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Abstract

A methodology for explicit formulation of the tangent stiffness matrix consistent with
incrementally objective algorithms for integrating finite deformation kinematics and with
closest point projection algorithms for integrating material response is developed in the
context of finite deformation plasticity. Numerical experiments illustrate an excellent per-
formance of the proposed formulation and reveal its computational advantage over incon-

sistent algorithms commonly used in practice.

1.0 Introduction

The notion of consistency between the tangent stiffness matrix and the integration algb-
rithm employed in the solution of the incremental problem has been introduced by Nagte-
gaal [1] and Simo and Taylor [4]. Within the framework of closest point projection
algorithms [2], [5], [6] and in the context of small deformation plasticity, Simo and Taylor
[4] demonstrated the crucial role of the consistent tangent stiffness matrix in preserving
the quadratic rate of asymptotic convergence of iterative solution schemes based upon the
Newton method. Consistent formulations have been subsequently developed for finite
deformation plasticity [7], [8], [11] within the framework of multiplicative decomposition

of the deformation gradient and hyperelasticity.

It has been argued that algorithms based on the multiplicative decomposition and hyper-
elasticity, which do not require objective stress rates, are superior to incrementally objec-
tive algorithms set forth by Hughes and Winget [3] due to the limitations of hypoelasticity

[9] and due to computational complexity involved [8]. This notion has been recently
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exemplified during the Fourth US National Congress in Computational Mechanics by
Choudhry from MARC corporation [13] who argued that consistent tangent stiffness

matrix cannot be derived for incrementally objective algorithms.

Motivated by these developments our primary objective is to demonstrate that the tangent
stiffness matrix consistent with the incrementally objective integration algorithm [3] can
be explicitly formulated and consequently the computational cost of incrementally objec-
tive algorithms can be significantly reduced. From the practical point of view the need for
such consistent formulation is enormous since most of the commercial codes employ
incrementally objective algorithms, but introduce various approximations in linearizing

the kinematics associated with the incrementally objective algorithms.

The manuscript is organized as follows. Section 2 summarizes constitutive equations of
finite deformation plasticity based on objective stress rates, additive split of rate of defor-
mation, and associative flow rule. Attention is restricted to materials, such as metals, for
which the notion of hypoelasticity is valid. Integration schemes based on the Hughes-
Winget incrementally objective algorithm and the closest point projection algorithm [2],
[5] originally proposed by Wilkins [6] are then briefly outlined in Section 3. In Section 4
we present a systematic approach for derivation of the tangent stiffness matrix consistent
with the integration schemes outlined in Section 3. A number of numerical examples,
illustrating the excellent performance of the proposed formulation and comparing it with
ABAQUS [12], complete the manuscript.

2.0 Rate constitutive equations
The following notation is employed: the left superscript denotes the configuration, such

At . . .
that ' * 'O denotes the current configuration at time ¢ + Az, whereas ‘O is the configura-

tion at time . For simplicity, we will omit the left superscript for the current configura-

tion, i.e., 00 = t+ND . A comma followed by a subscript variable x; denotes a partial

derivative with respect to that subscript variable (i.e. f . =9df/dx;). Summation conven-

tion for repeated subscripts is employed. Subscript pairs with regular and square parenthe-




sizes denote the symmetric and antisymmetric gradients, respectively. The material time
derivative is denoted by a superposed dot. For example, v;= )&i is the velocity component;

and the components of the rate of deformation, §;;, and spin, ®;;, are defined as

ij? ij?
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We consider a class of finite-deformation constitutive equations in the rate form com-

monly used in computational plasticity:

. ) A A A i
&ij = Oy+ 0y where o, = Aikckj" O 2)

where o;; represents the Cauchy stress; 8,-1- is an objective rate of Cauchy stress, which

. . . . -1 '
represents the material response due to deformation; A;; = R R kj represents the rate of

rotation R i We refer to [2] for a comprehensive discussion on various choices of R,-j and

