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Abstract

In this paper, a new hybrid parallelizable low order algorithm, developed by the authors for multibody
dynamics analysis is implemented numerically on a distributed memory parallel computing system. The
presented implementation can currently accommodate the general spatial motion of chain systems, but key
issues for its extension to general tree and closed loop systems are discussed. Explicit algebraic constraints
are used to increase coarse grain parallelism and to study the influence of the dimension of system constraint
load equations on the computational efficiency of the algorithm for real parallel implementation using
the Message Passing Interface (MPI). The equation formulation parallelism and linear system solution
strategies which are used to reduce communication overhead are addressed. Numerical results indicate that
the algorithm is scalable, that significant speed-up can be obtained, and that a quasi logarithmic relation
exists between time needed for a function call and numbers of processors used. This result agrees well with
theoretical performance predictions. Numerical comparisons with results obtained from independently
developed analysis codes have validated the correctness of new hybrid parallelizable low order algorithm
and demonstrated certain computational advantages.

1 Introduction

How to effectively and efficiently exploit the concurrent nature of multibody system (MBS) dynamic
behavior simulation has been receiving increasing attention since the first parallel MBS algorithm developed
by Kasahara et al in 1987 [1]. A variety of formulations and dynamics simulation algorithms have been put
forward by individuals whose interests span in a wide range of applications including robotics, vehicular
dynamics, biomechanics, and aerospace. In 1988 Bae and Haug applied their parallel algorithm to an
off-road vehicle with a suspension system that had eight closed loops [2]. Also in 1988, Lee presented a
global O(n?)(the number of computations required per temporal integration step increase a cubic function
of the number of degrees of freedom n) algorithm for the simulation of the behavior of large flexible space
structures [3]. In 1990, Anderson applied his parallelizable O(n) algorithm to an eight appendage spacecraft
with multi-degree of freedom joints [4]. Sharf in 1993 presented a parallel procedure with application to a
manipulator system [5]. Eichberger in 1994 introduced a new parallel O(n) residual algorithm and applied
it to the analysis of motion of an off-road vehicle [6][7]. And in 1993 and 1995, Fijany et al produced
their parallel procedures for spacecraft manipulator arm applications [8][9]. Each of these works have from
their inception been dedicated to exploiting the concurrent nature of many aspects of multibody systems
dynamics analysis, ideally yielding increases in simulation speed.

Recently, Anderson and Duan have developed a parallelizable state space-full descriptor low order
algorithm to improve computational efficiency of MBS [10] [11][13]. The MBS model is constructed through
the separation of certain key system interbody joints so that largely independent multibody subchain
systems are formed. These subchains in turn interact with one another through associated unknown
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constraint loads f. at those separated joints as shown in figure 1. The added parallelism is obtained
through this separation and the explicit determination of associated constraint loads by parallel iterative
methods at a coarse grain level. In other words, an efficient sequential dynamics analysis procedure is
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Figure 1: A multibody system and associated set of subsystems (subchains)

carried out to form and solve equations of motion within each of the subchains and parallel strategies are
used to form and solve constraint load equations between subchains concurrently. The resulting parallel
algorithm may be considered a hybridization of different methods at three levels: 1) A hybridization
between parallel computations and a sequential O(n) dynamics analysis procedure; ) A hybridization
between descriptor form and state space form dynamic system formulations; and, ) A hybridization
between direct and iterative solution schemes at each integration step for the solution of system state
derivatives and constraint loads.

