Parallel Volume Meshing using
Face Removals and Hierarchical Repartitioning

H. L. de Cougny and M. S. Shephard
Scientific Computation Research Center
Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA

February 16, 1998

Abstract

Parallel unstructured three-dimensional mesh generation is a chal-
lenging problem for many reasons, the most obvious coming from the
complexity of “partitioning” the problem such that meshing is load
balanced at all times. In this paper, a parallel volume meshing proce-
dure whose input is a surface mesh (distributed or not) is presented.
In order to help driving the parallel execution, a distributed octree is
built considering the surface mesh and meshing size attributes. The
tree is partitioned in parallel using the Recursive Bisection method-
ology and “portions of space” are handed out to processors for mesh-
ing. Volume meshing operates on two techniques: (i) octant template
meshing for interior octants and (ii) face removals (advancing front)
to fill the space in between the surface mesh and the “templated”
octants. Due to the mesh being distributed, domains correspond-
ing to the interfaces of the initial partitioning are left unmeshed. To
complete volume meshing, it is necessary to repartition the interface
domains. A hierarchical repartitioning procedure has been developed
to effectively mesh face, edge, end vertex interfaces. It is the focus of
this paper.

1 Introduction

Scalable parallel computers have enabled researchers to apply finite element
and finite volume analysis techniques to larger and larger problems. As
problem sizes have grown into millions of grid points, the task of meshing
models on a serial machine has become a bottleneck for two reasons: (i) it
will take too much time to generate meshes and (ii) meshes will not fit in the
memory of asingle machine.

Parallel mesh generation is difficult because it requires the ability to de-
compose the domain to be meshed into sub-domains that can be handed out
to processors. This is referred to as partitioning. Partitioning in the con-
text of parallel mesh generation is hard because it has to be done with an
input that is either a geometric model or a surface mesh. This means one
is trying to partition a 3-d domain when only having the knowledge of its
boundary, at least, initially. In contrast, it is much easier to partition a 3-d
mesh, which is what finite element or finite volume parallel solvers typically
do. Proper evaluation of the work load is also a challenge in parallel mesh
generation. It is problematic to accurately predict the number of elements
to be generated in a given sub-domain, or how much computation per el-
ement will be required. This leads to difficulties in maintaining good load
balance at all times. Complexities also arise in the design phase due to the
requirement that every single algorithm and data structure used should scale
(with the number of processors). This is an issue that is often forgotten in
the literature.

Parallel unstructured mesh generators presented to date all employ the
concept of domain partitioning. Typically, a processor will be given the
task to mesh a sub-domain. What differentiates the various approaches is
how they treat the interfaces between sub-domains. Three classes of parallel
unstructured mesh generators have been proposed:

1. those that mesh interfaces as they mesh the sub-domains,
2. those that pre-mesh the interfaces, and

3. those that post-mesh the interfaces.

For a more in-depth review of parallel mesh generation, the interested reader

40 Lludviivul vy L_.I.'J.

The first class of parallel mesh generators refers to those that neither pre-
mesh nor post-mesh interfaces. Interfaces are meshed at the same time as

sub-domains. The parallel implementation of the Boyer-Watson algorithm
[2, 20] by Chrisochoides and Sukup [3], and Okusanya and Peraire [12] are
examples of meshing interfaces at the same time as sub-domains. The parallel
Boyer-Watson algorithm as described by Chrisochoides and Sukup [3] delays
the insertion of a point until the information needed to insert it (which has
been requested) has been brought on processor.

In the second class, objects are partitioned in such a way that sub-domain
meshing requires no communication. This is possible by meshing interfaces
before the sub-domains. This class has been further subdivided into three
sub-classes depending on how the partitioning into sub-domains is performed:

1. partitioning of an initial “coarse” mesh,
2. partitioning of a background tree, and
3. direct partitioning (pre-partitioning) of the input surface mesh.

In the context of initial “coarse” mesh partitioning, a commonly used method
18, 21] will (i) generate a coarse initial mesh, (ii) partition that coarse mesh
into n, sub-domains, (iil) refine interface edges of coarse mesh to proper
sizes, (iv) distribute the sub-domains to the n, processors, and (v) mesh
sub-domains, Saxena and Perucchio [14] considers the interaction between a
"background octree and the model to be meshed to define a “discrete” repre-
sentation (of the model) [16]. After the tree is partitioned, no communication
is needed to mesh the octants which are either interior or boundary (interact-
ing with the model’s boundary). Triangulation conformity on shared octant
faces can be guaranteed using the Delaunay criterion on planes. Galtier and
George [9] pre-partition a surface mesh by triangulating appropriately placed
separators. A separator cuts a domain into two parts. Given a surface mesh
and a separator (say, a plane), the triangulation of the separator is such that
(i) it separates, without modification, the initial surface mesh into two sub-
surface meshes, and (ii) sizes of mesh entities on the separator are consistent
with imposed sizes. The separator is not triangulated in the usual sense.
The geometry of the separator is used to guide the meshing of the domain,
defined by the input surface mesh, in the vicinity of the separator. The trian-
gulation associated with the separator is made of triangles. In other words,
a separator and its associated triangulation have same dimension. The input
surface mesh is a priori “subdivided” into as many sub-domains as there are
processors. '

In the third class, sub-domains are meshed and interfaces are left out
for later processing. This technique was used first by Shostko and Lohner
[18]. Given an input surface mesh, a background grid is built serially on
one (host) processor. Its primary role is to control parallel execution. Af-
ter the grid has been partitioned (by the host processor), tasks are handed
out by the dedicated host processor. On a given processor, the advancing
front method is used to mesh the sub-domain defined by the background
grid elements that have been handed by the host. To prevent overlapping
of sub-meshes coming from different processors, a mesh region will not be
created if it crosses the sub-domain’s boundary. After the processors have
created the mesh regions within their respective sub-domains, the space in
between the meshed sub-domains remains to be meshed. The “skeleton” of
this empty space is made up of the interfaces between the sub-domains. In
3-d problems, there are three types of interfaces. They are, in this paper,
referred to as (i) face, (ii) edge, and (iii) vertex interfaces, depending upon
dimensionality. Repartitioning is necessary to complete meshing. The paral-
lel mesh generator presented by de Cougny et al. [5] also uses an advancing
front method to mesh the volume in between a surface mesh and template-
meshed interior octants. Given a distributed surface mesh, this procedure
builds a “background” octree that satisfies meshing size requirements on one
processor which is then duplicated on all other processors. Once interior ter-
minal octants (far away enough from the boundary) have been meshed, the
domain between the input surface mesh and the meshed octants is meshed in
parallel by applying face removals. A face removal is the basic operation in
the advancing front method which, given a front face, creates a mesh region.
A front face is not removed if the tree neighborhood from which target ver-
‘tices are drawn is not fully present on processor. Face removals are applied
until there is no front face that can be removed. At that point, the tree
is repartitioned only considering the terminal octants that interact with the
current front. The process of applying face removals and repartitioning the
tree continues until the front is empty.

