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ABSTRACT

An adaptive, parallel computational fluid dynamics (CFD) technique is developed
to compute rotor-blade aerodynamics. For this purpose an error indicator based on
interpolation error estimate is formulated and coded into an adaptive finite element
framework. It is shown that the error indicator is effective in resolving the global
features of the flow-field. Furthermore, for efficiency and problem size considera-
tions, once the interpolation errors are reduced to acceptable levels, the adaptive
refinement is done only in regions affected by the vortical flows. To do this, a novel
vortex core detection technique is used to capture vortex tubes. The combination of
interpolation error estimate and vortex core detection technique proved to be very
effective in computing vortical flow-field of rotor blades. Example adaptive, parallel
calculations of hovering rotor blades, requiring 1-3 million tetrahedral elements, are
presented.

Finally, an extension of the current finite element CFD technology to rotor-
blade aeroelasticity calculations is presented. For this purpose a CSD (Computa-
tional Structural Dynamics) procedure is coupled with the adaptive finite element
CFD solver. Using the CFD-CSD coupling methodology, a hingeless stiff in-plane
rotor blade is analyzed for its aeroelastic deformations and vibration frequencies
in hover flow conditions. Calculated results are compared against experiments and

similar numerical studies.
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CHAPTER 1
INTRODUCTION

Ever since Wilbur and Orville Wright showed the world the possibilities of powered
flight, man’s lifelong dream has become a reality. Today, almost a century after
the Flier-I took-off from the sand dunes of Kill Devil Hills (NC), our knowledge
in aeronautics and aerospace has lead us even beyond the boundaries of earth’s
atmosphere.

Fixed-wing aircraft which dominated the civilian and military applications
since the beginning of century, slowly yielding the way to other forms of lift gen-
erating machinery in the later years of the first powered flight. In particular, the
concept of Vertical Take-Off and Landing (VTOL) compelled great deal of attention.
Although the sketchy details of a machine that can fly vertically were explored even
at the time of Leonardo Da Vinci, the technology that made VIOL flight a reality
came only after two decades of the Wright Brothers success. Among thousands of
other inventions, Thomas Edison envisioned and experimented with VI'OL, realiz-
ing that no such machine would be able to fly until the development of a sufficiently
lightweight engine. Around 1900, the invention of the internal combustion engine
opened the road to airplane flight and started the early developments in helicopter
flight.

During 1920’s and 1930’s the “autogiro” was developed by the Spanish Juan
de la Cierva. The autogiro was the first practical use of the VTOL idea. During
this period of time the concept of controlled flight and the problems associated with
it started to establish. In 1941, Igor Sikorsky built the VS-300, a helicopter with
a single three-bladed main rotor and a small anti-torque tail rotor. Lateral and
longitudinal control of VS-300 was by the main rotor cyclic, and the directional
control was by means of the tail rotor. In the meantime, Lawrence Bell built his
model, called Bell 47, with a two-bladed teetering main rotor and a tail rotor using
the gyro stabilizer. The Bell Model 47 was the first helicopter to receive an American

certificate for air-worthiness in 1947 [4].




In 1950’s, an important development was the application of the turboshaft
engine to the helicopter, which replaced the reciprocating engine. Kaman Aircraft
Company’s K-225 helicopter was the first example with turbine power. Since that
time the turboshaft engine has become the standard power—plant. for most heli-
copters.

In the second half of the 20th century, the need to design advanced and efficient
helicopters also created the need to address some of the important problems of rotor-
craft. The transonic flow on the advancing side and the dynamic stall problem on
the retreating side of the main rotor, influence of rotor wake ofl the fuselage, blade-
tip-vortex interactions, aeroelastic stability, acoustic noise and vibration are some
of the problems that we can mention here for today’s advanced rotor-craft (see
Figure 1.1). Some of these problems were solved by experimental and analytical
methods and this trend still continues today. Nevertheless, with the emergence and
growth of the digital computer, numerical methods are being used to help solve

aerodynamic, aeroacoustic and aeroelastic problems of advanced rotorcraft.

AEROELASTICITY
VIBRATION & NOISE

Figure 1.1: Generic aerodynamic problems of an advanced rotorcraft.



1.1 Literature Survey

The performance of a rotary-wing aircraft is often reduced by a host of aero-
dynamic, acoustic and vibratory problems. Transonic flow, retreating blade stall,
tip vortex and wake are some of the major aerodynamic factors that have to be
dealt with during the design process of advanced rotorcraft. As stated by F.X.
Caradonna [1] “...because of such flow complexity the aerodynamic design of heli-
copters is traditionally an empirical craft that often relies on experience and test
more than on detail analysis.” This and many other similar statements motivated
us to attack the challenges of rotorcraft aerodynamics and develop methodologies
that can be used during the helicopter design process. Steps taken in the past have
actually helped today’s engineers develop state-of-the-art techniques that take us
closer to solving the problems of advanced rotorcraft as accurately as possible. In-
creasing computer power and our expanding knowledge in combining mathematical
theories with advanced numerical methods, have created the research area referred
to as computational fluid dynamics (CFD). Over the years, both fixed-wing aircraft
and rotary-wing aircraft designs have benefitted from the fast pacing developments
of CFD. From an objective point of view, it is this author’s belief that the cur-
rent trend in CFD will likely gain more momentum over the next decade and make
today’s new computational methods tomorrow’s preferred design tools.

The development of CFD methods for rotorcraft aerodynamics can be (;ollected
into two groups: Inviscid methods and viscous methods. Historically, the majority
of the CFD techniques were developed to solve inviscid flow equations. Limited
computer power has been a detrimental factor to select some simplified form of the
Navier-Stokes Equations that describe the motion of a true fluid.

Boundary-integral methods have traditionally formed the basis of computa-
tional fluid dynamics techniques. These methods relied on the ability to superim-
pose various elementary solutions of Laplace’s Equation, such as the source, the
doublet and the vortex. Early works of Hess and Smith [2] also marked the birth of
CFD techniques in the beginning of the digital computer era. The procedure of Hess
and Smith used a discrete representation of the body surface and the wake (known

as panels) and expressed the source, the doublet and the vortex as discrete summa-



tions which yielded a system of linear equations that can be solved by either direct
or iterative techniques. These methods are usually referred to as “panel meth-
ods”. Further simplifications of panel methods, known as “lifting-line methods”,
have also been used widely both in fixed-wing and rotary-wing aerodynamics calcu-
lations. In comparison to panel methods, lifting-line methods ignore the thickness
(source) effect of wings and rotor-blades. The panel method codes “VSAERO” [5]
and “PANAIR” [6] are still favorite computational methods of fixed-wing aircraft
industry because of their relative efficiency over Euler or Navier-Stokes flow solvers.

Rotorcraft aerodynamic calculations, and especially hover problems, are very
sensitive to the accuracy of the wake prediction. Most panel methods require a
specified wake geometry. Because of this, most of the helicopter wake problems
were treated by “vortex-lattice-methods” where the velocities were computed using
the Biot-Savart law. The Scully vortex-lattice method [7] which is incorporated
in the CAMRAD [8] comprehensive rotor analysis code, is the most widely used
of such codes. Despite the efficiency and ease of use of both panel and vortex-
lattice methods, the empiricism in the wake modeling and the inability of such codes
to handle discontinuous solutions, such as shocks, were the primary reasons that
motivated the development of methods based on full potential, Euler and Navier-
Stokes equations.

Since early 1970’s, methods based on full potential equations were developed
to handle the transonic flows of fixed and rotary-wing aircraft. In the helicopter
industry, the codes ROT22 [9] and FPR [10] were the widely used examples of such
developments. However, the relative errors of full potential codes in predicting the
shock location and their inability to handle unsteady effects limits their accuracy and
load-prediction capability. Later, both full potential and panel methods are coupled
with boundary layer methods to improve the prediction of loads. Extensive works of
Cebeci [11] in coupling the potential flow codes with various boundary layer methods
produced several industrial codes. One major shortcoming of the coupled inviscid-
viscous calculations was their inability to handle high angle of attack calculations
with large separation regions (e.g, deep dynamic stall).

The importance of the wake in rotorcraft aerodynamics has motivated many



researchers since the 1980’s to develop “unified flow methods” that capture both
the near-field and far-field effects of vortical flows. First examples of unified meth-
ods using Euler’s equations showed how difficult it is to get good correlation with
experiment due to numerical dissipation [12]. It has been noted in these early cal-
culations that the inherent dissipation in the numerical codes caused the wake to
dissipate to such an extent that the induced inflow was under-predicted. Most of
these initial calculations were done using central-difference schemes on structured
meshes. Later on, in an effort to reduce the effects of dissipation, upwind-difference
methods were introduced [13]. The main conclusion reached in these preliminary
results was that grid density was not sufficient to capture the actual wake formation
observed in experiments. Designing less dissipative high-order numerical schemes
using sufficiently fine grid to model the hover problem were clearly needed. During
the same time, Steinhoff [14] re-examined the full potential solver approach, since
it does not have any numerical dissipation problems, and arrived at a new method,
called “vorticity embedding”, which specifies the shed circulation such that it freely
convects through the computational grid. The main idea used in the vorticity-
embedding technique was to decompose the total velocity into the sum of potential
velocity and the velocity induced by a known vorticity field. The shed wake be-
hind the blade in vorticity-embedding methods were constructed using a process
called marker trajectory integration. Even today, the vorticity embedding methods
are used extensively to solve both hover and forward flight problems of rotorcraft
flows [15] and the results were impressive.

With the increased computer power and storage in 1990’s, the development
in unified flow methods using both Euler and Navier-Stokes solvers continued. Suc-
cessful applications of Navier-Stokes equations to rotor-blade hover flows were done
by Srinivasan et. al. [16] and Wake et. al. [17]. As an example, the mesh size used in
[17] was 918,000 points (a structured finite-difference mesh). Later on, Admed [18]
applied the solution technique of [16] to forward flight cases using the over-set grid
approach. It has been concluded by Srinivasan et. al. [16] that alternative ap-
proaches to solve rotor-blade flows must use adaptive techniques that capture both

wake and the tip vortex.



One of the early applications of adaptive solution techniques for rotor-blade
flows is due to Strawn et. al. [31]. Reference [31] analyzed a two-bladed rotor
system in hover using an unstructured grid that was obtained by tessellating the
hexahedral cells of a finite difference grid to linear tetrahedral elements. During the
solution process they used vorticity magnitude as the error indicator in the flow-field
to resolve the wake and the tip-vortex structures. Although vorticity magnitude can
be used as an indicator of wake and vortical flow regions, it does not reflect the error
in the solution. To formulate an error indicator we should examine the finite element
theory [36]. One possible avenue in designing an error indicator for flow problems
is to use the interpolation error estimates [36] [55]. In this thesis, a simple error
indicator derived from the interpolation error estimate for linear finite elements is

going to be explained and applied to rotor-blade flows in hover.

1.2 Overview

In chapter 2 the Euler’s equations in conservation form are introduced. First, a
fixed frame of reference form of the Euler’s equations are presented, then the rotating
frame of reference is explained in its general from, and then the Euler’s equations -
are transformed from fixed frame of reference to rotating frame of reference for the
steady-state analysis of rotor blade flows in hover conditions. The Euler’s equations
are re-written in terms of entropy variables to obtain a symmetric form. A brief
explanation why we use this transformation is given.

Chapter 3 is devoted to the explanation of a Galerkin/least-squares finite ele-
ment formulation of the Euler’s equations of previous chapter. The notion of space-
time formulation and its functional spaces are introduced and illustrated. A formal
definition of Galerkin/least-squares (GLS) finite element formulation is presented.
Individual terms of the GLS formulation are stated. Consistency, stability and ac-
curacy of the GLS formulation is mentioned. Furthermore, a model equation (pure
advection equation) is used to examine the accuracy and stability of the GLS for-
mulation. For this model problem, an optimal least-squares parameter is obtained
and it is shown that GLS formulation is stable. The three-dimensional extensions

of both least-squares operator and discontinuity operator are briefly presented.



In chapter 4 an overview of adaptive solution techniques in CFD is presented.
After the introduction of full and semi-norm, a general form of local interpolation
error is given. Based on the this local interpolation error, an error indicator is
developed. This error indicator is the L2-norm of second derivatives of the function
of interest. In relation to this error indicator, two methods are presented to calculate
the second derivatives on linear finite elements. |

In order to show the convergence rates of the error indicator two model prob-
lems are presented. First of these two model problems is the re-circulating incom-
pressible flow in square cavity. It is shown using this model problem that quadratic
convergence rates are achievable using the error indicator. The second model prob-
lem is the compressible conical flows. Results for the compressible model problem
has shown that convergence rate was a little less than the quadratic rate. This is
probably due to non-linearity of the model problem as well as the adapted mesh
being too diffuse for the shock wave.

To increase the efficiency of adaptation procedure, a local adaptation proce-
dure is suggested. In particular, flow regions which are affected by the blade tip

‘vortex are targeted for local mesh adaptation. For this purpose, a novel vortex
core detection technique is combined with the error indicator to achieve an efficient
adaptation procedure.