The system equations of motion and constraint equations which result from this procedure have the

following form respectively
M_(t7g) U= K(t, 4,4, _f_g)
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In this formulation, the system mass matrix M is not explicitly formed. Instead the O(n) dynamic
analysis algorithm used considers M implicitly, and effectively produces the equations of motion in the
form of (1a) directly. In equations (la) and (1b), g are the generalized coordinates used to define the
configuration of the MBS, u are generalized speeds “which characterize the motion of the system, and %
are the time derivatives of these generalized speeds (generalized accelerations) which are to be determined.
The matrix RHS (Right Hand Side) consists of all applied forces, stifiness terms, constraint forces, plus
that portion of inertia forces and torques associated with Coriolis and centripetal accelerations. In general,
the elements of matrix RHS are nonlinear functions of the system state and time. L is the constraint
load coefficient matrix and U is composed of nonlinear functions of the state variables. Finally f. are the
unknown constraint load measure numbers which must exist at cut joints between subchains so that the
subsystems each behave correctly as part of the original uncut system.

Systems of equation (la) and (1b) have characteristics of both the state space form and descriptor
form. As is common with standard state space formulation, relative generalized coordinates are used and
the resulting system mass matrix M, if it were actually formed, would be of small dimension and densely
populated. Additionally, as with descriptor formulations, absolute coordinates are used and the resulting
constraint load coefficient matrix I is generally sparse. Once the values of constraint load measure numbers
fe are determined in algebraic constraint load equation (1b), these values are then substituted into (la),
which is a set of ordinary differential equations (ODE), to be solved for the generalized accelerations
4. So the equations (la,1b) represent a set of differential algebraic equations (DAE). This special form
favors the use of hybrid direct-iterative solution schemes of linear equations. The recursive sequential O(n)
procedures takes advantage of direct methods and is used to form and solve equations of motion (la), and
form constraint load equation (1b) for each individual subchain. Due to the sparseness of constraint load
coefficient matrix I, iterative methods may be efficiently used to solve for the constraint loads in parallel.

However, on the negative side, iterative methods can have convergence difficulties and the number of
iterations required for convergence depends highly on the eigenvalue spectra of the system of equations
and the quality of the initial estimate of the solution. Many iterative methods need a good initial guess
to reduce iterative time. Due to these difficulties and uncertainties, care must be exercised to insure that
intelligent (cost and time effective) parallel solution of (1b) is realized. Toward this end, each block row of
I in (1b), which is associated with the degrees-of-freedom (DOF) of a cut joint, is assigned to one processor
and an iterative method, such as Parallel Preconditioned Conjugate Gradient (PPCG) method with Jacobi
iterative method as a preconditioner, is used. In this way, each processor can iterate individually to obtain
part of f. starting from the initial solution estimate. If a good initial solution estimate is not available,
because no information exists on which to form a legitimate estimate may be made (e.g. t = 0, or because
of discontinuous forcing), then a direct method such as LU decomposition may be used to solve constraint
equations (1b). Except when discontinuities in forcing occurs, the state variables from the converged
solution of the previous time step (i.e. a zero order hold [[14]]) are used as the initial solution estimate of
the current time step. If the system is sufficiently well behaved, then the quality of this initial estimate
may be improved markedly using a higher order approximation such as a first or second order hold.

This paper is organized as follows. In section 2, parallel issues of the algorithm are presented. Starting
with the system of equations formed by the hybrid parallelizable lower order algorithm, section 3 addresses
how to combine parallel strategies with the recursive sequential O(n) dynamic analysis procedure to form
and solve the equations of motion, while reducing the associated communication overhead. Then the
parallelization of system constraint load equations will be presented in section 4. In section 5, the new
parallelizable algorithm, which has be coded in C and MPI, will be applied to a multibody chain. The
parallel implementation and performance of this study case on an IBM SP2 distributed memory parallel




computing system will be presented. Finally, discussions and some concluding remarks will be given in
section 6. The details of the derivation of the hybrid parallelizable lower order algorithm are presented in
references [10] [11]. Notational conventions used in this paper are same as those used in reference [11].