The aim of this paper is to present a complete parallel scalable volume
meshing procedure. The presented mesh generator (i) uses a tree as a parallel
driver and (ii) post-meshes interfaces. It builds upon the work by Shostko
and Lohner [18] and de Cougny et al. [5]. Focus is given to the meshing of

interfaces that result from the initial nnrhhnnrnor since it ig believed to be the

ALAVTLIQUTS VilGu L0DWAY 2200048 Vadh 2222 0iGus PE VAVAULLILL S, S1iiuT 1y a0 /a0 VRS U T bal

“weak” part of an “advancing front-based” mesh generator. It is assumed
a Distributed Memory parallel architecture is being used, communication

4

being handled by a Message Passing Library like the standardized Message
Passing Interface [11]. Note that the Distributed Memory architecture can
be emulated by a Shared Memory parallel computer. Section 2 describes
the (serial) volume mesh generation approach that has been parallelized.
Section 3 explains the distributed octree structure and briefly presents a
parallel tree building procedure. Section 4 describes the parallel version of
the volume meshing procedure. The interface repartitioning strategy, referred
to as “hierarchical repartitioning”, is presented in section 5. Results are
grouped in section 6. Finally, section 7 offers some concluding remarks.

2 Volume Mesh Generation

2.1 Introduction

Figure 1 graphically depicts the basics of the current mesh generator. The
first step in meshing a model is to develop a variable level octree consistent
with the triangulation on the boundary of the model and any other a priori
mesh control information. Octants containing mesh entities classified on
the boundary of the model are approximately of the same size as the mesh
entities they contain. A one level difference on octants sharing an octant
edge is enforced to control smoothness of the mesh gradations. Once the
octree is generated, terminal octants which intersect boundary mesh entities
are classified boundary. Terminal octants which are “too close” to boundary
mesh entities are classified boundary as well in order to avoid the creation
of interior mesh entities, coming from the application of pre-defined meshing
templates, in close proximity of the model boundary. This is of concern since
having mesh entities “too close” to each other may lead to the creation of
poorly shaped elements in that neighborhood. A terminal octant is “too
close” to a boundary mesh entity if the distance between the two is below
the size of the mesh entity times some threshold smaller than unity. The
remaining terminal octants are classified interior or outside. Those classified
outside receive no further consideration. Interior terminal octants are meshed
using templates [15]. Face removal procedures are then used to connect
the boundary triangulation to the interior octants. Figure 2 graphically
describes a face removal in a two-dimensional setting. Face removals are the
basic operation in the commonly known advancing front method [10]. The
input to the presented volume mesher is a non self-intersecting (within some
tolerance) boundary mesh (initial front). As long as the boundary mesh
defines one or more volumes without any ambiguity, the volume mesher can
function correctly. In the general case, the boundary mesh consists of mesh
faces, disconnected mesh edges, and disconnected mesh vertices. The term
“disconnected” means here “not connected to any higher order mesh entity”.
Disconnected mesh edges may come from (i) “dangling” model edges (not
connected to model faces) or (ii) the user himself who has imposed them.
Disconnected mesh vertices may come from (i) “floating” model vertices (not
connected to anything else) or (ii) the user himself. Note that some boundary
mesh faces may also have been imposed by the user. Details about the
“serial” volume meshing procedure can be found in [4]. Since focus is given

face removals

template meshing

Figure 1: Basics of the presented mesh generator.

Face removal
m—
{from front)

P .-
o e e ot s e

"~

Front face

Figure 2: Face removal.

in this paper on the repartitioning of interfaces, only relevant procedures are
described. The next sub-sections describe how the tree is built and how face
removals are performed in a serial setting. Parallel versions for both tree

building and face removals are presented in sections 3 and 4, respectively.

2.2 Tree Building

An octree is built for two main purposes (in the serial case): (i) data local-
ization during face removals, and (ii) template meshing of interior terminal
octants. The tree in its distributed version (described in section 3) will also
drive the parallel execution of the volume meshing procedure. The input to

the tree building procedure is the surface mesh which represents the initial
front. The tree building procedure is described below in pseudo-code form.

build Tree()

Get bounding box for front

Build root octant

for each front vertex do
Get average length of connected edges
Transform length into a tree level
Find terminal octant that contains the point
associated with the vertex
refineOctant(octant,point, level)

endfor

refineOctant(octant,point,level)

get octant’s level octantlevel

if octantLevel < level then
subdivide octant into 8 child octants
find child octant childOctant that contains the point
refineOctant(childOctant, point, level)

endif

The bounding box for the front is obtained by querying the geometric
modeler about the bounding box of the full model under consideration. In
case some front edges on the model’s boundary need to be split, the front is
guaranteed to always be within the octree. For simplicity, the root octant is
assumed to be cubic. The level of a terminal octant is defined as its depth
in the tree. The root is at level 0. Given a length d, the associated tree level
is given by:

level = log,(D/d)

where D is the dimension of the root octant.
The maximum 2:1 level of difference rule [16] is applied to the tree in
order to: (i) ensure a smooth gradation between the input surface mesh and

the mech recnlting from the temnlates and {11\ be able to ann]v mpchl‘ng

UIIU 1110012 100WIVILLA 21 VLL ilT vU1piRuls, Quidls Qi UU Qipfpri Y 11aCaSaiidil

templates to interior terminal octants Wthh assume this partlcular state
of the tree. This rule is enforced by making sure that, for any terminal

8

octant, for any octant edge, the level difference between the octant under
consideration and any terminal octant sharing that edge does not exceed one.
In practice, if a neighboring octant is at a level which is “too low” (differ
by more than one with the octant under consideration), it is subdivided.
Initially, all terminal octants are put into a processing queue. Terminal
octants are dequeued and processed in turn. When a terminal octant is
subdivided, the resulting child octants are pushed into the queue to make
sure they will be processed. This procedure is described in detail by Yerry
and Shephard [22].

2.3 Tree-supported Face Removals
2.3.1 General Algorithm

A face removal (from the front) consists in connecting a front mesh face,
referred to as a base face, to a target mesh vertex, creating a mesh region.
The face becomes fully connected, assuming it needs only one connection,
and is therefore removed from the front. It is the basic operation in the
advancing front method [10]. Possible target vertices for a base face are
drawn from a “neighborhood”. This neighborhood can be defined as a region
of space in the vicinity of the base face. Once a neighborhood is defined, the
underlying octree is used to efliciently localize the front vertices that should
be considered as potential targets. Once the targets have been identified,
they are ordered with respect to some criterion. Any target that would lead
to the creation of a region with negative volume (upside-down) is immediately
discarded. Targets are then processed in order until one, if any, satisfies the
face removal validity checks. It should be noted that, at this point, additional
vertices are not added into the triangulation when removing faces. It is
assumed that, a priori; all interior vertices have been provided by template
meshing. Face removals are performed in no particular order until the front
is empty or all remaining front faces cannot be removed. The following
pseudo-code describes the tree-supported face removal of a given front mesh
face. :

faceRemoval(face)
Define neighborhood from which target vertices are drawn
Use tree to gather possible target vertices

Order target vertices with respect to some criterion
for each target vertex do
if new region does not intersect front then
Create mesh region connecting face to vertex
 Update front
end
endif
endfor

Given a front face to remove (base face) and a target vertex, the new
region which connects the base face to the vertex has to be checked for
interference with the current front. The creation of a new region involves the
creation of up to three new edges and up to three new faces. A new region
should not be created if (i) it contains an existing front vertex, or (ii) any
bounding new edge intersects an existing front face, or (iii) any bounding
new face intersects an existing front edge. Note that existing front entities,
the new region should be checked against, are obtained using the tree as
a localization structure. Details about face removal validity checks can be
found in [4] and [10].

