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Abstract

This paper presents an automated adaptive multilevel solver for linear (or linearized) system of equations. The multilevel aspect of the
solver is aimed at securing an optimal rate of convergence, while keeping the size of the coarsest problem sufficiently small to ensure that
the direct portion of the solution does not dominate the total computational cost. Adaptivity in terms of a priori selection of the number of
levels {one or more) and construction of the optimal multilevel preconditioner is the key to the robustness of the method. The number of
levels is selected on the basis of estimated conditioning, sparsity of the factor and available memory. The auxiliary coarse models (if
required) are automatically constructed on the basis of spectral characteristics of individual aggregates (groups of neighboring elements).

An obstacle test consisting of twenty industry and model problems was designed to (i) determine the optimal values of computational
parameters and (o (ii) compare the adaptive multilevel scheme with existing state-of-the-art equation solvers including the Multifrontal
solver [17] with the MMD reordering scheme, and the PCG solver with the nearly optimal Modified Incomplete Cholesky factorization
preconditioner.

1. Introduction

Solution of linearized (or linear) systems of equations resulting from the finite element discretization of
large-scale systems may consume over 50% and often up to 95% of total computational cost, and yet, the quest
for an optimal general purpose equation solver is still in its embryonic stage. The ultimate goal s to develop an
optimal solution scheme that will possess the following characteristics:

(i) Robustness: Sensitivity to problem conditioning should be minimal.

(ii) Efficiency: Speed and storage should be nearly proportional to the problem size.

(ii1) Automation: Black-box algorithm requiring as input matrix information only.

(iv) Predictability: CPU time, disk and in-core storage should be a priori assessed.

(v) Generality: Characteristics (i)—(iv) should hold for a wide range of problems ranging from indefinite
systems to various problems in multiphysics.

(vi) Scalability: Speed should be nearly proportional to the number of processors.

In the following we briefly summarize three categories of equation solution methods, including the direct
solvers, the iterative solvers with a single-level preconditioner, and the iterative solvers with multi-level
preconditioners. We will analyze their strengths and limitations and in light of what we perceive as an optimal
solution scheme, we' will attempt to construct a framework for such a solver. Attention will be restricted to
symmetric positive definite systems in the present manuscript.

For the purpose of discussion below we will assume that the performance of linear solvers in terms of CPU
time for symmetric positive definite systems can be approximated as CN”, where N is the number of
degrees-of-freedom, and C, 8 are solution method dependent parameters.
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The major advantage of direct solvers is their robustness, which is manifested by the fact that parameters C
and B are independent of problem conditioning (except for nearly singular systems). Direct solvers are ideal for
solving small to medium size problems since the constant C for direct methods is significantly smaller than for
jterative solvers, but become prohibitively expensive for large-scale problems since the value of the exponent for
direct solvers is higher than for iterative methods. To make direct solvers more efficient, various modifications
of Gaussian elimination, which store and compute only the logical nonzeros of the factor matrix [1], have been
developed. Nevertheless, fill-in cannot be avoided but only minimized, and serious consideration of iterative
methods for large problems is increasingly accepted.

Single-level iterative methods with SSOR, Modified Incomplete Cholesky (MIC), or Element-By-Element
(EBE) preconditioners are considered by many commercial finite element code developers (ANSYS, COSMOS,
ALGOR) as most suitable for commercial applications. The value of exponent B for CG type methods with a
single level preconditioner typically ranges between 1.17 to 1.33 [2] depending on the preconditioner, while the
value of constant C increases with degradation in problem conditioning.

Multigrid-like methods, on the other hand, possess an optimal rate of convergence (B = 1), i.e. computational
work required to obtain fixed accuracy is proportional to the number of discrete unknowns. The principal idea of
a multigrid method consists of capturing the oscillatory response of the system by means of smoothing, whereas
remaining lower frequency response is resolved on the auxiliary coarse grid. Nevertheless, multigrid methods (or
multigrid preconditioners within the CG method) thus far have had only very little impact in computational
mechanics. There seem to be two basic reasons:

(i) Commercial software packages must be able to automatically produce a full sequence of auxiliary
discretizations (finite element or boundary element meshes) that are gradual coarsenings of the source
discretization.

(i) For optimal multigrid convergence, smooth solution components relative to a given discretization must be
well approximated by subsequent coarser grids. Conventional or geometric muitigrid methods cannot guarantee
that a sequence of auxiliary discretizations will possess this approximation property for general applications. For
example, what is a good coarse discretization for a frame structure or a wing structure, where each panel in the
source mesh consists of a single or very few shell elements?

These difficulties motivated the development of the Algebraic Multigrid (AMG) (3] with the intent of
providing a black box algebraic solver based on multigrid principles and exhibiting multigrid efficiency. While
the geometric multigrid approach constructs its discretization sequence using auxiliary coarser grids, the AMG
accomplishes the same goal on the basis of the information available in the source matrix of equations only. By
this technique the coarse level variables are selected so as to satisfy certain criteria based on the source grid
matrix. The most basic criterion is typically that each fine level degree-of-freedom should be strongly connected
to some coarse level variable. However, the fact that the algebraic multigrid method uses information available
in the source matrix only in constructing auxiliary discretizations results in a suboptimal rate of convergence.

The aggregation based iterative solver is a hybrid scheme where some minor extra information (depending on
the type of aggregation scheme) might be used to construct a hierarchy of coarser problems, but no sequence of
coarser discretization is required. The concept of aggregation was introduced by Leontief in 1951 [4] in the
context input—output economics, where commodities in large-scale systems were aggregated to produce smaller
systems.

The concept of aggregation has been utilized within the context of the multigrid method by Bulgakov [5,6]
and Vanek [7]. In [5), aggregates consisting of non-intersecting groups of neighboring nodes were chosen to
have translational degrees of freedom only, and consequently, the auxiliary coarse model was constructed
without knowledge of nodal coordinates. Unfortunately, convergence was guaranteed only for scalar problems
such as heat conduction. This algorithm has been improved in [6] by enriching the kinematics of the aggregate
with rotational degrees of freedom (three in 3D, one in 2D) and by constructing the prolongation operator on the
basis of nodal coordinates. In general this approach does not guarantee that the coarse model captures the entire
null space of the aggregate, such as in the case of pinned connections in frames, or continuum problems where
elements within an aggregate are connected at a single node. Furthermore, the convergence characteristics of
this approach have been found to be unsatisfactory for poorly conditioned problems. These drawbacks motivated
development of the smoothed aggregation concept [7]. By this technique a tentative piecewise interpolation field
consisting of a null space of individual aggregates is first constructed and then corrected using a Jacobi smoother
in an attempt to reduce the energy of coarse space basis functions. Our numerical experiments indicate that
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although smoothed aggregation markedly improves the rate of convergence in well-conditioned continuum
problems, computational efficiency in poor-conditioned problems such as a thin shell is not improved and in
some cases degrades.