2 Parallel Issues Presented in Algorithm

Consider a system as shown in figure 1. For the purpose of this implementation, a system of cut subchains
is used. After separation of certain key joints, constraint forces fz and constraint moments l_f; appear
between the terminal body of the subchain ¢ and the base body of the subchain ¢ + 1 to insure the system
of subchains continuing to behave as the original interconnected systems. Then each subchain may be
assigned to a processor of a parallel computing system as shown in figure 2. This physical parallel model
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Figure 2: Parallelism of Physical System of Subchains

is mathematically represented by equation (la) and (1b).

There are six key computing tasks in this parallel model. These principal tasks are: i ) The formation of
all kinematic quantities associated(1a); 7i) The formation and subsequent solution of those kinetic portions
of the equation of motion (1a) associated with all forces other than the unknown constraint loads; i) The
formation and subsequent solution of those kinetic portions of the equation of motion (1a) associated only
with the still unknown constraint loads; iv) The formation/assembly of constraint load equations (1b);
v) The solution of constraint load equations (1b) for the constraint load measure numbers; and, vi) The
determination of state derivative values and their subsequent temporal integration.

Data parallelism, control parallelism, and precedence constraints or precedence relations which do not
favor parallelism exist between certain of these tasks. Precedence constraints exist between the determi-
nation of all kinematic quantities associated with task ) and all remaining tasks. Also, one would expect
that some form of precedence constraints should exist between the formation of equations (la) and their
subsequent solution for %, mentioned in both tasks i4) and 71). Indeed, one would expect here that a set
of equations cannot be solved until have they have been formed. The use of the O(n) dynamic formu-
lation blurs the distinction between the formulation of the equations of motion and their solution for .
Moreover, the procedure reduces the number of required operations by effectively decomposing and solving




the equations of motion as they are being formed, thus melding the independent formulation and solution
tasks associated with traditional dynamic modeling formulation into a single task. Thus tasks i ) and i)
can proceed in parallel, but the construction of the constraint load equations (1b) in task 4v), must follow
task 444). Also, the constraint load measure numbers ic associated with task v), which must follow iv),
must be determined before state derivatives values of task vi) may be explicitly determined and temporally
integrated.

Additionally, multiple functional units (subchains) apply almost the same operations prescribed in
tasks 7)-iv) simultaneously to elements of a set of data (inertia, forces, kinematic, and geometric quantities)
without necessity of communication. A k-fold increase in the number of functional units (subchains) leads
to an k-fold increase in the throughput of the system during all stages except those associated with some
parts of task iv) and all of task v). In other words, the algorithm may take advantage of data parallelism
for the formation and solution of much of equations (1a) and (1b). Ideally, the algorithm is scalable until
minimum functional unit, which is each single separated body, is reached. Therefore, a control-data hybrid
parallelism is produced in the algorithm. These features of precedence constraints and control-data hybrid
parallelism are roughly presented in figure 3.
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3 Parallel Implementation of Equations of Motion

As mentioned above, there are six tasks associated with the formulation and solution of the equations (1a)
and (1b). In this section, the algorithmic formulations for the parallel determination and solution strategies
used for implementation of the equation of motion (la) will be presented.




In general when one describes the dynamics of a complex multibody system, it becomes necessary to
keep track of quantities associated with key points J; of body By, belonging to subsystem i, as measured by
an observer in some reference frame N. To aid in this description the rigorous notation shown in figure 4
is adopted.

Subchain i
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Figure 4: Notational convention

Based on Kane’s dynamic formulations [16], generalized speeds u'* associated with the of k-th degree-
of-freedom of subchain ¢ may be chosen to describe motion of subchain ¢ for a system shown in figure 1
(k=1,2,..,v" and i = 1,..., Nsub). v is the total number of degrees of freedom (DOF) of subchain ¢ and
Nsub is the total number of subchains. Then as defined in reference [10][11], generalized accelerations can
be expressed in the form

