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Computatienal plasticity and viscoplasticity for
composite materials and structures
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The paper extends a recently developed theory of mathematical homogeni-
zation with eigenstrains to account for viscous effects. A unified mathe-
matical and numerical model of plasticity and viscoplasticity is employed
within the framework of the power-law and the Bodner-Partom models.

1.0 Introduction

A typical aerospace composite component can be modeled on (at least) three different
scales: (i) macroscale (structurel level), (ii) mesoscale (laminate level), and (iii) microscale
(the level of microconstituenis). Additional scales can be introduced into the model. For ex-
ample, the scale of material heterogeneity in each microphase, such as dislocations and
grain boundaries, could be considered as another scale, not to mention the atomic and elec-
tronic scales as the smallest spatial scales.

Computational models can be either deterministic or stochastic. Various deterministic ap-
proaches can be classified into the following three categories (i) the classical uncoupled ap-
proach [12], [2], [4], [5], [11], [13], (ii) the coupled approach assuming micro/meso-
structure periodicity [14], [15], and (iii) the coupled approach free of periodicity assump-
tions [17], [16], [18].

The uncoupled approach employs representative volume elements (RVE) at one level to
produce averaged parameters for the use at the next level. The mathematical homogeniza-
tion theory [12], [5] provides a theoretical framework for the uncoupled approach. For three
or more spatial scales the mathematical homogenization theory has been employed in [13].
The computational complexity of solving nonlinear heterogeneous systems is much great-
er. While for linear problems the RVE problem has to be solved only once, for nonlinear
history dependent systems it has to be solved at every increment and for each integration
point. Moreover, history data has to be updated at a number of integration points equal to
the product of integration points at all modeling scales considered.

The primary objective of the present manuscript is to extend the recent formulation of the
mathematical homogenization theory with eigenstrains developed by the authors in [4] to
account for viscous effects. We focus on the uncoupled approach assuming solution peri-




odicity. In Section 2 we derive a closed form expression relating arbitrary transformation
fields to mechanical fields in the phases. In Section 3 the 2-point approximation scheme (for
two phase materials), where each point represents an average response within a phase is de-
- rived. The local response within each phase is recovered by means of post-processing. A
unified mathematical and numerical model of plasticity and viscoplasticity is employed
within the framework of the power-law [7], [8] and the Bodner-Partom [1], [6], [10] mod-
els. Numerical experiments are conducted in Section 4. A discussion on future work con-
clude the manuscript.

2.0 Mathematical homogenization with eigenstrains

In this section we summarize our recent results on mathematical homogenization with
eigenstrains [4]. We regard all inelastic strains, phase transformation as eigenstrains in an
otherwise elastic body. Attention is restricted to small deformations. For extensions to
large deformation theory we refer to [11].

The microstructure of a composite material is assumed to be locally periodic (Y-periodic)
with a periodic arrangement represented by a Unit Cell or a Representative Volume Ele-

ment, denoted by ®@. Let x be a macroscopic coordinate vector in macro-domain Q and
y = x/¢ be a microscopic position vector in ®. For any Y-periodic function f, we have

f(x,y) = f(x, y+ k¥) in which vector ¥ is the basic period of the microstructure and k
is a 3 by 3 diagonal matrix with integer components. Adopting the classical nomenclature,
any Y-periodic function f can be represented as

fe(x)=f(x, y(x)) €))

where superscript ¢ denotes a Y-periodic function f. The indirect macroscopic spatial
derivatives of f¢ can be calculated by the chain rule as

IS )= Fa(59) = Fa(m D)+ 2y ) @

where a comma followed by a subscript variable x; or y; denotes a partial derivative with
respect to the subscript variable (ie. f , = of /9x; or f 5= df/dy;). A semi-colon fol-
lowed by a subscript variable x; denotes a fotal partial derivative with respect to x; where
y depends on x, as defined in (2). Summation convention for repeated right hand side
subscripts is employed, except for subscripts x and y.

We assume that micro-constituents possess homogeneous properties and satisfy equilib-
rium, constitutive and kinematical conditions. The corresponding boundary value problem
is governed by the following equations: '
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and appropriate set of boundary and interface conditions. In the above equations, o and

ef; are components of stress and strain tensors; L, and |L§ are components of elastic

stiffness and eigenstrain tensors, respectively; b; is a body force assumed to be indepen-

dent of y; and u§ denotes the components of the displacement vector. Subscript pairs with
parenthesizes denote symmetric gradients.

