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Abstract

We develop computational models and adaptive modeling strategies for obtaining an
approximate solution to a boundary value problem describing the finite deformation plas-
ticity of heterogeneous structures. A nearly optimal mathematical model consists of an
averaging scheme based on approximating eigenstrains and elastic concentration factors in
each micro phase by a constant in the portion of the macro-domain where modeling errors
are small, whereas elsewhere, a more detailed mathematical model based on a piecewise
constant approximation of eigenstrains and elastic concentration factors is utilized. The
methodology is developed within the framework of “statistically homogeneous” compos-
ite material and local periodicity assumptions.

1.0 Introduction

In this manuscript, we develop a theory and methodology’fdr obtaining an approximate
solution to a boundary value problem describing the finite deformation plasticity of heter-
ogeneous structures. The theory is developed within the framework of “statistically homo-
geneous” composite material and local periodicity assumptions. For readers interested in
theoretical and computational issues dealing with various aspects of nonperiodic heteroge-
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neous media we refer to [7][91[28]1[37].

The challenge of solving structural problems with accurate resolution of microstructural
fields undergoing inelastic deformation is enormous. This subject has been an active area
of research in the computational mechanics community for more than two decades.
Numerous studies have dealt with the utilization of the finite element method [12][13]
[181[21][22][24][301[34], the boundary element method [11], the Voronoi cell method
[10], the spectral method [1], the transformation field analysis [5], and the Fourier series
expansion technique [26] for solving PDEs arising from the homogenization of nonlinear
composites. The primary goals of these studies were twofold: (i) develop macroscopic
constitutive equations that would enable solution of an auxiliary problem with nonlinear
homogenized (smooth) coefficients, and (ii) establish bounds for overall nonlinear proper-
ties [2]1[29][32][33][341[35].




Attempts at solving large scale nonlinear structural systems with accurate resolution of
microstructural fields are very rare [10][12][26] and successes were reported for small
problems and/or special cases. This is because for linear problems a unit cell or a repre-
sentative volume problem has to be solved only once, whereas for nonlinear history
dependent systems, it has to be solved at every increment and for each macroscopic
(Gauss) point. Furthermore, history data has to be updated at a number of integration
points equal to the product of the number of Gauss points in the macro and micro (unit
cell) domains.

To illustrate the computational complexity involved we consider an elasto-plastic analysis
of the composite flap problem [8] with fibrous microstructure as shown in Figures 1 and 2.
The structural problem is discretized with 788 tetrahedral elements (993 degrees of free-
dom), whereas fibrous microstructure is discretized with 98 elements in the fiber domain
and 253 elements in the matrix domain, totaling 330 degrees of freedom. The CPU time
on SPARC 10/51 workstation for this problem was over 7 hours, as opposed to 10 seconds
if von Mises metal plasticity was used instead, which means that 99.9% of CPU time is
spent on stress updates.

With the exception of [6][12][19] most of the research activities focused on small defor-
mation inelastic response of microconstituents and their interfaces. This is partially justi-
fied due to high stiffness and relatively low ductility of fibrous composite materials.
However, when hardening is low and the stress measures are comparable to the inelastic
tangent modulus, or in the case of thin structures undergoing large rotations, large defor-
mation formulation is required.

One of the objectives of the present manuscript is to extend the recent formulation of the
mathematical homogenization theory with eigenstrains developed by the authors in [8] to
account for finite deformation and thermal effects. In addition, adaptive strategy is devised
to ensure reliability and efficiency of computations. In Section 2 we derive a closed form
expression relating arbitrary transformation fields to mechanical fields in the phases. In
Sections 3 and 4 we employ an additive decomposition of the rate of deformation into
elastic rate of deformation, governed by hypoelasticty and inelastic rate of deformation.
Section 3 focuses on the 2-point approximation scheme (for two phase materials), where
each point represents an average response within a phase. The local response within each
phase is then recovered by means of post-processing. In Section 4 we describe the n-point
scheme model, where n denotes the number of elements in the microstructure. Section 5 is
devoted to modeling error estimation and adaptive strategy. We develop an adaptive 2/n-
point model, where the 2-point scheme is used in regions where modeling errors are small,
whereas elsewhere the n-point scheme is employed. Numerical experiments conducted in
Section 6 investigate the 2-point, the n-point, and the adaptive 2/n-point schemes in the
context of finite deformation plasticity.




2.0 Mathematical Homogenization with Eigenstrains for Small
Deformations

In this section we generalize the classical mathematical homogenization theory [3][4] for
heterogeneous media to account for eigenstrains. We regard all inelastic strains, phase
transformation and temperature effects as eigenstrains in an otherwise elastic body. We
will derive closed form expressions relating arbitrary eigenstrains to mechanical fields in a
multi-phase composite medium. In this section attention is restricted to small deforma-
tions.

The microstructure of a composite material is assumed to be locally periodic (Y-periodic)
with a period represented by a unit cell domain or a Representative Volume Element

(RVE), denoted by @, as shown in Figure 3. Let x be a macroscopic coordinate vector in
macro domain Q and y = x/¢ be a microscopic position vector in @ . For any Y-periodic
function f, we have f(x,y) = f(x, y+ k) in which vector ¥ is the basic period of the
microstructure and k is a 3 by 3 diagonal matrix with integer components. Adopting the
classical nomenclature, any Y-periodic function f can be represented as

fo(x)=f(x, y(x)) )

where superscript ¢ denotes a Y-periodic function f. The indirect macroscopic spatial

derivatives of fScan be calculated by the chain rule as
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Fo(xy) = fo(x9)+cf (%) =cf (x) 3

where the comma followed by a subscript variable x; or y, denotes é partial derivative
with respect to the subscript variable (i.e. f % = df/0x; and f 3, = df /9y;). A semi-colon
followed by a subscript variable x; denotes a partial derivative with respect to the remain-
ing x components (2), but a full derivative with respect to y;, and vice versa when a semi-

colon is followed by subscript variable y; (3). Summation convention for repeated right
hand side subscripts is employed, except for subscripts x and y.

We assume that micro-constituents possess homogeneous properties and satisfy equilib-
rium, constitutive, kinematics and compatibility equations as well as jump conditions at
the interface between the micro-phases. The corresponding boundary value problem is
governed by the following equations:

cf,.+b;, =0 in Q @

% i

of = Ly(ef-Up) in Q ()




g5 = u&;xj) in Q ©6)

mtgj = ”fi;xj] in Q )
uf =u; on I, ®
ogn; =1 on I, )

where G, ef and wf; are components of stress, strain and rotation tensors; Lijy and B§
are components of elastic stiffness and eigenstrain tensors, respectively; b, is a body force

assumed to be independent of y; uf denotes the components of the displacement vector;

the subscript pairs with regular and square parenthesizes denote the symmetric and anti-
symmetric gradients defined as

1 1
UGy = 5 (Ui + Ufy ), Uy = 5(UEy ~ UG (10)

Q denotes the macroscopic domain of interest with boundary I'; T", and I", are boundary
portions where displacements #; and tractions #; are prescribed, respectively, such that
r,nI; = @andlC =T . Y 1, n; denotes the normal vector on I". We assume that the
interface between the phases is perfectly bonded, i.e. [O'lgjﬁ j] = 0 and [uf] = O at the

interface, I';,,, where 7; is the normal vector to I"; , and [®] is a jump operator.

In the following, displacements u$(x) = u,(x, y) and eigenstrains ufj(x) = ul-j(x, y)

are approximated in terms of double scale asymptotic expansions on Q X @ :

u(x, y) = ud(x, y) + cul(x, y) + ... 11
Lyj(x, 3) = U (x, y) +clli(x, y) + ... (12)

Strain and rotation expansions on Q X @ can be obtained by substituting (11) into (6) and
(7) with consideration of the indirect differentiation rule (2)

1
(X, y) = Ee;jl(x, ¥)+ed(x y) +gel(x y)+ ... (13)

1
wy(x, y) = gco,-}l(x, Y) + 0l(x, 3) + col(x, y) + ... (14)

where strain and rotation components for various orders of ¢ are given as




et = gy, el = g +e,(ws* ), 5 =0,1,.. (15)
ot = 00, of = 0u(u%) + o, wrl), 5 =01,.. (16)
and
Sxij(us) = ufi,xj)’ 8yij(us) = ufi,yj) an
Oy (@) = U 115 @y (W) = Uf (18)

Stresses and strains for different orders of ¢ are related by the constitutive equation (5)
G{—]l = Lljklgi;il’ Gf] = Ll]kl(gil - ul‘gl), § = O, 1, “es (19)

The resulting asymptotic expansion of stress is given as
1
0%, y) = goi‘jl(x, y)+0d(x, y) +gol(x, y) + ... 0)

Inserting the stress expansion (20) into equilibrium equation (4) and making the use of (2)
yields the following equilibrium equations for various orders:

-2y ) -
o(¢g™>): Oy, = 0 2D
0(c™h): opl +0), =0 22)
0(c0: Ol x, * Oliy, +0; = 0 23)
0. of, +oi*tl =0 s=12.. (4)

ij,x; i,y;
Consider the O(¢™2) equilibrium equation (21) first. Pre-multiplying it by u? and inte-

grating over a unit cell domain O yields

j@u?o;j}yj ae =0 25)

and subsequently integrating by parts gives

O0~-1 0 0 -
where I'g denotes the boundary of ®. The boundary integral term in (26) vanishes due to