In chapter 5, a numerical model for hovering rotor blades is presented. The
model relies on one-dimensional momentum theory which is given in this chapter.
A combination of momentum-theory and a potential sink is used to represent the
flow-field of a hovering rotor system. Computational boundaries of the model prob-
lem are defined. Weaknesses of current hovering blade BC’s are summarized. One
of the weaknesses of the existing hover BC’s is that the formulation requires ex-
plicit knowledge of thrust coeflicient. For rotor systems where the thrust is not
know a priori, this creates a problem. Fixing the thrust coefficient also fixes the
circulation around the blade to a certain value. To circumvent these problems an
iterative inflow-outflow hover BC approach is suggested and implemented. This new
boundary condition iteratively changes the magnitude of the inflow-outflow veloci-

ties based on the calculated value of the thrust coefficient. This way, the circulation




around the blade is not fixed but it rather relaxes and reaches to steady-state with
advancing solution steps.

Further enhancements to hovering blade BC’s are suggested. One issue that
is investigated is the outflow BC in hover. Currently, the outflow boundary for
a hovering blade is based on the one-dimensional momentum theory, which states
that the slip-stream contraction ratio should be 1/ v/2 far below the blade. In prac-
tical calculations we place the outer boundaries at a finite distance from the rotor.
Therefore, when the outer boundaries are close to the blade, assumption of one-
dimensional momentum theory may not hold. That is, the slip-stream contraction
ratio may be slightly bigger or smaller than what momentum theory tells us. To
tackle this problem an approach based on normal pressure gradient is suggested.
This approach looks at the normal pressure gradient at the outer boundary points.
Based on the sign of the normal pressure gradient a decision can be made as to
whether a point is an inflow boundary or outflow boundary.

In chapter 6, rotor blade flows in hover conditions are studied. First a two-
- bladed rotor system (Caradonna-Tung) is analyzed. For this case, four levels of
- mesh adaptation is performed to compute the pressure distributions and the tip
vortex. A second rotor blade studied is the UH-60A rotor system. For UH-60A,
two hover conditions are analyzed, zero thrust and design thrust. For both cases,
the importance of tip vortex resolution is emphasized. At zero thrust, the effect of
tip vortex on calculated sectional thrust distribution is less in comparison to design
thrust case. For the design thrust case, we found that the calculated sectional thrust
distribution is much more accurate with adaptive methods. The calculated torque
distributions showed larger discrepancy for the design case because of the lack of
viscous effects in Euler’s equations.

Finally, a study of the effect of circulation-control on the Caradonna-Tung
blade is investigated. For this purpose, the lower surface of the blade is modified
such that near the tip of the blade a rectangular patch of area is used as a region
where a normal (to the blade surface) flow (transpiration) is injected into the flow-
field. The magnitude of the transpiration velocity is chosen to be 20% of the tip
speed of the blade. It is found that the transpiration velocity changes the thrust




loading of the blade near the tip in comparison to the baseline Caradonna-Tung
blade.

In chapter 7 an aeroelastic coupling procedure is suggested to calculate the
static deflections of soft rotor blades in hover conditions. To calculate the structural
response of the blade, a CSD solver (DYMORE) is coupled with the adaptive CFD
solver explained in the earlier sections. To handle the information exchange between
the CFD and CSD, a simple dimensional reduction/upgrade approach is developed.
A model rotor blade is described and analyzed to calculate its equilibrium deflections
in hover. The CFD-CSD coupling procedure is applied to calculate the flapwise,
lead-lag and torsional deflections of the blade. The fundamental rotating frequencies
of the model blade are calculated and compared with both experiments and similar
numerical calculations of others.

Finally, chapter 8 presents an overall discussion of the adaptive hover calcu-
lations and CFD-CSD coupling procedure. Recommendations for future enhance-
ments to extend the current analyses to include viscosity effects and be able to do

calculations in forward flight conditions are made.




CHAPTER 2
PROBLEM STATEMENT

2.1 Governing Equations

Conservation laws governing the motion of an inviscid flow can be obtained
by considering the conservation of mass, momentum and energy in an infinitesimal
control volume (dz; - dzs - dz3) [19]. To exemplify this derivation process, consider
the conservation of mass density, p, as shown in Figure 2.1. Stated in the context
of differential control volume of Figure 2.1, conservation law requires that the time
rate of change of p should be equal to the net rate at which mass enters the control
volume. Mass enters and leaves the control volume through gross fluid motion.
Transport due to such motion is often referred to as advection. Following from
Figure 2.1, the rate at which mass enters the control volume through surface dxs —
dr; may be expressed as {puj)dzodrs, where u is the mass average velocity in
direction. The mass leaving the control volume from the opposite surface may be

expressed as

dpuy
|:(pu1) + 1,

d$1} dxodzs (2.1)

Using similar results for zo and z3 directions, the conservation of mass requirement

+ 2
pUg aXa(pu3) d>(3

dx |
+|-2-
;P Bx2(pu2)dx2
pu;, — — 1 epu, + O
! dx Pt Bx1(pu1)dx1
x_k v 3
M, Py
a _ 4
X1 X1
PU3

Figure 2.1: Differential control volume (dz; - dzs - dz3) for mass conservation.
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is written as

0
8—id$1d$2d$3 = (pul)dwgdasg + (puz)dmldxg + (pU3>d$1le72

mass entering control volume

0 0 0
_ [pul + Pt dxl] dredrs — [qu + e d:vg] dxrdxs — [pu;», + P d:ng] dzdzs
N 8%1 8132 8333
mass leaving‘cgntrol volume
(2.2)
Canceling terms and dividing by dzidzadz; yields
1%} 0

ot " Oxp | Oxe  Oxs

Equation 2.3, the continuity equation, is the general expression of the overall
mass conservation requirement, and it must be satisfied at every point in the fow-
field.

The second fundamental law that is pertinent to fluid flow is Newton’s second
law of motion. For a differential control volume, this requirement states that the
sum of all the forces acting on the control volume must be equal to the net rate at
“which momentum leaves the control volume. Two kinds of forces may act on the
fluid: body forces, which are proportional to volume, and surface forces, which are
proportional to area [20]. Gravitational, centrifugal, magnetic and electric fields may
contribute to the total body force. Whereas the surface forces are due to pressure,
p and wiscous stresses. In this thesis, we are going to be focusing on inviscid flows
and ignore the viscosity effects. Therefore, the surface forces are only going to be
due to pressure. Furthermore, we will assume that example flow problems that we
are going to solve do not have any body forces acting on them.

To use Newton’s second law, the fluid momentum fluxes for the control volume
must be evaluated. As an example, we will derive the momentum equation for z;
direction. Following from Figure 2.2, the net rate at which z; momentum leaves the

control volume is
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(pus)u‘1 + 53;31(9”3)”1] dx3

r— Py, + %(puz)ug dx,
(pu)u, ——
x & )
3 x P dx,
v 2 oy, %
v -
X dx1 '

o

Figure 2.2: Differential control volume (dz, - dxs - dz3) for momentum conservation.

0 9] 0 0
et d$1dl’2d$3 + Mdﬁldfgdafg + Md%ﬂiwzdl{g + —(—deldl'gd.%g
t ot 0x2 x3
(2.4)
The surface force, which is due to pressure only, is given by
g
———ngldxzdiUg (25)

Iy

Note that the pressure originates from an external force on the fluid in the control
~ volume and is therefore a compressive force. Finally, equating the rate of change in

2, momentum (Eq. 2.4) to the fluid forces (Eq. 2.5), we obtain

dpus d(pui +p) N 9(pusur) n Olpusu1) _ o

2.
ot 81‘1 8132 8273 ( 6)

This is the conservation of momentum in direction and similar expressions can
be obtained for x5 and z3 directions. The next requirement of conservation laws is
energy conservation [20]. The energy per unit mass of the fluid includes the thermal
internal energy e;, the kinetic energy %lqu, and the potential energy. Ignoring the
effect of potential energy, since it is much smaller than both kinetic and thermal
energies, the total energy in the fluid is advected through a differential control
volume just like it is in mass and momentum conservation cases. Details of derivation
of the energy equation can be found in [20].

In general, the governing equations of an inviscid flow are given by the Euler



13

equations. We begin with the Euler equations in conservative quasi-linear form [19]

U7t + Fi,i - O (27)
where,
U1 1
UQ Ul
U=|Us|=p|w (2.8)
U4 us
U5 ¢
1 0
U 014
Fo=pui |us | +p| 6 (2.9)
us O3
e U;

In Equations 2.8-2.9, p is mass density; u = {w1, uz, uz}¥ is the fluid velocity vector;
p is the thermodynamic pressure; e is the total energy per unit mass; and d;; is the
Kronecker delta.

The Euler’s equations represent the conservation of mass, momentum and
energy in vectorial form. The thermodynamic pressure is related to conservative

variables through the constitutive relations, such as ideal gas law [22]:

p = pRT (2.10)

e = €— %Iu!Q =C,T (2.11)
R

C, = 6= (2.12)

p = (= Dle 3P (2.13)

where v = C,/C, is the ratio of the specific heats, C, and C,. T is the fluid temper-
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ature and R is the gas constant.

2.2 Rotating Frame Analysis

The Euler’s Equations given in Section 2.1 are valid in an inertial or “fixed”
frame of reference. A rotor blade in hover conditions can be modeled as a steady-
state problem in rotating frame of reference. For this purpose, we will now derive

the Euler’s equation for rotating frame of reference. Consider a frame of reference

F

X,

Figure 2.3: Rotating frame of reference.

XR rotating at a uniform angular velocity Q) with respect to a fixed frame XF as

shown in Figure 2.3. Let P be a vector
P = Piiy + Pyiy + Psis. (2.14)

To a fixed observer the directions of the rotating unit vectors i1,12 and %3 change

with time. Therefore, the time derivative [21] of the vector P is

aP\" d
( > =—(P1Z'1+P21'2+P32'3)7

“ Elztp dP. dP. di di di (2.15)
1. 2. 3. 21 12 13
= ——— —_— — —_— e P _—
dth dt12+ dtl3+P1dt+P2dt+ e
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The magnitude of the change of i in time dt is |di| = sin adf (Figure 2.3). Therefore,
the magnitude of the rate of change is \di/dt| = sina(df/dt) = (sina, and the
direction of the rate of change is perpendicular to (ﬁ, i)-plane. Thus, di/dt = 0 xi

for any rotating unit vector i [21]. Using this into Equation 2.15 we obtain

e\ faP\* = = 5
(%) :<E> L PG i+ P x s+ Pl X s,

() e o

dt

Applying Eq. 2.16 to position vector r, and recognizing the fact that u = dr /dt
we obtain a relation for the velocity vector between “fixed” and “rotating” frame of

reference [21]
W =uf+Qxr. (2.17)
Similarly, the accelerations in the two frames are related by [21]
af —af +20 x uf + G x (@ xr). (2.18)

Now consider a rotating blade with a constant velocity of magnitude 2 and

suppose that the () is aligned with the zf as shown in Figure 2.4
G = Qazfi — Qufs. (2.19)

Using this result, the velocity vector uF in fixed-frame of reference takes the fol-

lowing form:

F_,R
vy =uy" + Qo

ul =uft — Qzy, (2.20)
uF

For an observer sitting on the blade, the Euler equations 2.7 are still valid, however

the velocity vectors have to be interpreted in the rotating frame using Eq. 2.20. For
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Figure 2.4: A rotating helicopter blade.

example, the continuity equation (Eq. 2.3) becomes

dp  Opuf  dput  Opuf

— = 0. 2.21
ot 81E1 Bxg 8333 0 ( )

substituting Eq. 2.20 into Eq. 2.21, we obtain the continuity equation for the rotating

frame of reference (with respect to an observer in the fixed frame of reference)

(p(uf’ + Qz2)) + a% (p(ug’ — Q1)) +

dp

L0
ot 81’1

dpull

e =0 (2.22)

Similarly, we can extend the same derivation to momentum and energy equa-
tions. For brevity, we will derive only the z; direction of momentum equation for
the rotating frame analysis and then present the results for the vector form of Eu-
ler’s equations. Substititing the transformed velocity components (Eq. 2.20) into z;

direction of momentum conservation in Eq. 2.6 we obtain
9 R 9 R 2
gg (Plur’ + Q) + 5 (plus’ + Q) +p) +

0
57, (p(uf’ + Quo)(uf — Q1)) +

5 (2.23)
524 (p(uf + Quo)uf’) = 0.
Note that, in fixed reference frame, we would like to solve for puf, not p(uff+ Qz,).

Therefore, we need to rearrange Eq. 2.23. Expanding Eq. 2.23 and rearranging the
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terms yields

dpult Op  Opuf dp  Opull dp  Opull
Qo | 2P o O 2
ot v ot + 8331 + ng 81'1 + 8@ i 8352 - 8173
5 5 Continuity 5 (224)
+ e [puf(uf + Qs) + p] + EPS [pult (ust — Qz1)] + 55 [pufuf]

= pQub + pO2x;.