In the following, displacements u$(x) = u,(x, y) and eigenstrains ufj(x) = u‘,-j(x, y) |

are approximated in terms of double scale asymptotic expansions on Q X O:
u(x, y) =ud(x, y) + qu}(x, y) + ... 6

Wy(x, ¥) = pd(x, y) + clk(x, y) + ... o)

The corresponding expansions of strain and stress tensors can be obtained by manipulat-
ing (6), (7), (4) and (5) with consideration of the indirect differentiation rule (2)

| 1
ey(% ) = Zejf (x. y) +fi(x. 3) + cej(x. 9) + ... ®

1
o (x, y)zgc,-}l(x, y) +0)(x, y) +col(x, y) +... ©)

where strain components for various orders of ¢ are given as

0

-l =¢ (g
SU Sylj\u

)y &) = ey (u) + ey,-j(u“l), s=0,1,... (10)

and
8xij(us) = u{i,xj)’ Syl](us) = ufi,yj) an

Stresses and strains for different orders of ¢ are related by the following constitutive equa-
tions

-1 = -1 - =




Inserting the stress expansion (9) into equilibrium equation (3) and making the use of (2)
yields a set of equilibrium equations for various orders [4]. From the lowest order O(¢~2)
equilibrium equation we get u; , ) = O which implies

V7

u)=ud(x) and opl(x,y)=gjl(xy) =0 (13)

In order to solve the O(¢™!) equilibrium equation for up to a constant we introduce the
following separation of variables

u,'l(x, y) = Hikz(y){sxkz(uo) +df(x)} (14)

where H;,; is a Y-periodic function, and df; is a macroscopic portion of the solution
resulting from eigenstrains, i.e. if 1J,(x, y) = O then d}4(x) = 0. It should be noted that
both H;;,; and d}; are symmetric with respect to indices k and /. Based on (14) the
O(c™1) equilibrium equation takes the following form:

{Lijkl((lklmn + H(k,yz)mn)exmn(uo) + H(k,y!)mnd,";,n(x) - ugl)},yj =0 on O @3

© where
1
Iklmn = 5(6mk6nl+6nk6m1) (16)

and d,,; is the Kronecker delta. Since equation (15) is valid for arbitrary combination of

macroscopic strain field €,,,,(#%) and eigenstrain field pJ;, we first consider pg; =0,

mn
€ymn(#%) #0 and then ¢, (4% =0, puf; #0 which yields the following two governing

equations on ®:

LT kimn + H (g yymn) } 3o 0 an

{Lyj(H &, ypmadhy, - HRIY , = 0 (18)

Equation (17) together with Y-periodic boundary conditions comprise a standard linear
boundary value problem on ®. For complex microstructures a finite element method is
often employed for discretization of H;;;(y), which yields a set of linear algebraic system
with six right hand side vectors [3].

After solving (17) for H,;,,, the elastic homogenized stiffness Z,-jkl follows from the

0(c%) equilibrium equation [3]:
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Liju= @J-@LijmnAmnkl do = @L‘) AmniijnstAstkl do 19)
where
Aklmn = ]klmn + H(k,y,)mn 20)

Aimn is often referred to as an elastic strain concentration function and |@)| is the volume
of a unit cell.

A close form expression for d}; follows from (18) and (19):

; 1~ 7 -1
a4 = rojLuit = Lije) ™ [ H iy, oL mnsebsr 4O @D

where

~ 1
Lijkl = l_(:)_I'J-QLijkI do 22)

The superscript ~1 denotes a reciprocal tensor. In the case of piecewise constant eigen-
strains [2], the average strain (8) over a subdomain p is given as:

o o |
25 = [op]Jor & 9© = AfiBu+ n‘;F SR +0(9) @3

where F P, are the eigenstrains influence factors:

— 7 7 -1
FS'EI - Cn(Atpjmn - Iijmn)(LmﬂPq _Lmnpq) (A;]qu - Irqu)Lpskl 24

and
1

The superscripts p (or 1)) denote the p -th subdomain, ®°, and n is the total number of
subdomains in the unit cell domain. The subdomain could be made of a single finite ele-

ment or a group of elements; ¢ is the 7M-th subdomain volume fraction given by
= : isfyii ooen =
¢ =@ /0| and satisfying Zn _€ 1.