Upon completion of the tree-supported phase of face removals, what re-
‘mains to be meshed are “small” disconnected sub-domains. These “small”
sub-domains can be meshed without the support of a tree since there is no
need for localization. Given a sub-domain defined by its bounding mesh faces
(sub-front), this phase adds to the previously discussed face removal proce-
dure the possibility to create mesh vertices, delete previously created mesh
regions, and split front mesh edges. Reomovals in the context of “small”
sub-domain meshing is referred to as “tree-less” face removals. This is a
critical part since it involves domains that are “difficult” to mesh. Details
about “tree-less” face removals can be found in [4].

Figure 3 shows the main steps of the presented volume meshing procedure
on a “real” example:

a. input surface mesh (sphere refined at equator).

b. front after template meshing of interior octants (only half of the sphere
is shown). The region of space remaining to be meshed is between the
surface mesh and the “templated” octants.

c. front after tree-supported face removals have been applied. What re-
mains to be meshed are “small” domains.

10

d. mesh after the “small” domains have been triangulated (only half of
the sphere is shown).

11

A
W S R
SR

SO
3 %ﬂggﬁ%;gﬁﬁy)gew -41*'-}
W as
ol
SRSt
RN IS

<l %
e

ey ST
e,

) d)

Figure 3: Steps of presented volume mesh generator on a real example.

12

3 Distributed Tree Building

3.1 Introduction

In order for the presented parallel volume mesher to be memory scalable, the
mesh and octree data structures should be distributed. The parallel mesh
data structure builds upon (i) a serial mesh data structure where regions,
faces, edges, and vertices are represented in a hierarchical manner [1] and
(ii) a methodology to “link” together mesh entities on partition boundaries
that belong to more than one processor {13, 17]. In the past [5], a serial
octree data structure (duplicated over all processors) was used. This is not
a scalable construct. A distributed octree data structure has been developed
to provide memory scalability to the parallel volume meshing procedure [19].
A distributed data structure complicates the process of tree building. The
complication comes from the fact that the tree building procedure needs to
be time scalable. The following sub-sections present the distributed tree data
structure, and briefly describes a scalable tree building procedure.

3.2 Distributed Tree

A distributed tree requires some added data to be stored past that of a
sequential tree. If the child or parent of an octant is not on processor, the
octant’s downward or upward link, respectively, contains a pointer to an
off-processor octant along with the appropriate processor id. A link to an
off-processor octant is referred to as an off-processor link. If an octant’s
parent is not on processor, a structure known as a “local root” exists. The
“local root” is an octant with no parent on that processor. Any “local root”
has knowledge of its origin and level. Local roots are stored in a linked list.
Figure 4 shows a distributed binary tree on two processors. Nodes which
are on processor are represented by bullets. Local roots are represented by
squares. A downward or upward link is shown dashed when the child node
or parent node, respectively, is not on processor. Details about the parallel
octree data structures and related algorithms can be found in [19].

The tree building procedure presented here is based upon the Divide and
Conguer paradigm which calls for the recursive subdivision of a problem.
Figure 5 shows a typical application of this paradigm.

13

distributed tree

W local root on proc parent/child link

@ on-proc octant ’ off-proc parent/child link

Figure 4: Distributed tree.

computational

domain
1 3
1,2,3,4 — 1 1,2 34| —>
2 4
procéssor
assignment

Figure 5: The Divide and Conquer paradigm.

14

o2)
.2 .1 ® ®
*3 o2 o2 ° . °
3 ®
o1 o0 , ° .
.3 .1 Y ®
.2 o2 .0 L ? °

Figure 6: Tree building.

3.3 Algorithm

The input for the tree building procedure is a set of locations in 3-d space
each associated with a desired tree level. This input is referred to as the
(point,level) array. When considering the “serial” tree building procedure
of section 2, each front vertex location along with the tree level is an entry
of that array. It is assumed to be distributed, that is, each processor has
its own sub-array. The resulting tree is distributed. It is such that, for any
input point, the level of any terminal octant that contains it is greater than
or equal to the level associated with the point. This is a general procedure
that can be used in other contexts than volume meshing. Figure 6 shows a
two-dimensional example for tree building given an input (point,level) array.
In this figure, each input point is associated with a tree level.

Initially, the root octant is built on all processors available. Assuming
it needs to be subdivided (due to at least one level greater than zero), each
processor subdivides once the root octant. The set of available processors is
split into sub-sets and each sub-set is given the task to further subdivide (if
needed) one or more of the current terminal octants. Each processor sub-set
can work independently of each other. Because each sub-set can be split
further, sub-sets are simply referred to as sets for clarity. Given a processor
set, current terminal octants are subdivided once (on each processor in the
set) if their levels are too low. The processor set is then split into sub-
sets and the current terminal octants are associated with the sub-sets for
possible further subdivision. This process continues until all processor sets
are of cardinality one. It should be well understood that this “coarse” tree
building phase is performed in parallel (processor sets work independently of

15

each other), key to its scalability. How processor sets are split into sub-sets
- and how current terminal octants are assigned to processor sub-sets depend
upon the “load” associated with a current terminal octant. The load of a
terminal octant is defined as the sum of the levels associated with points
within the octant. This load is strictly with respect to tree building. In
other words, one considers this load definition in order to balance the tree
building process. Once all processor sets are reduced to single processors,
each processor stores a “coarse” tree. The top portion of figure 7 shows the
tree (in this example, binary) stored by each processor (among the four)
once all processor sets have been reduced to single processors. Note that a
processor set reduced to a single processor can now be simply referred to as
a processor. The “bulleted” node shown on each processor’s tree represents
the terminal node assigned to the processor. In this simple example, only
one terminal node has been assigned to a processor. Given a processor,
the terminal octants under its control are the roots of soon to be refined
sub-trees. The (point,level) array stored by a given processor is such that
any point is contained in a terminal octant under its control. This enables
any processor to build its sub-tree(s) using the same methodology as in the
serial case without having to communicate. The bottom portion of figure 7
indicates (with triangles) the sub-trees that have been built on each processor
(among the four). Once the sub-trees have been built, the “global” tree is
fully distributed. Details about this procedure can be found in [4].

Figure 8 shows the two stages of tree building on a simple “real” example.
The left picture corresponds to the tree building phase which operates on
processors sets. The right picture corresponds to the second phase, when
each processor builds sub-trees without communication. The octant sizes
correspond to the surface mesh edge sizes. This particular run was performed
on four processors. One can see on the left picture that each processor ends
up being in control of two terminal octants once the processor sets have been
reduced to single processors. Each processor then builds two sub-trees rooted
at those octants.

16

proc

N
~

|

5 control

-tree

’

|

node under processor

£

root of sub

A

//\

//\

A7

/

Figure 7: Distributed tree building.

/

"\

A

sub-tree

Figure 8: Tree building example.