We recognize that the second term in Eq. 2.24 is equal to zero since it is the con-
tinuity equation (Eq. 2.22). Also we can simplify the right-handside of Eq. 2.24 by
using the identity z; = (uf — uf)/Q given in Eq. 2.20. Finally the the z;-direction

momentum equation in rotating frame of reference is

R

82141 + (—92—1 (puifui +p) + 52; (putuy ) + —a—i—g (pufull) = pQui’. (2.25)
Simlilar derivations have to be made for z», z3-momentum and energy equa-
tions. This is done as follows: First, the velocity components in these equations are
replaced by transformed velocity components. Then the terms that are cancelling
or adding up to zero are eliminated. Finally, the equations are re-written in a com-
pact form such that common terms are collected under time and space derivatives.
Note that only z; and zs-direction momentum equations result in terms that create
non-zero entries on the right hand side. For the energy equation the only term that
needs to be modified is the velocity term due to kinetic energy. This modification in
the energy equation does not generate any source term on the right hand side. After
transforming all the equations of conservation law from fixed coordinate system to
rotating coordinate system, the Euler’s equations may be written in the following

form:
oUR  OFF

St =R (2.26)
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where
UE 1
Uzt uf’
Ul =|UE|=p|uf (2.27)
uf ug’
i e
1 0 0
uf? b1 Qult
FE=pul [uf | +p| 6 R=p| —uf (2.28)
u? Oa; 0
e ul’ 0

Note that the source term R is due to the Coriolis force.

2.3 Symmetrization Using Entropy Variables

Despite the popularity of conservation variables, [23], [24] and [25] investigated
the possibility of using a set of new variables, called “entropy variables” in consefva—
tion laws. In this section we will introduce and review the transformation of Euler

equations from conservative variables to entropy variables.

Theorem 1 (Mock [25]) A hyperbolic system of conservation laws possessing a
generalized entropy function H becomes symmetric hyperbolic under change of vari-

ables

M

vT = =,
ou

(2.29)

The generalized entropy function is defined as [27]

H(U) = —p(s — s0), (2.30)



where

s=1In ya
o
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(2.31)

is the non-dimensional entropy and sq is its reference value. Using Theorem 1 and

the Gibbs relation

ds — % (de 4 pd(%))

we obtain the vector of generalized entropy variables

Vi —U5+€¢(’Y+1—S+So)
Va Us
1
V= Vsl = —6_ Us )
Vi U,
Vs —U1
where
(v — Ve
s = ln(—Uf—)
U2+ U2+ Uj
e = Us— 20,

The inverse mapping, V — U is given by

—Vs
Va
U=g¢ Vs )
Vi

1— V2+VE+VE
2Vs

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)
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where

Vi + Ve + V2
2V;

e = <(1—‘_/—5)%>ﬁexp<_jjfo>. (2.38)

Now it remains to apply this transformation to Eq. 2.26. But before doing so, let

s = y—Vi+ (2.37)

us write Eq. 2.26 in quasi-linear form:

ou ou

- = 2.
ot + B R, (2.39)

where A; = OF;/0U; is the inviscid flux Jacobian. Applying the transformation
given in Eq. 2.29 into Eq. 2.39 we obtain

-0V -0V

Ag=— + Aj=— =R, 2.40
O@t + (%i R ( )
where
- ouU ,
Ay = — 2.41
b= Gy (241
A = Ady (2.42)
R = R. (2.43)

The coefficient matrices, Ay and A;, possess the following properties [28]

i) Ap is symmetric positive-definite

ii) A; is symmetric




CHAPTER 3
FINITE ELEMENT FORMULATION

Tn this chapter we will introduce space-time Galerkin/least-squares [33] finite ele-

ment formulation for the solution of Euler’s equations.

3.1 Space-Time Galerkin/Least-Squares Formulation

Consider the space-time slab, @, for the nth time interval, I, =]t} ¢, ;[

Q=0 x1, Interior,
(3.1)

P, =T x1, Boundary.

Note that, the Figure 3.1 illustrates a 2-space, time “3-D” example. Within each

At

Figure 3.1: A space-time slab.

time-slab, let the domain Q be partitioned into sub-domains QF. Then for each of

21
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these space-time finite elements we define the following function spaces:

8 = {V'V" e [HY(QuY, VPgy € (PO ™, a(V)lp.y, = (1)} (3.2)
Vi = {WHW! e [HHQ0IY Whgy € (P(Q0) ™ a:(W)lp,g, = 0} (3.3)

where Py is the kth order interpolation polynomial for approximating the trial solu-
tion, V" and weighting functions, W". Ny is the number of degrees of freedom per
node, which is 4 for 2D-space and 5 for 3D-space formulation. Also, ¢; : RNa— R
0 < % < Ny, are nonlinear boundary condition transformation functions and g¢;(t) is
the prescribed boundary condition [28].

The finite element functions are considered to be discontinuous between two

space-time slabs and the jump in time for function W is denoted by
[W(t)] = W(t) — W(t,). (3.4)

Having defined the finite element space, now we can state our Galerkin/least-
squares weighted residual formulation as follows; For each Qn,n =0,... ,N—-1, find

V% € 8" such that for all W" € V! the following variational equation is satisfied [33]

IW" . OWh X
/Qn<— S U(VY) = 5 (v )>dQ+

/Q W) - (U(VA(tr,1) — UVE(E)) dO +

(net)n
> [ @y -R)ae s @5
e=1 n

(nel)n

> / ) VIV W diag(Ay) - VeV'Q
- Q

= W' RIQ - | W' Fy(V") nidP

Qn Pn

Remarks

(1) The first, second and the last integrals in Eq. 3.5 are due to time-discontinuous

Galerkin formulation.
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(2) All the flux terms in time-discontinuous Galerkin formulation are written in
integrated-by-part form, which results in conservation of fluxes under inexact

quadrature rules [28].

(3) The second integral in Eq. 3.5 is the result of integration-by-parts of the term
WhOU(VH) /ot and is refered to as jump condition. We designate the jump

condition in short by

(W), [U (VA (1) ) = / WA - (U(VH(t,0)) — (VA (57)) S,
(3.6)

Equation 3.6 imposes weakly the continuity between time ¢, and t; [33].

(4) The third integral in Eq. 3.5 is the least-squares operator. L is defined as the

compressible Euler differential operator:

- 0 ~ 0
L=Ay—+A— 3.7
TR (3.7)
The least-squares operator is a stabilization factor to otherwise unstable Galerkin
formulation. 7 is a N; x Ny matrix that will be defined later in this chapter.

Note that the least-squares term operates only over element interiors.

(5) The fourth integral is the discontinuity-capturing operator. The role of this

term is to remove solution oscillations near discontinuities.

Consistency, stability and accuracy are three important features of any finite
element formulation. Euler equations are nonlinear hyperbolic partial differential
equations and as of yet proof of conmsistency, stability and accuracy for nonlinear
hyperbolic systems do not exist. Nevertheless, proof of consistency, stability and
accuracy of linear hyperbolic systems, which may be thought of as analog to non-
linear systems, can be used to gain insight into the capability of a finite element
formulation. Proof of consistency, stability and accuracy of Galerkin/least-squares
formulation for linear hyberbolic systems can be found in reference [34]. In the next

section we will use one-dimensional linear advection equation to analyze stability
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and accuracy of Galerkin/least-squares formulation and gain more insight into the

role of least-squares operator.

3.2 Model Equation

To understand the behavior of the Galerkin/least-squares method better, we
can analyze the linear one-dimensional advective equation which can be considered
to be as a model to Euler equations. For a given function ¢, the one dimensional

linear scalar advection equation [29] is

0 0
8—f+a8—i20 for ze€{0,L], t>0 (3.8)
where @ is a constant advection speed.

The Galerkin/least-squares formulation of Eq. 3.8 is as follows; For n =
0,1,...,N —1, find ¢" ¢ 8" such that for all wh € V! the following variational
formulation will be satisfied:

/ (—wﬁqﬁh — wf;agbh) dzdt + / w () (qf)h(t:) — gzﬁh(t;)) dx

! (3.9)

Nel

+ Z/ (wi; + awf;) T ((b’; + aqﬁflx) dxdt =0
e=1 n

where, n is the element number and N is the total number of nodes. We use the

following short notation for the Galerkin/least-squares formulation

Beors (w",¢") = 0 (3.10)
BGLS (wh, gbh) = B (wh, ¢h) + Zel (Tﬁwh, ﬁth) (311)
e=1

B (w",¢") = (—whe" — whag") dudt | (3.12)

n

/
; / W, )[4 (@, 1)] (3.13)
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where £ is defined as
L=—+a— (3.14)

To study the stability and accuracy of Eq. 3.9, we consider constant-time and

linear-space interpolation of ¢* and w" as follows:

2 2
@)=Y No(@)dhor 5 w'(@) =) N(@wpn,  (315)
b=1 ~

b=1

where

o e, <o <,
Nj(x) = { 2282 if oy <z <@y, (3.16)
0 elsewhere.

Substituting Eq. 3.16 into Eq. 3.9, a semi-discrete form of Galerkin/least-squares

method is

Tj41 2 Ti1 2
At / (-(Nj)yxa, > qushk,m) dz + At / Ta’N; > Ned'y, 1 da(3.17)
x xq k=1

7 k=1 J

Zji4+1 2 Tj+1 2
/ N; > Nedy i de — / N; ) Mgl pdx = 0(3.18)
T k=1 T5 k=1

Carrying the integration process and collecting the terms at nodes j — 1,7, and

j + 1, we obtain the following algorithmic equation

Az 2
Acﬁhj_l,nﬂ + B¢hj,n+1 + C¢hj+1,n+1 - Tthj—l,n + gAI¢hj,n +

Ax
—6—¢hj+l,m

(3.19)
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AX

Figure 3.2: Space-time mesh for constant-time linear-space FE approximation.

where

aAt  Atra® Az

_ _ - 3.2
2 Az + 6 (3.20)
2AtTa?  2Azx
B = 21
Az + 3 (3.21)
aAt Atra® Az
— _ - 3.22
¢ 2 Az + 6 ( )

Now we would like to use Fourier analysis to study the stability and accuracy of

Eq. 3.19. For this purpose, let
¢hj,n — euhnAt+\/—_1Kj’ (3.23)

v, = —&M4+/=1nh, (3.24)

where " and " are the damping and frequency coefficients, respectively. We also

define an amplification factor in the following form:

Ch= A (3.25)
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and require that for stability
M <1 (3.26)

Substituting the definition in Eq. 3.24 into Eq. 3.19, we obtain the following relation

for the damping coeflicient

oh = 2 4 % cos(K)
2 + 3 cos(K) + Z‘iTQAt (1 —cos(K)) + v/—1%t sin(K

(3.27)

Invoking the stability condition given by Eq. 3.26, we see that Galerkin/least-squares
method is stable provided that

Topt = T = —2—; (328)

Note that the optimal value of 7 is obtained by equating Eq. 3.27 to 1 and solving
for 7.

Remarks

(1) Note that 7 has dimensions of time

se (I
% )

T = — [T] (3.29)
(2) For 7 = 0, we recover the standard Galerkin formulation. Galerkin method for
the pure advection equation is neutrally stable and it exhibits high-frequency

oscillations.

Tn order to determine the accuracy of the Galerkin/least-squares formulation
given in Eq. 3.9, we will look at the first form of modified differential equation as
suggested by [26]. To obtain the modified differential equation, we first expand ¢ in

Eq. 3.19 into its Taylor series as follows:

1
e =¢?n F LA F @A+ o (A0 + ¢ AL

1
(Qb zmxAI + ¢ tttAtB) 24 ((]5 zxxa:Ax =+ 05 ttttAt4) +

(3.30)
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Substituting Eq. 3.30 into Eq. 3.19 and then rearranging the terms such that the
original PDE operator Lg" is collected on the left hand side of the equation, we

obtain the following relation
4 1
Lo = <—§¢h’tt> At — (a2q§h’m) T4 (3.31)

This is the first form of modified differential equation for Galerkin/least-squares

formulation. It is clear from this relation that the method is O(At, 7) accurate.

3.3 Least-Squares Operator

In the previous section we stated the behavior of least-squares parameter 7 for
one-dimensional model problem. Although it is easy to obtain the exact form of 7 in
one dimension, the problem is much more complicated in two and three dimensional
cases. More information about the design of 7 matrix can be found in [28].