Wk =gk 4k (k=1,2,..,0") (2)
where the scalar quantity 5% is that portion of the generalized acceleration which is associated with the

unconstrained motion of the system, while ¢* is that portion of the generalized acceleration which is

explicit in the unknown constraint loads.
Quantity ¢** can be recursively determined by the relations
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While quantity n* can be determined by using the recursive relations
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with boundary condition 7° =0 € R6*L.
In equation (3), quantities D,;’Bk and DbZB’c are shift-triangularized and backsubstituted constraint

Boolean matrices, while quantities ]“6 and fi(” "+1) are constraint load components acting on base body

and terminal body of subchain 4, respectively, as shown in figure 2. In equation (4)-(8), matrix iBy '\ 5 i(s )
is the composite inertia matrix of body k of subchain i, and is recursively determined by

T e RS, (10)
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Matri i(9k) . . . . . . . .
atrix P'\Bx/ is the partial velocity (or free modes of motion [12]) matrix associated with DOF of joint k
of subchain 4. The matrix iB+—1 §*Bk appearing in (6)-(9) is a linear transformation or “shift” matrix, which
shifts forces and inertias from the inboard joint of body & to an equivalent force/moment system acting on
the inboard joint of body k — 1. Scalar quantity M, fc . in (4,5,8), is the diagonal element of the system mass
matrix M associated with equation (la) affiliated with the DOF k of subsystem 1. 'This quantity may be

recursively determined from
‘ T
i (g(é’;)) (B (Bk) ‘ ( ') (11)

While the matrix Bs-1 75t is the triangularization operation matrix which recursively triangularizes the
equations as they are being formed and is determined from
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Matrices 7iF and 7% in(3)(5) are the shift-triangularization matrices, which shift constraint measure num-

bers f and f’(” +1) from their original acting point on the base body and terminal body, respectively,
to the prox1ma1 joint pomt of body k during triangularization procedure of the hybrid O(n) algorithm.

Finally, the quantity E B in (8) is the composite force matrix of body k of subchain ¢, and is determined
recursively from

Fz Fsz _|_ 1BszBk+1 i —ZBk'Fl c RGXl. (13)

Within subchain 4, all of quantities in equation (2)-(13) except the constraint load measure numbers are
formed in a sequential recursive manner using the hybrid O(n) procedure [10][11]. Since each subchain is
assigned to a processor as shown in figure 2, formations of these quantities associated with each individual
subchain are completely independent. In the other words, they can be produced on each processor in
parallel at a coarse grain level without necessity of message passing between processors or subchains. State
variables, however, which describe relative motion between subchains, and constraint load measure numbers
are coupled between adjacent subchains. These quantities play a key role of liaison between subchains so
some modest communication costs will be expended for them. To reduce communication costs associated
with these quantities, a parallel strategy of boundary data overlapping between subchains or processors
is introduced. This approach is similar to that used in the fields of finite difference methods for solving
Laplace’s equation by using a red-black decomposition [17]. To do this, an imaginary body is introduced
and attached to terminal body of subchain 1 to Nsub — 1 as shown in figure 5. The imaginary body
takes the state variables between subchains. These state variables between subchains may be obtained by
using the difference between state of the terminal body of subchain ¢ and state of base body of subchain’
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Figure 5: Message Passing Using Boundary Data Overlap

#’s distal subchain, projected on to the free mode of motion of the actual connecting joint. Then these
differences, which are state variables values between subchains, are assigned to the imaginary body. In this
way, only processors associated with adjacent subsystems exchange information through message passing.
If message passing interface (MPI) is used, then only simple point to point communication is needed to
accomplish this. In other words, the state variables of base body of subchain/processor ¢ will be sent to
subchain/processor 4 — 1, and subchain/processor i — 1 will receive these messages from subchain/processor
i at the beginning of each integration time step as indicated in figure 5.