17

4 Parallel Volume Meshing

4.1 Introduction

The input to the parallel volume mesher is a surface mesh. This input is
either already distributed among the processors (e.g., when using the volume
mesher after a parallel surface mesher [4]), or read from a surface mesh file
(when using the volume mesher standalone). The complete parallel volume
procedure can be decomposed into several main steps:

1. build distributed tree,

2. apply templates to interior terminal octants,

partition boundary terminal octants,

- W

apply tree-supported face removals,

o1

repartition face interfaces,

apply tree-supported face removals,

N

repartition edge interfaces,

0

apply tree-supported face removals,
9. repartition vertex interfaces,
10. apply tree-less face removals,
11. repartition mesh regions, and
12. optimize distributed mesh with respect to quality.

The partitioning of octants enables the domain to be decomposed into
sub-domains for parallel processing. The partitioning methodology used
in the construction of the initial partition is a parallel Recursive Bisection
method. Three types of Recursive Bisection method can be used here:

e Recursive Orthogonal Bisection (ROB) [6, 7],
e Recursive Inertial Bisection (RIB) [6, 7], and
B

e Modified Recursive Orthogonal Bisection (MROB).

18

With ROB, the cutting axes are the coordinate frame axes. The directions
(for the axes) are switched at each step, that is, axes are chosen in the order
(z,y,2,2,...). With RIB, the cutting axis is the principal axis of inertia
for the domain under consideration. MROB comes in between ROB and
RIB. With MROB, the cutting axis is chosen to be the coordinate frame
axis “closest” (with respect to direction) to the axis of inertia. Note that,
implementation-wise, ROB and MROB are variants of the RIB procedure.
Details about a parallel implementation of RIB can be found in [4]. In this
paper, favor has been given to the MROB procedure since it produces boxed
partitions which work well with an underlying octree structure. ROB should
not be used since this methodology never takes into account the geometry
of the domain to partition. This partitioning strategy using Recursive Bi-
section can be applied on octants as well as mesh regions. In practice, upon
completion of the volume meshing procedure, mesh regions regions are repar-
titioned using the RIB methodology. Template meshing is briefly discussed
in the next sub-section. Parallel tree-supported face removals are described
in the third sub-section. Repartitioning of face, edge, and vertex interfaces is
discussed in details in section 5. Parallel mesh optimization is not discussed
here, but details can be found in [4]. Other tree-related processes like front
insertion and octant classification are discussed in [4].

4.2 Template Meshing

Meshing templates have been written such that the triangulation of an octant
face does not depend upon the template used to mesh the (interior terminal)
octants sharing the face [15]. This means that the triangulations of an oc-
tant face shared by octants on different processor are guaranteed to match.
Interior terminal octants can be meshed without communication. Once they
are meshed, “duplicate” mesh vertices, edges, and faces are linked together
in order to satisfy the requirement of the parallel mesh database [13, 17].
Figure 9 shows the result of template meshing on four processors. The figure
on the left represents the surface mesh after tree building. Details about
parallel template meshing can be found in [19].

4.3 Tree-supported Face Removals

The term “tree-supported” means that a tree is used for localization. In
a parallel distributed environment, it actually means a distributed tree is

19

Figure 9: Template meshing on 4 processors.

used. Given a base face to remove, target vertices are considered within
some neighborhood, typically, a box whose size is comparable to the size of
the face. The terminal octants intersecting with the box are gathered. If not
all of them are residing on processor, the face is not attempted to be removed.
If not all terminal octants are on-processor, the front face is near a partition
boundary. Proper removal of the face would require communication with the
processors owning the missing octants. Allowing communication to happen
during face removals would be prohibitive in terms of cost, and is therefore
not done here. Repartitioning will allow these “unremovable” faces (due to
lack of information) to be removed later on. In terms of face removal validity
.checks, off-processor front entities known by the terminal octants involved in
these checks must be considered. ,

Results for the parallel volume meshing procedure follow the discussion
of the hierarchical repartitioning scheme of section 5. They are presented in
section 6.

Figures 10, and 11 show the application of parallel tree-supported face
removals and interface repartitioning for simple models on 8 processors. The
various pictures represent:

a. the front after octant partitioning,
b. the front after face removals,
c. the front after face interface repartitioning and face removals, and

d. the front after edge interface repartitioning and face removals.

20

Figure 10: Parallel tree-supported face removals and interface repartitioning
on 8 processors for g44 model.

21

Figure 11: Parallel tree-supported face removals and interface repartitioning
on 8 processors for Airplane model.

22

5 Hierarchical Repartitioning

5.1 Introduction

Three levels of repartitioning are used in parallel volume meshing:
1. face interface repartitioning,
2. edge interface repartitioning, and
3. vertex interface repartitioning.

The idea behind face and edge interface repartitioning is to redistribute ter-
minal octants along with the data they are associated with, that is, front
entities, such that face removals can be applied again in a balanced fashion,
if possible. Vertex interface repartitioning does not operate on the distributed
tree, but rather on the remaining front entities themselves. The objective
is however the same. To make these hierarchical repartitioning techniques
general, it is assumed that mesh regions are created only using face removals.
The advantage of interior octant template meshing will be pointed out in the
last sub-section.

Once sub-domain meshing is complete, that is, no face removal can be
applied using only on-processor information, the domain remaining to be
meshed corresponds to the interfaces of the partition. Figure 12 shows the
front after face removals have been applied within a partition. This partition
is bounded by two planar face interfaces and one linear edge interface. Face
interfaces need to be repartitioned so that face removals can be applied in
the next face removal phase. Face interface repartitioning is described in the
next sub-section.

5.2 Face Interface Repartitioning

It is assumed a Recursive Bisection procedure was used to initially partition
the domain (at the octant level) into sub-domains. Because the separators
(between partitions) are hyperplanes (each defined by an axis and the me-
dian on that axis), face interfaces are planar. The only assumption that is
made here is that the separators are planar. The following face interface

nracradiira can ha 1iead with anv nartitinnine arhamae that 1aee nlanar aona_
MIULDULWT LaGdl U0 UotR WLLkd Quiiy /Ol VAVIVLLILE OULITLLT Vil UWOU0 Plailidl oUW

rators. As a starting point, it is assumed that each processor has knowledge
of the separators bounding the sub-domain and the neighboring processors.

23

on-processor front ﬁ

edge interface

!

face interface separator

Figure 12: Front (on one processor) after face removals have been applied.

Note that sub-domain always refers to the region of space coming from the
initial partitioning of the domain. In the following, face interfaces are not
initially associated with any boundaries, they are just considered equivalent
to planar separators. As the procedure to repartition face interfaces evolves,
face interfaces are more explicitly defined in terms of their boundaries. Only
boundary terminal octants are considered when repartitioning. It should be
noted that, in the face removal phase, any boundary terminal octant that
has been “filled in” is reclassified as “done”. Such a terminal octant will not
participate in any subsequent repartitioning. This minimizes data movement
as octants are actually migrated according to the repartitioning. The proce-
dure to repartition face interfaces repartitionFacelnterfaces is given below in
pseudo-code form.

repartitionFacelnterfaces()
assignOctants Tolnterfaces()
for each interface do
for each octant associated with interface do
Add octant’s centroid and size to data array
to be sent to processors sharing interface
endfor '
endfor
Send and receive messages
for each received message do
processMsg(msg)

24

endfor

assigninterfaces ToProcs()

Assign destination processors to octants
according to face interface assignment
Migrate octants according to their destinations

assignOctants Tolnterfaces()
for each octant do
Get interface closest to octant
Assign octant to that interface -
endfor