We refer to the piecewise constant model defined by (23) as the n-point scheme model. As
a special case we consider a composite medium consisting of two phases, matrix and rein-

forcement, with respective volume fractions ¢™ and ¢/ such that ¢™ +¢f = 1. Super-




scripts m and f represent matrix and reinforcement phases, respectively. @™ and ®f
denote the matrix and reinforcement domains such that ® = ®" U @f . We assume that
eigenstrains and elastic strain concentration factors are constant within each phase. This
yields the simplest variant of (23) where n = 2. The corresponding approximation
scheme is termed as the 2-point model. The overall elastic properties are given as:

Lijgy = c™LlyAru + S L AL 26)
The influence factors F ,Pj}gl reduce to
FER = (Uijmn = ABnn) Lt ~ Lyns)™ L ) .
F8y = Uijmn = Abn) Lhinst - Lfn’nsz)‘lszkz} Peml 7
and the overall stress is given as:
G, = cmofl + cfcfj (28)

3.0 The 2-point scheme

We consider a two-phase composite where the matrix phase behaves as a rate-dependent
or rate independent elastoplastic material, whereas the reinforcement is elastic, i.e.

].Llfj = 0. A unified mathematical and numerical model of plasticity and viscoplasticity for
the matrix phase is subsequently described.

3.1 The 2-phase medium
Combining equations (4) and (23) phase stresses can be expressed as:
Of = REu€y - QPTHG 29)
where U7} is the matrix plastic strain and
RPy =L

P AP
ququkl

} p,N=mf (30)
QR = LfpqOpn! pgrF pur)
A unified rate-dependent / rate-independent flow rule is given as

pm = XPAT 31)

where




m
[
RP=—te, &P =P,(cf-af) (32)
mn=>mn

and [1f7 represents the plastic strain rate in the matrix phase; P = Lijiy - 8;0/3 is a
projection operator which transforms an arbitrary symmetric second order tensor to the
deviatoric space; and af is a back stress. A unified rate-dependent / rate independent con-
sistency condition can be expressed as:

Om=Em_g(Am A™) = 0 (33)
where E™ is an effective stress defined as

3em gm 34)

ém 2 mn>mn

Attention is restricted to two widely used classes of flow functions:
¢ The power-law model [7], [8]:

A’”:a(—Y-)” = g=Y(—) 35)
* The Bodner-Partom model [1], [6], [10]:

A" = aexp{—% (élm)b} = g=Y {—ZIOg(%—»)}b (36)

where a and b are material constants; Y is a drag or yield stress which is a function of
A™ The back stress af? is assumed to be governed by the following evolution equation
m = 2 m Ay m
aff = ZH@AT A7) pF 37

in which H is a kinematic hardening modulus, which in general depends on the effective
plastic strain A™ and its rate of change A™ . For simplicity, in the present manuscript H is
assumed to be constant. The rate-independent plasticity model can be obtained by taking
b =0.

3.2 Implicit Integration of Constitutive Equations
The constitutive equations are integrated over a finite time step At using a backward Euler
scheme, which yields:

t+ At t t+ At
* ug-’ = ui’}’+AK’” * X{;‘ (38)




t+Ar t 2 t+At
aff = ocg-"+§Aka ¥ xr (39)

t+ At

where AA™ = Am— tk”‘ .

In the following we omit the left superscript for the current step t+ At for simplicity. Sub-
stituting (38) into (29) yields:

off = 4Ol - AATQUHIR G (40

where , 07} is a trial stress in the matrix phase defined as

O'm = Gm+Rt]k1A§k1 1)

Subtracting (39) from (40), we arrive at the following result:

0-’7 a (Izjk1+ AAT pzjkl) (trckl alkr}) ‘ “2)
where
2
gol]kl szstPstkl + 3H‘szkl @3)

Integrating A™ using backward Euler scheme, A™ = ‘A” + A™At, or A™= AA™/At, and
then combining equations (35) and (36) with the generalized consistency condition in the
matrix phase (33) yields:

b
m
Power law: ®m=E"-Y {%}

b
Bodner-Partom: ®m=E"-Y {-2 10{%1 =0
(44)

The value of AA™ is obtained by satisfying the generalized consistency condition (44).
For calculation of AA™, equation (42) is substituted into (44), which produces a nonlinear
equation for AA™ . The Newton method is applied to solve for AA™:

é5)




where £ is an iteration count. It can be shown that the derivative 9®™/dAA™ required in
(45) has the following form: '

o™ _ d&m  dg
JAA™  dANT  dAA™

, _
Power law: dg ={Ax’”}{ @y + bY }

dAA™ alAt [ 1 dAAm  AjmM
AA ’
Bodner-Partom: ag_ _ -2 log( dyY + b
. dAAT alt dANT AX

A?J"log(—m)

alt
(46)

where
dgm 3 )

dlfxm = ‘2€m‘35" (Zjjip + AT @ 1) Y0 kimn€mn @7)

and dY/dAA™ is a rate-independent isotropic hardening modulus. The converged value

of AA™ is used to compute the phase stresses from equations (42), (38), (29) and the back
stress from (39). The overall stress is computed from (28).