To begin with, the least-squares term in Eq. 3.5 is re-written for a space-time

element Q" as follows:

/Qﬁ (CW") -7 (LV") dQ = , VW - KV ViaQ), (3.32)

where
Ke = AcAL (3.33)
A; = [S—g‘&o’g_i&“”’gi&r' (3.34)

Note that & is the element local coordinate and the @5 is the gradient operator

vector,

Ve= |V - (3.35)
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In (28], 7 is designed such that
X o
K = <A5A51A§T>2. (3.36)

Using Eq. 3.36 and the definition of Jacobian matrices from Eq. 3.35, we write the

final form of 7 as follows:

- 96\’ 9% 0% )
(e (Bn)

3.4 Discontinuity Capturing Operator

Do

As stated before, the role of the discontinuity-capturing operator is to remove
the oscillations near discontinuities. For this purpose, the discontinuity-capturing
operator should act in the direction of the gradient. For consistency, it should be
proportional to the residual, £LV®, and for accuracy it should vanish in smooth
regions of the flow. In [28], two forms of discontinuity-capturing operator are

defined that satisfy the conditions we just mentioned. First, a linear form

ﬁh
vy = 'N ’f (3.38)
‘dlag(Ao)VEVh
and second, a quadratic form
LV’
vy = 2‘7—‘% (3.39)
VeV
Ao

In the current implementation of Galerkin/least-squares formulation, both the lin-
ear and quadratic forms of discontinuity-capturing operators are implemented. In
practical calculations the following logic is used to select the discontinuity-capturing

factor v to minimize the diffusion

V" = min (max (v},0) , v3) (3.40)
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3.5 Boundary Conditions

In Chapter 2 we talked about the advantages of using entropy variables in-
stead of conservative variables. In CFD applications the user usually wants to
assign boundary conditions in terms of quantities such as velocity, pressure and
temperature. From the practical point of view, it is clear that assigning boundary
conditions to Eq. 3.5 in terms of entropy variables may not be as intuitive as as-
signing them in terms of primitive variables. Therefore, we have to establish the
proper transformation for boundary conditions such that they are expressed in terms
of conservative variables but converted to entropy variables for the solution of the
variational formulation.

In three dimensions, consider the following set of primitive variables to be our

boundary condition set

{
- densit
P ensity
i velocity
= (3.41)
T temperature
LP pressure
where 1 is the local velocity vector given by
Uy o; Qg Q3 u{z
U= |u| = |6 B Pa| |uf (3.42)
Ut 51 52 (53 ’U/é%

where o, 3 and § are direction cosines of an orthogonal coordinate system (r,s,t)
with respect to the global coordinate system (1, T2, T3).

Using the transformation U — V, the boundary condition set in 3.41 is




written as
] [T em (3 (v EEEE))
Uy o (1) + e (-%) +as (-4)
wl | om(-2) e (-8)+m(-4)
w| | a(-%) e (-B)a(-8)
) £(-4)
] e T e (3 (- )

where ~ is the ratio of specific heats and ¥ = v — L.

31

(3.43)

The natural boundary conditions on the inviscid flux vector FP is satisfied by

calculating the integral,

W (=Ff(V")) nidP,

Pr

(3.44)

where n; is the ith component of the unit outward normal to the space time bound-

ary, P,. Using the definition of FF from Eq. 2.28 yields

Wh 3 (_qu

Pn

)dP

This boundary integral provides the following boundary conditions:

1) Normal mass flur — pull = h™

2) Pressure — p = h?

where h™ and AP are prescribed data [28].

(3.45)




CHAPTER 4
AN ADAPTIVE SOLUTION TECHNIQUE

4.1 Overview

The ultimate goal of CFD is to approximate the physical flows that we en-
counter in nature, as accurately as possible using numerical techniques. However,
the cost of accuracy of any CFD procedure has to be matched by enough computer
power and storage. Practical problems usually are the most complex. The flow-field
around a complete aircraft, the internal flow structure of a turbojet engine with
several stages and hundreds of blades and passages, the detailed effects of a wake
and vortex flow generated by a helicopter rotor system on rotorcraft aerodynamics,
aeroacoustic and aeroelasticity problems are some major examples that aeronau-
tical engineers have to solve today and in the future. These large-scale problems
require huge amounts of computer power and storage. Despite the steady growth in
computer speed and power, complexity of modern problems has made us look for
alternative solution procedures.

Adaptive solution procedures are one possible avenue to attack the solution of
large-scale CFD problems. Coupled with parallel computing strategies, adaptive so-
lution techniques can be very effective. The main advantage of the parallel-adaptive
procedure is its ability to distribute a large problem onto several CPU units, then
locally adjust either the resolution of the computational mesh or increase /decrease
the degree of the interpolating polynomials used in the variational formulation.
The adaptive procedures can be classified into the following four categories: h-, p-
, hp- and r-adaptive. Both h- and r-adaptive procedures are based on modifying
the computational mesh based on an error estimate to increase/decrease resolution
accordingly. Whereas p-adaptive scheme modifies the degree of the interpolating
polynomials in the finite element formulation again guided by a measure of the
computational error. Alternatively, an hp-adaptive method is a hybrid of h- and

p-adaptive procedures.
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In an h-adaptive process, the main idea is to subdivide (refine) the computa-
tional mesh into smaller elements to increase the resolution or collapse (de-refine)
a group of small elements into one or more 1argér elements. Again, the decision to
refine or de-refine is based on the local measure of the computational error. The
areas that have errors higher than some allowable tolerance are refined and the areas
that have lower error measures are de-refined. Examples of h-adaptive calculations
for CFD problems can be found in [59], [36] and [31].

With respect to h-adaptive procedures, a p-adaptive method keeps the com-
putational mesh the same but varies the order of the finite element basis locally
over the domain. Although examples of p- and hp-adaptive procedures are scarce
for hyperbolic problems [53], succesfull applications are described in [60], [61], [62]
for elliptic and parabolic problems.

Finally r-adaptive procedure keeps the initial size of a computational mesh the
same, but moves the nodes in the computational mesh in such a way that the error
is distributed more or less equally in the entire computational domain. Examples
of r-refinement can be found in [37] and [52].

In this section, we will describe an h-adaptive procedure for computing rotor-
blade wakes in the framework of parallel Galerkin/least-squares formulation de-

scribed in chapter 3.

4.2 Preliminaries

Let us consider € as an arbitrary open bounded domain in Fuclidean space
R3. Also, let F be a smooth function defined on (). The Lebesgue space Ly(£2)
consists of equivalence classes of F, whose absolute values have p* powers which

are Lebesgue-integrable on ), where p > 1 with an Ly-norm of F given by [37]

1 F 2,0 = (/{zlflpdfl)% <0 (4.1)

The most commonly used norm of Lebesgue space is the Lz norm

1Pl = ( [ |f|2cm)%. (1)
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Furthermore, when all weak partial derivatives of F of order < m are in L,(£2),
we say that F belongs to a space denoted by W)*(€2) and called the Sobolev space
of order m, p on 2 [36]. The norm of F in Sobolev space WJ* () is defined as

3 (=

1 g = / S Do Fan (4.3)

| <m

where D® is a derivative operator of order a = [a, an, a3])” and it is defined as

aa1+a2+ag

D= ———F—F—=-
25} a9 o3
0x7' 01520y

i, oo, a3 > 0. (4.4)

Equivalence between Lebesgue and Sobolev norms is given by

[Flbwpey = | D ID°FI 0 (4.5)

lee|<m

3=

Another frequently used measure is the semi-norm. The semi-norm space

consists of those functions whose generalized derivatives of order m are in L;.

1

| Flog@ = / > |DFPdQ (4.6)

al=m

For the remainder of this chapter, we will be using the following short notations

to denote full and semi-norm

lme = vy (4.7)
|- ]m,p = |- ILm(Q) (4.8)
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Theorem 2 Let Q" be an arbitrary convez sub-domain (a finite element) of {1 over
which F is interpolated by a function F" which contains complete polynomials of

degree k. Then the local interpolation error in the W;”(Qh) Semi-norm 18

|F* = Flnp < ChY|Flirip

4.9
with ’yzﬁl—ﬁﬁ-kz—kl—m (4.9)
p p

where h is a defined geometric size of %, n is the Euclidean space dimension of €2,
p'is p/(p — 1) and C is a constant independent of F and h.

Remark

e The interpolation error estimate in Eq. 4.9 is usually restricted to m = 0,1

because typically F € H n H** [55].

As an example, consider a one-dimensional function f(x) defined over 2 and
f(x) be a finite element approximation of f(x) using a linear interpolating polyno-

mial. Over an element Q*, we can write f* as

fh:f1(1—§)+f2§ (4.10)

where, £ = x/h and fi, f> are the nodal values of fP on Q" We can expand f> into

its Taylor series around f; as follows

. dfy | 1d*fi
f2—f1+'CE+§d—§2+"' (4.11)

Similarly, f(z) can be expanded into its Taylor series around f

dfy Ld?fy
- il 4.12
J=h+gebtggat (4.12)
Using Equations 4.10, 4.11 and 4.12, the truncation error e = f* — f is com-
puted as
el < (¢ - 52)|—de1 (4.13)
-2 ag? '
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1 d’f1
< Z(€ - ERP|==|. 4.14
el < 56— e (419
Notice the similarity of the terms between Eq. 4.14 and the definition of the

interpolation error estimate in Eq. 4.9.

4.3 Error Indicator Based on Interpolation Estimate

Understanding the flow fields with vortical structures and adaptive mesh re-
finement requires an understanding of finite element approximation. Interpolation
errors exist due to finite dimensional space approximation and depend on the order
of the finite element basis. Therefore, an error indicator that utilizes derivatives
of velocities in a vortical flow field has to be based on the interpolation error of a
particular finite element approximation.

Let us seek Lo-norms of errors of the vector field @ in a finite element procedure
which utilizes piecewise linear polynomials in R®. Using Eq. 4.9, the semi-norm of

the interpolation error is given by
I€h|0,2 S Ch2|l_l:h|2,2‘ (415)

In this case, evaluation of the error requires second partial derivatives of ", Let us
denote the finite element error indicator by the symbol, 6;, then a practical error
indicator using the Lo-norm of the second derivatives of velocity vector is written
as

eith( /Q 3 |_—8iﬁ?"l—|2d9h)l/2. (4.16)

i 370 ok
i Ozt dxl0xs

Note that Eq. 4.16 requires the evaluation of second order derivatives which

can be achieved by a gradient recovery (smoothing) procedure given as follows,

viat= Y V{j’” Vi (4.17)
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Here, Eq. 4.17 constructs a piecewise linear distribution of V,u that is exact for a
gquadratic solution and is O(h?) in general [38] [39]. Note that, Eq. 4.18 is simply a
weighted average of Vi on a polytope of elements P, where V and Vos are the volume
of the polytope and element Q" respectively. After recovering the first derivatives,
the second derivatives can be approximated using the derivatives of interpolation
functions into V.4 on Q".

Another approach to evaluate second derivatives of flow variables on linear
elements, is to re-construct the solution data using a quadratic polynomial as a

basis function [39],
1
i(z,y, 2)o = Uo + ArTVi, + §ArTHOAr + O(AT?) (4.18)
where, Ar = z; — zo and Hp is the Hessian matrix of second derivatives

Uge Uzy Uzz

Uye Uy Uy (4.19)

Il

Hy

Uze Uzy Uzz

Given the solution data at the vertices of the mesh, we seek to minimize the Lo
norm of the distance between % sampled at the vertex vy and the element quadrature
points. For a polytope of elements surrounding vertex o, this operation yields a

non-square matrix problem of the form;

o) (e (A
oz - 1y 1y | g, Ay
ooz o 18 e | a Al
s e {77 (4.20)
: Sl : Uy :
oz .ol A,
,&:ZZ

where, L; is a row vector defined as;

1
L= [Az; Ay Az %Amz s Ay Az iAzﬂ (4.21)

)
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and AU = tigr — Up.

Solution of this non-square matrix equation can be obtained by using a least-
squares solver such as the Singular Value Decomposition (SVD). Note that, regard-
less of which method we use to calculate the second derivatives, they are going to
be constant for linear element. Therefore, Eq. 4.16 can be further simplified and

written in the following form

o*u O*u 0*u 2 O*u

1/2
2 2 2
ot ge 22
83:82‘ +18y21 +’8y82 ’822|) (4.22)

0*u 0%y
e=mVV (1557 + 2
552! laxayl |
Note that the true interpolation error is ||os, whereas Eq.4.22 measures |g|o2/C.
Therefore, unless C is unbounded, the error indicator should measure qualitatively
the right convergence rate in the Ly semi-norm of u and it should be of O(h?), in

general.

4.3.1 Convergence Rates for Model Problems
In this section, we present convergence rate measurements of the error indicator
described in the previous section. For this purpose, we use one incompressible and

one compressible flow example.

4.3.1.1 Incompressible Flow Example

The two second derivative computation methods described in the previous
section are applied to a 2D model problem. This model problem is a recirculating
incompressible flow in square cavity [40]. The exact velocity and pressure field for

this model problem is given by;

u(z,y) = 2(1 — z)’2*(1 - 2y)(1 - y)y
v(z,y) = —2(1 —y)*y*(1 — 22)(1 — z)x (4.23)
plz,y) = (1 —z)z(l —y)y + &

Where « is a parameter dependent on the Reynolds number. Figure 4.1 shows the
distribution of velocity, pressure and vorticity for the exact solution.
For this model problem, gradient-recovery and quadratic-reconstruction proce-

dures are used to compute the maximum error. The maximum error here is defined
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Distribution of u-velocity Distribution of v-velocity

Distribution of pressure w Distribution of vorticity

Figure 4.1: Distribution of exact u,v,p and w for model problem.

to be
€max = Maz(|DV — DV"|) on (4.24)

where, the operator D is defined as

af of o%f 0 O
pf= Y %L iy
/ ox + dy * ox? + Oxdy  Oy?