A,j. For subsequent discussion we consider the choice: A;j = @, ;-

We adopt an additive split of the rate of deformation, €;;, into elastic rate of deformation,

ij

€f;, and plastic rate of deformation, £, which gives

. . . o . .
&; = €f+&f, 05 = L&y -£€R) 3)

where L,;; are components of the elastic constitutive tensor.
We consider the yield function ¢ defined by:
B(0) 0y V) = 5(0;~ a)Pys(0 - o) - 372 @
Oijp Qip L) = 58045 = Q) ij\ Oy = Xp) — 3

where Y is the yield stress; o, i the back stress corresponding to the center of the yield sur-
face in the deviatoric stress space; Pt-jk, the projection operator, satisfying
PitiPrimn = P For von Mises plasticity the projection operator is defined as follows:

ijmn:




P = Tijp - 6 Ok where Ly = (61156 i1+ 00 ) ®)
and 9; ; 1s the Kronecker delta. For simplicity we assume associative flow rule

and A is a plastic parameter to be determined by plastic consistency condition (4). The

evolution of the yield stress and the back stress are given in the rate form:

y = BHy; 7
3
0 2(1-B)H .
Xy = ‘(“%P ikl Ok = Q) A @

where [ is a material dependent parameter, (0 << 1). The extreme values B = 0 and

B = 1 refer to Ziegler-Prager kinematic and pure isotropic hardening, respectively; H is
a hardening parameter defining the ratio between the rate of effective stress and the rate of

effective plastic strain.

3.0 Integration of rate constitutive equations

In this section, we briefly outline the Hughes-Winget incrémentally objective integration
scheme [3] in the context of finite deformation analysis in which the stress objectivity is
preserved for finite rotation increments. We then briefly summarize the closest point pro-

jection scheme closely related to radial return algorithms for integrating material response

(2], [5], [6].

3.1 Incrementally objective integration algorithms

There are several incrementally objective integration schemes. One of the most popular
approaches is known as the corotational method where all the fields of interest are trans-
’ formed into the corotational system [2], [10]. In such a corotational system, the form of

constitutive equations is analogous to that of small deformation theory and is consistent




with the generalized notion of hyperelasticity provided that an appropriate choice of the
rotation tensor,R , is made [9]. An alternative approach developed by Hughes and Winget
[3] is based on the additive incremental split of material and rotational response. In the

present manuscript we focus on the latter.

The Hughes-Winget algorithm [3] for integrating the rate constitutive equations arising

from the finite deformation can be summarized as follows:

t+ At I 9N tA t
= Oy = G;+Acy, Gijj = Ry oy Ry -®
_I+At _ I A ta R t R 1
§= 0 % = G+ Ao, Qi = Ky Oy Ry (10

where Ac;; and Aa;; denote the stress and back stress increments resulting from the mate-

rial response (see Section 3.2), and R ;j is obtained by applying the generalized midpoint

rule [3]:

1 -1
Rij = 611 + (Sik - iA(le) A(Dk] an
To maintain the second order accuracy [3] strain and rotation increments are obtained

using the midpoint rule:

1{ OAy dAu; 1{ OJAy JAu;
Ag.. = = + I Aw; = = - J 12)
d ; d ,

y 2 t+At/2x_ at+At/2x Yy 2 t+At/2x' at+At/2x
J J

where Au; is a displacement increment component and

t+ At

x;) 13

t+ At

t t+At/2
x; = xi+Aui, X

(txi +

L
)
3.2 Closest point projection scheme

- For integrating the material response given in the rate form ((6), (7), (8)) the Backward
Euler integration scheme, which can be interpreted as the closest point projection algo-

rithm [5], is employed:




e = 'ef + N, AL (14)

t,  2BH 3'y
Y=Y+—/YA = Y= e— -
3 1AL 3_2BHAL 13
fa 2(1 -B)H
A = %yt (—“36) Pie(O g — )AL (16)
A
Oy = Off ~LijyNyAh, of = 6;+L;0ey an
where A\ =’ +At?» -
The process is regarded elastic if:
tr r 2 2
(Gij - aij)Pijkl(sz - akl) -=Y <0 (18)
AN = Q