Y-periodicity of boundary conditions on I'g . Furthermore, since the elastic stiffness L, ikl
is positive definite, we have




u?l =0 = Ll? = Li?(X) @7
and
o' (x, ¥) = gl (x,y) = ol (x,y) =0 28)

We proceed to the O(¢™!) equilibrium equation (22) next. From equations (15) and (19)
follows

{Lij(ea(@®) + &) -1}, =0 on O 29)
To solve for (29) up to a constant we introduce the following separation of variables

Ugl(x» y) = Hikz(J’){Sxkz(uo) +d¥(x)} 30

where H ;;; is a Y-periodic function, d}; is a macroscopic portion of the solution resulting
from eigenstrains, i.e. if },L,?l(x, y) = 0 then dfj(x) = 0.Itshould be noted that both H

and d}; are symmetric with respect to indices k and /. Based on (30) O(c™!) equilibrium
equation takes the following form:

{Lijkl((lklmn + lemﬂ)sxmn(uo) + lemnd,l,tn(x) - ul(c)l)},yj =0 on © G

where
1
Tiimn = 5O+ B dpu)s Grimn’¥) = Hg yymnl ) 32)

and 9, is the Kronecker delta. Since equation (31) should be valid for arbitrary combina-
tion of macroscopic strain field €, (2% and eigenstrain field uY,, we first consider
Wy =0, &,,,(u®)#0 and then ¢,,,(2%) =0, uf #0 which yields the following two

governing equations on ®:

Waijrd T kmn + H (g yymn) v =0 33

ALija(H oy ymadh - H;?z)},yj =0 G4

Equation (33) together with Y-periodic boundary conditions comprise a standard linear
boundary value problem on ®. For complex microstructures the finite element method is
often employed for discretization of H;;,(y), which yields a set of linear algebraic system
with six right hand side vectors [7]. In absence of eigenstrains, the asymptotic fields can




be written in terms of the macroscopic strain §;;=¢€, (u%) and the macroscopic rotation

ij ij

By = 0,(u0):

where
Giju(¥) = Hyiy 1u(9) 36)

The terms Gijkl and Gijkl are known as polarization functions. It can be shown that the

integrals of the polarization functions on ® vanish due to periodicity conditions.

The elastic homogenized stiffness Zi ik follows from O( ¢ equilibrium equation [7]:

1 1
@] LifmnAmﬂkl do = = AmniijnstAstkl do® 37N
|0l)e |®lJe

Lijxi
where
Aklmn = Iklmn + lemn (38)

Apmn 1s often referred to as an elastic strain concentration function and |@)] is the volume

of a unit cell.

After solving (33) for H;,,, we proceed to (34) for finding d ¥, subjected to Y-periodic

boundary conditions. Pre-multiplying (34) by H;,, and then integrating the resulting equa-
tion by parts with consideration of Y-periodic boundary conditions yields

[ GistLijia Cramn i, (¥) - 1y) 4O = 0 (39)

Rewriting (39) in terms of strain concentration function A ijk; and manipulating it with
(37) yields

| |
4 = oLkt = L) ™ [ CmntrLomnsibhst 4O @0

where

~

1




The superscript —1 denotes the reciprocal tensor. The O(c%) approximation to the asymp-
totic strain (13) and rotation fields (14) reduces to:

& = &+ Gy +dfp) + 0(c) @2)

oy = B+ GyrEgy + dy) + 0(Q) 43)

Let ¥ = {yM(y)}} beasetof C~! continuous functions, then the separation of variables

for the O(c?) eigenstrains is assumed to have the following decomposition:

n

ui(x ) = ¥ w(y) piox) @4)
n=1

The resulting asymptotic expansion of the strain and rotation fields (13), (14) can be
expressed as follows:

&%, y) = &(x0) + Gyp()Eg(x) + Z ) wP(x) +0(g) 45)
n=1

@(x, 3) = B;(x) + Gii(NEH(x) + Y DIU) 1fP(x) +0(0) (46)
n=1

where D(T}(}( y) and D ’}()l( y) are the eigenstrain influence functions, which can be

expressed in terms of polarization functions Giju(y) and Gi jki(y) as follows
1 7 T -
Dl(le(y) = i"@—lGijmn(Lmnpq - Lmnpq) IJ-® GrquLrslem) do @7

} }(y) = I l t_/mﬂ("lrﬂqu —‘Jmnpq) 1 Grqu rsk}“l"(n) d@ (48)

In particular, if ¥ is a set of piecewise constant functions defined as

1 if y € @
yM(y,) = P (49)
0 otherwise

and ®™M) is the subdomain 1 within a unit cell, ¢ the subdomain volume fraction given

by ¢ =|0M)]/|@] and satisfying " _ | ¢ = 1, then (45) and (46) reduce to:




n
P) = . = GRzg ufm
“u |®(p)|j®<p>8’1 0 Gk E PP +0(c)
(610)]
1 — A f)
P) = = _ . = (P) (PN (M)
off l®(p)l~[®“”ml] d® = o+ Gifligy "Z DIEPuM +0(c)
where
DY = cWGP) (Linpg - Linnpg) "G, LW, 1)
DY = cWGE)(Linnpg — Linnpg)” G L) G2
and
m amy 1 .
(Gzﬂd’ z]kl) l@)(n)l I@(n)(Gijkl, Gz;kl) d® (33)

We will refer to the piecewise constant model defined by (50) as the n-point scheme
model. Equation (50)a has been originally derived by Dvorak [5] on the basis of transfor-

mation field analysis. Finally, we integrate the O(c?) equilibrium equation (23) over ® .

The j 6 i d@ term vanishes due to periodicity and we obtain:

(ﬁj@og d@) F b; =0 on Q (54)

Substituting the constitutive relation (19) and the asymptotic expansion of strain tensor
(42) into the above equation yields the macroscopic equilibrium equation

(l@lj szkl(Aklmn mn+lemn ukl) d@)) +bi =0 (55)

J

Finally, if we define the macroscopic stress c_rl-j as

6..=_J' c? d® (56)
®

then the equilibrium equations (54) and (55) can be further simplified as follows:

Ojjx,+0;=0, {Lij(Ey - Hedk o +b; =0 67

where L'Iij is the overall eigenstrain given by




_ 1 - ‘
My = —ﬂLij}CZ'[@Lklmn(Gmnpngq - ugm) doe (58)

mnpq by Amnp q- 1 mnpg and manipulating (58) with (37) and (40), the overall

eigenstrain field can be expressed as

Replacing G

1 _
My = @j®3klijugl do, Bijti = Lijmn( N Apnp M Liiu1 (59)

Equation (59) represents the well-known Levin’s formula [23] relating the local and over-
all eigenstrains, and B,;; is often referred to as the elastic stress concentration function.

Remark 1: As a special case we consider a composite medium consisting of two phases,
matrix and reinforcement, with respective volume fractions ¢ and c¢(f) such that
¢(m + ¢Uf) = 1. Superscripts m and f represent matrix and reinforcement phases, respec-
tively. @ and @) denote the matrix and reinforcement domains such that

0 = 0™ U OU). We assume that eigenstrains and elastic strain concentration factors are
constant within each phase. This yields the simplest variant of (50) where n=2. The corre-
sponding approximation scheme is termed as the 2-point model. The overall elastic prop-
erties are given by [5]

f
L = Y, ¢OLEL Ui + Gih) ©0)

r=m
and the overall stress reduces to:

5y = cMofm + (Nolh ©1)

3.0 2-Point Scheme for Finite Deformation Plasticity

For finite deformation analysis the left superscript denotes the configuration: o A'fl:l is the

current configuration at time ¢ + Ar, whereas {El is the configuration at time ?. For sim-
plicity, we will often omit the left superscript for the current configuration, i.e.,

A . . . ;
O ="""O. To extend the small deformation formulation to account for finite deforma-
tion effects the following assumptions are made:

Al: Phase stress objectivity

We will assume that the principle of objectivity is satisfied for each phase. Then the
Cauchy stress rate for phase r is given as:

10



o) = & +5  where &) = Ao - oPAD ©62)

where the superposed dot represents the material time derivative. The rate of deformation

¢

g s respectively, are defined as

and spin tensor components, denoted as £5” and &

5" (x) =gl and  &F"(x)=vE]) 63)

where vE, is the phase velocity gradient. The asymptotic expansion of the phase velocity
i

is given as

vE(x) =v(x, 1) =v)7(x y) + v} (x y) + ©4)

G{I) is the objective rate of the Cauchy stress in phase r, which represents the material

response due to deformation, whereas Az(f ) = 9{,(;5){9‘{/2})}“1 represents the rate of rota-

tion.