The distance from an octant to an interface is computed by projecting the
octant’s centroid onto the interface. Figure 13 shows the assignment, on one
processor, of current boundary terminal octants (octants near interfaces) to
face interfaces (numbered 0, 1, and 2). Due to the nature of the initial par-
titioning, a processor will only know about terminal octants whose centroids
fall within its sub-domain. The cost of assigning terminal octants to inter-
faces is equal to the number of boundary terminal octants times the number
of face interfaces on a given processor. Since bouhdary terminal octants are
reclassified as “done” as they are “filled” during the face removal phase, the
number of boundary terminal octants, at this point, represents the size of
the partition boundary of the given processor. If the number of processors
increases at the same rate as the problem size, the partition boundary for
any given processor can be assumed to remain constant. The number of face
interfaces can also be assumed to remain constant. These two observations
are key to guaranteeing scalability. Each processor sends information regard-
ing its face interfaces to the neighboring processors sharing those interfaces.
This communication step is required to “bring together” terminal octants on
either side of a face interface. The cost of setting up the messages is equal
to the number of face interfaces times the number of boundary terminal oc-
tants on a given processor. The cost of sending the messages is equal to the
number of face interfaces times the maximum number of processors sharing
a face interface. One can observe that if the number of processors increases
the same rate as the problem size, the number of neighboring processors
1 ssor is constant. ngcuu, this is Key to Scalauxuty

After messages have been sent, they are received by the appropriate pro-
CEeSSOrs. Each message contains information regarding the face interface plane

25

\
/
J

1|1
2/[2]2]2
2hgtolal A
\

Figure 13: Assignment of octants to interfaces.

(planar separator) and the octants associated with the face interface (on the
sending processor). The procedure to process a received message is given
below in pseudo-code form.

processMsg{msg)
Get originating processor
Get on-processor interface the data is for
for each entry do
Get octant’s centroid and size
Project onto interface
endfor
/* Projected centroids define the off-processor interface */
for each octant do
if not associated with interface continue
Project onto interface
if projection within off-processor interface then

WU TURIU T SUS & R RPPRUILE-JUNE AP AR

I'\bblg” oCtdiit LO UH"plUl,CbbUl THeridec
endif
endfor

26

The goal of this face interface repartitioning procedure is to associate ter-
minal octants on either side of a given interface so that they can be migrated
as a block to a destination processor. The projected centroids define the
off-processor interface, that is, the actual interface of the sending processor.
Considering figure 14, processor z sends away the octants’ centroids associ-
ated with the interface to processors y and z. Focus is given to what happens
next on processor y. Upon reception of the message, processor y finds the
interface z is referring to by going through its own interfaces and finding
the one that is in the same plane. This is referred to as the on-processor
interface. Processor y then projects the centroids on this interface. This
defines the off-processor interface. Any octant on processor y assigned to the
on-processor interface which, when the centroid is projected onto the inter-
face, falls within the off-processor interface is assigned to the off-processor
interface. Because a face interface can be shared by more than two proces-
sors, the assignment of boundary terminal octants to interfaces is not unique.
Considering figure 14, there are two ways of seeing the interface(s) shared
by processors z, y, and z. One can see a single interface on the side of z or
two (smaller) interfaces, one on the size of y, the other on the size of z. To
consistently break ties, processors on the “low id” side of an interface will
have to give up their octants to the processors on the “high id” side. Refer-
ring to figure 14, it was assumed z < y and = < z. This also means that, in
the procedure processMsg, any message coming from a processor with higher
id than the executing processor is ignored. Figure 15 shows, on the left, the
initial assignment of octants (represented as boxes) to interfaces (in bold).
The final assignment is shown on the right. Only the interfaces which are still
relevant are shown. It is assumed partitions on the left are on the “low id”
side while partitions on the right are on the “high id” side. This means that
any processor on the left has an id lower than any processor on the right. It
should be noted that this property holds as octants are (initially) partitioned
using the Recursive Bisection methodology. This is due to the fact that, as
the domain is recursively subdivided, “low id” processors always end up on
the “left” (with respect to median on cutting axis) sub-domain. This will be
further discussed when repartitioning edge interfaces.

The cost of processing the received messages is equal to the partition
boundary size times log(partition boundary size) on a given processor. As a

martitinn hotimdary gige An a AT YA OQanT divoctlv nranar

Lelllllldcl, thc ol L1101t UULLU-UG:LJ DI1LT VUil G slVCll l}LU\;UDDUL J.D il U\zl)l)’ pLupuL=
tional to the number of boundary terminal octants on that processor. This
is due to the fact that boundary terminal octants that remain (after reclas-

27

X
off-proc interface \

on-proc interfac%
Yy

Figure 14: On and off-processor interfaces.

interface assignment

initial final

Figure 15: Initial and final assignment of octants to interfaces.

sification from boundary to “done”) are “near” the interface, typically, “one
layer deep”. The log term comes from the quadtree which is being used for
localization on the face interface plane. The problem is now to try to assign
the face interfaces to processors so that the next face removal phase is load
balanced. This is explained next.

If a face interface on a given processor is such that there is no terminal
octant that has been associated with it, it is not considered in this face
interface distribution phase. The load carried by a given face interface can
be estimated by counting the number of terminal octants associated with it.
Assignment of face interfaces should be such that the sum of the loads of the
face interfaces assigned to a processor is as uniform as possible (across all

28

processors). Uniform loading is likely not to be obtained in most cases since
face interfaces can carry very different loads. The assignment of a given face
interface is restricted to one of the processors sharing that interface. This
restriction is advantageous because (i) it minimizes data movement, and
(ii) it minimizes the local root growth. Given a face interface, the octants
agssociated with that interface reside on the processors sharing the interface.
By restricting octant migration to any of these processors, data movement
(from one processor to another) is minimized. Octant migration involves not
only octants but also the front mesh entities they contain. The procedure to

assign face interfaces to processors is given below in pseudo-code form.

ST UL~ LL

assigninterfaces ToProcs()
Assign (at random) each interface to 1 processor sharing it
Get load loadP (total load on processor)
Get average load avgload
for each interface assigned to executing processor do
Get interface load loadl
/* Should that load be given away? */
if |loadP — loadl — avgLoad| > |loadP — avgLoad| continue
/* Yes, it should */
for each neighboring processor sharing the interface do
Get load loadP2
/* Does it need the load? */
if {loadP2 + loadl — avgLoad| > |loadP2 — avgLoad| continue
/* Yes, it does */
Keep track of processor proc2 with lowest loadP2
endfor
if at least 1 processor needs the load then
Assign face interface to proc2
loadP = loadP - loadl
endif
endfor

At the start of the procedure, each interface is assigned at random to
one of the processors that share it. This is to initialize the assignment. The
cost for getting the average load is equal to the partition boundary size (on-
processor load) plus log(n,) (to obtain the total load). The log(n,) term can