In the aggregation schemes [6,7] a typical coarsening ratio was about 3™ for the Laplace operator, where nsd
is a number of space dimensions. For well-conditioned problems this is a nearly optimal ratio resulting in
methods with remarkably low computational complexity. Unfortunately, for poorly conditioned systems, such as
thin domain problems, problems with distorted geometries, severe anisotropies and heterogeneities, the coarse
problem may fail to adequately capture the lower frequency response of the source problem, which in turn may
significantly degrade the performance of aggregation-based schemes.

Based on the preceding analysis, it is evident that a nearly optimal solution scheme in the sense described
earlier can be constructed within a framework of an adaptive multilevel scheme. The multilevel aspect of the
solver is crucial to secure an optimal rate of convergence, while keeping the size of the coarsest problem
sufficiently small to ensure that the direct portion of the solution does not dominate the total solution cost.
Adaptivity in terms of a priori selection of number of levels (one or more) as well as construction of the optimal
multilevel preconditioner is critical to ensure robustness of the method. Within such a framework the number of
levels will be a priori selected on the basis of estimated conditioning, sparsity of the factor and available
memory. The concept of the aggregation scheme developed in [6,7] will be generalized to permit automatic
construction of a nearly optimal auxiliary coarse model based on the spectral characteristics of individual
aggregates. We will denote such an adaptive multilevel scheme as a Generalized Aggregation Method (GAM).

The paper is organized as follows. Section 2 reviews the basic multigrid principles. Description of the
Generalized Aggregation Method (GAM) is given in Section 3. Adaptive features including selection of number
of levels, based on a priori estimation of condition number and sparsity of the factor, automated construction of
an aggregated model by the tracing ‘stiff” and ‘soft’ elements, adaptive construction of intergrid transfer
operators, and various smoothing procedures are described in Section 4. In Section 5 we conduct numerical
studies on 3D industry problems, such as a ring-strut-ring structure, casting setup in airfoil, nozzle for turbines,
turbine blade and diffuser casing as well as on poorly conditioned shell problems, such as High Speed Civil
Transport (HSCT), submarine, canoe and automobile body. Comparisons to the state-of-the-art direct [1] and
iterative (PCG with Incomplete Cholesky preconditioner) solvers are also included in Section 5.

nsd

2. Multigrid principles

Consider a linear or linearized system of equations within a Newton—Raphson or related scheme
Ku=f ueR® feR" (D)

where K is an n X n symmetric positive definite and sparse matrix.

The following notation is adopted. Auxiliary grid functions are denoted with subscript 0. For example, u,
denotes the nodal values of the solution in the auxiliary grid, where u, ER", m<n. We also denote the
prolongation operator from the coarse grid to the fine grid by Q:

Q:R" >R )
The restriction operator Q" from the fine-to-coarse grid is conjugated with the prolongation operator, i.e.:
Q0":R">R" (3)

In this section superscripts are reserved to indicate the iteration count. Let r’ be the residual vector in the ith
iteration defined by

ri=f- Kyi 4

where u' is the current approximation of the solution in the ith iteration.
The problem of the coarse grid correction for positive definite systems consists of the minimization of the
energy functional on the subspace R”, i.e.:
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5(K(u’ +Qul),u' + Quy) — (fiu' + Quy)=>min uy ER” 5)
where {.,.) denotes the bilinear form defined by
u, v)=2 uy; u,v ER" (6)
Jj=1 o

A direct solution of the minimization problem (5) yields a classical two-grid procedure. Alternatively, one
may introduce an additional auxiliary grid for #, and so forth, leading to a natural multi-grid sequence. For the
purpose of discussion here we will consider a two-grid process resulting from the direct minimization of (5)
which yields

Koug= Q" (f — Ku') ™

where K, = Q"KQ is the restriction of the matrix K. The resulting classical two-grid algorithm can be viewed as
a two-step procedure:

(a) Coarse grid correction
r'=f—Ku'
ug =K51QTri (8)
i'=ul+ Quf)

where @' is a partial solution obtained after the coarse grid correction.

(b) Smoothing
u't' =@ +D7(f—Ka') 9)

where D is a preconditioner for smoothing. Any preconditioned iterative procedure which has good smoothing
properties and requires little computational work per iteration step can, in principle, be used as a smoother in the
multigrid process. In particular, various incomplete factorizations have been found to possess good smoothing
characteristics.

Let u be the exact solution of the source problem, then the error resulting from the coarse grid correction (8)
can be cast into the following form

& =u—d'=I-0K,'0"K)e'=(I—C 'K)e' (10)
where [ is the identity n X n matrix and C '=QK, 'Q7 is a coarse grid preconditioner. Likewise, the influence
of smoothing on error reduction is given by

et =u—uT' =@ -D 'K (11)

and from Egs. (9), (10) the error vector of the two-grid process with one post-smoothing iteration can be
expressed as
=0 -D'K)I ~ C'K)e' (12)
Further denoting
7 -1
M=I—-D _{( . (13)
T=1-QK, Q'K

Eq. (12) with v, post-smoothing and one v, pre-smoothing iterations can be cast into the following concise form
et =M"TM e’ (14)

Based on Eq. (13) it can be easily shown that T is a projection operator, i.e. T = T?, and hence THK =1.
i} P
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Eq. (14) represents the sufficiency condition for the convergence of the multigrid method provided that the
iterative procedure employed for smoothing is convergent, i.e. [M||, < 1. For recent advances on convergence
analysis for multigrid like methods we refer to [8]. .

In practice, however, the solution increment "' — u* = P™'r* obtained from a single multigrid cycle is used
in the determination of the search direction within the framework of the Conjugate Gradient method.

The inverse of the two-grid preconditioner, P_I, with v, =1, v, =0 can be obtained from Eq. (12)

P '=D'd-KCH+cC! (15)

for which the closed form expression is given as

=[I+&-D)QQ'DQ)'Q"ID. (16)

3. Generalized Aggregation Method (GAM)

In an aggregation scheme the coarse model is directly constructed from the source grid by decomposing the
whole set of nodes into non-intersecting groups to be referred to as aggregates, and then for each aggregate
assigning a reduced number of degrees of freedom. By doing so one reduces dimensionality of the source
problem, while maintaining the compatibility of the solution. The key issue is how to approximate the solution
on each aggregate so that the coarse model, to be referred to as an aggregated model, will effectively capture the
lower frequency response of the source system.