Remark 2: The optimal choice of rotation SK,(]-’ ) depends on the microstructure. For fibrous

composites it is natural to assume that SKl(j’ ), represents the fiber rotation from the configu-

ration aligned along the unit vector tml- to the current configuration aligned along the vec-

tor m;. Thus

. -1 -

Following Lee [20] it can be shown that 1_\5;) is related to the spin and rate of deformation
tensors by:

R = o +ePmym; - e Pmem, 66)

The choice of rotations in textile and particle composites is less obvious. We refer to [16]
for the discussion on various choices.

A2: Additive decomposition of hypoelastic and inelastic rate of deformation

The theoretical and practical reasons favoring additive decomposition over multiplicative
decomposition for fibrous composites were discussed in [27]. In the present work we

adopt the additive decomposition of rate of deformation into elastic ,£{/ and inelastic rate

of deformation [1{/), which gives

11



gl(jr) = egl(jr)+ ul(jr) 67

Furthermore, we will assume the hypoelastic constitutive equation relating the objective
Cauchy stress rate with rate of elastic deformation:

& = LI (&P - pnf) 68)

A3: Midpoint integration scheme for micro- and macro-coordinates

In a typical time step 7+ Az, the configuration of the macro- and micro-structure may be

expressed as a sum of the configuration at the previous step ¢ and the displacement incre-
ment:

t+At’xi = txi +Aulo (69)
t+Atyi — tyi +Aﬁi 70)

The macroscopic displacement increment Au? is found from the incremental solution of

the macro-problem, whereas displacement increment in the RVE is given by:
Aii(x, y) = {Aéij(x)+AE‘oij(x)}yj+Aui1(x, y) 7D

The first term in (71) represents the contribution of macroscopic solution, whereas the sec-
ond term Au}(x, y) accounts for oscillatory Y-periodic field. Figure 4 schematically illus-
trates the decomposition of the deformation field in the RVE.

Strain and rotation increments are integrated using the midpoint rule to obtain a second
order accuracy:

1 9Au? 0Au9 ) 1 9Au) dAuY

Ag;; = =| - + , Aw;; = -~ (72)
Yy ZLaHA”zxj at+At/2xJ i 2 at+At/2xj aHAt/sz
where the midpoint coordinates are defined as
r+At/2 1t t+At t+AL/2 1t t+As
xX; = 5( X+ X;)s yi= 5( yi+ ;) 73)

Similarly, the periodic portion of the solution increment Aul-l is obtained by integrating
(30) using the midpoint rule:

Aul = Hyp () (A, () + AR (x)) 74)

imn(
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where the increment of inelastic strain is defined in Section 4.

A4: Additive decomposition of material and rotational response

There are several formulations aimed at extending the small deformation formulation to
account for large deformation effects. One of the most popular approaches is known-as the
co-rotational method where all the fields of interest are transformed into the rotated R -
system [16]. In the R -system, the form of constitutive equations is analogous to small
deformation theory. A simpler approach, proposed by Hallquist [14] and improved by
Hughes and Winget [17] to preserve incremental objectivity, is based on the additive incre-
mental decomposition of material and rotational response. The latter procedure is adopted
in the present manuscript.

For two phase materials, the integration scheme [17] decomposes stresses and back
stresses as follows:

At ~ [N t
T = 50+ Acih), 50 = R 'ofp) R (75)

t+A [N fA t
* fal(jr) &P + Aafp, afp = R ‘of) R (76)

where off) is the back stress. The midpoint rule is utilized to compute the phase rotations
[17]

-1
R = 8+ (8- 300[p) Aofp )

Remark 3: For homogeneous materials the integration scheme [17] uncouples the material

and rotational responses. In the present formulation phase rotations in each phase, ERl(Jf ),
depend on phase eigenstrains, which are unknown prior to stress integration, and thus
material and rotational responses are fully coupled and have to be updated simulta-

neously.

AS: Constant phase volume fractions

For the 2-point scheme derived in Section 3 we will assume that phase volume fractions
remain constant throughout the analysis. This is apparently true in the case of elastic fibers
undergoing small strains and incompressible matrix material. In addition, we assume that
the elastic properties of the phases are independent of temperature. Based on the first-
order approximation methods, such as the Mori-Tanaka method [25] and Self Consistent
method [15], the strain concentration factors and eigenstrain influence functions can be
assumed to be constants throughout the entire analysis. These assumptions will allow us to

13



carry out the entire analysis without updating the configuration of the unit cells. For the n-
point scheme model, described in Section 4, these restrictions will be removed.

3.1 Implicit Integration of Constitutive Equation

For the elastically deforming reinforcement the only source of eigenstrain rate is due to
temperature effects, i.e., Lf/) = ¢&, /) where 4¢,(/) is the thermal rate of deformation in

reinforcement domain. The eigenstrain rate in the matrix phase is comprised of both the
thermal, &, (™, and the plastic, ,&;™, rate of deformation effects, such that

Rim = &, (M + &.m The phase thermal rate of deformation can be expressed as

6gl.j(r) = gg)é (78)
where O denotes the temperature and ﬁg ) are components of the phase thermal expansion
tensor.

Combining the rate form of (50), (68), (69), (75), Assumptions 3 and 4 it can be shown
that the following relations for the phase stresses hold:

t+ At
ofp =6+ RDAE, - z AN, T =mf )
sS=m

where ALY is the overall phase eigenstrain increment and

Rt(ﬁf)l = Ll‘ffp)q(l qul+G§)?kl)

Uk[) Ll(f?‘l sl pgki=P ;’;,Q,)

Consider the yield function of the following form:

} r,s=mf 80

D (o) - auf, Ym) = (O\m; = AP (o) - o) - %{y(m}z @1

where Y1) is the yield stress of the matrix phase in a uniaxial test, which evolves accord-
ing to the hardening laws assumed; ocg”) corresponds to the center of the yield surface in

the deviatoric stress space, or simply the back stress. Evolution of the back stress is
assumed to follow the kinematic hardening rule. For von Mises plasticity, P ijk1 1S a projec-

tion operator which transforms an arbitrary second order tensor to the deviatoric space:

1
Pijxr = Liju = 30,00 (82)

14



For simplicity we assume that the plastic rate of deformation in the matrix phase follows
the associative flow rule:

. P . :
P = 5 A D = RO, R = Pyy(off) - off) (83)
i

We adopt a modified version of the hardening evolution law [16] in the context of isotro-
pic, homogeneous, elasto-plastic matrix phase. A scalar material dependent parameter 3
(0<B<1) is used as a measure of the proportion of isotropic and kinematic hardening

and AU™ is a plastic parameter to be determined by the consistency condition (81).
Accordingly, the evolution of the yield stress Y(") and the back stress af™ can be
expressed as follows:

yom = 23@1’ (m)3,0m) (84)

o 2(1 - B)h :
& = _(__3__6_)__Pijkl(0£7t)_a£rln))x(m) 35

where 3 = O corresponds to a pure isotropic hardening; B = 1 is the widely used Zie-

gler-Prager kinematic hardening rule [36] for metals; 4 is a hardening parameter defined
as the ratio between effective stress rate and the effective plastic strain rate.

Integration of (83), (84) and (85) is carried out using the backward Euler scheme:

t+ At t+Af

t
pgl(]m) = pgl(]m).;. Ngjm)M(M) (86)
t+AtY(m) _ tY(m)+ %;Lz H'AIY(m) A(m) | @)
At " 2(1-B))a A A
rlogm = fal(jmu%pijkl(” ‘o - A myAnm) 88)

where AL =" A m) _ A | and t&g”) is the rotated back stress defined in (76). The

phase rotation increment follows from (50), (78) and (83):

: f
Aofp) = ABy+ GlfIAGy + DIIP Py, (o) - af)AM™ + Y DIREMAD  69)
S=m
In the following we omit the left superscript for the current step 7 + At. Using the back-

ward Euler scheme for the rate form of cl(jm) in (79) and (86) yields the following relation
for the Cauchy stress in the matrix domain:

15




ng) = ”gl(Jm) - Qgglm)x ,((T)Ak(m) 90)
where |, er(j"‘) 1s a trial Cauchy stress in the matrix phase defined as

f
g(m)_g(m)+R(m)Agkl E QINE[DAD on

s =
The process is termed elastic if:

<0 92)

2
(o™ = aff)P (o ~ Q‘gz"))—g{y(m)}z
AL = 0

Otherwise the process is plastic, which is the focus of our subsequent derivation.