3.3 Consistent Linearization

While integration of the constitutive equations affects the accuracy of the solution, the for-
mation of a tangent stiffness matrix consistent with the integration procedure is essential
to maintain the quadratic rate of convergence if one is to adopt the Newton method for the
solution of nonlinear system of equations on the macro level [9].

The starting point is the incremental form of the phase constitutive equations (29):

Taking the material time derivative of (48) and keeping in mind that all quantities are
known at the previous step yields

6p = R;;,déu - QPR{ANT R + AT RmY 49)
where

; - . . - 1 3
R} = Eyu(Shi-of), Eyu = gnJ;(Pijmn_ RIEXD) (50)




To calculate A™ we first linearize equation (42)

o -alt = A", Ay = g+ AN 9 5™ © fimn&imy D

and then substitute (51) into the linearized form of (39), which yields
. 2 _ .

Subsequently, we linearize the generalized consistency condition (44)

" = Aéx,gr;(c‘;;g-a;g)-g =0

b
Power law: ¢ = Xm{AAm} {dY + 2 }

alt [ |dam - ApM
‘ AX ° b
Bodner-Partom: g = A™]-2 log( ar_,
aAt dAA™ AA
Akmlog(———
alt
(53)
and then combine (52) and (53) to get the expression for A"
AT = yRpon
2 AN AN AR
Power law: vy = (§H + J;{ aAt} {d?&"’ + A?J"D
-1
AA ’ dy b
Bodner-Partom: vy = 2H + »,/2 -2 og( )
3 3 alt dAA™ AN"\
AA™] A7) )
7 (s
The rate of phase stress can now be expressed as
68 = Reyen - YORIANE A + R R IGT! (55)
Evaluating (55) for the matrix phase, p = m, gives
67 = Dlyén (56)

where

10




Dy = {Iijs + YOI (ANTE Ay + R )R IL-IRI 67

pgmn*mn

Starting from (49) and proceeding in an analogous manner for the rate of the reinforce-
ment stress yields

0'-5 = Di;klékl (58)
where
D{;kl = Rt}kl YQt]pq(A}"m—‘pqmnAmn + Nglq) X fvrtlva';kl 69

The overall consistent instantaneous stiffness D; k1 1s obtained from the rate form of (28),
(56) and (58)

5ij = Dyuil B ©0)
where

Dl_]kl = cmpn l+ch5k1 ©D

ijk
3.4 Consistent tangent stiffness matrix

We start from the system of nonlinear equations arising from the finite element discretiza-
tion

ra = fa'q)- 15 = = jQN i4, 1,042 62)

where N, is set of C 0 continuous shape functions, such that v; = N;,q,; the upper

case subscripts denote the degree-of-freedom and the summation convention over repeated

indexes is employed for the degrees-of-freedom and for the spatial dimensions; ¢, and

g 4 are components of nodal displacement and velocity vectors; f A * and fi ¥ are compo-

nents of the internal and external force vectors, respectively.

The consistent tangent stiffness matrix, K 45, is obtained via consistent linearization of

the discrete equilibrium equations (62). It is convenient to formulate such a linearization

procedure as:

11
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For simplicity, assuming that the external force vector is not a function of the solution, the

consistent linearization procedure for small deformation theory yields:
K,p = IQNI.A’ij,-jk,NkB,xI dQ 64

where Bijkl is defined in (61);

Remark: In the 2-point scheme described in Section 3 the eigenstrains have been approx-
imated by a constant within each phase. A better resolution of local fields can be obtained
by approximating eigenstrains as piecewise constant within each phase. In [4], the eigen-
strains have been assumed to be constant within each element in the unit cell, giving rise
to the so called n-point scheme. Typically, the computational cost resulting from the n-
point scheme is orders of magnitude higher then that of the 2-point scheme since the num-
ber of nonlinear equations to be solved at each macro-Gauss point is equal to the number
of Gauss points in a unit cell experiencing inelastic deformation. Therefore, it is advanta-
geous to merge the two approaches. In such a combined scheme the overall structural
response is computed using the 2-point scheme, while local fields of interest in the unit
cell corresponding to the critical regions in the macro-domain are recovered by means of
the n-point scheme [4]. An alternative procedure has been presented in [11].