We start by relating (Assertion 1) the optimal characteristics of the aggregated mesh to the intergrid transfer
operator properties of individual aggregates and interface regions between the aggregates.

ASSERTION 1. The prolongation operator Q : R” —R" is considered optimal for fixed m <n if [|QTKQ|}, is
minimal for all @ satisfying [|Q||, = 1 and rank Q = m. Furthermore, among all the block diagonal prolongation
operators, where each block corresponds to the prolongation operator of individual aggregate, the optimal
prolongation operator is such that

max {|K|l,, [K5l,} = min(Q)
e 17
Subjected to |Q°],=1  rankQ“=m, Va€G ()

where superscripts a and e denote the aggregates and interface elements between the aggregates, respectively. N,
and N, are the total numbers of aggregates and interface elements, respectively; Q“:R™ —R" and
Q° :R™ —R" are the prolongation operators for aggregate a and interface element e; K =(Q'KQ° a
K, =09 "K°Q° are the corresponding restricted stiffness matrices.

Note that minimization is carried out with respect to the prolongation operator for the aggregates only, that
the prolongation operator Q° for each element in the interface region is uniquely determined from {Q“}

DISCUSSION. Let @ and A be an n X n matrix of unitary eigenvectors and a diagonal »n X n matrix of
eigenvalues of the stiffness matrix K, respectively, partitioned as

A, 0
[@, &1 and 0 4,

so that ||Ay]l, < ¥ and Q = &, where &, consists of m unitary eigenvectors and @' @ =1.
The spectral norm of stlffness matrix of the auxiliary model HKOH2 can be bounded utilizing the consistency
condition [10}:

Ko, =12 "KQl, = lla” Aoall, <l 4, (18)
Furthermore, since [|Q]l, =107 @[, = la" @, ®,afy’* = |all, = 1 we obtain

1Kol < ¥ (19)
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which completes the first part of the assertion. For the second part we bound the maximum eigenvalue of the
system [9] by the maximum eigenvalue of the subdomain (aggregate or interface element) T

I, <max (K, k2] B

Assertion 1 states that the quality of the aggregated model is governed by the maximum spectral radius of
individual subdomains. The next assertion formulates certain minimum requirements for the construction Of o
aimed at ensuring the lower bound of the minimal eigenvalue of the two-grid preconditioned system PT'K. 1t
assumes the worst case scenario where smoothing does not affect lower frequency response errors.

ASSERTION 2. Consider the two-level method with v, = 1, v, = 0 and smoothing affecting only high frequency
modes of error. Then the lower frequency response of the two-level system characterized by the lower bound of
the Rayleigh quotient p(x) = (x TKx)/(x"Px) is governed by the lowest eigenvalue among all the aggregates
provided that the prolongation operator of each aggregate is spanned by the space, which at a minimum contains
the null space of that aggregate.

DISCUSSION. Let ¢“ and A® be n_ eigenvectors and eigenvalues of the aggregate a. Nodal solution u” on each
aggregate can be expressed as a hnear combination of its eigenvectors

-
-

ut = B —— 1)

whereas the global solution vector, denoted as u = ¢# can be assembled from its aggregates. Let

A, O
»[¢’0 ¢1] and 0 A

be the partitions of ¢ and A, respectively, such that [|A,]l, < 9. Then the system of equations can be transformed
into hierarchical form:

{ 2o Am} [ Ao} :[Ao] o)
K, K, |{l4, t

where
i=¢u,  fi=¢/fi K;=¢/K¢ ij=01 (23)
Similarly, any smoothing preconditioner D can be transformed into hierarchical form D as follows:
D;=¢,D¢, (24)

Let Q = ¢,; then the prolongation operator O defined in hierarchical basis is given

R _{1
o5kl

[ -

Substituting Egs. (22)—(25) into (16) yields the two grid preconditioner P (v, =1, v,=0) defined in the
hierarchical basis

. |[Ky, O 0 K .-
p:{ﬁ° A}+[ A %A]DJDN (26)
K, D, 0 K,,—Dy
If we further assume that smoothing affects higher frequency response only in the sense that
1

D i, =0 Vi, 27

then the resulting two-level preconditioner can be cast into the block Gauss—Seidel form:

. [K, O
Pz[fo . } (28)
KIO DH
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To estimate the lower bound of Rayleigh quotient of the two-level preconditioned system, we utilize again the
theorem that bounds the lower eigenvalue of the system (aggregated model) by the minimum eigenvalue of any
subdomain i consisting of either aggregates a or interface elements e:

min {p'(€")} <min {p(£)} (29)
It remains for us to examine under which condition the Rayleigh quotient on each aggregate or interface

element is bounded from below. For the two-grid preconditioner given in (28) the Rayleigh quotient for each
aggregate or interface element is given as

_ (o) Kogto +2(80) Ko £ + F)'K] ¥

pi(xA[)"‘ INTPi ai AiNTpi ai AT ai (30)
(xo)TKooxo + (xo)TKmxx +(x K)TDllxl
Let M(K,,) be the null space of K . defined as
MK o) ={(#) Kook, =0 Vi, ESPAN(¢;)} 3D

Then, the Rayleigh quotient is bounded from below p'EHY>0If K :)O contains all the rigid body modes of K ',
ie. MK ;0) = #(K"). This condition can be easily satisfied if the prolongation operator for each aggregate is
spanned by the space containing the rigid body modes of that aggregate. In addition, for all interface elements
NEK Z) =, where K Z is the interface element stiffness matrix constrained along the boundary between interface
elements and aggregates. Loosely speaking, each interface element should be comnected to aggregates at a
number of degrees of freedom greater or equal than the dimension of the null space of that element dim{ V(K )}

So far, we have proposed how to assess the quality of intergrid transfer operators (Assertion 1) and what are
the properties that it should maintain (Assertion 2). In the subsequent proposition we describe a heuristic
approach, which on the basis of the two assertions, attempts to construct a nearly optimal aggregated model.

PROPOSITION. For given {ma}i:”;l a nearly optimal aggregation model can be constructed if (i) the
prolongation operator Q“: R™ — R" on aggregate a is spanned by m, <n, eigenvectors corresponding to 1,
lowest eigenvalues on aggregate a, where m, = dim{ V(K ), and (ii) in forming the aggregated model soft
elements determined by the Gerschgorin upper bound of their maximal eigenvalue max,(Z . |kfj|) are placed at

the interface, where K° = [k].