(4.25)

Figure 4.2 shows the convergence history of the gradient recovery and quadratic
re-construction procedures with respect to ideal (quadratic) convergence rate. It is
clear from this figure that, quadratic reconstruction method has a superior conver-

gence rate in relation to gradient recovery procedure.

4.3.1.2 Compressible Flow Example
The model problem chosen here is the supersonic flow over a cone. The

schematic of this problem is given in Figure 4.3. The problem is axisymmetric and



40

Log(Max(e)}

—— Quadratic-reconstruction
————— Gradient recovery

0.01 L Lo L
0.1 0.01 0.001
Log(h)

Figure 4.2: Comparison of convergence rates.
the flow variables are constant along constant  lines, as shown in Figure 4.3. The

equations governing the conical supersonic flows are given by the Taylor-Maccoll

equations [47] as follows

Pu _ f(0:u, du)

do? 9(97% %) (4.26)
du _

= v.

The right-hand side functions f and g are defined as
u u? v—1 u? du  yu (du\® -1 du\’®
=(r-1)—-{1-—= 1——=}cot———=|—]| — t0 | —
f=0 )c ( 02> * 2c < 02> VT B (d@) 5 C d9>

oyl glgz v—1 1 u?
9= 5 4o 2¢ c?

where ¢ is the speed of sound and + is the ratio of specific heats. The numerical

(4.27)

solution of equation 4.26 is obtained using a variable coefficient Backward-Difference

Formulation (BDF) solver (VODE [48] from NetLib).
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Figure 4.3: Schematics of the supersonic flow over a cone.

Because the problem is axisymmetric, only one quarter of the cone is consid-
ered. As an example, the half angle of the cone is set to 10° and the free-stream
Mach number My, is selected to be 2.0. At these flow-field conditions, both the
shock tables from [47] and the numerical solution of the ODE in Eq. 4.26 resulted
in a shock angle of 32.26°. The geometric model, which contains the quarter cone

and a box as outer boundaries, is shown in Figure 4.4. An initial mesh with 24,000

<

Figure 4.4: A geometric model used for flow over a quarter cone.

elements is generated to start the adaptive calculations. To guide the adaptive re-
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finement procedure, a more meaningful measure of the error indicator is calculated

as follows

m = e—w% % 100 (4.28)
With this measure, we required at each adaptive step that the refinement is to be
done at points where 7; > 95%. Using this criteria three levels of adaptive refinement
are performed. Figure 4.5 shows the progress of the adaptive refinement on the
computational mesh (seen from the side). At adaptive level 3, the size of the mesh
reached to 1,100,000 tetrahedral elements. It may seem that over 1 million elements
for adaptively resolving this problem may be too much. However, we note that all
the calculations are done in 3D. In order to make a good judgment, one has to make
comparison with the adaptive procedures for the same or similar problems solved
in 3D. Another way to make a comparison is to look at similar adaptive problems
in 2D. We can make such a comparison with the results of reference [49], where a
sub-sonic airfoil (oscillating) is solved adaptively. We note that the characteristic
lengths for both the flow over a cone and the sub-sonic airfoil problem of [49] are
the same. Although the range of outer boundaries are different, it is noted in [49]
that the adaptive refinement is done only near the airfoil surface. Reference [49]
reports that for the sub-sonic airfoil problem the initial mesh contained 2486 nodes
and the adapted mesh had 8500 nodes. For the flow over a cone, since the flow-field
is axisymmetric, we can count the number of nodes on one of the lateral faces of
the model and make a comparison with the results of [49]. The maximum number
of nodes for the initial mesh (the upper left corner of figure 4.5) is 747 nodes (this
is almost 1/3 of the initial mesh of [49]) and the adapted mesh at level number 3
contains (see the lower right corner in figure 4.5) 3834 nodes (this is almost 1/2 of
the adapted mesh size of [49]). Therefore, the important fact is that although the
error indicator given by Eq. 4.22 is aimed to resolve linear discontinuities (vortex
flows), it works quite effectively for resolving nonlinear discontinuities as well.

The calculated velocity field using the adaptive procedure is compared with the
solution obtained from the solution of the ODE in Eq.4.26. The absolute accuracy
of the ODE solver (MDF) is adjusted to 1010, Hence the error of the ODE solution
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Figure 4.5: Progress of adaptive mesh refinement on the computational mesh.

is negligible compared to solution obtained from PDE. The velocity field between
the cone surface and the shock wave is obtained from the solution of Eq. 4.26. Then

the following error is measured at every point of the computational mesh:

E = /|l — |03 (4.29)

where U* is the solution obtained from the ODE. Later, the maximum of this error
measure is plotted against the mesh size h in log-log scale as shown in Figure 4.6.
Note that the slope of the convergence-curve in Fig. 4.6 is about 1.8 which is less
than the expected quadratic rate. We believe that this is mainly due to the fact

that the conical flows have shocks. However, the slow convergence behavior may
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also be attributed to the mesh refinement being a bit too diffuse. We note that
there are better error indicators in the literature [59] that mainly target nonlinear
discontinuities. Nevertheless, it has been shown here that the error indicator based
on interpolation error estimate can be used to some extent to resolve both linear

and nonlinear discontinuities in flow problems.

Convergence Rate for The Conical Flow Problem
; . T —

01
(lu- 1017)

1/2
max

0.01

0.001 . L
LOg(h) 0.01

Figure 4.6: Measured convergence rate for the conical flow problem.

4.4 Two-Level Adaptation Procedure for Vortical Flows

So far, the sources of interpolation error have been identified by an error
indicator. It is clear that for a finite amount of mesh resolution, there will always be
some error in the computational domain. Although, in principle, one could use the
error indicator to drive the adaptation to resolve all the features of a flow problem,
because of computational efficiency and storage limitations of current computers,
this would not be practical. It is desirable to monitor the global accuracy during the

adaptive solution procedure and, if permissible, resort to more localized adaptation
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of the mesh for small-scale features of specific interest.

4.4.1 A Definition for a Vortex Core

From the topological point of view, a vortex core contains features that can
be used to distinguish it from other regions of the flow-field. First, a vortex core
is a stationary point where flow trajectories spiral in a plane and the vorticity is
maximal at the core center. It is possible to define and distinguish a vortex core by
looking at the velocity vector field. Let @ represent the velocity field in and around
a vortex core. When # is expanded into its Taylor series around the vortex core

point P,, we have
ii(z,y, z) = o + ArTVE + O(AT?) (4.30)

For a real fluid, viscous effects cause the core of a vortex to rotate approximately as
if it were a rigid body, hence, on the plane of rotation @, — 0 at the {/ortex core [42].
For inviscid flows with the existence of numerical diffusion, a vortex behaves much
like it is in a viscous flow. Therefore, we identify a vortex core to be a stationary
point. The second term in Eq. 4.30, the velocity-gradient tensor, Vi, has complex
eigenvalues if the stationary point is a vortex core. The velocity-gradient tensor
can be disassembled into a rotation tensor and a strain-rate tensor. At a vortex
core, the rotation tensor dominates over the strain-rate tensor [43]. This approach
has been used recently to define and extract flow topology information for scientific
visualization [44].

Based on the velocity-gradient tensor,

du du  Bu

dx dy Oz

sl o
Vu 5 5 B (4.31)

ow dw dw

dx dy 0Oz

we have three eigenvalues. For these eigenvalues, there could be only two possi-
bilities: (1) all real eigenvalues, and (2) real and complex-conjugate eigenvalues

combined. Abraham and Shaw [45] classify the behavior of a dynamic system based
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on the characteristic eigenvalues. Namely there are three types, (1) nodes, where
all the eigenvalues are real and positive, (2) saddle, where all the eigenvalues are
real and negative and (3) spiral saddle, where both real and imaginary eigenvalues
exist. These three cases are illustrated in Figure 4.7. Clearly a vortex core is said to
exist at a stationary point with eigenvalues forming a spiral saddle. It is known [43]
that the magnitude of the imaginary part of a complex-conjugate pair represents
the strength of the vortex. We should also try to represent the core diameter of a
vortex. Since at thg core vorticity reaches a maximum, then a possible definition
of a core diameter can be made by limiting the magnitude of the vorticity at the
outer surface of the vortex tube. In practical applications it is found that the core
diameter extends up to a point where the magnitude of the vorticity drops below
10% of the vorticity magnitude at the core of the vortex. Clearly this loose definition
can only detect isolated vortex tubes, better definitions should be found for more

complex situations.

4
Node
A, Ay Re
1
y m
Saddle
X, A, Re
m
4
Splral o
Saddle ’
X, Re
o,

Figure 4.7: Classification of three dimensional critical points.

The topological features of a vortex core can be used to predict the vortex tube

in numerical calculations. Numerical implementation of the vortex core detection
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technique used here follows from [44]. All tetrahedral elements are passed through
an eigenvalue test on the velocity-gradient tensor. If the velocity-gradient tensor
for the element happens to have both real and imaginary eigenvalues, then that
element is flagged as a possible vortex core region. This information is passed to
the adaptive refinement procedure so that the tetrahedral element which contains
the vortex core can be refined appropriately. This simple implementation of the
eigenvalue extraction technique works quite nicely as an error indicator for resolving
vortex tubes. We should note here that the eigenvectors that correspond to complex-
conjugate eigenvalues span a plane perpendicular to the vortex core, whereas the
eigenvector of the real eigenvalue is directed along the trajectory of the vortex tube.

In our numerical examples we use the eigenvalue extraction technique to refine
the mesh locally. To do this, the error indicator based on an interpolation error

estimate is modified such that,

0 if a vortex exists on 2"
o — (4.32)
0 otherwise.

The mesh in the vortex tube is refined until the error tolerance drops to an acceptable

level so that the vortex core is resolved accurately.




CHAPTER 5
A HOVERING ROTOR-BLADE MODEL

In this chapter we will describe a model for the numerical solution of the hover
problem. The boundary conditions that are necessary to apply are explained here.

First we derive the equations for one dimensional momentum theory. Then
use the results of momentum theory to establish simple model boundary conditions

for hover calculations.

5.1 Momentum Theory

One of the simplest ways to understand the flow topology of a hovering rotor
is to use basic momentum theory [3]. For a rotor (see Fig.5.1) which is accelerating
a mass of air on a continuous basis, its thrust must equal the mass flow rate, m,

across the rotor disk times the change in flow velocity, va — v1.

v
1

Figure 5.1: Idealized induced velocities for a hovering rotor.

The main assumption in momentum theory is that the induced velocity at
the rotor plane be constant. This is possibly the simplest model of a helicopter
blade in hover conditions. Higher order models, such as blade element theory [3]

with non-uniform induced velocity correction requires a priori knowledge of the lift

48
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characteristics of the blade. Furthermore, to establish model boundary conditions of
a hovering blade, we only need to know the average flow variables near the blade and
at the wake. Therefore, momentum theory with uniform induced flow approximation
is a good first-cut approach to achieve this goal.

For a constant induced velocity, the mass flow rate in the plane of rotor is

written as
m1 = p’UlA (51)

where p is the mass density, vy is the induced velocity at the rotor plane, and A
is the area of the rotor disc (wR?). Also, the total change in flow velocity can be

written as;
Av = v9 — g or Av=wv, as z— —00 (5.2)
Using these relations into the definition of thrust, we get
T = puvy Ave (5.3)

Moreover, the potential energy at the rotor disk and kinetic energy below the

rotor plane, which again assumes constant down-wash velocity, are written as
2 1 2
Ep = pUy AUQ, E/C = 5/)?}1141)2 (54)

Equating E, and Ej, (since the two must match), we obtain a relation for the

induced velocities of the rotor system,
2 1 2
pu1” Avg = -2—pv1Af02 — vy = 20 (5.5)

That is, for hover the induced velocity far downstream of the rotor plane must

be twice the induced velocity at the rotor disc. Inserting this relation into thrust
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formula given in Eq. 5.3, we finally obtain

T
T =20v°A or vy =4/ oA (5.6)
P

5.2 Numerical Boundary Conditions at Steady-State Hover

In this section, we will be using the results of momentum theory to formulate
the approximate numerical boundary conditions of a hovering blade. But first, let
us define the thrust coefficient for a rotor system, that we will be using frequently
in this writing. For a rotor system with radius R, rotational speed (2 and a total

thrust of 7', the thrust coefficient is defined as

T

Cr=  AR?