Equations (2)-(13) are algorithmic formulations of equations of motion (1a) for the whole of system
(i =1,..,Nsub and k = 1,...,v*). Since a state space sequential O(n) dynamics analysis procedure is
used, the formatlon and solutlon of equations of motion of each subchain can be performed simultaneously.
Once the constraint load measure numbers f Zcﬁ and f7 i('+1) yre determined, current generalized accelerations
speeds can be obtained through the use of these equatlons concurrently on each processor. Further, both
the generalized speeds and generalized accelerations may be integrated on each processor in parallel to
obtain updated state variables for next time step.

4 Parallel Implementation of Constraint Equation

There are two key tasks which should be considered for parallel implementation of the constraint load
equations. The first is the parallel formation of the constraint load equations, and then the parallel
solution of these constraint equations.

4.1 Forming Constraint Equation in Parallel

In section 2 and 3, it has been shown that formation of constraint load equations and formation of equations
of motion are carried out concurrently. As shown in references [10][11], the constraint load equations, which
define constraint conditions of separated joint between subchain 7 and subchain i + 1, can be express in
the form

vt ) vt 6 o
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Equations (14)-(21) are algorithmic formulations of constraint equation (1b) for the entire subchain
system. In equation (14), quantities f; (i=1)n*= fm and f (i+1)n* are the constraint load measure numbers
associated with the separated joints between subchaln i—1and i, subchain ¢ and 7+ 1, and subchain 4 +1
and 7 + 2, respectively. Matrices Q’k and _G_ are those portions of the constraint coeflicient matrix
associated with outboard joint of terminal body and inboard joint of base body, if a subchain is separated
at both ends. These quantities play the role of implicitly shifting the DOF’s of the entire subchain to
the separated joints and project these DOF’s onto the constraint subspace associated with the separated
joints Matrix Q' ***1 in equation (17) is the orthogonal complement to the free mode of motion matrix

v1+1
B Bvit1”. The joint orthogonal complement o '+1) defines the constralnt subspace associated with the

sepa,rated outboard joint on terminal body of subchain 7. Matrices L¥ and LiF in equations (15)-(20)
are intermediate quantities, which are introduced for the convenient expression of recursive relations in an
algorithmic way. In equation (21), quantity AiB”i is the acceleration remainder term [16], which represents
all kinematic acceleration terms of the terminal body of subchain 1, which are not explicit in the elements
of 4. Similarly, the quantity iBuiAzB”“” is the acceleration remainder term matrix, associated with all of
the terms of relative acceleration matrix not explicit in us of imaginary body v* +1 relative to the terminal
body v of subchain i.

If equation (14), which is associated with a separated joint 4, is assigned to a processor, then Nsub
processors are needed to form constraint equation and Nsub — 1 processors are needed to solve constraint
equation for a chain system in parallel since inboard joint of base body of subchain 1 is fixed on Newtonian
frame as shown in figure 2 and 3. With this in mind, from (14) it is clear that there is some modest
message passing needed between adjacent processors or subchains. For the sake of convenient use of
parallel strategies, these message passings are sorted into two groups. One group are messages which are
passed for the formation of constraint load equations (1b), such as quantities G(H'l)1 (“'1)3 Lotk

Agiﬂ)Bl and so on. The other group are messages, which are passed for the solution of constraint equations,
such as f0=Dn'™" apd pU+LA" T
N o Dk
In the hybrid parallelizable O(n) algorithm [10] [11], quantities AlTHE , G D, DB and Dk
are formed at different stages. The acceleration remainder matrix A£z+1)31 isa kmematlc quantity produced

during task i) shown in figure 3, while quantities G, (H'l)k BB and nlitDk are determined in task i)
Once determined, these quantities are not needed unt11 the assembly of the constraint equations (14) in




task iv). Consequently, these quantities may all be easily saved then used as needed since only modest
storage are needed. This offers the direct benefit that each individual processor can largely perform
the hybrid O(n) procedure independently and in a highly data parallel manner through four stages of the
procedure without any communication. Some message passing strategies, such as grouping message passing
or buffered message passing, can be used in this context to reduce overall costs associated with time of
starting up communication. At the stage of assembling constraint load equation (1b), these quantities are
passed from subchain/processor i to subchain/processor 7 — 1. Since only adjacent subchains/processors
need such communication, a relatively simple message passing strategy, as indicated in figure 6 is needed
for the formation of constraint load equation (1b).
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Figure 6: Group Message Passing for Formation of Constraint Equation (1b)