Otherwise the process is plastic. In the case of the plastic process we proceed by subtract-

ing (16) from (17) to arrive at the following result:

ta :
G-y = U+ AAp )7 ol - "6yy) 19
where
— 2 ’
Oijir = LijsiP s + 301 = BYHP (20)

The value of AA is obtained by satisfying the consistency condition (4). Substituting (15)
and (19) into (4) produces a nonlinear equation for AA. The Newton method is typically

used to solve for AA:

] -1
Ahg, = Axk-{ aq’} ® @y

dAA

where £ is the iteration count. It can be shown that the derivative d®/JdAX required in

(21) is given as:

od -1 4BhY2
A% = N+ 820 451) " 0 bimn(Cmn ~ %nn) - % 22




The converged value of AA is then used in combination with (19), (15), (16) and (17) to
update the yield stress, the back stress, and the Cauchy stress.

4.0 Consistent linearization

While integration of the constitutive equations affects the accuracy of the solution, the for-
mulation of the tangent stiffness matrix consistent with the integration procedure
employed is essential to maintain the asymptotic quadratic rate of convergence of the
Newton method provided that the solution is smooth. In Section 4.1 we derive the Jaco-
bian matrix for the finite deformation elasto-plastic constitutive model, which in Section
4.2 leads to the formulation of the tangent stiffness matrix consistent with the integration

procedures outlined in Section 3.

4.1 The Jacobian matrix for the finite deformation elasto-plastic
constitutive model '

The Jacobian matrix for the finite deformation elasto-plastic constitutive model outlined in

the previous sections is obtained by taking the material time derivative of the stress and the

back stress ((17), (16)) at the current configuration (time 7 + At):

53 . . . ‘
di] = Oj + Lijkl{Agk’ - Pklmn(cmn - amn)AA' - Rklx} 23)

_% L2-Bk,

% = Ay 3 ipq(Opg ~ Gipg) AA + XA} @

Remark 1: 1t is common in practice (see for example Section 3.2.2 in ABAQUS theory
manual [12]) to introduce the following two approximations, which assume infinitesimal-
ity of the time step:

X

0;j= 0y = Aoy - Oply; Agy =gy (25)

In the remainder of this section we derive the consistent Jacobian matrix exactly, and in
Section 5, we show that the two approximations given in (25) considerably increase the

number of iterations in the Newton method.




We start by subtracting (24) from (23) which yields:

. . 154 153 . .
Oy =y = Ly + AA @ijkl)_l{( Ort~ %) + LitmnA&mn = © timn Nmnk} @6)

tx L . ; g ..
where Oy and a; ; in (26) are computed by taking the material time derivative of (9) and

(10), which yields

tx . tx .
O; = A nRmns & = A% Rnn @27

ijmn ijmn

where

t
Agmn = (6im6knRj1+6jm6anik) Ou

: t 28)
Aic;mn = (6im6knRj1 + 6jm6anik) 7
Taking the material derivative of (11) gives
Rpp = anqud)pq 29
where
Brinpg = (26mp - A(x)mp)‘l(qun + an) (30)
Substituting (29) into (27) results in
153 ta .
Gij~ aij = Tijypq1 A0 G
where
Tiqu = (A;]J'nin - Agmn)anpq G2)

It is important to note that the derivation of Ag; ; and Ac’o,-j appearing in equations (26) and

(31), should be consistent with the midpoint integration scheme employed. In the follow-

- ing we focus on such consistent linearization.