(5.7)

where, ps is the freestream density, A is the rotor disk area (rR?) and R is the
rotor radius. In addition to total thrust coefficient Cp, we will also be using sec-
tional thrust coefficient, C; in the later sections. The definition of sectional thrust

coefficient is

dt/dr

Ci=+——
' %poo(QT)ZC

(5.8)
where, ¢ is the sectional thrust of the blade at radius 7 and c is the chord length.
When viewed from far-field perspective, a hovering rotor may be viewed as a
potential sink [16] which attracts the still air from the far-field towards the hub of
the rotor (see Fig.5.2).
Following from [16], the magnitude of velocity field, which is induced by a
potential sink located at the rotor hub, at a spherical distance d = \/m

is given as;
My [Cr R,
Vi = 25 () (59)

where, M, is the tip Mach number of the blade. This induced velocity, in fact, is the

inflow velocity that penetrates through the computational boundaries around the
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Figure 5.2: Hovering rotor as a potential sink (side view).

rotor plane. Also numerical experience has shown that the dependency to location
of the outer boundaries is small if the computational boundaries are truncated at
around 3/2 radii above the blade. In addition to this, because of the periodicity of
the problem, the computational domain that needs to be solved is 27 /(Number of
Blades). Therefore, for a two-bladed rotor, for instance, we need to solve only half
of the computational domain.

The formulation of exit velocity, below the rotor plane, follows from the dis-
cussion of induced velocities in the previous section. Earlier, we found that the

induced velocity at a far-field point below the rotor plane is given by;

T
vy =2u; OF V2= 24 / m (5.10)

Using the definition of thrust coefficient into Eq. 5.10, we find the magnitude

of the outflow velocity below the rotor plane;

‘/out - 2Mt\/ —6;1 (511)

Conservation of Mass: The question of how to choose the location of the outer
boundaries is guided by the mass flow conservation principle. For convenience, we

will choose the computational domain of a rotating blade as a cylindrical domain as
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shown in Fig.5.3.

Intet Boundary

Periodicity Boundari

Exit Boundary

Inlet Boundary

Figure 5.3: Computational domain for a two-bladed hovering rotor.

For a system which is in steady-state equilibrium, the mass flow conservation

in the absence of internal mass generation can be written as follows;
/ pmv;ndA = pout%utdA (512)
Ain Aout

In order the satisfy the inflow and outflow velocities formulated in the previ-
ous section for a given computational domain, we need to integrate the inflow and

outflow velocities over the boundaries of the cylindrical domain as shown in Fig.5.4.

Before carrying out the integration, we state all the assumptions that we use

in this model as follows:

e The rotor blade is assumed to be a three dimensional potential sink that

attracts flow from its surrounding according to Eq. 5.9.

e The outflow velocity below the blade is assumed to be constant (Eq. 5.11) and

it is obtained from one dimensional momentum theory.

e The slip-stream contraction ratio is assumed to be R/v/2 using momentum

theory. That is, the outflow surface is a cylindrical area of radius B, = R/ V2.
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Inflow

Outflow

Figure 5.4: Inflow and outflow boundaries for mass flow conservation.

e The location of the outflow boundary is assumed to be |z| = 2R below the

blade.

e In order to reduce the effects of reflection of boundary conditions, the radius

of the cylinder that represents the outer boundaries is assumed to be Ry = 3R.
e The fluid density at the outer boundaries is assumed to be constant.

After stating the assumptions for our hovering blade model, the integration
of the inflow velocity, Vin, is done as follows: For the top and bottom and lateral

surfaces of cylinder the mass inflow is written as

2w Ry Ry
/ VindA = ]\th Cr —R? / / Tdrd9+/ / rdrd@
Ain

top surface bottom surface

2 Zt 1
R _- 4 d@)
+ 2/0 /;b R+ z ’

~

lateral surface

(5.13)
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Carrying out the integration, we find that the total flow entering into the computa-

tional domain is

/ Vind A =
Ain

7M, [Cr o [(RS+2)(R3 +2) & 2
5 —2—R (ln[ oy } + arctan(RQ) - arctan(R2))

(5.14)

Note that to calculate the inflow at the outer boundaries due to a potential sink, we
considered all surfaces of the cylinder. At the bottom surface of the cylinder, the
reduction in outflow velocity Vi is less then 3% because the inflow velocity Vi is
superimposed in the outflow region (shaded area in Fig. 5.4). We believe that this
is a negligible reduction so that the momentum theory still holds.

The flow leaving the domain from the bottom surface can also be written as

27 R1 CT
/ VourdA = / VoudA = 2 My [ — R} (5.15)
Aout 0 0 2

Finally, the inflow and outflow mass amounts should match by equating the relations

5.14 and 5.15. Making necessary cancellations, we arrive at the following relation

R, 1 (R%+Z?)(R%+Zg) 2t Zp
4( R) = an[ o ] + arctan(—R;) - arctan(RQ) (5.16)

Now, using the result of momentum theory from Eq. 5.5, and noting that the
mass flux should be constant, it follows that the area at the slipstream is 1/2 of
the area at the rotor disk [4]. That is far downstream of the blade Ry = R/V2.
This is known as the slipstream contraction ratio in hover. Let us assume that
the slipstream contraction ratio of R/ V2 is attained at an approximate location of
|z] = 2R below the blade. Also assume that the lateral boundaries are located 3
radii (R = 3R) from the center of rotation to avoid reflection of boundary conditions
from the outer boundaries. Then using these values into Eq. 5.16 we can solve for
2y ~ 3/2. Finally, Eq. 5.16 gives a relation that can be used in determining the

dimensions of a cylindrical domain used as outer boundaries of a blade in hover, in
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order to conserve the mass flux.

Periodic Boundaries: As mentioned earlier, an N bladed rotor system at hover
can be solved with domain of size 2m/N. However, this simplification requires the
application of periodic boundary condition at the planes as shown in Fig. 5.3. In
order to satisfy periodicity, the values of the flow quantities at the periodic bound-
aries should be reflected around the periodic angle. During the solution process,
the flow variables are computed only on one of the symmetry planes (master plane)
of the domain at each time step, and the solution on the master plane is copied
over the other plane (slave plane) before the next time step. This process has to
be repeated at beginning and end of each time step to satisfy the flow periodicity.
Also, this process requires that the mesh faces classified on the symmetry planes be
perfect reflection each other. This pre-condition should be satisfied during the mesh

generation procedure and before solution starts.

5.3 A Consistent Inflow/Outflow Model for Steady-State

Hover

One of the immediate shortcomings of the numerical boundary condition of
a hovering rotor blade is that the inflow and outflow boundaries are pre-defined.
Although the boundary condition and the inflow/outflow boundary arrangements
are defined within the guidelines of momentum theory and mass conservation, it
is not fully clear at this point that this particular model properly represents an
isolated hovering blade problem in free-air conditions. Therefore, the inflow /outflow
boundary conditions of a hovering blade have to be handled very carefully. One
potential problem that we have observed in our numerical calculations is regarding
the high-thrust conditions. From Eq. 5.11 we see that the intensity of the outflow
velocity is proportional to the rotor blade thrust. Also, from momentum theory we
can deduce that the slip-stream contraction at far below the blade should be R/v/2,
using the Bernoulli’s equation [4]. However, since we are truncating the boundaries
at a finite distance from the blade, as shown in Figure 5.3, the momentum theory for
the outflow velocity may not hold exactly. In fact, in some of the high thrust hover

calculations we observed a standing vortex at the outflow boundary because the flow
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is not exiting the domain smoothly. This situation is rendered with a schematic as

shown in Figure 5.5. Another issue regarding the model boundary conditions of a
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Figure 5.5: Inconsistency in outflow BC at high thrust conditions.

hovering blade is that it requires a priori knowledge of a thrust coefficient, Cr, for the
rotor system in order to specify the strength of the potential sink. This requirement
creates a problem since the rotor thrust should be calculated and not taken as a
given value. Therefore, in this section we will suggest an approach to reduce the

aforementioned shortcomings of the model boundary conditions of a hovering rotor

blade. Let us start with the unknown rotor thrust issue.
Given a rotor system, we start with an initial thrust coefficient C2 and iter-

atively update the inflow and outflow conditions such that at the steady-state case
we obtain a converged value of final thrust coefficient for the rotor system. Using

these guidelines, we suggest the following iterative hover boundary condition update

procedure;
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Algorithm 1: Tterative procedure for hover thrust

Given C2 , M,, 0, ey and e¢,, for a rotor system

solve the hover problem as follows;

Fori=0":-+ Npa
Compute inflow/outflow velocity:
Vi= e fEEe 5 Vi —2mn/F
Solve GLS Variational Formulation (Euler’s Equations)

Integrate pressure on blade surface

Fi*t = [} pndl

T =Rt Ot = pooA(TQR)2
if |C§+1 — (%] < e¢yp and HLV}‘HL2 < ey STOP
EndFor

Note that in Algorithm 1, we assumed that the rotor shaft is parallel to z3
axis, so that we have T = F,. Also, ¢ is the rotor collective angle and ey and
€c, are stopping criteria for convergence of residual of the finite element solution
and thrust coefficient, respectively. This idea was recently applied to a four bladed
rotor system of Apache AH-64A helicopter [57]. The collective setting (6) for this
case was 6°. The calculations are started with an initial C7 = 0.0 that is far
from the experimentally determined value which was 0.0058. Then the calculations
are continued with the iterative procedure as described in Algorithm 1 until the
difference between calculated and measured values of thrust coefficient drop below
2% of relative error. The convergence of the thrust coefficient for this case is shown
in Figure 5.6. With this procedure we show that the CFD solver can be started
with an unknown thrust coefficient. An iterative process is used to calculate the
thrust during the CFD solution process. The flow calculations are carried until a
steady-state thrust coefficient is reached.

Secondly, for high thrust conditions we automatically adjust the size of the
outflow boundary so that the slip-stream will smoothly leave the computational
domain. This will also eliminate the standing-vortex problem at the outflow as

shown in Figure 5.5.To do this we suggest again an iterative procedure that starts
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lterative Thrust Calculation For A Hover Problem
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Figure 5.6: Iterative calculation of thrust coeflicient.

with an outflow area that is R/ V2 as suggested by the momentum theory. Then,
in the course of computations, we can calculate the normal pressure gradient %]5
on the outer boundaries to determine the direction of the flow. If at a point on
the boundary g—i < 0 that point is an inflow point, otherwise if %% > 0 then that
point is an outflow point. These two flow conditions are shown schematically in

Figure 5.7. Using the pressure gradient information on the outer boundaries during

Inflow Condition Outflow Condition

Interor Flowfield | {  tnterior Flowﬁeldv
o SR

2
Qutflow
v Outflow
T f\ / Boundary ,/ Boundary
V1<V2 and I?>F; \/1>V2 and  P<h)
Therefore,  aP/an< 0 Therefore,  dP/an>0

Figure 5.7: Inflow and outflow conditions at the outer boundaries.

the calculations, we can change the boundary conditions automatically. However,
while changing the type of the boundary condition at the outer boundaries, we have

to make sure that mass conservation is not violated.



CHAPTER 6
HOVER EXAMPLES

Adaptive Calculations

We present parallel, h-adaptive numerical examples using the error indicator pre-
sented in the previous chapter. The application problems are helicopter rotor blades
in steady-state hover. Two different rotor blade configurations are presented with

varying levels of numerical difficulties.

6.1 Carradona-Tung Blade

As a first example, we compare finite element analysis results with test data
on a rotor blade tested by Caradonna and Tung [50]. This two bladed rotor uses
a NACAQ012 airfoil section, it is untwisted and un-tapered. The aspect ratio of
the blade is 6. The flow case analyzed for the Caradonna-Tung blade is at a tip
Mach number M, = 0.439, thrust coefficient C7 = 0.00459, collective setting 6, =
82 and rotor speed of 1250 rpm. For computational efficiency, only one blade of
the rotor system is modeled by accounting for cyclic symmetry (periodicity). The
surface definition of the blade is generated using a solid modeling system. The
computational outer boundaries are approximated by enclosing the blade in a finite
radius cylinder. To avoid contamination of boundary conditions, the radius of the
cylinder is chosen to be 3 times the blade radius and the blade is placed 1.5 and 2
radii away from top and bottom surfaces of the cylindrical domain, respectively. An
initial mesh for this geometry is generated by using an automatic mesh generation
program [51]. The initial mesh contains 214,000 linear tetrahedral elements. The
geometric model and the initial mesh of the Caradonna-Tung blade are shown in
Fig. 6.1. The inflow and outflow boundary conditions of a hovering blade are applied
as explained in chapter 3.

Starting from an initial mesh, a series of results have been obtained using the

adaptive refinement procedure. The initial mesh is distributed over 16 processors of

59
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Figure 6.1: Geometric model and the initial mesh for Caradonna-Tung blade.

an IBM SP2 parallel machine. At each adaptive step, the solution is interpolated
from the previous adaptive level and the program run until the adapted solution
reaches steady state. At an average value, the finite element procedure required
200-300 GMRES cycles to converge, where each cycle uses a Krylov space of size
10. A sample convergence history is shown in Fig. 6.2.