29

be dropped. Any processor with too much load will now give its excess load in
an attempt to load balance the processors. This process is completely asyn-
chronous. An interface can be given away if the current load of the processor
minus the interface load is closer to the average than the current load. In that
case, the interface represents an over-load for the processor. This extra inter-
face can be given away to a neighboring processor sharing the interface if this
addition would bring the neighboring processor’s load closer to the average.
If more than one neighboring processor needs the load, the one with the low-
est current load receives the load. Each processor needs to know the loads of
th zanre that aha rfaces. This knowled dge can be obtained b ku com-

he processors that share interfaces. This knov can be obtained by com-
municating with these neighboring processors as a pre-processing step. The
cost for obtaining the loads on neighboring processors is equal to the number
of neighboring processors. The cost for assigning interfaces to processors is
equal to the number of interfaces times the maximum number of neighboring
processors sharing an interface on a given processor. When an interface is as-
signed to a neighboring processor, the load it carried is not updated to avoid
any communication and/or synchronization step. This means that it is pos-
sible for a processor that was under-loaded to become over-loaded (has been
assigned more interfaces than needed). To remedy this problem, the above
procedure is iterated until none of the processors is over-loaded. By making
sure that a once over-loaded processor cannot be assigned any additional in-
terface, this will converge. In the worst case, the total number of iterations
is equal to the number of processors. In theory, this can happen when (i)
one processor is over-loaded and all the others are under-loaded and (ii) the
load actually propagates from the over-loaded processor to all under-loaded
processors (considering the above procedure). In practice, this situation is
unlikely to occur because each processor is bounded by interfaces, each of
them carrying some load. This means that a situation where one processor
is over-loaded and all others are under-loaded is unlikely to happen. The
number of iterations is then expected to be constant. Figure 16 shows the
initial assignment of face interfaces to processors, the assignment after one
iteration of the procedure, and the final assignment. Processor ids have been
put in circles and arrows symbolize current face interface assignment. Once
face interfaces have been assigned to processors for meshing, terminal octants
associated with interfaces are marked with the proper destination processors.

M A Axr +A K1 i +ad ki th + + 3 3
They are ready to be migrated by the octant migration procedure. The cost

for migrating the octants is equal to the number of octants being sent times
the depth of the distributed tree on a given processor. The number of octants

30

32 32 32

©-—
n— @ a4— @O 91— @
7 31
31————/———72 /;/ij———li—— /i///———li——
@ ol ®

® ® e

24 / 24 24

72 72

Figure 16: Assignment of interfaces to processors.

to be migrated is at worst equal to the partition boundary size. If nl is the
number of octants on processor, the depth is O(log(n))). If the tree is well
distributed, n, = n,/n, where n, is the total number of octants. The total
number of octants is proportional to the total number of mesh regions that
will be generated. The cost for migrating the front mesh entities associated
with the migrated octants is at worst equal to the partition boundary size.
The cost for removing the migrated front mesh entities from the front and
re-inserting them into the tree is at worst equal to the partition boundary
size times log(n,).

All processes used in repartitioning the face interfaces depend on (i) the
partition boundary size, and/or (ii) the number of face interfaces, and/or (iii)
the maximum number of processors sharing a face interface. These quantities
are with respect to a given processor. For example, one looks at the partition
boundary size of a given processor, not of all processors. These processes only
depend upon “local” or “near” information. The term “local” refers to on-
processor information. The term “near” refers to information of neighboring
processors. This means face interface repartitioning is scalable.

5.3 Edge Interface Repartitioning

An edge interface results from the intersection of two face interfaces. As dis-
cussed previously, face interfaces are assumed to be planar, therefore, edge
interfaces are linear. It is assumed that each processor has knowledge of its
neighboring processors. It is also assumed that each processor only knows
about the planar separators making up the face interfaces bounding the cor-

31

Figure 17: Simple example of edge interface “interference”.

responding sub-domain. The difficulty with edge interfaces is that they can
“interfere” with each other. In Figure 17, the distance between the two edge
interfaces is comparable to the size of boundary terminal octants along the
two edge interfaces. In order for the next face removal phase to actually
remove faces, it is imperative to consider the two edge interfaces as one. One
can either (i) merge the two edge interfaces or (ii) repartition considering one
edge interface, apply face removals, repartition considering the other edge in-
terface, and apply face removals. The first approach can be quite challenging
especially when edge interfaces are not constrained to run along coordinate
frame axes. Figure 18 shows an example where two edge interfaces “inter-
fere” at a point. The two edge interfaces should be split into four defining a
vertex interface at the point of contact. The second approach, although less
efficient since it needs two iterations of edge interface repartitioning and face
removal application, is attractive because there is no need to actually figure
out if two.edge interfaces “interfere” with each other. This is the approach
that has been chosen due to its relative simplicity when compared to the
other method.

The basic idea behind edge interface repartitioning is to consider two sets
of edge interfaces such that (i) interfaces in one set cannot interfere with each
other and (ii) the union of the two sets gives all edge interfaces. The edge
interfaces are obtained by intersecting (with each other) the planar separators
that make up the sub-domain associated with the processor. The complete
set of edge interfaces can be split in two by considering planar separators

32

. ,

7

Figure 18: Complex example of edge interface “interference”.

only if the processor is on its low side for the low set of edge interfaces or
on its hgh side for the hgh set of edge interfaces. In the course of performing
Recursive Bisection, when a processor set is split (say, in two), the processors
with low id’s are assigned to the sub-domain on the low ordinate side and the
processors with high id’s are assigned to the sub-domain on the high ordinate
side. Figure 19 gives an example for four processors. On the first cut, the
initial processor set (and domain) is split into two. On the second cut, each
processor set (among the two) is split further into two.

Proper definition of edge interfaces (for a given side) is a two-step process.
The first step consists in defining them by intersecting planar separators with
each other. The second step consists of communicating the location of edge
interfaces for processors that do not have knowledge of them.

The procedure to extract the edge interfaces from the planar separators
is given below in pseudo-code form.

defineEdgelnterfaces1 (side)
for each planar separator do
/* Do not consider if processor on other side */
for each other planar separator do
/* Do not consider if processor on other side */
Intersect the 2 planar separators

33

procs 0,1,2,3
i
!
i
i
i
i
i
1
1

separator

2,3 \ >

HGH c;.ltting axis

0,1
LOW

Figure 19: The concept of sides when cutting a domain and associated pro-
cessor set.

34

edge interfaces LOW

i z4

HGH

Figure 20: Edge interfaces on low and hgh sides.

" Intersect obtained line with sub-domain to get range
/* Resulting line segment is an edge interface */
endfor
endfor

A planar separator is considered for intersection only if the executing
processor is on the requested side (either low or hgh). It should be noted
that a planar separator is defined by a point and a normal direction. The
intersection of two planes gives a line unless the two planes are parallel to each
other. The line intersection which can be referred to as a linear separator is
defined by a point and a direction vector. The edge interface is fully defined
by reducing the a priori infinite linear separator with the polyhedral domain
known to the processor (made up of planar separators). The edge interface
is then fully defined by considering a range on the linear separator. The
cost for defineEdgelnterfaces! is equal to the square of the number of planar
separators on a given processor. It is a scalable process. Figure 20 gives an

example of low and hgh side edge interfaces.

A processor may not know about defined edge interfaces that are within
its sub-domain. This is illustrated in figure 21 assuming there is a perpen-

35

found \

proc p

edge interfaces

missed
(without comm.)

Figure 21: Determination of edge interfaces needs communication.

dicular third dimension. The procedure to update the edge interfaces known
to a processor is given below in pseudo-code form.

defineEdgelnterfaces2()
for each edge interface do
Pack info concerning edge interface into msg
to be sent to each neighboring processor
endfor
Send and receive msgs
for each msg received do
for each remote edge interface in msg do
Intersect remote edge interface with polyhedral domain
/* Resulting line segment is a new edge interface */
endfor
endfor

The cost for defineEdgelnterfaces?2 depends upon the number of edge
interfaces and the number of neighbors on a given processor. It is therefore
scalable.