We start by taking the material time derivative of the gradient of the displacement incre-

ment with respect to the position vector at the midstep (see equation (12)):




= + —_—
dt 8t+At/2x- atxk at+At/2x atxk dt at+At/2

j X

Linearization of the second term in (33) yields

d ( atxk ‘ atxk d at+At/2xm atxn
dt at+At/2 at+At/2x dt atx at+At/2x

X m n j

Combining (33) and (34) gives

t
X, an

a( 9Ay v, du; (AN o',
. }E ) = AT T SN dL AL

j m

Equation (35) can be further simplified by exploiting the following relation

d

t+At/2 t
d a xm] _ 0 (d t+At/2x) _ 8 {d (xm'*' me} _ 1
{ ; = 2t \dr m| = 7f \dr 2 T2t
dt axn axn dt o'x dt

n

which after substitution into (35) yields

d{ 9JAy 1 OAuy; v,
di| 51+ 872 = 6im‘§at+m/2 S AT

X X 3

By utilizing the following equality

v

t
aAui _ A (t+A;‘/2 1 \ axl-

1

S, - = = x-—iAu) = —

m t+At/2 / [ i t+At/2
2a+ N at+At2x\ 2 a+ /x

m m m

equation (37) can be recast into the following form:

d{ 9JAu; thi v,
dt at+At/2 at+Ai/2x at+At/2x

X, - ;

Defining M,;, as

Q

33

34

(35)

36)

37N

3®

(39




d'x, dx,

M= JHAE . SIAIL 40
k J
yields
d{ OJAy
@il 5 Az = Mg v «, @1

Taking symmetric and antisymmetric part of (41) with respect to indexes ij we get the

final expressions for A¢;; and Ady;:

At =M nu Vi« Ady = My Vi &, 42)

It can be easily seen that for infinitesimally small step size M ikl = O

We proceed by substituting (42) and (31) into (26) which yields

. . 1. € .
Gy = Gy = Ui+ AR 5y ™M Liun Vi, 2. = 8 ttmn X} 43)

where L,i,mn is the Jacobian matrix for the finite deformation elastic constitutive model

given as

e —
Liipg = T timaM [mnlpq + LM (mn)pq @4

The plastic parameter, A, in (43) is computed by linearizing consistency condition (4), i.e.

@ = 0, which yields

L 4BHY?)A
Nij(o-ij - aij) - m =0 45)
Substituting (43) into (45) provides
=S, v (46)

mn-m,n

where
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R+ AA @ )™ L

mn = - 4BHY? an
R+ AM D )™ @ ipg X pg + 9——66671E\

The Jacobian matrix for the finite deformation plastic constitutive model, Lll-’jk, , is

obtained by substituting (46), (27) and (29) into (23), which yields

= P
Oij = LijuVi, x, 48)
where
P -
Lijkl - Agmannqu[pq]kl'*'

L post -L
Lijmn{M(mn)kl - Pmnpq(z_(x' + gopqst) (L.:tkl - SostuvR qukl) - RmnSkl}
49

Finally, the Jacobian matrix for the finite deformation elasto-plastic constitutive model is
given as

LS. for elastic process
ijki P
Lijrr = (50)

L for plastic process

4.2 Consistent tangent stiffness matrix

We start from the system of nonlinear equations arising from the finite element discretiza-

tion
ra = AT =00 [t = [ Ny o 0ydQ Gb

where N kA is set of C0 continuous shape functions, such that Vg = Nyad 4 the upper
case subscripts denote the degree-of-freedom and the summation convention over repeated
indexes is employed for the degrees-of-freedom and for the spatial dimensions; ¢ 4 and

g4 are components of nodal displacement and velocity vectors; and ff:t and £ are

components of the internal and external force vectors, respectively.
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The consistent tangent stiffness matrix, K 45, is obtained via consistent linearization of

the discrete equilibrium equations (51). It is convenient to formulate such a linearization

procedure as:

3 /d

For simplicity, assuming that the external force vector is not a function of the solution, the

consistent linearization procedure yields:

d d

rridal el

-1 t
ia s Fmioi))d Q (53)

where J is the Jacobian between the configurations ¢ and ¢+ A¢; F jm is the deformation

gradient defined as
F.=x , = X, and F,=x . =x bt (54

Linearization of (53) yields

d gt
4= J N {F,,,,c J+F 6] +F ol d'Q (55)

Substituting (50) into (55) and exploiting the well-known kinematical relations

J = Jv 4 Frj = —F,_nl,v,,xj yields:

KAB - J IV l]kllka x d&& (56)

where

I

ikl = Lijig+ 00, - 8,0 G

and Lijy is defined in (50).
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5.0 Numerical experiments

Numerical integration and consistent linearization schemes described in sections 4 and 5
have been implemented into ABAQUS [12] as a User defined ELement (UEL). Note that
in ABAQUS finite deformation plasticity algorithms are similar to those described in Sec-
tion 4. The key difference is in the formulation of the tangent stiffness matrix. Hence
while the solutions are (almost) identical, the iterative process would have a different char-
acter. In our numerical experiments we are not concerned with the accuracy of the integra-
tion algorithms described in Section 3. These studies have been conducted elsewhere [5].
Nevertheless, numerical experiments have been carefully designed to limit the magnitude
of the load steps so that the total error resulting from the numerical integration will not

exceed 3% in the maximal deflection.

5.1 Rigid body rotation

In our first experiment we consider a single tetrahedral element subjected to a rigid body

finite rotation. The initial and final configurations are shown in Figure 1.

Final
Configuration

Initial Ve
Conﬁguration/‘/

Figure 1: Configurations of rotated tetrahedral element

The material is considered elastic with Young’s modulus, £ = 21000, the Poisson’s ratio,

v = 0.3. The boundary conditions are set in such a way that nodes A and B are held




fixed, while the horizontal component of the displacement at node C is prescribed result-

ing in a rotation angle of approximately 40°.

The prescribed displacement is applied in one increment and it takes 5 iterations using
consistent tangent and 54 iterations using approximate tangent (the original ABAQUS
algorithm). With smaller load increments the advantage is less drastic. For example, for
the same loading applied in three increments the number of iterations using the consistent
tangent is 4, 5 and 5, whereas with the approximate tangent the number of iterations is 15,

16 and 16.

5.2 The 3D beam problem

We next consider a cantilever beam problem as shown in Figure 2. All the degrees-of-free-
dom at the clamped end are fixed. Uniform loading is applied at the tip of the beam in the
transverse direction. The length, width, and the depth of the beam are 12, 1 and 2, respec-

tively. The elastic constants are the same as in the previous example. Plasticity parameters

are as follows: the hardening modulus, H = 1000, the mixed hardening parameter,

B=1, and the initial yield stress, 0Y = 21. The finite element mesh contains 4351 4-
node tetrahedral elements totaling 1091 nodes. We consider two cases: an elastic beam
(geometric nonlinearity only), and an elasto-plastic beam (geometric and material nonlin-
earity). In both cases the magnitude of loading is selected so that the maximal deflection at
the tip is approximately one third of the beam length. For the problem with material non-

linearity 79% of elements experience plastic deformation.

The loading is applied in one increment. With the consistent tangent stiffness matrix the
number of iterations is 11 and 16 for elastic and elasto-plastic problems, respectively. With
the conventional tangent the number of iterations increases to 26 and 38 for elastic and

elasto-plastic problems, respectively.
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Undeformed
Configuration

Deformed
Configuration

Figure 2: Configurations of the beam problem

6.0 Summary and future research

A methodology for explicit formulation of the tangent stiffness matrix consistent with the
incrementally objective algorithm [3] has been developed. The usefulness of the proposed
formulation has been demonstrated as the numerical experiments show significant savings

in computational cost.

The scope of the paper was limited to the cases where the notion of hypoelasticity is valid.
This is appropriate for metals, where elastic strains remain small compared to plastic
deformation. For polymers, which exhibit large elastic and plastic deformations of compa-

rable magnitude, a different treatment might be required.

Several questions, however, remained unanswered. First, we have not investigated whether
~ aconsistent tangent operator for the incrementally objective corotational formulation with
the rotation part extracted from the deformation gradient can be derived with the same
ease as for the present formulation. Such a corotational formulation would have a number
of advantages, the key one being compatible with the notion of hyperelasticity [9]. Sec-
ondly, it is important to investigate how increasingly complex incrementally objective
algorithms would fare against the multiplicative decomposition and hyperelasticity based

algorithms [8] in terms of accuracy and computational efficiency.
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