Subtracting (88) from (90) we arrive at the following result:
N
ol —afm = (I;+AM™ o )1, ofP - af) 93)

where
(mm) p g 1 hP 94
gozﬂcl Qz]sz sttt 3( - B) ijkl O

The value of AA(™ is obtained by satisfying the consistency condition which assures that
the stress state in the plastic process lies on the yield surface at the end of the current load
step. To this end, equations (87) and (93) are substituted into the consistency condition

(81), ®(m)(o§]m) - ocg”), Y(m)) = 0, which produces a nonlinear equation for AAU™ . A

standard Newton’s method is applied to solve for AA(™) -

-1
[ 9@
m. = ) — (m)
AMHI AAfm {BAM’")} on

95)

e

where £ is the iteration count. It can be shown that the derivative 0®™)/9AA(™ required
in (95) has the following form:

4BR{Y (12
9 - 6BAAAIM

(m)
od m)cljkz(glgm) ~afm) -

aANmm = U o0

The expression for C{#) is derived in Appendix A. The converged value of AL is then

used to compute the phase stresses. The overall stress is computed from (61).
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3.2 Consistent Linearization

While integration of the constitutive equations affects the accuracy of the solution, the for-
mation of a tangent stiffness matrix consistent with the integration procedure is essential
to maintain the quadratic rate of convergence if one is to adopt the Newton method for the

solution of nonlinear system of equations on the macro level [31].
The starting point is the incremental form of the constitutive equations (79):

f
ofp = "5 + RiAE, - 0 QP REPAL™ — Y QUHE[DAD

s=m

Taking material time derivative of (88), (89) and (97) yields:

afm = &,(}”) + w‘{ X (m)}v(’") +Plqu(o-(m) _ oc},’g))AMm)}

Aof) = A@;+ GiiAgw + DEP R POA™ + Py (54 ~ afm) AL}

); DEL

o) = 65] + R AE - QIR OAM £ Py (600 - qm) ARG
- ): ffERe
s=m

Subtracting (98) from (100) for r=m yields:

f
1 t
o -af = oif” - i + RARL - Y QEPES

s=m

9 il (O - oA 4 (5 - afm)ArmY

where

Gij O(zJ aA(x)x(,’l”) Ad)gl”)

oD

%)

99

(100)

(101)

(102)

Combining (99), (101), (102), (212), (213) with the consistent linearizations of A&y and

Ay (given in Appendix B) yields:

Gim —afm = (I k1 + AMOW D15 w0 o+ oSk + 3Sual™)

(103)
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where

WStise = ( U}(clmn Uﬁ?;zgn)(M[mn]Sf'*'Gm””VM(uv)st)"'RkZmnM (mn)st (104)
‘ f
oSu = Y. {GUER, - UER)DIE! - O 1ED (105)
sS=m
WSu = W (e m-ofm) (106)

and W), Ufm) and U, are defined in (217), (212) and (213), respectively. It

remains to eliminate ™ from (103), by utilizing the linearized form of the consistency
condition (81) and equation (87) which gives

. . 4BR{Y (m}23 (™)
(m)(G{m) _ g lm)y - =
RS - af™) 9~ 6phRAN 0 107)
Substituting (103) into (107) results in
A = TS v? 5+ 6Sud) (108)
where
9~ 6BRANM) R IM(1 .y + ANmMW (m))-1
ABR{Y(M}2 _ (9 - 6BRAAIM) X (m>(1mns, + Ax(m)wm),) LS,
and thus (103) can be simplified as
S - & = SR . + eS80 (110)
where
v'Sijkl = (Iijmn + AA‘(m)Wijmn)_l(vSmnkl + xSmn pq vSqul) (11D
O‘Sij = (Iijmn + Ax(m)Wijmn)_l(OSmn + xSmnF% GSpq) (112) -

Finally, by substituting (108), (110), (212) and (228) into (100), we get a closed form
expression relating the phase Cauchy stress rate c'f,(j’ ) with the macroscopic velocity gra-

dient v . and the temperature rate 0
s

( ) = D(f P d(f)a (113)

where
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DIy = RIY M uyia+ oU 5 (M, 10+ G dmnM (i)

+ (U gD pgmn - QUEN(R DTN S, g+ ANP, 0 ¥ pgkt) (114)

and

f
4P = X IR~ OIE

+( Ulququmn QLrmy(X (m)r‘(m)es +AADP, 63 pq) (115)

The overall consistent instantaneous stiffness D, is obtained from the rate form of (61)
and Assumption A5:

Gij = Dyl + ;0 (116)

where
Dyy = ¢™D@) +cODW),  dy; = cMaim + cNaff) (117)
The overall consistent tangent operator is derived from the consistent linearization of the

weak form of the macroscopic equilibrium equation (57). Consider the internal force vec-
tor expressed in terms of the quantities defined in the deformed configuration

f,l‘;m = ngiA’ xjc—)_ij dQ (118)
where N, is a set of shape functions in the macroscale.

Prior to linearization, the internal force vector is defined in the reference configuration 'Q
as

A= [ Ny Fi A5, d'Q (19)

where J, is the jacobian between the macro-configurations at times 7 and ¢ + A¢; F jm 18

the macroscopic deformation gradient defined as

Ar
F.=x_, = X, and F-l="x =X (120)

jm 7 %, j, X, mj n, xj

Linearization of (119) yields
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J 1d'Q (121)

z;x

f”” —J Noyn {ijoUJx+F i+ Fk

Substituting (116) into (121) and exploiting the kinematical relations J < =J xvg oy
3 Ak

F m} = -F-lv) Lx, and the finite element discretization V?C’ x, = Nip xdp yields:

Dyjr; = Dyjpy+ 040, - 840y (123)

where Dijkl and dij are defined in (117); gz denotes the velocity degrees-of-freedom

associated with the finite element mesh. The first integral in (122) represents the consistent
tangent stiffness matrix for the macro-problem.

/

Remark 4: For the purpose of linearization it is convenient to approximate phase rotations

within a unit cell by a constant field such that co(r ) = w; ;. The resulting rotated stress and
back stress rates are given as

8;5’” = Acf)ikcg) - Gl(,’c')A(;ij, &z(jm) = A®jy0 ;”) - (xl(,’("?Akaj (124)

Consequently, (104)-(106) can be simplified as

Skt = RijmnM gy~ {0ia(0 5P = ) + 8, (0 i) — ol I M 0 (125)
= Z QIENEL, 3Si = ~ @ yulofP - afm) (126)

and W) = 5 in (103), (109), (111) and (112). D), and d{p in (114) and (115)

reduce to

D(rl = Rt(]n)mM(mn)kl (6m mj ]n zm )M[mn]kl
~QUN R GDOTIDS s + AN o S i)

iyymn

(127)

and

dz(f) Q(fm)(N(m)F(m)BS + AK(’”)Pmnpq e'qu Z Qz;kl)&f’s) (128)




4.0 n-Point Scheme for Finite Deformation Plasticity

In this section we consider a unit cell model discretized with 7 elements. The n-point
scheme model assumes that eigenstrains are piecewise constant, i.e., they are constant
within each element, but may vary from element to element. Our starting point (Section
4.1) is arate form of the governing equations representing the finite deformation plasticity
of periodic heterogeneous media. Implicit integration of constitutive equations followed
by consistent linearization are given in Sections 4.2 and 4.3.

4.1 Governing Equations

The governing equations consist of: equilibrium (4), kinematics in the rate form (63),
boundary conditions (8), (9), and the constitutive equation in the rate form

6§ = Gf + Afof - ORAY; (129)

where

o . N

OF = Ly - Eyd) (130)
Ly, denotes the instantaneous stiffness properties. In the following, we adopt Jaumann

rate, i.e., A,Ej = (x);gg

Double scale asymptotic expansion of the velocity field (64) provides the starting point for
the asymptotic analysis. Substituting the asymptotic expansions (20), (64) into constitutive
equation (130) based on the Jaumann rate yields:

s
65 =5i+5 Z (0718 ji+ 0310k~ Ofid = B I, s =-10,... 13D

r=-1

where [f; is the velocity gradient given as
it =@, and Wy=vitt+vi,, s=01,.. (132)

Further assuming that O(c™!) Cauchy stress vanishes, 67t = Lygvd,, = 0, yields
>

v0 = v9(x) provided that Ljj is not singular. We proceed to the O(¢™!) equilibrium
equation (22):

o) 5, (%, ¥) =0 (133)
To solve for (133) up to a constant we introduce the following separation of variables:

vix, 3) = Hyg(DV . (%) +dR(x)} (134)
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Note that plastic effects are now hidden in the Y-periodic function #,;,(y), whereas d %

accounts for temperature effects only.

Premultiplying (133) by the Y-periodic function #,;(y), integrating over the deformed

unit cell domain @ and then carrying out integration by parts yields

o(x, y)= J'@?[ikl’yj G?j d® =0 (135)

Linearization of (135) is carried out by taking the material time derivative, ¢ = 0. For
this purpose we express the integrand of (135) in the reference configuration, say at time

9 = L0y .= i
t, Hyy »O1 d® = H kL, F j Oijd y @ © where Yin, denotes the deformation

m

gradient in the unit cell and J y is the corresponding jacobian. By utilizing equations (2)

and (3) it can be shown that yj., =X,

m Js X,

Consequently, linearization of (135) yields:

C . : t
[ M, 7 mOM, + F ksl + F o0l yd'e = 0 (136)

Substituting (130), (131), (132) and (134) into (136) and exploiting kinematical relations
Jy = J 0 and Fpb = -F 410 gives:

J® g{ikl, yj{(Lijmn + Tijmn)lr?rm - ‘L’ijmn&rmfze}d(9 =0 (137)
where
B = psdp+ Hpsy, DIV (X) + 5,y (9)d5i(x) (138)
1
Tijmn = 6mn0?j + 5(65‘#;0,?72_6jmcgz"6iﬁ09m_6jncgn) (139)

Since (137) is satisfied for arbitrary macro-fields vg xt(x) and d Set(x) we can obtain two

integral equations in © :

J@ Hin % (Lijmn+ T ijmn) Ous®py + Hopst y)d® =0 (140)

.9 .
I@) %ikl, yj{(Lijmn + Tijmn) g{mst, y"dSt - Jf’ijmngmne}d()D =0 (141)
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Equation (140) is solved using the finite element method for # ;. Note that equation

(140) is solved for nine right hand side vectors corresponding to nine uniform velocity
gradient fields as opposed to six constant strain modes in the case of small deformations.