The procedure to distribute the edge interfaces to processors so that the
next face removal phase is balanced (as much as possible) is similar to the

'~ ¥ P . U

vy v £ £ N T - [R S
one used for face interface repartitioning.

36

proc 0 proc 1

/N
A

proc 2 proc 3

Figure 22: Example of domain to be localized.

5.4 Vertex Interface Repartitioning

Domains remaining to be meshed are either fully on processor or are shared
(in terms of bounding front mesh faces) by several processors. Domains
which are fully on processor have nothing to do with the fact that data is
partitioned. They are the result of unremoved faces due to lack of a proper
target in the tree-supported face removal phase. Domains shared by several '
processors correspond to the vertex interfaces. Vertex interfaces are defined
as intersections of edge interfaces. Because the vertex interfaces represent an
isolated subset of the domains remaining to be meshed, vertex interface repar-
titioning can be generalized so that it actually repartition any domain still to
be meshed whether it is actually a vertex interface or not. The generalized
vertex interface repartitioning is therefore considered a domain repartition-
ing procedure. The first task is to localize all domains, that is, bring any
domain shared by several neighboring processors on a single processor (one
of the neighboring processors). Figure 22 shows a domain “spanning” over
processors 0, 1, 2, and 3. This domain needs to be localized by bringing the
faces making up the domain to one processor, say processor 0. At this point,.
it does not matter if some processors end up with more domains than others
since these domains will be redistributed for load balance in view of the final
face removal phase. ’

Once all domains have been localized, they have to be distributed to
processors such that the next face removal step is as balanced as possible. The

37

| SE— 24

Figure 23: Assignment of domains to processors.
le)

load carried by a given domains can be estimated by counting the number of
boundary mesh faces. A procedure similar to the one used for face interface
repartitioning can be used here. Each domain is initially assigned to the
processor it is in. Domains are considered instead of face interfaces. An over-
loaded processor can potentially give away any extra load to any neighboring
processor. The neighboring processor with the lowest load actually gets the
extra load. Figure 23 shows the initial assignment of domains to processors,
the assignment after one iteration of the procedure, and the final assignment.
Processor ids have been put in circles and arrows symbolize current domain
assignment. Once domains have been assigned to processors for meshing,
mesh entities are migrated, and the final face removal step begins. Because
vertex interface repartitioning depends only on “local” or “near” information,
it is a scalable process.

5.5 Remarks

The above hierarchical repartitioning technique is general. This sub-section
discusses hierarchical repartitioning in the context of the presented volume
mesh generator, in particular, the use of templates to mesh interior terminal
octants. Templates reduce the domain to be meshed by face removals. This
means only parts of face and edge interfaces need to be actually meshed.
Figure 24 shows the area on the face interface (between the templates and
the model’s boundary) that defines a domain still to be meshed. Figure 25
plates and the

1LALCLIALE AWk E 11 1li)id

shows the segments on the edge interface (between the tem

SLVWS vill STRLaTaLe AL LD

model’s boundary) that correspond to an area still to be meshed.

38

/ Planar

separator

Model
trace

Templates
trace

Area to be
meshed

Figure 24: Effect of template meshing on face interfaces.

Template D

Linear ' .
separator ‘ ,

7’
-
s
”
4
>

i

/ Model

\J - trace

Figure 25: Effect of template meshing on edge interfaces.

39

6 Parallel Volume Meshing Results

Timing results are given for the models represented in figures 26, 27, and 28.
These figures show the initial octant partitioning on 32 processors using the
Modified Recursive Orthogonal Bisection (MROB). In order to have a better
idea of the sub-domains, the planar separators are also shown.

Tables 1, 2, 3, 4, 5, and 6 give time meshing statistics for the complete
parallel volume meshing procedure. All runs have been performed on an
wbm SP-2 with 128 megabytes of core memory (no virtual memory). The
time statistics (wall-clock time in seconds) have been broken down into the
following main steps:

1. tree building,

2. template meshing,

3. partitioning (initial tree partitioning),

4. face removals (tree-supported and tree-less), and
5. repartitioning (face, edge, and vertex interface).

When runs for a given problem case include a one-processor run, speed-ups
and relative speed-ups are given. Otherwise, only relative speed-ups are
given. Speed-up on n, processors is equal to the ratio of the time spent using
one processor to the time spent on n, processors. The relative speed-up is
the speed-up obtained when doubling the number of processors. In general,
when going from one processor to two processors, speed-up is relatively low.
This is mostly due to the fact that there is no need for partitioning and
repartitioning when running on one processor. In other words, there is an
initial “price to pay” when switching from serial to parallel. Focus is therefore
given to relative speed-ups.

Tables 1, 2, and 3 show results for test cases in the 50, 000 regions gener-
ated range. Relative speed-up is maintained at around 1.5 but performance
drops when using 16 processors mostly due to the fact that few face removals
are being performed at each step.

Tables 4, 5, and 6 show results for test cases in the 250,000 regions
generated range. Relative speed-up is maintained at around 1.6 with some

expected variations depending upon the model to be meshed.

40

Figure 28: Initial partitioning for g21 model on 32 processors (309,000 tets).

41

procs 1 2 4 3 16
tree building 98 6.1 3.9 127 |23
template meshing | 8.1 5.7 44 134 |30
partitioning 0.0 9.5 7.5 153 |34
face removals 106.9 | 70.3 | 36.7 | 24.8 | 17.6
repartitioning 0.0 16.7 | 1241104} 10.0
| total | 124.8]108.3 | 64.9 | 46.6 | 36.3 |
speed-up 1.15 |1 1.92 | 2.68 | 3.44
rel. speed-up 1.15 11671139 1.28

Table 1: Time statistics for g60 model (41,000 tets).

procs 1 2 4 8 16
tree building 12.2 1 7.2 4.8 3.7 |26
template meshing | 11.1 | 7.3 5.4 3.8 |27
partitioning 0.0 12.1 1 13.0 | 7.7 |36
face removals 174.9 | 1159 | 76.1 | 41.3 | 33.5
repartitioning 0.0 24.7 | 21.6 |16.1 | 14.9
| total | 198.2[167.2 | 120.9 [72.6 | 57.3 |
speed-up 1.19 | 164 |2.73 | 3.46
rel. speed-up 1.19 | 1.38 | 1.67 | 1.27

Table 2: Time statistics for g44 model (55,000 tets).

procs 1 2 4 8 16
tree building 16.3 |75 5.3 3.8 |3.2
template meshing | 14.2 | 8.5 5.6 3.6 |27
partitioning 0.0 195 177 9.5 |42
face removals 199.0 | 123.9 | 75.0 | 44.4 | 26.2
repartitioning 0.0 23.3 (172 | 143|110
| total | 220.5 | 182.7 [120.8 | 75.6 | 47.3 |
speed-up 1.26 | 1.90 | 3.04 485
rel. speed-up 1.26 | 1.51 | 1.60] 1.60

Table 3: Time statistics for g21 model (69,000 tets).