4.0 Numerical experiments

We consider two numerical examples to test the accuracy and efficiency of the computa-
tional schemes. For both examples, continuous fibre microstructure shown in Figure 1 is |
considered. The unit cell is discretized with 98 tetrahedral elements in the reinforcement
domain and 253 in the matrix domain, totaling 330 degrees of freedom.

4.1 The nozzle flap problem

The finite element mesh for one-half of the nozzle flap (due to symmetry) is shown in Fig-
ure 2. The mesh contains 788 linear tetrahedral elements (993 degrees of freedom). The
flap is subjected to an aerodynamic force (simulated by a uniform pressure) on the back of
the flap and a symmetric boundary condition is applied on the symmetric face. We assume
that the pin-eyes are rigid and a rotation is not allowed so that all the degrees of freedom
on the pin-eye surfacesare fixed. There is about 15 percent of plastic zone in the model
due to the loading. The nozzle flap problem is solved using the 2-point averaging scheme
with micro-history recovery and the n-point procedures for the reference solution. The
objective of this numerical study is to investigate the 2-point averaging scheme with
micro-history recovery in terms of accuracy (in both macro- and micro-scales), computa-
tional efficiency and memory consumption.

12




The phase properties are given as follows:

Titanium Matrix: Young’s modulus = 68.9 GPa, Poisson’s ratio = 0.33,
initial yield stress is 24 MPa, isotropic hardening modulus is 14 GPa
kinematic hardening modulus is 0 GPa

SiC Fiber: Young’s modulus = 379.2 GPa, Poisson’s ratio = 0.21,
fiber volume, fraction is 0.27

For this problem, the power law is adopted with a = 1 and » = 0.1. The CPU time is 30
seconds for the macroscopic analysis using the 2-point scheme, plus approximately 170
seconds for each Gaussian point where a micro-history recovery procedure is applied. On
the other hand, the CPU time for the n-point scheme is over 7 hours. Moreover, memory
requirement ratio for these two approaches is roughly 1:250.

Effective micro-stresses obtained by both approaches are compared using the relative error
measure defined as '

gn - point 5 €2 - point
Error = 100

gn - point ©5)

where &" 7™ and E? PO ore the effective micro-stresses obtained via the n -point
and the 2-point schemes, respectively. The maximum effective stress appears at the pin-
eye of the middle flap (Gaussian point A). Micro-history is recovered for the unit cell cor-
responding to the macro Gauss point A. The relative error at this point is approximately
5%, as shown in Figure 3.

4.2 Thick-walled cylinder problem

For our second test problem we consider a composite thick-walled cylinder with an inner
radius r;,,.,, and outer radius r,,,,,,. The ratio of r,,,,, to r;, . is taken to be 2. The
. finite element discretization is shown in Figure 4. Boundary conditions are assigned in
such a way that plain strain and axisymmetric conditions are preserved. A constant dis-
placement rate of 0.002 is imposed on the inner wall of the cylinder. A power law is
~employed with both the kinematic and isotropic hardening taken to be zero, ie.,

Y(A™) = Y. Other material constants employed are:

Matrix:  Youngs modulus = 5007, Poisson ratio = 0.499,a = 0.002, b = 0.2
Fiber: Youngs modulus = 5000Y, Poisson ratio = 0.21

An exact solution for the steady state problem for the homogeneous material (¢/ = 0) is
available in [8]. The inner wall pressures vs. time as obtained with various fiber volume
fractions are depicted in Figure 5. The relative error for the steady state problem with
¢f = 0 isless than 1%.
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5.0 Future work

An uncoupled two-scale approach assuming solution periodicity in inelastic heteroge-
neous media has been presented. The two issues that have not been addressed in the present
manuscript are:

i. Stochastic nature of data

So far only the deterministic aspect has been considered. The deterministic approach uti-
lizes mean values associated with microstructural characteristics. The uncertainties in input
data pose a tremendous challenge not only because we have to deal with numerical methods
for stochastic differential equations [19], but more importantly, because the probability
fields, especially the correlations, are usually unknown.

ii. Multiple time scales

The difficulty of estimating the average behavior at the larger length scales from the essen-
tial physics at smaller scales is compounded in time dependent problems. Multiple length
and time scales can be accounted for by incorporating them into appropriate asymptotic ex-
pansions.
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Figure 2: Finite element mesh for the nozzle flap problem
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Figure 3: Relative error (%) in effective stress at macro Gauss point A

Figure 4: Finite element mesh for the thick-walled cylinder problem
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Figure 5: Inner wall pressure vs. time