If a more general system topology is considered (e.g. one possessing multiple branches and/or closed
loops) then the relation between processors becomes somewhat more involved, being governed by the

relation for processor/subsystem %
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= Proximal subchain to subchain i, (j = pr[i]),
= Body (DOF) being considered,

Distal subchains to subchain ¢, (I = dist[i]),
Distal subchains to subchain 7, (m = dist[j]).

3 —_— T .
Il

MPI was chosen to accomplish the presented parallel computing strategies. Two outstanding features
of MPI [18] are that it is portable and independent from parallel computing systems, as well as easy to
implement. There are three mechanisms for grouping individual data items into a single message in MPI
[18]. These methods are: ) the count parameter, ii) derived data types, and 4 ) MPI_Pack/MPI_Unpack.
Each of these has its own advantages and disadvantages. Since quantities AEHDBl, Qg”l)k, &(Hl)Bl,
n(i+1)k , and O +1) a1l have the same data type, the simplest method is the use of the count parameter,
to group and send these messages. To do so, an intermediate array is formed on each distal processor to be
used to keep all these quantities consecutively addressed. A count parameter is used to count total length
of message. Once the grouped message is received by each proximal processor, different segments of this
message will be distributed and assigned to the appropriate matrix quantities on that proximal processor.

4.2 Solving Constraint Load Equations in Parallel

Once the constraint load equations are formed, a parallel iterative method can be used to solve them for
the unknown constraint load measure numbers f,. For current systems, a special parallel preconditioned
conjugate gradient solver (PPCG) has been developed to solve constraint equations (1b). One of features
of this PPCG solver is its adaptability to the changes of topology of multibody systems. The detailed
discussion about this PPCG solver will be given in another paper. A flow chart indicating the parallel
implementation of a function call to hybrid O(n) algorithm is presented in figure 7.

5 Numerical Results of Parallel Implementation of a Multibody Chain

The algorithm associated with this work is coded in C with MPI, and has been run on Rensselaer’s IBM
SP2 distributed memory parallel computing system. The numerical experiments reported here have been
designed to demonstrate:

1. The validity of the parallelizable hybrid lower order algorithm.

2. The computational efficiency of the algorithm as a function of the numbers of cuts (processors used)
in the simulation of the system dynamic behavior.

For this purpose, the modeling and simulation of a 16 body chain has been chosen as shown in figure 8.
Each body of the chain is identical, and bodies are connected to each other by simple revolute joints. The
properties of each body are: mass mF = 1.0 kg; inertial I*¥ = [1,0,0;0,1,0;0,0,1] kg - m?, position vector
5 =[0,—2.0,0] m; position vector 7 = [0,—1.0,0] m. The initial conditions of the system are represented
by generalized coordinates ¢* = 0.1745 rad (k=1,...,12) and ¢* = —0.1745 rad (k=13,...,16), Generalized
speeds u* = 0.0 %.

The numbering of each body/joint increases sequentially from the base body/joint 1 to terminal
body/joint 16, and five different cases of joint separation are applied to this chain system.

case 1. 0 cut (pure sequential O(n) procedure),

case 2. 1 cut (chain separated into 2 subchains at joint 9),

case 3. 3 cuts (chain separated into 4 subchains at joint 5, 9 and 13),

case 4. 7 cuts (chain separated into 8 subchains at odd number of joint starting with 3),
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Figure 7: Flow Chart of Hybrid O(n) Algorithm

case 5. 15 cuts (chain separated into 16 subchains at all joints except joint 1).