42

procs 8 16 32
tree building 100 | 7.1 5.8
template meshing | 14.7 | 11.8 | 10.0
partitioning 43.1 1183 |94
face removals 96.9 | 58.0 |36.0
repartitioning 33.4 123.1 |20.2
| total | 198.1 | 118.3 | 81.4 |
frel. speed-up [i 1.67] 1.45J

Table 4: Time statistics for g60 model (213,000 tets).

procs 8 16 32
tree building 13.3 | 8.2 7.3
template meshing | 14.6 | 10.3 | 7.7
partitioning 67.3 | 223 {106
face removals 162.0 { 99.1 | 55.3
repartitioning 47.5 | 33.8 | 23.8

| total | 304.7 | 173.7 | 104.7 |

| rel. speed-up] | 1.75 | 1.66 |

Table 5: Time statistics for g44 model (264,000 tets).

procs 8 16 32
tree building 136 [11.0 |91
template meshing | 12.1 | 8.7 7.1
partitioning 62.2 | 221 114
face removals 149.1 | 85.2 | 51.5
repartitioning 452 129.0 |21.0

| total | 282.2] 156.0 | 100.1 |

f rel. speed-up i l 1.81] 1.56 !

Table 6: Time statistics for ¢21 model (309,000 tets).

43

7 Conclusion

A major step in going toward scalable parallel mesh generation is the intro-
duction of a distributed octree structure. Such a scalable structure was not
part of previous efforts by the authors [5]. This structure along with a par-
allel tree building procedure enable the parallel volume mesher to be truly
“memory” scalable with both the octree and mesh structures distributed.

Interface meshing, which has been the focus of this paper, is the most
difficult aspect of effective parallel volume meshing when using an advanc-
ing front method [18]. Interfaces result from the initial partitioning of the
domain to be meshed. Key to efficiency (in terms of load balance) of the
complete volume meshing procedure relies upon the interface repartitioning
procedure. In this paper, various procedures have been presented as part of
the “hierarchical repartitioning” methodology in order to (i) properly define
face and edge interfaces, (ii) assign interfaces to processors for load balance,
and (iii) repartition the octree and associated front according to interface
assignment. The presented interface repartitioning is parallel and scalable.
Coupled with “fast” octant and mesh migration procedures, this reparti-
" tioning technique makes parallel mesh generation using the advancing front
method a viable undertaking. Repartitioning performance can be further
enhanced by taking advantage of the fact that octant templates were applied
prior to face removals. In most cases, template meshing act as dimension
reducer for interfaces.

Promising results have been seen for up to 32 processors. The next step
is to benchmark the parallel volume meshing procedure on massively parallel
computers with at least 512 processors available.

44

References

1]

M. W. Beall and M. S. Shephard. A general topology-based mesh data
structure. International Journal for Numerical Methods in Engineering,
40(9):1573-1596, 1997.

A. Bowyer. Computing dirichlet tessellations. The Computer Journal,
24(2):162-166, 1981.

N. Chrisochoides and F. Sukup. Task parallel implementation of the
bowyer-watson algorithm. In Fifth International Conference on Numer-
ical Grid Generation in Computational Field Simulations, pages 773—
782. Mississippi State University, 1996.

H. L. de Cougny. Parallel Unstructured Distributed Three-Dimensional

Mesh Generation. PhD thesis, Scientific Computation Research Center,

Rensselaer Polytechnic Institute, Troy, NY, May 1998.

H. L. de Cougny, M. S. Shephard, and C. Ozturan. Parallel three-
dimensional mesh generation on distributed memory MIMD computers.
Engineering with Computers, 12:94-106, 1996.

R. Van Drieeche and D. Roose. Load balancing computational -fluid
dynamics calculations on unstructured grids. Technical report, Dept. of
Comp. Sc., Katholieke Universiteit Leuven, Belgium.

C. Farhat and M. Lesoinne. Automatic partitioning of unstructured
meshes for the parallel solution of problems in computational mechanics.
International Journal for Numerical Methods in Engineering, 36:745—
764, 1993.

A. Gaither, D. Marcum, and D. Reese. A paradigm for parallel unstruc-
tured grid generation. In Fifth International Conference on Numerical
Grid Generation in Computational Field Simulations, pages 731-740.
Mississippi State University, 1996.

J. Galtier and P.-L. George. Prepartitioning as a way to mesh subdo-
mains in parallel. In Fifth International Meshing Roundtable, Pittsburgh,
PA, pages 107-121, 1996.

45

[10]

[11]

[12]

[15]

[16]

[17]

[18]

[19]

R. Lohner. Progress in grid generation via the advancing front technique.
Engineering with Computers, 12:186-210, December 1996.

Message passing interface forum MPI: a message-passing interface stan-
dard. International Journal of Supercomputer Applications and High-
Performance Computing, 8(3/4), 1994. Special Issue on MPL

T. Okusanya and J. Peraire. Parallel unstructured mesh generation. In
Fifth International Conference on Numerical Grid Generation in Com-
putational Field Simulations, pages 719-729. Mississippi State Univer-
sity, 1996.

C. Ogturan. Distributed Environment and Load Balancing for Adaptive
Unstructured Meshes”. PhD thesis, Computer Science Dept., Rensselaer
Polytechnic Institute, Troy, New York, 1995.

M. Saxena and R. Perucchio. Parallel FEM algorithms based on recur-
sive spatial decomposition i. automatic mesh generation. Computers &
Structures, 45(5-6):817-831, 1992.

W. J. Schroeder and M. S. Shephard. A combined octree/delaunay
method for fully automatic 3-d mesh generation. International Journal
for Numerical Methods in Engineering, 29:37-55, 1990.

M. S. Shephard and M. K. Georges. Automatic three-dimensional mesh
generation by the finite octree technique. International Journal for Nu-
merical Methods in Engineering, 32(4):709-749, 1991.

M.S. Shephard, J.E. Flaherty, H. L. de Cougny, C. Ozturan, C.L. Bot-
tasso, and M.W. Beall. Parallel automated adaptive procedures for un-
structured meshes. In Special Course on Parallel Computing in CFD,
R-807, pages 6.1-6.49. AGARD, 1995.

A. Shostko and R. Lohner. Three-dimensional parallel unstructured grid
generation. International Journal for Numerical Methods in Engineer-
ing, 38:905-925, 1995.

M. L. Simone. A Distributed Octree Data Structure and Algorithms for
Qs omtatfipr AMadoliman nm Dactershmitod AMornnre Penpscenre PhD +hoaia Qeai_

L}l/bblblllfjbb i¥L Ul,l/(/bbll/y vie .L/(/O(/l l/UU/L/L/UI PRI NN AVE] y 4L T ULLOJUI O L X1iLS Ull\JOlO Ubl—
entific Computation Research Center, Rensselaer Polytechnic Institute,
Troy, NY, May 1998.

46

[20] D. Watson. Computing the n-dimensional delaunay tessellation with
applications to voronoi polytopes. The Computer Journal, 24(2):167—
172, 1981. .

[21] P. Wu and E. N. Houstis. Parallel adaptive mesh generation and de-
composition. Engineering with Computers, 12:155-167, 1996.

[22] M. A. Yerry and M. S. Shephard. Automatic three-dimensional mesh
generation by the modified-octree technique. International Journal for
Numerical Methods in Engineering, 20:1965-1990, 1984.

47