DISCUSSION. We first show that for fixed m, the prolongation operator Q° that minimjzes |[K G, is obtained as
a linear combination of m, lowest eigenvectors of K. This fact directly follows from Eg. (19) in the context of
individual aggregates

ISl <v* VO ={lo, =1 rankQ*=m} | (32)

where y“ is the maximum eigenvalue of eigénvectors spanning the space of Q. Furthermore, if we select
v“ <y VYa, then the spectral norm of individual aggregates does not exceed user prescribed tolerance 7.
The spectral radius of the restricted interface element stiffness matrix K is given as

el =l &0l <l Ik, oy

Since Q° is a diagonal block of @ it can be easily shown that @], <||@|l, =1 and thus using Gerschgorin
theorem for the maximal eigenvalue of K follows that

Il <mex (2 ki) (34)

where K° = [k;;].
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4. Adaptive features

This section describes four features of adaptivity built into the adaptive equation solver: (i) Selection of
number of levels; (ii) Automated model aggregation; (iii) Construction of prolongation operator; (iv) Adaptive
smoothing.

Section 4.1 describes a decision graph based methodology aimed at selecting an optimal number of levels on
the basis of estimated conditioning, sparsity and memory requirements. Attention is restricted to one- and
two-level methods, single right-hand side vector and single processor computer architectures. The lowest
eigenvalue of the source problem is estimated using the Lanczos method applied to the aggregated model
constructed by utilizing only rigid body modes of each aggregate. The estimate of the lowest eigenmode is then
improved by using a Gauss—Seidel smoother in an attempt to reduce the energy absorbed at the interface
between the aggregates. A model problem is constructed to investigate the effectivity of the estimator.

Next, we present the algorithm for automated construction of aggregates on the element-by-element basis as
opposed to the node-by-node procedure employed in [6,7]. We present two versions of the aggregate formation
algorithm: the basic version which utilizes topological information only, and the adaptive version which in
addition to the topological information utilizes elemental stiffness matrices in the process of the aggregated
model construction. k

The third adaptive feature is related to the selection of parameter 7, which plays a central role in constructing
the prolongation operator. This parameter has a direct effect on the restriction of the stiffness matrix, the sparsity
pattern of the resulting auxiliary stiffness matrix and the effectiveness of the auxiliary model to capture the
lower frequency response.

For optimal performance in terms of CPU time we adopt the Modified Incomplete Cholesky (MIC)
factorization for pre- and post-smoothing. The number of fill-ins as well as a diagonal-scaling needed to
preserve the positive definiteness of the system and to provide the fastest rate of convergence of the iterative
process are determined based on the parametric study. For optimal performance in terms of memory
requirements we utilize the SSOR smoother, which does not require additional storage as opposed to MIC based
methods.

4.1. Selection of number of levels

In this section we describe condition number and sparsity estimators. Decision graphs aimed at selecting
optimal number of levels are given in Section 5.

4.1.1. Condition number estimates
The exact calculation of the condition number is not practical and thus only an estimate is sought. The
following predictor—corrector approach is employed for estimation of the lowest eigenmode.

(i) Predictor. Compute the lowest eigenmode of the source grid on the subspace R™ defined as
0" R >R Va (35)

where 71, = dim{ (K} is the dimension of the null space of K or the number of rigid body modes in the
aggregate a. The corresponding constrained minimization problem can be stated as follows:

_ Find the vector d, €R”, which minimizes (KQB,, 0B,) subjected to the constraint (Q0,, @0,) = 1, where
O ={0"V7<, is a prolongation operator of the smallest rank satisfying Assertion 2. The resulting eigenvalue
problem directly follows from the constrained minimization problem and is given below:

QKO — 2°,,070)5,=0 (36)

(ii) Corrector. Compute the ‘smoothed’ eigenpair, (W, X_..), by prolongating &, onto the source grid and
smoothing it using either Gauss—Seidel or Jacobi preconditioner D:
d-D7K)06, .

b= . = A =wTKw 37
"Sla-p B0 G7
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The maximum eigenvalue of K = [k;] is estimated using the Gerschgorin theorem:
Ao <max (2 ) (38)
i / .

and the estimated condition number, «, is given by x = /\max / /\mm.

We now consider a model problem in an attempt to estimate the effectivity of the condition number estimator.
Numerical experiments for 3D and shell problems will be conducted in Section 5 to assess the accuracy of the
estimator in multidimensions and the computational effort involved.

The model problem consists of 1D N linear elements of equal size. The two ends are constrained. The
resulting stiffness is a tridiagonal (N — 1) X ¥ — 1) matrix of the form K =tridiag{—1, 2, —1}. Its smallest

eigenvalue is

ASKEE = 4(sm P

mm

In the aggregated model each aggregate consists of two neighboring elements and a single interface element
between the aggregates. For each aggregate a single rigid body mode is utilized to construct the following
(N—1)/3 XN —1 restriction matrix;

111

The initial value of the minimal eigenvalue A, is computed symbolically from Eq. (36) using Maple [18].

40 4 ( 3 >2 40
min sin 2(N -+ 2) ( )

The minimal eigenvalue corresponding to the eigenvector smoothed by a single Jacobi iteration (37) is given by

altac

A

min

(N—=1)/3

E (< 3k )2 . 3km ,3(k+1)'rr>
= SN SN SN

- Wi)”(z(, Bkw )\ 3kw ,3(k+1)w> i(( 3w )2+<. (N—m)z)
Z WNF2) TN ) T\ y s MTNE2

(41)

For the purpose of comparison we expand the expressions of minimal eigenvalue in Taylor’s series:
1 6‘
= (5) -5 (5) +ol(7))
= 371'2(—1—) - 12172(—) + o(<~> ) (42)
min N N N

/\O

ty(y) -e(y) ol (5))
ma =2 T\x/) TN/ TONW

For example, for N=31, we obtain Aji =0.01026, A%, =0.027 and A .. = 0.01372. Moreover, with a

stronger smoother sueh as a single Symmetric Gauss—Seide! iteration, further improvement can bé obtiined,
yielding /\ =0.0108.

REMARK 1. The prolongatlon operator 0 representing the rigid body modes of each aggregate as well as the
restricted stiffness matrix Q KQ (36) coincides with the corresponding lower order blocks in the two level
scheme and thus can be utilized in the coarse model construction by orthogonalizing Lanczos vectors to the
eigenvectors found earlier.
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4.1.2. Sparsity estimates .