The time histories of the generalized coordinates ¢* are shown in figure 9 and agree perfectly with
those produced by the commercial dynamics analysis software AUTOLEYV. Motion traces associated with
each body of each subchain for case 3 are shown in figure 10. From figure 10, it can be seen that the

state variables associated with each of the four subchains are updated in parallel. Due to constraints
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ﬁj = unit vectors fixed in Newtonian frame (j=1,2,3)

Ak
bj=unit vectors fixed in body & (j=1,2,3)
5= position vector from proximal joint J to distal joint Ju;) of body k

7* = position vector from proximal joint J; to mass center of body k

(B) Geometric parameters of body &
Figure 8: A 16 Body Chain

imposed between subchains, the motion of outboard tip of each proximal subchain must be exactly same
as the motion of inboard tip of each distal subchain. If the motion trace of each subchain is superposed on
another, the motion trace of entire chain can be obtained as shown in “Entire Chain” portion of figure 10.
Figure 11 indicates the time cost of a function evaluation of the hybrid parallelizable
O(n) algorithm as a function of the number of processor used. The experimentally obtained timing
data agrees well with the theoretically anticipated computational cost of

n nm
Cost = CIF + CZ_]W +m7(Cs + Cylogy (N, — 1)) (23)
P P
n : Total number of system degrees of freedom
m : Total number of system constraints
N, : Number of processors used
v : Parameter describing iterative solution scheme performance

C; : Coefficients (1 =1,...,4).

The nature of the algorithm is such that as a greater the number of joints are separated (= N, — 1), the
subsystems become smaller and less of a computational load exists on each processor. Thus, an overall
system saving in computational time costs will arise from distributing the load over additional processors if
the savings achieved offset the added expenses associated with communication overhead and the iterative
solver. If the number of iterations varies only slightly with the increasing of dimension of constraint equation
or number of cuts, then communication overhead will mainly determine the computational efficiency of the
algorithm.

13




4,,95.9g, 9,35 Time histories for case 3 Gyr G50 Q195 91y Time histories for case 3

o
@

P q2

...... a5
0.6f — G|

- Gy
0.4- / -

o
[S)

Generalized coordinates q (rad)
o

Generalized coordinates q (rad)

-02
-0.4
o 1 2 3 s 5 -06 : y 3 :
0 1 2 3 4 5
Time t (sec) Time t (sec)
d,,4,,4q,, 4,5, Time histories for case 3 A, Yg. 4,50 9,4, Time histories for case 3
2 . . . : 15 . — . .
- qa
..... q,
1.5¢ — | !
T q15

ol
o

o

!
4
13

Generalized coordinates q (rad)
I

Generalized coordinates g (rad)

1

o
T

.

i
ok
o
S
o
g
(3]

2 3 2 3
Time t (sec) Time t (sec)

Figure 9: Time Histories of Generalized Coordinates

Since a Parallel Preconditioned Conjugate Gradient method is used, the calculation of some norm
values are needed at each integration time step. MPI uses a bitree communication architecture to realize
the determination of the values of these norms. Therefore, a logarithmic relation, such as that indicated in
(23), should appear between numbers of cuts made and time of function evaluation needed. Figure 11 shows
how the fitting curve associated with the theoretical number of operations (23) agrees with computational
times obtained from controlled timing runs.

For case 3, the hybrid algorithm was implemented involving 3 cut joints with both sequential and parallel
versions of the resulting simulation code being produced. These codes were in turn run both sequentially
on a single processor and concurrently on four processors of the same parallel computing system. This
results in a factor of Speedup = 3.75 for parallel implementation relative to sequential implementation
of the algorithm for this same case. The penalty here is that the number of iterations required in the
iterative solution of (1b) increases as the number of algebraic constraints m (~proportional to the number
of processors in this formulation) raised to the power ~, where for this system and the preconditioning
used, gamma was found to be v = 0.739. Indeed, the majority of the CPU time associated with this
simulation was spent in the solution of the constraint load equations (1b). Consequently, any increase in
the number of iterations required to solve of the constraint load measure numbers has a very direct affect
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Figure 10: Motion Trace of Entire Chain and Each Subchain of Case 3