After solving (140) for # ;;, df} can be obtained from (141) as

-6 1 ~ — - -
dij = @(Liﬂd - Liji1) 1f® H kg, y LrsunGu,0dO (142)
where
~ 1
Lijir = @I®(Lijkl + T ijr,)dO (143)
- 1
Liju = @Je(Lijmn + T jimn) H o, 5,40 (144)
Once # ;,; and df} are computed, the O(c0) approximation of £5 and &S, denoted as &,
ikl ] ij 7 ij
and o;;, are given as
by = Ay v, + 2,0 (146)
where
1
Aija (¥) = 5(61'156 % 05dip) + H iy 5i(Y) (147)
A 1
Aijr (y) = §(6ik6jl_6jk6il) + 5{[,', yj];d(.V) (148)
- g s - “lre P a PN o P
a; = H; yj)kl\Lkqu = Liipg) 'J@J{prs’ yqﬁrwvéuvﬁao (149)
&if = }[[i, }’j]kl(Lkqu - Zklpq)-lj(a }[prs, qursuv‘;:uved@) (150)

4.2 Implicit Integration of Constitutive Equations

We start from the constitutive relation for a typical element p in @:

o Lz(ﬁc)l(gf'?) - ‘Sﬁ)e) if pe @)
&P = { (151)

LIRIER - &0 - &fp) i pe O




For elements in the matrix phase (151) can be written as
S = L A0, v8 . +(aff) - EP)0 - X (PP} (152)

mn Ym, x,

Applying the backward Euler integration scheme to (152) gives
[N - _
olP) = 6P+ LI AR, (AZ,, +AB,,) + (aff) - EPHAB - RPARP} (153

and exploiting the equation for the back stress in element p (88) yields

Gl(jP)-ocl(jP) = (Iijmn*'m‘(p)@i(ﬁgn)“lg‘,(npn) (154)
and
P =1LPp 2 1 hP 155
8?ijmn = HMguv uvmn+§( -B) ijmn (155)
[N ta - —
S) = 60 - 6lpd - L), (AP (AR, + AT,) + (alf) - ER)AB} (156)

in which '6(P) and '6(p) are the rotated stress and back stress defined in (75) and (76) and

Awfp) is given as

AolP) = ARNAE, +AGy,) + aPAS (57)

Note that the instantaneous concentration factors ()}, AR}, aff) and a{P) computed
from (147) to (150) depend on the instantaneous material properties, which in turn depend
on vector of plastic parameters A}, in @0 | A} =[AAD, AAD), ..., ALWT | Substitut-

ing (154) and (87) into the yield function (81) for each element in @™ yields a set of n y

nonlinear equations @ =[PW), D), ., ™7 with n, unknown plastic parameters.

The system of nonlinear equations is solved by the Newton method:

-1
)
ANR) | = AALP) - { ;3 (n)} oM (158)
AP
A typical term in the Jacobian matrix is given as
(P12

9P ®) = P + A?»(P)go (p) }—1X(pn) - 469“6h{y } (159)
JAAM iy tymn ~gmn s A g 6BRAAP)

where




23 (p)

~mn
i = AN ™ Opn §2 mnpq("é%) - O‘;()%)) (160)

A (9N
93550 = (65 - “'(”P)) (p) (aﬂg’q“ (AE,, +AB,,) + dagf) Ae) (161)
JAAM) JALM P\ 9 AR 7 AN

In (161) a(’é,ggg a(P))/ JdAA™M) depends on the derivatives of 4(P) (@), and afp) with

respect to AL, Evaluation of these derivatives is not trivial and hence the following
approximation is employed:

15
A=A ey a6

resulting in the block diagonal approximation of the jacobian matrix

odP) ABR{Y(P)}2
e (P)p(p) 4 2L T
aA}\,(n) 6pn(x Yy XZJ 9. 66}1Ak(p)) (163)
where
U = U+ 810 9" 05 (o8] - ) o9

At each modified Newton iteration step the residual vector @ is evaluated and the instan-
taneous concentration factors are recomputed from (140). The iterative process proceeds
until the residual norm [|®]|, vanishes up to a certain tolerance. The updated stress, yield

stress and back stress for elements in ®) are calculated from (153), (87) and (88),

respectively. For elements in ®(F), stresses can be obtained using (153) with AA(P) =0.
Finally, the macroscopic stress follows from (56).

4.3 Consistent Linearization

The instantaneous consistent stiffness properties are derived from consistent linearization
of incremental equations. For elements in ®("), taking the material time derivative of
(153) and (88), and making use of (228) yields:

. ~(p) $
sip) = P4 Ll(‘i,%n{ﬂzéfz’zl (A& + ABy) + ’qmnz))q MpgiaVe,

+ L) {aP)A8 + (aff) - EPNO - RPAP-P, . (5P) - aP)ALP)}

(165)

and

i
afp = &l + 2(1 - W{mpwu Py (6) - 3E)ANP)} (166)




Substituting (228) into (165), then subtracting (166) from the resulting equation yields

. . tx(p) tA(p) :
o -afP) = 6if - i +LE), (A0 M pav s, + (@) - RO}

gmn L "mnpg

(P L (¢ :
-, 10%) - aEDAP + (6) - P AAE)} .

where in analogy to (162), we approximate 4,5p}; = 0 and a{p) = 0.

From equations (212), (213), (228) it follows that

X (p)

oy = JUB) (A MR +af)o) (168)
[ (p) (D)
aij | = aUl(JF}g (4,58, Mstklv,gxi+a,(npﬂ)6) (169)

Substituting (168) and (169) into (167) and collecting terms of 65]9) - aff) gives

&P~ afP) = (I + M‘(p)@(p)) MoBrsevd x, + 680+ ™) (170)
where
vBrise = LGUB =~ UMD 2By + LB A0), YM (171
o2 = (UM — U AR a0) + L{8), (aff) - EED) (172)
3 = —pP) (olm - alm) (173)

The value A(") can be computed from the linearization of consistency conditions (see also
Section 3.2) which yields

X(p) = Yw)(vaklstvg X + (-)Ekle) 174)
where

(9 - 6BRALP) R PX(1 5 + AP o (B))~1
4BR{Y®}2 - (9 - 6BRANP) R BX(1 . + AAP) @) )1 &

Tfp =

(175)

and then substituting (174) into (170) yields

: 3 = = 0 5 £
SfP) = &fP) = By 1+ 6Zi0 (176)
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where v‘E‘ijkl and egij have identical structure to 3 ikl and g8 ij in (111) and (112) except

that the symbols S are replaced by Z, and I'™) by Y(P) .

Substituting (174), (176) into (165) yields

S{p) = DEv)  + 4 [P0 for p e O 177
where
DIR) = UL ARL M o + L) ALY M 1
L P R Z g+ NP Prg ) -
and

L{l(]p) = cUz(Jg?zn&r(npn) + Lz(j%n{(ar(npn) - ér(npn)) - Nr(npl)Yé%)ngq - AK(p)Pm”Pq G‘E’pq} (179)

Similarly, the stress rate for elements in @) is given by

GV = Dyl o+l ,(Jmé) for ne e (180)
where

Q)z(;}(} = cUz(j]}rgn ﬁ!lglnﬂ)Ssttkl + Lt(}}rgn ﬂr();r}gququl (181)

£ = UGRASH + LD (S - E6) 1)

The overall instantaneous stiffness D; ikl is obtained from the rate form of (61), equations

(178), (179), (181) and (182): '
where
n n
Q)ijkl = Z c('fl)g)g}(;, ‘{ij = Z C(n)a,rl(]n) (184)
n=1 n=1

¢M denotes the ratio between the volume of element 1} and the volume of the unit cell at
time  + Ar.

Finally, linearization of internal force vector yields:
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Dijrr = Dijrg+ Oi0 5= 840 (186)

where the first integral in (185) represents the consistent macroscopic tangent stiffness
matrix for the n-point scheme model.

Remark 5: Approximating the piecewise constant phase rotations by a constant function in
the entire unit cell such that c’ol(j’ ) = B, yields a simplified form of (171) and (172):

vSklst = Ll('?) A, Muvst - {6kn(01(npl) - oLr(npl)) + 6In(cg)n) - O(}((gz))}M[mn]st (187)

mntmnuy
0Bk = LR (al) - €5 (188)
For elements in ®™) (178) and (179) reduce to:
DR = LI, AL M poii=10p(T ) = ) + 8, (5 f0) - oD I M 110

“Lz(]%( X ;(npn)T;()%)vqukl + AK(p)Pmﬂpq V‘E’qu!)