One potential problem with running a parallel, h-adaptive, large CFD prob-
lem is the available physical memory of each CPU unit and the ability of the finite
clement framework to use this memory efficiently and effectively. When an adap-
tive refinement is performed on a given mesh, it is almost certain that some of the
processors refine much more than others. For a given physical memory of a CPU
unit, which is 128MB for the SP2 machine on which this problem is run, we are
limited to create not more than 80,000 tetrahedral elements per processor. In our
experience with this and all other example cases reported here, it was not feasible
to perform an autonomous mesh refinement step using the initial parallel proce-
dure without manually limiting the number of newly created elements for a given
processor. Although some of the processors created no new elements, other proces-
sors created large numbers of elements which eventually halted the entire adaptive

procedure because of insufficient physical memory. An example of this unsuccess-
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Figure 6.2: A typical convergence history for steady-state hover computations.

ful case is shown in Fig. 6.3, where processors 3,4 and 5 create excessive number
of elements than the allowable. To alleviate the unbalanced usage of memory per
processor, a predictive load balancing procedure [54] has been incorporated into the
adaptive refinement procedure. This predictive load balancing scheme works with
the adaptive refinement procedure and distributes tetrahedral elements, before they
are split, across processors based on refinement load level, thus reducing the pos-
sibility of unbalanced physical memory usage per processor. A successful adaptive
run with predictive load balancing is shown in Fig. 6.4. In Fig. 6.4, using the esti-
mated load prior to refinement, the final adapted mesh is distributed equally over
the processors. With predictive load balancing, the mesh size per processor is not
limited by the available memory of the processor. Since the mesh is balanced before

refinement is executed, the problem size becomes limited by the total memory only.

As stated before, the adaptive procedure is performed using an interpolation
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Figure 6.3: Adaptive refinement without predictive load balancing.
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Figure 6.4: Adaptive refinement with predictive load balancing.

error estimate along with a vortex core detection technique. The order of refinement
strategies has been selected by looking at the global and local Quality of the solution
in comparison to experimental data. For example, after two levels of refinement
with error indicator based on interpolation estimate, the pressure distribution on
the blade surface showed significant improvement with respect to the initial mesh.
Then we examined the state of the tip vortex and used the vortex core detection

technique to locally refine and enhance the resolution near the tip of the blade. This
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adaptive process was repeated several times using both error indicators to refine the
computational domain globally and locally.

Figure 6.5 shows the changes in mesh resolution on the blade surface with the
adaptive refinement levels.

The initial mesh, which contains 214,000 elements is shown as level 0. In
adaptive level 1, to reduce the global errors and enhance the quality of solution near
the blade, the indicator given in Eq. 4.16 is used to compute the error and refine
the mesh. Notice that, in level 1 the mesh resolution on the blade surface is almost
doubled. In adaptive level 2, Eq. 4.27 is used to bracket the adaptive refinement to
the vicinity of the tip vortex. As shown in Fig. 6.5, the mesh resolution on the blade
surface increased only near the leading and trailing edges of the blade tip. This step
clearly shows that the up-wash from the lower surface of the blade to the upper
surface creates a rotating flow which triggers the vortex core detection process to
indicate that this region needs refinement. This adaptive process repeated two more
levels to resolve both the tip vortex and flow quality near the leading edge of the
blade. At the end of adaptive level 4 the mesh size reached to 2,215,000 tetrahedral
elements. Also note that the mesh resolution increased at the leading edge of the
blade where flow stagnates. To be able to show the mesh refinement process in
the interiors of the computational domain, a faceted slice, which is 15 behind the
trailing edge, is taken from mesh and the progress of the adaptation is shown in
Fig. 6.6. It is clear from Fig. 6.6 that for refinement levels 2 and 4, most of the mesh
adaptation takes place near the tip vortex.

Computed coefficient of pressure distributions at 4 radial locations are plotted
in Figure 6.7. When compared against experimental data, pressure distributions
computed by adaptive procedure show noticeable improvement in comparison to
initial mesh results. The suction peaks and the upper surface pressure plateau show

remarkable improvement with adaptation.
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Finally, to show the effect of adaptive refinement on the resolution of the tip
vortex, the tip vortex structure is rendered for initial mesh, and adaptive levels 2

and 4 in Figure 6.8. Notice that with the adaptation, a full 180° revolution of the

tip vortex is captured successfully.
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Figure 6.8: Progress of tip vortex geometry with adaptive refinement: Caradonna-
Tung Blade.
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6.2 UH-60A Blackhawk Blade

As a second case, we selected the four bladed rotor system of the UH-60A
Blackhawk. Due to periodicity of the flow-field, only one blade of the rotor system
is considered. The geometric dimensions and features of the blade are taken from
the scale model (1:5.73) used in the experiment of reference [56]. Two airfoil profiles,
S(C-1095 and SC-1095R8, are used to construct the surface definition of the blade
using a solid modeling system (Fig. 6.9). The built-in twist of the blade, which varies
linearly over the first 80% radius of the blade and has a hook-type nonlinear twist
near the tip, is included in the model. Also, elastic twist of the blade is incorporated
into the model. An example blade pitch distribution, which at this point contains
built-in twist, collective, and elastic twist is plotted against non-dimensional radius

and compared with experimental measurements in Figure 6.10.
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Figure 6.9: UH-60A Blackhawk rotor blade planform.

The flow-field of the UH-60A rotor is interesting due to the swept-tip and
nonlinear twist. Two flow-field conditions are chosen to study the adaptive solution
procedure of this blade. The first case studied with the UH-60A is at zero thrust

and the second case is at high thrust (design) conditions. Both of these cases are




69

UH-60A Blade Sectional Pitch Distribution

° FE Model —
18 Experiment <« |

?

4

02 03 04 05 06 07 08 09 1
r/'R

Figure 6.10: UH-60A blade pitch distribution.

reported to have neither separation nor stall in experimental results.

6.2.1 UH-60A at zero thrust

The flow-field conditions used for this case are as follows: tip Mach number
M, = 0.628, rotor speed © = 1427 rpm, thrust coefficient Cr/o = 0.0, collective
setting 675 = 0.11° and coning fy = —0.20°.

Before doing any adaptive solutions, a mesh sensitivity study is done to es-
tablish initial element sizes that can be used as a starting point. First, a mesh
containing 760,000 tetrahedral elements (see Fig. 6.11), is used to calculate the
flow-field. For this mesh the average global element size is about 0.125R and it is
more or less uniform throughout the domain with the exception of the blade surface
which has a finer ( down to 0.001R) mesh resolution than the rest of the domain. On
the blade surface, the mesh is clustered near leading edge and trailing edge regions
to capture the stagnation pressure correctly. Second, a finer mesh, which is refined
near the tip-path-plane of the blade, is generated (see Fig. 6.12). To create this
mesh, a slice of the computational domain that encloses the blade is targeted for
refinement. The initial size of this second mesh is 1,100,400 tetrahedral elements.
The average element size in the domain that is refined manually is about 0.002R.

Computed pressure distributions at selected radial locations on the blade surface
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are compared against experimental data in Figures 6.13 and 6.14. There compar-
isons reveal that the uniform (coarse) mesh did not capture some of the key aspects
of the flow-field as observed in experiment. As anticipated, results with the finer
mesh are considerably more accurate than the coarse mesh results. Although the
fine mesh does not resolve all the features of the flow-field, it is a good starting
point for adaptive refinement. Next, the adaptive procedure is applied to the fine
initial grid results to improve the solution further and to locate the vortex structure.
With the adaptive procedure, the mesh is refined in two levels, the first level using
the interpolation error estimate and the second level using the vortex core detection
technique. At this point, the mesh size reached 2,164,704 elements.

Figures 6.15 and 6.16 show computed sectional thrust and torque distributions,
respectively. Notice that the adapted grid enhances the accuracy of the thrust
distribution in the neighborhood of the inflection point near the tip. The integrated
value of Cr/o for the adapted mesh is 0.00039.

Finally, Figure 6.17 shows the predicted vortex flow structure which is calcu-
lated by the vortex core detection technique. Note that there is a vortex tube located
between 75%-80% radius of the blade. This vortex tube is independent of the tip

vortex. The reason for the existence of a vortex tube at 75% radius is hypothesized

SSEEASSSSS

Figure 6.11: Coarse initial mesh for UH-60A blade at zero thrust.
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Figure 6.12: Fine initial mesh for the UH-60A blade at zero thrust.

to be the differential change in thrust loading from positive to negative as shown
in Figure 6.15. The inboard shed wake, in this case, should have a discontinuity
around 80% radial span. Existence of this inboard vortex tube clearly demonstrates
a deviation from empirical wake geometry studies [58] where the inboard shed wake
is assumed continuous between the root and the tip of the blade. Finally, there is
also a vortex tube emanating from the tip of the blade, but it does not seem to have

a very strong interaction with the blade tip.

6.2.2 UH-60A at design thrust

The final and the most challenging case analyzed for the UH-60A blade is a
design thrust case where the flow conditions are: tip Mach number M, = 0.628§,
rotor speed © = 1425 rpm, thrust coeficient Cr/c = 0.085, collective setting 075 =
10.47°, coning B = 2.31° and FM = 0.73. This particular case offers a stronger tip
vortex structure than the zero thrust case.

Similar to the zero thrust case, an initial mesh with 1,200,000 tetrahedral
elements is generated. Figures 6.18 and 6.19 show the outer boundary and blade tip
close-up views of this mesh, respectively. Notice that the mesh resolution is finer

at the outer boundaries in comparison to the zero thrust case (see Fig. 6.12). A
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Figure 6.13: Computed coefficient of pressure distributions: Cr/o = 0.0.

finer mesh resolution at the outer boundaries is needed to account for the non-zero
induced velocity field (due to potential sink) applied as the boundary condition.
In the zero thrust case, the induced velocities at the outer boundaries were zero,
thus, a fine mesh was not necessary. Also note that we again generated a finer mesh
enclosing the rotor disk to capture the initial formation of the blade wake.
Comparisons of computed pressure distributions with experimental data are
given in Figures 6.20, 6.21, and 6.22. The refined mesh results are obtained using
the two-level adaptive procedure starting from the initial mesh. During the adaptive

solution of this case, the mesh is refined once using the interpolation error estimate
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Figure 6.14: Computed coefficient of pressure distributions(cont.): Cr/c = 0.0.

and four times using the vortex core detection technique to resolve the global features
of the flow-field and adaptively capture the tip vortex. The final refined mesh
contains 2,300,000 tetrahedral elements. As seen in Figures 6.20, 6.21, and 6.22, the
computed pressure distribution with the refined mesh has an overall better quality in
capturing both the leading edge suction peaks and the mid-chord pressure plateau.
The pressure distributions at radial stations 94.5%, 96.5% and 99% show noticeable
improvement with mesh adaptation. This improvement is primarily due to a more
accurate representation of the tip vortex release from the previous blade.

The computed sectional thrust and torque coefficient distributions are pre-
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Figure 6.15: Sectional thrust distribution at Cr/o = 0.0.

sented in Figures 6.23 and 6.24, respectively. The initial mesh, which could not
resolve the tip vortex for the first 90 degrees azimuth, resulted in a poor sectional
thrust distribution particularly at the outboard portion of the blade. We empha-
size here that all of our attempts to capture the correct distribution of sectional
thrust before resolving the tip vortex properly failed. Progressive adaptive refine-
ment steps, using both interpolation error estimate and the vortex core detection
technique, resulted in a correct prediction of tip vortex structure. The sectional
thrust distribution with the final adapted mesh shows a remarkable improvement
with respect to initial mesh results. Therefore, it has been concluded that com-
puting at least the first 90 degrees azimuth travel of the tip vortex is essential for
this high thrust UH-60A blade case. Figure 6.24 compares the sectional torque co-
efficient for the refined and initial meshes against experimental data. Notice that
the experimental torque distribution contains both profile and skin friction torque,
whereas numerical calculations reflect only the profile torque due to inviscid flow
approximation. The integrated values of Cr/o and figure of merit for the adapted
mesh are 0.07946 and 0.72, respectively.

Further investigation of the wake geometry for this high thrust case reveals

that the tip vortex, which is released from the previous blade, descends only about
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3% blade radius in the axial direction by the time it passes under the next blade.
Due to its close proximity to the blade, this strong vortex alters the velocity and
pressure field of the blade tip significantly. The computed tip vortex axial and radial
displacement plots are given in Figures 6.25 and 6.26, respectively. In Figures 6.25
and 6.26, the dashed-lines represent the generalized wake formulation [58], where the
tip vortex geometry is represented by an empirical formula based on experimental
observations. Figures 6.27-6.28 shows the progress of mesh adaptation for the tip
vortex. The images in these figures depict the UH-60A blade surface and a planar
section of the mesh taken at 15 degrees behind the blade. The planar sections in
these images reflect the sliced mesh connectivity. Notice that, as the refinement lev-
els progress, the mesh resolution increases at the points on this 15° azimuthal plane
where the tip vortex intersects the plane. We emphasize here that the adaptation
procedure combined with the vortex core detection technique is effective. A typical
mesh adaptation level using vortex core detection technique increases the mesh size
only by 5-7%. This is mainly due to that fact that the adaptation scheme refines
the mesh only in the areas where there is an indication of a vortex flow. The vortex
core detection technique is also used as a tool to visualize the tip vortex geometry.
Figure 6.29 shows the trajectory of the tip vortex around the blade and the velocity

Sectional Thrust Distribution
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Figure 6.16: Sectional torque distribution at Cr/o = 0.0.
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vectors on a sectional plane 15° behind the blade. Finally, Figure 6.30, shows the

daptation of the tip vortex with increasing refinement levels.

progressive a

Computed vortex flow structure for the UH-60A blade at zero thrust.