on the CPU time required to perform this simulation.
The number of iterations required in the solution of (1b) depends in a variety of factors including the
eigenvalue spectra (and thus increase the condition number)of the constraint load coefficient matrix I',
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the effectiveness of the preconditioning, the quality of the initial estimate for the solution values, and the
convergence criteria used. The eigenvalue spectra is a function of the system being considered, but for
a given physical system becomes more broad with the increased dimension of I', and with the existence
of branches in the topology of the physical system. The performance of the preconditioning also greatly
influences the rate of convergence, but the cost of determining superior preconditioning may be high and
must also be considered. Also, the number of iterations required can be greatly reduced with high quality
initial estimates for the solution value. If the system is reasonably well behaved, very good initial estimates
can be obtained using a second order extrapolation (second order hold). Finally, the tighter the convergence
tolerance, the more iterations which can be expected.

The results indicated in figure 11 indirectly demonstrate an advantage of using this hybrid state-space
O(n) - full descriptor algorithm. Specifically, this algorithm can adjust the dimension of the constraint
load coefficient matrix I appearing in (1b), to the minimum necessary to achieve the desired (time optimal)
level of coarse grain parallelism. The code associated with a particular processor has no constraints other
than what is necessary for parallelism purposes and is very efficient. Thus the number of processors used
(~proportional to the dimension of I') can be easily adjusted to produce a simulation which is optimum
with respect to minimizing run time.

6 Summary and Conclusions

Parallelism and parallel implementation of a hybrid parallelizable O(n) algorithm have been presented in
this paper. A hybrid data-control parallelism is developed to carry out six computational tasks. These
tasks are parallel determination of all kinematic quantities associated with each subsystem; the formation
and solution of equation of motion (la)(constrained and unconstrained portions); formation and solution
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of constraint load equations (1b); and the determination and integration of state variables. These tasks are
further hybridized at three different ways resulting in: A hybridization of state space and descriptor form
dynamics analysis formulations; A hybridization between sequential O(n) dynamics analysis procedure and
parallel strategies; and, A combination of direct and iterative linear equation solution methods to achieve
high overall computational efficiency. Due to these hybridizations, the algorithm can offer advantages of
both the sequential O(n) procedure and parallel computation. Specifically, benefits of the algorithm lie
in its suitability for parallel implementation for the explicit determination of the constraint load measure
numbers, which can be obtained using parallel iterative techniques. Further these loads may be used as
a liaison between subchains in the formation of constraint load equations. This is in turn used in the
formation and solution of equations of motion, which are performed sequentially using O(n) procedure on
each single processor, but concurrently between processors using data-control parallelism. This intelligent
sequential and concurrent hybridization offers considerable flexibility. Therefore, the algorithm can easily
accommodate the available number of processors while maintaining high efficiency. An O[—]G—p + TIL\/_T? +

%% + m7logz(N, — 1)] [19] performance will be achieved with N, processors for a chain system with n
degrees of freedom and m constraints due to cutting of interbody joints. The iterative solver performance
parameter y depends on the effectiveness of the preconditioner, the quality of the solution initial estimate,
the eigenvalue spectra of the constraint force coefficient matrix, and the convergene criteria used.

The algorithm has been validated and implemented in both sequential and parallel computer simula-
tions. Through the use of different numbers of joint separations and theoretical work it is concluded that
simulation time should show a logarithmic dependence with the numbers of cut joints. Also, a factor 3.75
speed up of parallel implementation of the algorithm with 3 cut joints on 4 processors was be obtained,
relative to sequential implementation of same case on a single processor of the same parallel computing
system. Finally, iterative solver performance and improvement is key to making real gains in simulation
speed.
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