(189)
and
4P = L (R -ED) - ST~ M OPy Zp) 0
whereas for elements in (/) (181) and (182) are given by
@z(;}% = Lz(jjrlign’qr(nm)ququl - (6in6r(rzT]l) + 6jncz%))‘}W[rrzrt:[lfcl (191
and
£ = L af - ED) a9

5.0 Adaptive Model Construction

In Sections 3 and 4 we presented two schemes for modeling inelastic behavior of compos-
ite structures: the 2-point scheme and the n-point scheme. In the n-point scheme we
employed a piecewise constant approximation of the eigenstrain field, whereas in the 2-
point scheme the eigenstrain field and the elastic concentration factors in each phase are
approximated by a constant. For the Nozzle Flap problem considered in [8] (see also Fig-
ure 1) the 2-point scheme is over three orders of magnitude faster than the n-point scheme.
For linear problems the 2-point scheme with post-processing [5][8][9][13] is identical to
the n-point scheme, whereas for nonlinear problems there is no such guarantee.
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If we assume that the n-point and the 2-point schemes are optimal in terms of accuracy
and speed, respectively, then it is natural to attempt to merge the two in a single model. In
such a hybrid model, the 2-point scheme should be only used in regions where the model-
ing errors are small, whereas elsewhere the n-point scheme should be employed. We will
refer to such a hybrid modeling strategy as the adaptive 2/n-point scheme.

The modeling error 2! associated with the 2-point scheme can be defined as follows
AN i (193)
where [0 = QX O and
2 1 2
Il =5 @[ :[f d0dQ (194)

v is an appropriate solution measure; the superscript ex refers to the exact solution within
the framework of the mathematical homogenization theory, i.e., assuming solution period-
icity. For estimation of errors resulting due to lack of periodicity we refer to [9][28].

The key questions are: (i) how to estimate v*", (ii) what is a suitable measure for v, (iii)
how to make the process of error estimation efficient, and (iv) how to utilize the model
error estimation for adaptive construction of the 2/n-point model.

It is appropriate to recall that as the number elements in the unit cell is increased the solu-

p

tion obtained from the n-point scheme, denoted as v t, approaches the exact solution,

ie, lim v"? = v Bven though the rate of convergence may not be monotonic, it is
n—»>0

reasonable to assume that for sufficiently large n the modeling error associated with the 2-

point scheme can be approximated as

eZ-pt ~ E2-pt - "Vn-pt B V2—pt"D (195)

We now turn to the second issue: the choice of v. In this context it is essential to interpret
the 2-point scheme approach as consisting of two steps: analysis on the macroscale and
post-processing on the microscale. In the first step, a nonlinear macro-analysis is carried
out using the finite element method which utilizes the 2-point scheme. Consequently, the
macroscopic deformation history is stored in a database at macro-Gauss points. In the
post-processing step, the deformation field in a unit cell corresponding to critical macro-
points is extracted from the database, and then subjected onto the unit cell as an external
loading. Finally, the n-point scheme is employed to solve for selected unit cell problems.

Based on the above interpretation of the 2-point scheme, it follows that if the macroscopic
deformation field obtained with the 2-point scheme is identical to one obtained with the n-

. . 2- ..
point scheme, then the model error estimator, F Pt , should indicate zero error. In other
words, v should be a measure of the macroscopic deformation field, whereas [1 = Q.
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Possible deformation measures are: the macroscopic deformation gradient tensor, F (the
component form is defined in (120)), and/or incremental deformation measures repre-
sented by a pair Ag, A®. The former accounts for accumulation of errors

EXP = |- Fg (196)

whereas the latter controls the incremental errors

B2 = s - a2 a4 s - a5 197)

In Section 6 we will show that in a confined deformation pattern, where small plastic

zones are encompassed by elastically deforming solid, the modeling errors, E*P t, are
very small, whereas in large plastic zones dominated by matrix deformation, the modeling

€ITors, foagd t, might be significant. For simplicity, we adopt the incremental estimator
(197).

We now turn to the computational efficiency issue. Estimation of modeling error based on
equations (196) and (197) necessitates solution of the n-point scheme model. As indicated
earlier the computational cost of the n-point scheme model is enormous, and hence, only

an estimate of EZ 7" , denoted £ >pt , will be evaluated. The philosophy behind our model-
ing error estimator is somewhat similar to that employed for estimation of discretization
errors, namely, if the mathematical model (or discretization) is locally altered, then in
absence of the pollution errors the solution outside the local region is not significantly
affected, and thus the bulk of the error can be computed on the local level. This process
avoids the need for solving an auxiliary global problem and replaces it by solving a
sequence of problems on small local domains.

When the aforementioned procedure is applied for estimation of discretization errors, the
computational cost of solving the local problem is relatively low, reducing the cost of dis-
cretization error estimation to one of a manageable size. Unfortunately, this is not the case

for estimation of modeling error Ez'p ! Even though the aforementioned process involves
multiple solutions of small local problems (for example, on the macro-element domains),
the cost of applying the n-point scheme on each macro-element is formidable in a large
scale computational environment. Therefore, the costly n-point scheme should be utilized
-only for those macro-elements which have been identified as “having potential to be criti-
cal” by some simple cost-effective engineering-based criteria. One possible engineering
criterion is the magnitude of the deformation, measured by a norm of one of the macro-
scopic strain measures. When the incremental deformation norm in a macro-element

domain exceeds a fraction { of the average deformation among the N macro-elements,

ie.,

N R T Nl VN (198)
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then the corresponding macro element is tagged for a-posteriori model error estimation.

We now focus on the adaptive 2/n-point model construction. Consider the 2/n-point model
at time f, consisting of the 2-point scheme model in the portion of the macro-domain

0P clo and the n-point scheme model in the remainder '‘Q"P" such that

QPP UIQ"P = 'Q . The goal is to adaptively construct the 2/n-point model at time

. . . t+ A, 2-pt t+ At n-pt 2 t oV 2 t
! + Az, consisting of subdomains Q""" and Q"? .Let K U oy

. . tS2-pt . . .
a subdomain in ‘Q“? consisting of . N macro-element subdomains ch ) P! which have

been tagged as critical by the aforementioned engineering criterion, as shown in Figure 5.

1Q2~pt

cr-e at

_2-pt —2-pt . ..
Let rA P" and CrA "P* be the macro- strain and rotation increments on
Tt <. The first step in the adaptive process is to post-process the unit cell solution at time

2- cre . . . .
¢t for all macro-elements on C:Q . pr by utilizing the n-point scheme model outlined in

Section 4.

2- . 2-
Let 7.7  be the residual for all the elements on C;Qe P! defined as

2-pt _ t+Ar 2-pt  t 2-pt
cr'e T erde T erde

(199

where ; fi P is the corresponding internal force vector. In the second step, for all ele-

. t~2-pt . .
ments in Q) P* the incremental nonlinear problem defined as

2P (200)

cr e

is solved twice: first, by using the 2-point scheme model, and second, by utilizing the n-
point scheme model with initial conditions obtained via post-processing. The estimated

error on c;ﬁlg'p " is computed by utilizing equation (197)

E2pt —

,A—n pt rA_Z pt" QZ » 200)

P

cr=%e

=n-pt _2-pt]
AT - A

where the strain and rotation increments are evaluated by solving equation (200).

The total modeling error is then estimated as

(-'VN
EXri= | Y (ELF ) 202)

e€ Q¥ 7

crore
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To steer the process of adaptivity we define the modeling error indicator 1),, on C;Q . Pt

as
; o
= 203
nA Apav ( )
where
|A&2-2t + A2 P2 - pi + (EXPY)?
pg = rN 204)
5

p%’ represents the average incremental deformation in a single element located in

t
cr

2-pt

Q . We replace the 2-point scheme model by the n-point scheme model for all the

elements on C;Qi'p ! for which 1. 2 tol. A typical value for 7ol is between 1% to 10%
depends on the accuracy requirement.

6.0 Numerical Experiments and Discussion

Our numerical experimentation agenda consists of three examples. The first is used to val-
idate our finite deformation plasticity formulation. The second and the third examples test
the proposed adaptive 2 /#-point scheme in a deformation pattern with large plastic zones
dominated by matrix deformation as well as in a typical confined deformation pattern,
where a small plastic zone is encompassed by an elastically deforming solid.

6.1 Uniform Macro-Strain Loading

The objective of the first example is to carry out a qualitative assessment of the large
deformation formulation. The primary “suspect” is equation (71) which decomposes dis-
placement field in the microstructure into two parts: the macroscopic part which comes
from the integration of the nonperiodic macroscopic strain and rotation increments (the
first term in (71)) and the periodic microscopic part (the second term in (71)). Note that
solution update in the unit cell domain directly from the asymptotic expansion of the dis-

placement field (11) is not feasible, because in the limit as ¢ — 0, only the macroscopic

part has contribution. On the other hand, if u! is considered only, then the nonperiodic
finite deformation patterns are not accounted for.

As a test problem we select a macro problem subjected to the state of uniform strain field
(or linear displacement field). A unit cell consists of a stiff elastic cylindrical fiber embed-
ded in a compliant plastically deforming matrix. The phase properties are given below:

Fiber: Young’s modulus = 68.9 GPa, Poisson’s ratio = 0.21
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Matrix: Young’s modulus = 6.89 GPa, Poisson’s ratio‘= 0.33, yield stress = 24 MPa,
isotropic hardening modulus =0.689 GPa, = 1.