‘We define the sparsity of the system, as o = nz(Ly/n, where nz(L) is the number of nonzero terms in the
factor L. and n is the number of unknowns. The sparsity of the factor depends on the reordering scheme. Here,
we consider only large sparse systems arising from the finite element discretization and heuristic reordering
schemes which attempt to reduce the number of nonzeros in the factor irrespective of any band or envelope
structure. In all our numerical examples, a Multiple Minimum Degree (MMD) algorithm [17 implemented in
NASA Langley VSS code [17] is considered. .

For regular grids theoretical estimates of @ exist [17]. For 2D regular grids the best possible reordering
sche]me4 p‘rovides the lower bound, w =O(logn), whereas the so-called imperfect strategy yields o=
Om " ).

For general unstructured grids no such estimates exist, and thus reordering algorithm has to be carried out in
the preprocessing stage to estimate the system sparsity and memory requirements. Fortunately, for large scale
problems the ordering time used by the MMD algorithm is less than 5% of the total CPU time required for
numerical factorization ([1], see also Table 1 in Section 5).

4.2, Aggregation algorithm

=

Prior to describing the technical details of the aggregation algorithm, we introduce the concept of ‘stiff” and
‘soft’ elements which is utilized in the process of aggregate formation.

The element is considered ‘stiff’ if the spectral radius of its stiffness matrix is relatively large compared to
other elements and vice versa. Following the Proposition in Section 3, we will attempt wherever possible to
place ‘soft’” elements at the interface between the aggregates, and ‘stiff” elements within the aggregates. This
approach is a counterpart of the idea of ‘weak” and ‘strong’ nodal connectivity employed in [7] in the context of
node-by-node aggregation.

The approximation for the maximum eigenvalue can be easily estimated using the Gerschgorin theorem in the
context of the element stiffness matrices:

max AS< B¢ B =max @ \k;\) (43)

In the remainder of this subsection we focus on the aggregation algorithm.
Consider the finite element mesh containing N, elements and N,, nodes. Let C(i) be the set of nodes belonging
to the element E*:

Ci)={N’:N'€E"} (44)
The goal of the aggregation algorithm described below is to construct a set of N, aggregates denoted as
A={Ai€LN] (45)

satisfying the following conditions:

(i) Element-by-element aggregation

A ={E, jeM,
‘ {E',J E} | (46)
M C[1, N;] — the set of element numbers corresponding to the aggregate i

(ii) Disjoint covering. Elements belonging to different aggregates cannot be neighbors. Two elements £ " and
E’ are considered to be neighbors if

CIYNCGY#D (47)
(iii) Full nodal covering. Each node belongs to some aggregate:
U co=tv, jeng (48)
{i:E'e 4}

(iv) Marking the ‘slave’ nodes and nodes with essential boundary conditions as separate aggregates. Each
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node containing either essential boundary condition and/or ‘slave’ degree(s)-of-freedom, which depends
on so-called ‘master’ degree(s)-of-freedom, is considered as an aggregate. Denote the set of such nodes
as Ny,

Step 1: Setup .
(1.1) For each node N/, j=[1,N,] select the elements containing this node:

B(j)={E :N'€E} (49)

(1.2) For each element E' i= [1, No] select the set of neighboring elements NE(), that are the elements
containing common nodes:

NEG)={E": E*€B(j), j € C(ONE’ (50)

Step 2: Start-up aggregation
(2.1) Define the set of elements NA available for aggregation. These are all the elements which do NOT
contain nodes with essential boundary conditions or the ‘slave’ nodes:

NA = [1, NoMB()), N € Nys} D)
(2.2) Find the ‘peripheral’ element E’, that is, the element with minimal number of neighbors:

s =arg min |NE()| (52)

iENA

where |X| is a number of elements in the set X. Element E* is a starting element for the aggregation
algorithm.

(2.3) Setup:
— the current aggregate counter i = 1;
— the set of interface elements NI = [1, N, J\WA, i.e. the elements between different aggregates.

. Step 3: Formation of the current aggregate
Basic aggregation version:
Aggregate A contains the element E° and all its available neighbors:

A'=E° U (NE(s) N NA) (53)

Adaptive aggregation version:

Aggregate A' contains the element E° and those of its available neighbors which satisfy the relative stiffness
condition: T

A'=E U{E'ENE@s)NNA, B’ =upB’} -~ | (54)

where B’ is a Gerschgorin upper bound on the stiffness matrix maximal eigenvalue of the element E/,and
is a coarsening parameter. :

Step 4: Update the sets of the interface and available elements
(4.1) Update the set of the interface elements:

NI=NIU{E ENE() e synE eay 0 T (s)

(4.2) Update the set of the available elements:

NA=NAV(E € NEG).E' €ayuat R (56)

Step 5: Find the new starting element _ »
(5.1) Form the set of ‘frontal’ elements FR, that are available elements neighboring to the interface elements:

FR={E*ENE(), B' EN)ANAY 57
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(5.2) Basic version: select arbitrary new starting element belonging to FR:

E’€FR N '
Adaptive version: select the stiffest new starting element from FR:
s =arg max (B’) ‘ T €19
SEIEFR T T

Step 6: Stopping criteria
If FR=(J then stop; else i =i + 1 and repeat Steps 3-6.

REMARK 2. For simplicity we presented only the aggregation algorithm for lower order elements. In the case
of higher order elements the ‘full nodal covering’ requirement may not be satisfied at the completion of the
algorithm described above. There will be a significant number of nodes belonging to the elements in the
interface region giving rise to a very large auxiliary coarse model. To further reduce the size of the auxiliary
model, the same aggregation algorithm is recursively applied for the interface elements only until all the nodes
would be covered by some aggregate. This procedure also provides a ‘cleaning’ phase to ensure that all nodes in
the source grid are included within one of the aggregates. ’

REMARK 3. A similar scheme can be applied for the p-type discretization with the only exception'Being that
the aggregates may contain only a single element in order to reduce the aggregate size. Higher-order modes in
the interface region are treated as indicated in Remark 2.

