {
rollback_space( D.eventTime, x1, y1 );
¥

if (E.event_type == MOVE_OUT_EVENT) {
if the new location is. outside._bounds of the current LP {
send out an anti-message for event E
0bj = object affected by E
// restore events that were scheduled for Obj when
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// message was sent
restore_events_from_ghost_1ist(0Obj, t);
undo_event (E) ;
insert_event (E); // into the future event queue

// remove events that E triggered (from the event queue)
remove_scheduled_events(E.id);

To demonstrate the behavior of the BFR algorithm, let’s consider the exam-
ple in Figure 7, which shows processed event lists at three different lattice nodes:
(0,0),(0,1), and (0,2). The event MO is a MoveOut event, M T a Moveln event, and
X can be any local event.

If there is a rollback for location (0,1) at time Tp, the following will happen:
First, MI; is undone and placed on the future event queue. Then, X, undergoes
similar processing. Next, M Os is being considered and the dependence between it
and My is detected, so a rollback for location (0,2) and time 75 is performed. As
a result, X5 and M I, are undone. Both are placed on the future event queue. Next
MO, is undone, which causes MI; to be removed from the future event queue.
MO; is examined, and (0,0) is rolled back to time T7. MU, X; and M are
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undone and placed on the future event queue. MO, is undone and MI; is removed
from the future event queue. This process can be optimized by not placing events
that are soon to be removed, in the queue. If an event was scheduled during the
time affected by the rollback, it does not need to be placed back on the future event
queue.

If the rollback occurred at location (0,0) for time 77, then the three most recent
events at location (0,0) will be undone and placed on the future event queue, and
no other location will be affected during the rollback. It is possible that the other
locations will be affected when the simulation progresses forward. If, for example,
an event MO, was scheduled for time 75 on (0,0) and triggered an event M I, on
(0,1) for time T3, then location (0,1) would have to roll back to time 7.

Interesting aside: location (z,y) can be at simulation time 10. The next event in
the future list is scheduled for time 20 and location (z1,y1), and processed. If an
event comes in from another process for time 15, a rollback may not occur. If the
event is to happen at location (z,y), then no rollback will happen. If, however, it is
destined for location (21,y1), localized rollback will occur. Clearly, comparing the
timestamp of an incoming event to the Ivt is not enough to determine if a rollback
is necessary.

6.1 The Application

The application that motivated this work is the simulation of the spread of Lyme
disease in nature [White et al. 1991]. The space, in this case, is two-dimensional,
and it is discretized into a two-dimensional lattice. There are two types of objects
in the simulation: the mobile objects that are moving freely in space (mice) and
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the stationary objects located at the lattice nodes (ticks). The two main groups of
events are: (i) local to a node (such as tick bites, death, etc..) and (ii) non-local
(such as a move from one node to another—Move Event). Lyme disease is prevalent
in the Northeastern United States [Barbour and Fish 1993; Miller et al. 1990].
People can acquire the disease by coming in contact with an infected tick. If a tick
is infected with the spirochete, the spirochete may be transferred into the host’s
blood stream, causing an infection. Since the ticks are practically immobile, the
spread of the disease is driven by their mobile hosts, such as mice and deer. Even
though the most commonly known cases of Lyme disease are reported in humans,
the main infection cycle consists of ticks and mice (Fig. 8). If an infected tick bites
a mouse, the animal becomes infected. The disease can also be transmitted from
an infected mouse to an uninfected, feeding tick.

Larvae hatch uninfected and quest for a blood meal. If they find a mouse, they
feed on it and molt into nymphs. The nymphs overwinter and in the spring begin
10 look for a blood meal. If successful, they will feed, drop off the animal, and molt
into adult ticks. The latter deposit eggs the following spring. The duration of the
simulation is 180 days, starting in the late spring [Deelman et al. 1996]. This time
is the most active for the ticks and mice. Mice, during that time, are looking for
nesting sites and may carry ticks a considerable distance [Ostfeld et al. 1996].

The mice are modeled as individuals, and ticks, because of their sheer number
(as many as 1200 larvae/400m? [Ostfeld et al. 1996]) are treated as “background”.
The space is discretized into nodes of size 20x20m?, which represents the size of the
home range for a mouse. Each node may contain any number of ticks in various
stages of development and with various infection status. Mice can move around in
space in search of empty nesting sites. The initiation of such a search is represented
by the Disperse Event, and the moves are modeled by the Move Event. Mice can
die (Kill Event) if they cannot find a nesting site or by other natural causes, such
as old age, attacks by predators, and disease. Mice can be bitten by ticks (Tick
Bite) or have ticks drop off (Tick Drop). From the above list of events, only the
Move Event is non-local.

7. RESULTS

Figure 9 shows the performance of BFR and illustrates the almost linear speedup.
The BFR is considerably faster than the traditional approach thanks to its prop-
erties. The most important among them is localization of rollbacks. When a
rollback occurs, only the absolutely necessary events are undone. In the traditional
approach, the number of events that needed to be rolled back was ultimately pro-
portional to the number of lattice nodes assigned to a given LP. When a rollback
occurred, all the events that happened in that space had to be undone. On the
other hand, when a rollback occurs in the BFR version, the number of events being
affected by a rollback is proportional to the length of the edges of the space that
interface with other LPs. When space is divided into strips, the number of events
affected by a given rollback is proportional to the length of the two communicating
edges. Consequently, we observe that the number of events rolled back using BFR
is an order of magnitude smaller than that in the traditional approach.

There are also fewer antimessages being sent as a result of the hybrid form of
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Fig. 9. Results: Comparison of Runs With BFR and the Traditional Approach

lazy cancellation. In general, having one LP per processor eliminates on-processor
communication delays. There are, of course, some drawbacks to the new method.
Fossil collection is much more expensive (because lists containing past information
are distributed); therefore, it is done only when the GVT has increased by a certain
amount from the last fossil collection. It is harder to maintain dependency pointers
than triggers, because, when an event is undone, its pointers have to be reset.
The pointers have to be maintained when events are created, deleted, and undone,
whereas triggers are set only once. There is no aggressive cancellation, but, as it
can be seen from the results, that does not seem to have an adverse impact on

performance.

8. CONCLUSIONS AND FUTURE WORK
We have described a new algorithm for rollback processing in spatially explicit

problems. The algorithm is based on the optimistic protocol and relies on the
space being partitioned into a multi-dimensional lattice. Rollbacks are minimized
by examining the processed event list of each lattice node during rollback, in search
of causal dependencies between events which span the lattice nodes. The rollback
impacts the minimum number of sites, making the simulation very efficient. The
number of events rolled back in BFR is an order of magnitude less than the number
of events rolled back using the traditional approach. As a result, an almost linear
speedup is achieved. Obviously this. performance is attainable thanks to a large
degree of parallelism existing in the application.

The results presented here were obtained with the even load distribution. How-
ever, if the simulation’s load per LP is uneven (for example, when the odd LPs have
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more load then the even ones), the performance degrades. We believe, that BFR
will lend itself well to load balancing, since the local (at the node level) history
tracking facilitates load balancing. An overloaded LP can “shed” layers of space
to balance the load. The objects and the events scheduled for them are sent along
with the space. Nothing special needs to happen on the receiving side. On the
sending side, however, the priority queue has to be filtered in order to extract the
future events for the area sent to the new process.
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