We consider a uniform transverse tension, transverse shear and longitudinal shear loading
conditions. The overall principal Green strain does not exceed 25% in all three cases. Fig-
ures 6 to 8 show the contribution of macroscopic and microscopic fields to the total defor-
mation field in the unit cell. It can be seen that each of the two contributing parts alone
significantly distort the circular fiber cross section, but their sum recovers the original fiber
shape, as expected in a matrix dominated loading condition.

6.2 The 3D Beam Problem

To validate the computational models and adaptive strategies proposed we comprise a test
case, where a significant portion of the structure is subjected to the matrix dominated
deformation in a load or stress control mode (as opposed to displacement control). This is
a worse possible scenario in terms of accuracy for the 2-point scheme. The problem con-
figuration is shown in Figure 9. The macro problem is discretized with 5635 tetrahedral
finite elements. The geometry and the mesh for the microstructure are the same as in the
previous example. The fiber direction coincides with the beam’s longitudinal direction. In

the region of length /; from the fixed end the beam is subjected to the shear deformation

(which is the matrix dominated mode) whereas in the remainder of the problem domain,
l5 length, the beam is in pure bending, which is a fiber dominated mode of loading. The

phase properties are summarized below:

Fiber:  Young’s modulus = 37.92 GPa, Poisson’s ratio = 0.21
Matrix:  Young’s modulus = 6.89 GPa, Poisson’s ratio = 0.33, yield stress = 24 MPa,
isotropic hardening modulus =0.689 GPa, = 1.

The loading is applied in 15 load steps. The maximal vertical displacement at the free end
is over one third of the length of the beam and the stresses exceed the elastic limit in all
macro-elements.

The problem is solved using the 2-point scheme with micro-history recovery, the adaptive
2/n-point scheme, and the n-point scheme for a comparison purpose. Figure 10 shows the
evolution of the normalized estimated local error in the vicinity of the fixed end as
obtained with the 2-point scheme (equation (203)). It can be seen that the maximal nor-
malized local error in the region dominated by matrix deformation is 40%. In a region
dominated by the fiber deformation the error does not exceed 3%. The distribution of the
local principal stress error in the critical unit cell (denoted by point A in Figure 10) as
obtained with the 2-point scheme and micro-history postprocessing is shown in Figure 11.
It can be seen that the normalized error in the unit cell is of the same magnitude as the nor-
malized local error in the macrostructure. Figure 12 illustrates the evolution of the normal-
ized local error in the macrostructure obtained using the adaptive 2/n-point scheme model.
The maximal normalized local error is less than 1% and the normalized etror in the unit
cell follows the same trend as shown in Figure 13.
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We conclude that the adaptive 2/n-point scheme model outperforms the 2-point scheme
model in terms of accuracy (0.8% maximal error as compared to 40%), and the n-point
scheme model in terms of CPU time as it is 14 times faster than the n-point scheme.

6.3 The Nozzle Flap Problem

For the final numerical example, we consider a typical aerospace component where only a
small region experiences inelastic deformation. The finite element mesh describing the
macrostructure of the Nozzle Flap is shown in Figure 1. We consider two types of micro-
structures: (i) the fibrous unit cell (as in the previous example) and the plain weave fabric
microstructure shown in Figure 14. The fibrous unit cell contains 98 elements in the fiber
domain and 253 elements in the matrix domain. The fiber volume fraction is 0.27. The
plain weave microstructure has 370 elements in the fiber bundle and 1196 in the matrix
domain. The bundle volume fraction is 0.25. The phase properties are:

Fiber, fiber bundle: Young’s modulus = 379.2 GPa, Poisson’s ratio = 0.21
Matrix: Young’s modulus = 68.9 GPa, Poisson’s ratio = 0.33,
yield stress = 24 MPa, isotropic hardening = 14 GPa, 8 = 1.

The Nozzle Flap is subjected to an aerodynamic force (simulated by a uniform pressure)
on the back of the flap. We assume that the pin-eyes are rigid and a rotation is not allowed
so that all the degrees of freedom on the pin-eye surfaces are fixed. The loading takes the
solution well into the inelastic region in the vicinity of the pins: 15% of elements experi-
ence inelastic deformation in the case of fibrous microstructure, and 29% in the case of
plain weave.

The problem is analyzed using the adaptive 2/n-point scheme model. Figure 15 shows that
the 2-point scheme model yields the maximum normalized local error in the macrostruc-
ture below 1% (for the plain weave microstructure). Hence, if the tolerance for switching
from the 2-point scheme to the n-point scheme is higher than 1%, adaptive strategy selects
the 2-point scheme model in the entire macro problem domain. The normalized local error
in the unit cell located at Point C of Figure 15 is 2.5% for fibrous microstructure and 6.5%
for the plain weave, as shown in Figures 16 and 17.

For the problem with the fibrous unit cell, the CPU time on a SPARC 10/51 is 30 seconds
for the macroscopic analysis and 120 seconds for postprocessing a single point. For the
plain weave microstructure, the macroscopic analysis consumes 30 seconds, whereas post-
processing takes 510 seconds per point. On the other hand, the n-point scheme consumes 7
hours of CPU time for fibrous composite and over 55 hours of CPU time for plain weave.
Memory requirement ratios are approximately 1:250 for the fibrous unit cell and 1:1200
for the plain weave in favor of the 2/n-point scheme (or 2-point scheme).

Acknowledgment

The authors gratefully acknowledge the support for this work by Air Force Office of Sci-
entific Research under grant F49620-97-1-0090 and ARPA/ONR under grant N0O0014-92-
J-1779.

34




References

1 J. Aboudi, “A Continuum Theory for Fiber-Reinforced Elastic- Viscoplastic Compos-
ites,” International Journal of Engineering Science, 20, 1982.

2 M. L. Accorsi and S. Nemat-Nasser, “Bounds on the Overall Elastic and Instanta-
neous Elastoplastic Moduli of Periodic Composites,” Mechanics of Materials, 5, 1986.

3 A Benssousan, J. L. Lions and G. Papanicoulau, Asymptotic Analysis for Periodic
Structure, North-Holland, 1978.

4 N.S. Bakhvalov and G. P. Panasenko, Homogenisation: Averaging Processes in Peri-
odic Media, Kluwer Academic Publishers, 1989.

5 G.J. Dvorak, “Transformation Field Analysis of Inelastic Composite Materials,” Pro-
ceedings Royal Society of London, A437, 1992.

6 N.Faresand G.T. Dvorak, “Large Elastic-Plastic Deformations of Fibrous Metal
Matrix Composites,” Journal of the Mechanics and Physics of Solids, 39, 1991.

7 J.Fish, P. Nayak and M. H. Holmes, “Microscale Reduction Error Indicators and Esti-
mators for a Periodic Heterogeneous Medium,” Computational Mechanics, 14, 1994. '

8 J.Fish, K. Shek, M. Pandheeradi and M. S. Shephard, “Computational Plasticity for
Composite Structures Based on Mathematical Homogenization: Theory and Practice,”
Computer Methods in Applied Mechanics and Engineering, accepted for publication.

9 J.Fish and A. Wagiman, “Multiscale Finite Element Method for Locally Nonperiodic
Heterogeneous Medium,” Computational Mechanics, 12, 1993.

10 S. Ghosh and S. Moorthy, “Elastic-Plastic Analysis of Arbitrary Heterogeneous Mate-
rials with the Voronoi Cell Finite Element Method,” Computer Methods in Applied
Mechanics and Engineering, 121, 1995,

11 M. Gosz, B. Moran and J. D. Achenbach, “Matrix Cracking in Transversely Loaded
Fiber Composites with Compliant Interphases,” AMD-Vol. 150/AD-Vol. 32, Damage
Mechanics in Composites, ASME, 1992.

12 J. M. Guedes, Nonlinear Computational Models for Composite Materials Using
Homogenization, PhD thesis, University of Michigan, 1990.

13 J. M. Guedes and N. Kikuchi, “Preprocessing and Postprocessing for Materials Based
on the Homogenization Method with Adaptive Finite Element Methods,” Computer
Methods in Applied Mechanics and Engineering, 83, 1990.

14 J. O. Hallquist, NIKE2D: An Implicit, Finite Deformation, Finite Element Code for
Analyzing the Static and Dynamic Response of Two Dimensional Solids, University of
California, Lawrence Livermore National Laboratory, Report UCID-19156, 1979.

15 R. Hill, “A Self Consistent Mechanics of Composite Materials,” Journal of the
Mechanics and Physics of Solids, 13, 1965.

16 T.J.R. Hughes, “Numerical Implementation of Constitutive Models: Rate-Indepen-




17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

dent Deviatoric Plasticity,” in S. Nemat-Nasser, R. J. Asaro and G. A. Hegemier, edi-
tors, Theoretical Foundation for Large Scale Computations for Nonlinear Material
Behavior, Martinus Nijhoff Publishers, 1983.

T. J. R. Hughes and J. Winget, “Finite Rotation Effects in Numerical Integration of
Rate Constitutive Equations Arising in Large Deformation Analysis,” International
Journal of Numerical Methods in Engineering, 15, 1980.