REMARK 4. The aggregation algorithm described above allows us to deal with multi-point constraints in a
conventional way since the elements containing the ‘slave’ nodes form a separate aggregate. Each multi-point
constraint can be represented as follows:

x, = Tx, | (60)
where x,, x,, are the ‘slave’ and ‘master’ degrees-of-freedom, respectively; 7 is a transformation matrix

representing the multi-point constraint (MPC) data. In accordance with (60) the vector x = (xs,xm)T can be
expressed as

x= [%]xm (61)

Given the decomposition of the element stiffness mairix K, for elements containing the ‘slave’ degrees-of-
freedom

K, = K- K 62
e Kins K;nm ( —')

the modified element stiffness matrix K, corresponding to master degrees-of-freedom only is given by:

R =T'K’T+KP T +T'K)+K." (63)
4.3. Adaptive construction of prolongation operator

One of the key issues in the proposed aggregation procedure is a selection of the coarse model parameter 7.
All the eigenvectors of the eigenvalue problem on each aggregate corresponding to the eigenvalues A“ <y are
included within the diagonal block of the global prolongation operator. In order to make this parameter
dimensionless, the eigenvalue problem on each aggregate is formulated in the following manner:

Kad)a — AGD(I¢(I (64)
where D* is a diagonal of K°. Typically 6-50 modes are needed to satisfy A% =< vy requirement. The Lanczos

algorithm with partial orthogonalization [12] was adopted.
The value of the parameter y determines the effectiveness of coarse grid correction. In the limit as
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v —»max, A%, the auxiliary problem captures the response of the source system for all frequencies and therefore
the two-level procedure converges in a single iteration even without smoothing. On the negative side, for large
values of v, eigenvalue analysis on each aggregate becomes prohibitively expensive and the auxiliary matrix
becomes both large and dense. At the other extreme in the limit as y — 0, the prolongation operator contains the
rigid body modes of all the aggregates only, and thus the auxiliary problem becomes inefficient for ill-posed
problems.

4.4. Adaptive smoothing

Selection of smoothing procedure is another important issue as the cost of smoothing is a major expense in
multilevel procedures. Comprehensive studies conducted in [11] revealed that one of the most efficient
smoothing schemes is based on the Modified Incomplete Cholesky factorization (MIC). We employ two versions
of MIC, with and without additional fill-ins using ‘by value’ as the fill-in strategy. By this technique one
compares the values of the terms in the incomplete factor and chooses the largest ones to be included [13]. One
of the most important parameters in both versions is the diagonal-scaling parameter « which insures positive
definiteness of the incomplete factor. Its optimal value depends on the number of fill-ins. For a larger number of
fill-ins the optimal value of the diagonal-scaling decreases. The optimal number of fill-ins is determined
experimentally, whereas the value of the diagonal-scaling parameter is determined adaptively by incrementally
increasing it until all positive pivots are obtained.

For optimal performance in terms of memory requirement, we also employ the SSOR based smoother, which
does not require additional storage as opposed to MIC based methods.

5. Numerical examples

An obstacle test consisting of 20 industry and model problems (see Figs. 1 and 2) was designed to (i)
determine the optimal values of computational parameters and to (ii) compare the two-level scheme with the
existing state-of-the-art solvers including the Multifrontal solver with MMD reordering scheme, and the PCG
solver with nearly optimal Modified Incomplete Cholesky factorization preconditioner. The following 20
problems comprise the obstacle test:

(1) Automobile Body: MIN3 [14] shell and 2 node beam elements; 265 128 d.o.f.s.
(2) High Speed Civil Transport (HSCT): MIN3 [14] shell elements; 88 422 d.o.f:s.
(3) Wheel structure, 3 Node DKT + DMT shell [15], 320358 d.of.s.
(4) Wheel structure, 3 Node DKT + DMT shell [15], 138462 d.o.fs.
(5) Casting Setup for Casting in Airfoil: 10 node tetrahedral elements; 158 166 d.o.f.s.
(6) Turbine Blade with Platform: 10 node tetrahedral elements; 207 840 d.o.fs.
" (7) Ring-Strut-Ring Structure: 4 node tetrahedral elements; 102 642 d.o.fs.
(8) Nozzie for Turbines: 10 node tetrahedral elements; 131 565 d.o.fs.
(9) Diffuser Casing with Gates for Casting: 10 node tetrahedral elements; 131 529 d.o.f.s.

(10) Concrete canoe: 8 node ANS [16] shell elements; 132 486 d.o.fs.

(11) 3D weave unit cell: 4 node tetrahedral elements; 85 586 d.of.s.

(12) Submarine frame: 3 Node DKT + DMT shell [15], 184 914 d.ofs.

(13) SDRC [21] benchmark problem 1: 10 node tetrahedrals; 178 536 d.o.f.s.

(14) SDRC [21] benchmark problem 2: 10 node tetrahedral; 145911 d.ofs.

(15) EMRC [20] benchmark problem 0: 3 node DKT + DMT shell [15]; 61 206 d.o.fss.

(16) EMRC [20] benchmark problem 2: & node hexahedrals; 27 783 d.o.f.s.

(17) EMRC [20] benchmark problem 3: 8 node hexahedrals; 52728 d.o.f.s.

(18) EMRC [20] benchmark problem 5: 8 node hexahedrals; 52728 d.o.f.s.

(19) EMRC [20] benchmark problem 7: 20 node hexahedrals; 38 475 d.o.f.s.

(20) EMRC [20] benchmark problem 8: 8 node ANS [16] shells; 66 246 d.o.fs.

For construction of decision graphs in Section 5.1.2, additional problems have been generated by changing the
values of the thickness of the shell.

¢
i
4
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5.1. Parametric study

In this section we present the results of numerical investigation of the following computation parameters:
number of levels; limiting eigenvalue parameter y for selection of the modes to be included in the prolongation
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operator; number of fill-ins and diagonal scaling parameter « for Modified Incomplete Cholesky factorization;
and coarsening parameter u.

5.1.1. Selection of number of levels »

To add the selection of optimal number of levels, we construct decision graphs in the space of condition
number and sparsity for all the problems comprising the obstacle test. Decision graphs are scatter plots with
superimposed discriminant functions, which classify the set of sample problems, each of which represents an
optimal solver in terms of CPU time. Attention is restricted to one- (multifrontal solver with MMD reordering
scheme) and two-level methods. For the two-level method considered, we utilize the optimal values of
prolongation, smoothing and aggregation parameters calibrated in Sections 5.1.2-5.1.4.

Each problem for which the single Jevel solver was faster has been marked by a circle in the space of sparsity
and conditioning as shown in Fig. 3, whereas problems for which the two-level scheme has been found to be
optimal in terms of CPU time were marked by a square. It can be seen that the space of the decision graph is
subdivided into two regions with some minor overlap along the boundaries. The discriminant function is a
straight line, except for some small problems considered (<10000 d.o.f.s) where an overhead involved in
constructing the multilevel preconditioner is relatively significant.

Another interesting: observation is that for 80% of shell problems considered (shell problems marked by a
dark circle or a square in Fig. 3), the one-level scheme has been found to be optimal, whereas for 97% of 3D
problems (marked by an empty circle or a square in Fig. 3), the two-level scheme turned out to be faster.