S. Jansson, “Homogenized Nonlinear Constitutive Properties and Local Stress Con-
centrations for Composites with Periodic Internal Structure,” International Journal of
Solids and Structures, 29, 1992.

A. L. Kalamkarov, Composite and Reinforced Elements of Construction, John Wiley
and Sons, 1992.

E. H. Lee, R. L. Mallett and T. B. Wertheimer, “Stress Analysis for Kinematic Hard-
ening in Finite Deformation Plasticity,” Journal of Applied Mechanics, 105, 1983.

F Lene and D. Leguillon, “Homogenized Constitutive Law for a Partially Cohesive
Composite Material,” International Journal of Solids and Structures, 18, 1982.

F Lene, “Damage Constitutive Relations for Composite Materials,” Engineering
Fracture Mechanics, 25, 1986.

V. M. Levin, “Thermal Expansion Coefficients of Heterogeneous Materials,” Mekhan
ika Tverdogo Tela, 2, 1967.

C.J. Lissenden and C. T. Herakovich, “Numerical Modeling of Damage Development
and Viscoplasticity in Metal Matrix Composites,” Computer Methods in Applied
Mechanics and Engineering, 126, 1995.

T. Mori and K. Tanaka, “Average Stress in Matrix and Average Elastic Energy of
Materials with Misfitting Inclusions,” Acta Metallurgica, 21, 1973.

H. Moulinec and P. Suquet, “A Fast Numerical Method for Computing the Linear and
Nonlinear Properties of Composites,” C. R. Acad. Sc. Paris I1, 318, 1994.

S. Nemat-Nasser, “On Finite Plastic Flow of Crystalline and Geomaterials,” Journal
of Applied Mechanics, 105, 1983.

J. T. Oden and T. I. Zohdi, Analysis and Adaptive Modeling of Highly Heterogeneous
Elastic Structures, TICAM Report 56, University of Texas at Austin, 1996.

P. Ponte Castaneda, “New Variational Principles in Plasticity and Their Applications
to Composite Materials,” Journal of the Mechanics and Physics of Solids, 40, 1992.

E. Sanchez-Palencia and A. Zaoui, Homogenization ‘T echniques for Composite Media,
Springer-Verlag, 1987.

J. C. Simo and R. L. Taylor, “Consistent Tangent Operators for Rate-Independent
Elastoplasticity,” Computer Methods in Applied Mechanics and Engineering, 48,
1985.

36



32 P.M. Suquet, Plasticite et Homogeneisation, These de Doctorat d” Etat, Universite
Pierre et Marie Curie, Paris 6, 1982.

33 P. M. Suquet, “Elements of Homogenization for Inelastic Solid Mechanics,” in E.
Sanchez-Palencia and A. Zaoui, editors, Homogenization Techniques for Composite
Media, Springer-Verlag, 1987.

34 J.L. Teply and G. J. Dvorak, “Bounds on Overall Instantaneous Properties of Elastic-
Plastic Composites,” Journal of the Mechanics and Physics of Solids, 36, 1988.

35 J.R. Willis, “On Methods for Bounding the Overall Properties of Nonlinear Compos-
ites,” Journal of the Mechanics and Physics of Solids, 39, 1991.

36 H. Zielger, “A Modification of Prager’s Hardening Rule,” Quarterly of Applied Math-
ematics, 17, 1959.

37 T.1 Zohdi, J. T. Oden and G. J. Rodin, Hierarchical Modeling of Heterogeneous Bod-
ies, TICAM Report 21, University of Texas at Austin, 1996.

7.0 Appendixes

A.0 Derivation of d(ofm - a{m)/dAL™ in (96)
Consider equation (93):
‘.
Gz(}") ~afm = (I ijkl+Ax(m)goijkl)_l(trgl(f?n) - &) (205)

Taking the derivative of (205) with respect to AAU™) yields:

d _
Sanm O~ o) = Uy + AL )t
0 ‘.
(- Ouimnlo) -l + =L ofp - s
(206)
where the last term can be written as
s fa ‘. fa fa

(oM - afm) _O(SP-afmy  a(EI-afm) dAwlm o

QAN - DAL - dAw(m AL

and
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50 () 3
i = [+ 30 )
T r r
aAcopq aAcopq aAa)pq
IR
t mn
= (6ms6nk9{;(lr) + 6mt6nl<ﬁ§]r¢)) G§;) A
pq

(208)
The rotation R{) of phase r is defined in (77) as
1 -1
R =3, + (Bm, - iAm,(,;,)) Ao (209)
The derivative of R () is calculated using the chain rule:
IR _ IRG) dAol) 010
OAAM  JAw() JAALM
in which
R )
Yol (28, - Aoy (B, + RYD) (11)
pq ‘

Consequently, equation (208) can be expressed as

at(%,((f) t t
U, = Al BuR ofd +8,RP aiN(23,, - Amgp))‘l(%n +R7) @12
pq

Similarly, we have

at&ﬁn) t t
I, = A (BRI “am) +3, R (m a§,’§>)(26mp - Aofm) (D, + R{M)
e (213)
Taking derivative of (89) with respect to AL yields:
dAwim 0
Al = DYP (o) - af) + MW I (o - o)) 14
m

Substituting equations (212), (213) and (214) into (207), and then inserting the result into
(206), gives

d
JAAL™)

(of) - afm) = Cl(ofp - ofp) 1)

where
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zﬂc) (Iz;mn + A}\'(m)wz(j’gl)n)_lwr(nr?i)kl 216)

Wikt = 9 maa = GUSA = U SIDSEP pqus @17

mnkl o~ mnst mns

B.0 Consistent Linearization of Ag; and AG;;

We derive the equations for A?:ij and AG; ; consistent with the midpoint integration of rate

of deformation and rotation. The left superscript ¢ + Az is omitted.

Taking the material time derivative of (72) yields:

d 14 oAU ALY
_Agi]' = i;f t+At/lZ + t+At/]2
dt 9 X; 0 X,

(218)

The material time derivative of the first term in the parenthesis of (218) can be written as

d dAu? _ o ', . dAu? i( thk 019
dt at+At/ZX~ a kat+At/2 j atxk dt at+At/2x'
where
J atxk a:xk J at+Az/2xm azxn | -
di a’t+At/2x. at+At/2xm dt atxn at+At/2xj
Consequently, (219) can be expressed as
d [ dAu? ov? dAu) 4 (aHAt/zxm o'x, o
dt aHAt/zx. at+At/2xj at+At/2xm dt atxn at+At/2xj
where
ot A2 t 0
_d_( xm] _ 0 (it+At/2x) 4 d [ *m* xmj _ 1a"_m o)
dt atxﬂ atxn dt " atxn dt 2 -2 atxn

Substituting (222) into (221) gives

af JAul 1 dAu) vl
i\ i+ A2 = 6im‘§ SIFA2 | S AL 223)

J

Equation (223) can be further simplified as
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dALY 3'x, 0
d i = H m (224)
dil ~rt+At/2 t+At/2 t+At/2

where the following equality has been utilized.

{
1 aAu? _ 0 (t+At/2 1o _ d x;
Oim= 3 giFAr2, T grrA2 T\ xi_iAui) YV (225)
x, 0 X, b X,
Defining M, as
thl. axz
M ijkl= e At/2 ~t+AL/2 (226)
X, 0 X;

We have

daf oA _ .

E{azwz/zx = M Vi 5, 27

Substituting (227) into (218) and preforming the same procedure for A®; i, we obtain the

final expressions for Aéij and A®; j as
A&ij = My v Awij = My g, (228)

Note that in the case of backward Euler integration M ;; = 8,3 ;.




Figure 1: Finite element mesh for the nozzle flap problem

Figure 2: Finite element mesh for the fibrous unit cell
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Figure 4: Decomposition of deformation in the microstructure
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j (Ae + Aw)ydt

Figure 6: Deformation of unit cell under transverse tension

j (At + Aw)ydt

Figure 7: Deformation of unit cell under transverse shear
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Figure 8: Deformation of unit cell under longitudinal shear
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Fixed end

Figure 9: Finite element mesh for the 3D beam problem
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Step 15

Figure 10: Distribution of the normalized local error with the 2-point model

430

400

350

300

pet-le]

150

Effective stress

-—

200

0.45

0.40

0.35

0.30

0.25

0.20

0,40

9.38

P2

D25

.20
.15
D10
C].L')5W
g.00

—2.0%

Normalized error of effective stress

Figure 11: Effective stress and normalized error at point A with the 2-point model
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Figure 12: Distribution of the normalized local error with the 2/n-point model
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Figure 13: Effective stress and normalized error at point B with the 2/n-point model
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(a) Geometric model (b) Finite element mesh

Figure 14: Geometric model and FE mesh of the plain weave unit cell
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Figure 15: Nozzle flap problem / plain weave RVE: distribution of the normalized
local error in the macrostructure as obtained with the 2-point model
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Figure 16: Effective stress and normalized error for fibrous unit cell as obtained with
the 2-point model
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Figure 17: Effective stress and normalized error for plain weave unit cell as obtained
with the 2-point model
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