Table 1 summarizes the cost and efficiency of predicting the condition number. It can be seen that the
effectivity index, defined by the ratio of predicted and exact condition number, ranges between one-half to two.
The cost of predicting the condition number ranges between 5 to 25% of total solution time. The cost of sparsity
prediction, also shown in Table 1, was less than 5% of total solution time for all problems considered.

When a new problem is encountered, the optimal number of levels in terms of solution speed can be
determined from the decision graph. Memory considerations play an important role in the solution strategy
selection process. Sparsity and conditioning assessment as well as memory requirements are all estimated in the
preprocessing stage (see Section 5.2 for memory requirements of various solution techniques). For all problems
considered the direct in-core solver consumes two to eight times more memory than a two-level scheme with
MIC smoother, and up to fifteen times more memory than the two-level scheme with SSOR smoother. Thus, if
for a given problem a single level scheme is estimated to be the fastest, but may consume more memory than
available (without swap), it is eliminated from the list of candidate strategies. Subsequently, the two-level
scheme with MIC smoothing is tested for memory, and if not suitable, the two-level scheme with a weaker
(SSOR) smoother is considered. If all three schemes fail to satisfy memory requirements, other possibilities,

Decision Graph for Selection of Levels
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Table 1
Effectivity and efficiency of estimators
Problem Elements Equations Effectivity Efficiency

index percentage of total CPU

KK Sparsity Condition

w K

CAR MIN3 265128 0.613 3 9
HSCT-88k MIN3 88422 1.227 3 10
Wheel 320k DKT-DMT 320358 0.901 2 12
Wheel 138k DKT-DMT 138462 0.923 2 9
Casting Tetra-10 158166 0.926 2 9
Turbine Bid Tetra-10 207840 NA 3 25
Ring-strut Tetra-4 102462 0.975 4 15
Nozzle Tur Tetra-10 131565 0.924 3 18
Diffuser Tetra-4 75717 1.814 4 20
Canoe ANSS 132486 0.908 2 5
Weave Tetra-4 85586 1.218 4 25
Submarine DKT-DMT 184914 0.828 2 8
SDRC1 Tetra-10 178536 0.854 4 22
SDRC2 Tetra-10 145911 2.000 5 25
EMRCO DKT-DMT 61206 0.518 2 11
EMRC2 Hexa-8 27783 0.764 3 12
EMRC3 Hexa-8 52728 0.754 2 19
EMRCS Hexa-8 52728 1.417 3 25
EMRC7 Hexa-20 38475 1.324 1 11
EMRCS ANS8 66246 1.191 1 7

such as three or more level schemes, out-of-core direct and out-of-core iterative [19] solvers, should be
considered. These alternatives have not been investigated in the present manuscript.

5.1.2. Prolongation parameters

In order to determine the optimal value of y in terms of the CPU time, we have carried out extensive
computational experiments for a wide range of problems, including well-posed and ill-posed cases. Surprisingly,
it has been found that the optimal value of y is independent of the problem condition and only slightly differs
for different problems. Fig. 4 shows that for the HSCT problem the optimal value of y, which minimizes the
CPU time, was equal to 0.0035 independent of quality of MIC smoother (number of fill-ins and diagonal scaling
parameter). On the other hand, for the Diffuser Casing problem the CPU time was practically independent of 7.
For the Nozzle of Turbine problem significant reduction in terms of CPU time was observed for relatively large
values of ¥ ranging from 0.0075 to 0.0100, whereas in the Automobile Body problem increasing the value of y
only slightly reduces the number of iterations but increases the CPU time. Based on these results we have built
in y = 0.0050 for further numerical studies and comparisons, which provides a reasonably good performance for
all problems considered.

5.1.3. Smoothing parameters .

The efficiency of the MIC based smoothing procedure highly depends on the two computational parameters:
the number of fill-ins and the diagonal scaling. Typically, increasing the number of fill-ins allows one to
decrease the value of the diagonal-scaling parameter. It can be seen (Fig. 4) that for Diffuser Casing and HSCT
problems, the optimal value of fill-ins is in the range of 4—6, with a minimal value of diagonal-scaling parameter
a which ensures positive pivots. For the Nozzle for Turbines and Automobile Body problems, it was observed
that the number of fill-ins has a minor effect on the effectiveness of the iterative process. We did not consider a
number of fill-ins greater than 8§ due to increased in-core memory requirements.

Based on the computational experiments, the following strategy has been developed for determination of
nearly optimal values of « and number of fill-ins:

e MIC with number of fill-ins is equal to 4.

o Initial diagonal-scaling parameter o =0.01. .
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CPU time as a function of coarse grid parameter y and
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e Increasing « by the increment of Aa =0.0025 if non-positive pivot is encountered in the process of
incomplete factorization, or if the two-level iteration procedure diverges.

5.1.4. Aggregation parameters
Numerical experiments in the obstacle test indicated that the value of the coarsening parameter u had very
little effect on the convergence of the iteration procedures. The only problem where considerable improvement
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was observed was a 2-D problem for randomly distributed short fibers in matrix material, where the
fiber / matrix stiffness ratio was equal to 100. The problem was modeled using quadrilateral finite elements. For
this problem the converged solution was achieved in 23 iterations using the basic aggregation algorithm, while
using the adaptive version of aggregation procedure with optimal value u = 1.68 the convergence was achieved
in 18 iterations. In subsequent studies we employed the basic version of the aggregation procedure.

5.2. Comparison with other solvers and discussion

First, we compare the rate of convergence in terms of CPU time for the Diffuser Casing problem as obtained
with the GAM solver, the Skyline Direct solver, the Multifrontal solver [17] and the PCG solver with Modified
Incomplete Cholesky preconditioner. Fig. 5 shows that for the GAM solver the CPU time grows linearly with
problem size as opposed to the other three solvers considered. It can be seen that even for relatively small
problems with 35 000 d.o.f.s. the GAM outperforms the traditional Skyline solver by a factor of 27. For the
problem with 70 000 d.o.f.s. the GAM solver outperforms the Multifrontal solver [17] by a factor of 9 and the
PCG with Modified Incomplete Cholesky preconditioner by a factor of 12. Table 2 compares the performance of
GAM solver in terms of the total CPU time and memory requirements with the Multifrontal solver [17] and the
PCG solver with Modified Incomplete Cholesky preconditioner for all problems considered in the obstacle test.

In the second set of problems the GAM is compared with the ‘smoothed aggregation’ technique introduced in
[7]. We have observed that for a 2-D model elasticity problem on a square domain, this approach gives an
improvement in terms of number of iterations (16 instead of 23). However, for the ill-posed shell problem
(HSCT) the number of iterations becomes more than twice larger (154) in comparison with the GAM solver.
Furthermore, smoothing of the approximation field on each aggregate creates a denser prolongation operator,
which in turn increases the CPU time of restriction and yields denser auxiliary matrix.

Table 3 contains split-up CPU times for (i) aggregation, (ii) restriction of stiffness matrix, (iii) factorization
of auxiliary matrix, (iv) incomplete factorization of source matrix, and (v} iterative two-level procedure in all
obstacle test problems. The aggregation time consists of eigenvalue analysis on each aggregate and construction
of the prolongation operator. It can be seen that the cost of the aggregation procedure ranges from 5%
(Automobile Body) to 30% (Ring-Strut), averaging 10% for all problems. The cost of iterative process ranges
from 80% in poor conditioned problems (HSCT and Automobile Body) to less than 30% in well conditioned 3D
problems, averaging 70% for all problems considered. It should be noted that the above split-up times can be
easily modified by controlling the prolongation and smoothing parameters, but those considered above reflect a
nearly optimal performance for problems (positive definite systems, single right-hand side vector) and computer
architectures (single processor) considered.

6. Conclusions

An automated adaptive multilevel solver for linear (or linearized) systems of equations has been developed.
The optimal number of levels is selected on the basis of estimated conditioning, sparsity of the factor and
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Table 2
Comparison of solvers
Problem Elements Equations Hip memory CPU (s) [# of iterations]

(MB) SUN-ULTRA SPARC

Multifrontal  GAM1 GAM2 CG(IC) Multifrontal GAM1® GAM2® CG(IC)
CAR MIN3 265128 512 255 154 235 587 1116 [60] 1848[132] 22908 [2730]
HSCT-88k  MIN3 88422 207 99 70 73 197 450 {811 1260[277] 6033 [2277]
Wheel 320k DKT-DMT 320358 862 310 206 241 2890 875[38] 910[115] 17752({2083]
Wheel 138k DKT-DMT 138462 288 119 78 101 427 276 [33] 474 1(81] 3229 [914]
Casting Tetra-10 158166 1012 192 132 177 5954 752491 1775[143] 12158{1833]
Turbine Bld  Tetra-10 207840 >1500 280 235 269 NA 820251 1567175} 4226 [437]
Ring-strut Tetra-4 102642 337 79 64 73 618 126 (191 176 [29] 1585 [681]
Nozzle Tur  Tetra-10 - 131565 996 167 103 149 5184 462[26] 914({73] 3579 [614]
Diffuser Tetra-4 75717 327 67 55 58 753 116 {191 120[24] 1231 {660]
Canoe ANS8 132486 522 167 91 153 672 497 {321 1116[i01] 772711183]
Weave Tetra-4 85586 448 84 77 79 2619 148 [14]  153(18] 654 [291]
Submarine ~ DKT-DMT 184914 370 158 101 129 746 408 [35] 497 {50] 6178 [1362]
SDRC1 Tetra-10 178536 1401 224 147 206 9446 498 [20] 946 [57] 1038 [128]
SDRC2 Tetra-10 145911 984 187 117 179 3184 342 (177 466[25] 4468 [679]
EMRCO DKT-DMT  .61206 122 62 47 44 78 104 [32] 327[108] 1460 [985]
EMRC2 Hexa-8 27783 173 37 25 31 480 56 {20] 66 [41] 317 {273}
EMRC3 Hexa-8 52728 425 30 57 57 1912 161 [21] 21538} 779 [347]
EMRCS5 Hexa-8 52728 424 70 46 56 1814 92111 87 [13] 193821
EMRC7 Hexa-20 38475 438 84 54 72 1863 137 {101 . 169[18] 2871781
EMRCS8 ANS8 66246 226 88 61 82 227 1721231 600{115] 3497 [1054]

* GAMI: optimal CPU.
® GAM2: optimal memory.

Table 3
GAM split-up times
Problem Elements Equations CPU (s) SUN-ULTRA SPARC
Solver Aggregation Restriction Factorization Incomplete Iterative i
total process

CAR MIN3 265128 1116 65 48 37 91 875
HSCT-88k MIN3 88422 450 18 20 34 18 360
Wheel 320k DKT-DMT 320358 875 72 43 132 47 580
Wheel 138k DKT-DMT 138462 288 24 18 23 18 204
Casting Tetra-10 158166 752 65 122 17 49 500
Turbine Bld Tetra-10 207840 820 93 209 76 74 368
Ring-strut Tetra-4 102642 126 44 8 6 8 60
Nozzle Tur Tetra-10 131565 462 54 114 17 46 231
Diffuser Tetra-4 75717 116 36 7 10 7 56
Canoe ANS8 132486 497 43 45 4 41 364
Weave Tetra-4 85586 148 48 8§ 37 10 46
Submarine DKT-DMT 184914 408 45 21 29 20 294
SDRC1 Tetra-10 178536 498 72 1069 28 57 23y e
SDRC2 Tetra-10 145911 342 50 98 11 42 141
EMRCO DKT-DMT 61206 104 7 10 11 6 70
EMRC2 Hexa-8 27783 56 5 6 8 7 31
EMRC3 Hexa-8 52728 161 14 11 55 15 66
EMRCS Hexa-8 52728 92 9 8 29 13 32
EMRC7 Hexa-20 38475 137 17 33 16 31 40
EMRCS ANS8 66246 172 15 36 6 21 95

Average 376 40 49 29 31 227

available memory. The concept of aggregation introduced earlier in [5-7] has been generalized to automate the
construction of nearly optimal auxiliary coarse models based on the information available in the source grid
only. By this technique the approximation space over each aggregate is adaptively and automatically selected
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based on the spectral characteristics of individual aggregates. Numerical experiments conducted on twenty
industry and model problems affirm the solver’s high efficiency and robustness characteristics.

The quest for the ultimate equation solver is still in its embryonic stage. Further research is essential to
promote the proposed methodology from the status of ‘interesting and having potential’ to the general purpose
equation solver. The three solver characteristics that need further development are:

(1) Generality. The proposed framework needs to be extended to account for indefinite and nonsymmetric
systems of equations, as well as problems with multiple right-hand sides.
(i) Predictability. Decision graphs and optimal solution strategies have to be developed for problems with
multiple right-hand sides and multiple processor machines.
(i1) Memory efficiency. So far only in-core solution methods have been considered. Clearly, an ultimate
solution engine should have out-of-core capabilities, since it is not usually possible to keep the entire
stiffness matrix in core.
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