Figure 6.17
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18: Initial mesh for the UH-60A blade outer boundaries: Cr/o = 0.085.
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Figure 6.19: Initial mesh for the UH-60A blade tip: Cr/o = 0.085.
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Figure 6.20: Computed coefficient of pressure distributions: Cr/o = 0.085.
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Figure 6.21: Computed coefficient of pressure distributions(cont.): Cr/o = 0.085.



CP Distribution - /R = 96.5%

80

CP Distribution - /R = 99.0%

-1.5 F

Adapted Mesh —
Initial Mesh ——-

EXP(LOWER)

EXP(UPPER)

-1.5
°
g

Adapted Mesh —
r Initial Mesh ——-
EXP(LOWER) <
EXP(UPPER) o

1 1 1

1 1 1
0.2 0.4

x/c

0.6 0.8 1

0.2 0.4 0.6 0.8

x/c

Figure 6.22: Computed coefficient of pressure distributions(cont.): Crp/o = 0.085.
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Figure 6.29: Computed tip vortex flow behind the UH-60A blade at Cp/o = 0.085.
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Adaptive Level 3: 2,300,000 Elements

Figure 6.30: Computed tip vortex flow structures for the UH-60A blade at Cr/o =
0.085.
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6.3 Caradonna-Tung Blade with Transpiration Flow Con-

trol
As a last example in this chapter, the Caradonna-Tung [50] blade is modified
for transpiration velocity. For this purpose, the original Caraddona-Tung blade
lower surface is modified such that a rectangular patch of area is created near the
tip of the blade, as shown in Figure 6.31. The size of the rectangular patch is 10%R
(span) by 4%R (chord). It is located 60% chord lengths behind the leading edge of
the blade and its inboard end starts at 82% radius (see Figure 6.31).

R = radius

Section A-A v

Figure 6.31: Modifed Caradonna-Tung blade for transpiration.

As a test case, we selected the tip Mach number, M;, to be 0.439 and the
collective angle, A, was set to 8 degrees. A transpiration velocity of magnitude 20%
M, is assumed. This velocity field is a uniform velocity field and it is directed normal
to the surface of the blade.

The initial mesh for the Caradonna-tung blade with transpiration contained
280,000 tetrahedral elements. Using this initial mesh, 3 levels of mesh adaptation
is performed to capture the vortex structure in the flow field. At adaptive level 3
the mesh size reached to 1,500,000 tetrahedral elements. For the adapted mesh,
caleulated values of rotor thrust, torque and figure of merit are summarized and

compared in Table 6.1.

Calculated coefficient of pressure distributions at several radial stations are

compared against the baseline results. The pressure distributions at radial stations
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Table 6.1: Comparision of hover performance parameters

[ Blde | M [8] Cr | Co [FMI]
Baseline 0.439 | 8° | 0.004601 | 0.000250 | 0.882
Transpiration || 0.439 | 8% | 0.004807 | 0.000422 | 0.558

80%, 84%, 87% and 96% are shown in Figure 6.32.

At adaptive level 3, both the tip vortex and the horse-shoe vortex structures
behind the blade were resolved to some extent. The tip vortex is resolved for 180°
behind the blade. At this point, the horse-shoe vortex structure due to transpira-
tion extended about 30% chord behind the blade. Figure 6.33 and 6.34 show the
computed tip vortex structure with the adaptive procedure. Notice that, the light
colored tip vortex is the vortex structure calculated by the baseline Caradonna-Tung
blade whereas the dark colored tip vortex structure is the current results with the
transpiration. We have observed about a 4-8% more axial displacement in the tip

vortex when compared to the baseline case.
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Figure 6.33: Calculated vortex flow field for the Caradonna-tung blade with tran-
spiration

 TipVortex

Figure 6.34: Close-up view of the tip-vortex and the horse-shoe vortex behind the
TE



CHAPTER 7
AEROELASTIC COUPLING

In this chapter a method to calculate aerodynamics and aeroelastic coupling of rotor

blades in hover is presented.

7.1 An Aeroelastic Coupling Procedure in Hover

A rotor blade in hover or in forward flight creates aerodynamic loads. Due
to its structural flexibility, the same rotor blade deforms under these aerodynamic
loads. Aerodynamic load distribution on a rotor blade can be used to determine
the structural deformations. But once the blade deforms, its geometry changes
and as a result the aerodynamic loads change too. There is an equilibrium point
between aerodynamic loads and structural deformations. At this equilibrium point
a deformed shape of the blade is balanced by the aerodynamic loads generated by
the deformed geometry of the blade, and vice versa. For this reason, aerodynamic
loads and deformations are coupled.

In numerical calculations, one possible approach to address rotor-blade aeroe-
lasticity is to couple CFD calculations with CSD (Computational Structural Dy-
namics) procedures. There could be two coupling approaches: tight coupling and
loose coupling. In a tight CFD-CSD coupling approach both aerodynamic loads and
structural deformations are solved simultaneously. Whereas in a loose CFD-CSD
coupling approach both aerodynamic loads and structural deformations are solved
individually until an equilibrium point between the two is reached. Regardless of
the type coupling approach we want to use, the important issue that needs to be
addressed is the information exchange between the CFD and the CSD calculations.
During a CFD-CSD coupling, the deformations of the blade must be transferred
from the CSD calculation to the CFD calculation and aerodynamic loads from the
CFD calculations must be transferred from the CFD to the CSD calculation.

The flowchart given in Fig. 7.1, suggests one approach for combining CFD and

89
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CSD for rotor-blade aeroelasticity calculations in hover. The CFD solver starts the
calculations for a hovering rotor blade. The CFD calculations are carried out until a
converged steady-state solution for the hovering rotor blade is found. Once steady-
state is reached, the CFD solver calls the CFD—CSD interface, which calculates
the sectional forces and moments required by the CSD solver. Then the calculated
aerodynamic force and moment information is sent to (CSD solver to start the struc-
tural calculations. When the CSD solver is started, the beam-element structural
model of the blade is first pre-stressed by rotating the blade at hovering rotational
speed Q. Then, the calculated aerodynamic forces and moments are applied to the
blade to obtain the resultant deflections. The deflected shape of the CSD model is
then processed by the CSD—CFD interface to from a new three dimensional CFD
model. This loose coupling cycle between CFD and CSD analyses is continued until

the incremental deflections of the blade drop below a pre-determined tolerance.

Figure 7.1: Computational flowchart for loose aeroelastic coupling.

The CFD solution procedure introduced in chapter 3 uses complete three-

dimensional geometry. For our CSD calculations, we selected the DYMORE [63]
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finite element analysis code. This CSD analysis code uses a reduced-dimension
representation of rotor blades. That is, DYMORE models the rotor blades as one-
dimensional beams. More information about the CSD modeling technique and as-
sumptions of DYMORE analysis code can be found in reference [63]. The important
issue that needs to be addressed here is that in our CFD-CSD coupling procedure, we
have a dimensional difference between the geometric representation of rotor blades
in CFD and CSD calculations. This dimensional difference between CFD and GSD

models requires specific consideration. These issues are explained next.

7.2 CFD—CSD interface

Consistent transfer of aerodynamic forces and moments between CFD and
CSD models requires integration of continuous pressure distribution over the blade
surface of the CFD model. Result of this integration is then projected onto the
elastic axis where CSD model is situated. As shown in Fig. 7.2, the integration of

pressure eventually will be performed on triangular faces.

CSD Model

Finite Element
Face

CFD Model

Figure 7.2: Dimensional reduction of pressure to structural forces.

The forces and moments needed by the structural analysis code DYMORE [63]
at each radial control point along the blade are normal forces, chordwise forces and

pitching moment about the elastic axis. The definition of these forces and moments
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are illustrated on an airfoil cross-section in Figure 7.3. Given the coefficient of

VN Qr\

Cx o
N - normal directed force Chorg -
C -chord directed force R
M - pitching moment (+ up) - el
AC - aerodynamic center (chord/4) Tl -~
EC - elastic center

6 -pitch angle
¢ ~inflow angle ( W/Qr)
o -angle of attack (6 -¢)

Figure 7.3: Sectional forces and moment acting on an airfoil section.

pressure distribution, Cp(s,r) on the blade surface, where s is the local chord-wise
direction as designated in Fig. 7.3, we can write down the non-dimensional normal

and chord directed force coefficients as follows

Cn(r) :/o C}f’“’er(s,r)d(s/c)—/o CyPPei(s, r)d(s/c) (7.1)

Cc(T):/O %C’;pper(s,r)d(s/c)— i %Céower(s,r)d(s/c) (7.2)

where % is the local slope of the airfoil surface. Similarly, the pitching moment

coefficient about the elastic center sgo is given as

C C

Cue(r) = /0 : (559 - f) (o;fwef(s,r) — e, r))d(s/c) (7.3)

Note that a positive value of Cy denotes a nose-up moment.

Alternatively, the dimensional form of normal force N, chord force C, and
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pitching moment M can be obtained as follows [56]

N(r) = 5O (r)elr )l
O(r) = 20(r)e(r)pms () (7.4)

M(r) = SOu(D) (ol @)

Note that both forces and moments are obtained in terms of per unit length since

they are sectional forces and moments.

7.3 CSD——>CFD interface

As discussed earlier, the CSD analysis evaluates the finite deflections of the.
blade in a one dimensional model space. This deflection and rotation information
has to be converted to the three dimensional displacements of the CFD model. This
is accomplished by assuming that the cross-sections of the 3D blade are rigid and
that the translations and rotations of a CSD station can be applied to the CFD
cross section. By using several spanwise stations that are common to both CSD
and CFD geometries, it is possible to apply the CSD translations and rotations
to the corresponding cross sections of the 3D CFD blade and thereby construct
an updated CFD model. This process is shown schematically in Figure 7.4. Once
the individual cross sections are transformed geometrically in space then a simple
lofting ! operation [67] generates the deflected surface of the CFD blade.

Once the geometric model for CFD analysis is updated, it remains to either
generate new a mesh or update the existing mesh from the undeformed blade to
the deformed blade surface. Although the construction of a new mesh for the de-
formed blade is possible this approach can very time consuming and inefficient. An
alternative solution to update the computational mesh is to develop a mesh-motion
procedure that can move the grid points while maintaining both the mesh valid-
ity [65] and quality [66]. Computational time gained through applying mesh-motion
in contrast to constructing a new mesh at every time step can be substantial if an

unstructured mesh topology is used. In the next section we will describe a general

1Lofting is a geometric surface fitting operation over a series of curves
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CSD MODEL

uyvandw :translations in x,y and z directions, respectively
0, ey and 8, rotations in x,y and z directions, respectively

Figure 7.4: Dimensional upgrade of structural deflections to surface deformations.

mesh-motion procedure that can be used in CSD—CFD interface.

7.3.1 A Deforming Mesh-Motion Procedure
In-order to start our discussion of a mesh-motion algorithm, we first consider
the Laplacian smoothing method given in [64], where a basic node repositioning

formula is written as
1 n 1 n
x:EZzi, y:—ﬁZyi (7.5)
i=1 i=1

Here, n is the number of points that surrounds the node at (x,y). Note that this
formula simply takes the arithmetic averages of n nodes around the node of interest
to find its new position. Note that such an operation would be neutral if the mesh
is perfectly uniform as shown in Fig. 7.5. Since the elements are regular and all
have the same size, application of Laplacian smoothing will not change the location
of the point p. We can also view the Laplacian smoothing as a node repositioning
method based on the centroid of a group of neighboring nodes. It relocates a point
to a new position by simply finding the centroid of the points around it.

If we let (zo, o) be the old coordinates of the point of interest, we can re-write
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Figure 7.5: An equispaced mesh with quadrilateral elements.

the Laplacian smoothing formula as follows

nT — nTy = i% — ixo (7.6)
=1 i=1

ny—nyo= Y Y~ Y Y (7.7)
i=1 i=1

or,

Az = 25 (@i — o) (7.8)
" i=1
1 n
Ay n (¥ — ¥o) (7.9)
i=1

where, Az and Ay are the difference between old and new coordinate locations as
shown in Figure 7.6

{x3,¥3})

Figure 7.6: Displacement of an interior mesh point.

More generally, in vector form, we can re-write the smoothing equations in the
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following form

A = 2oizt WiTi (7.10)

where, w;’s are weights of the averaging process. Note that in the case all the
weights are taken as unity, the averaging formula will reduce to the original Laplacian
smoothing. Given the displacement vector AZ, the new coordinates of the point can

be found by
T =T+ AT (7.11)

A (iuestion that needs to be answered at this point is “how should we choose
the weights?” The most basic capability to look for in any mesh repositioning
operation is the preservation of mesh validity. Therefore, selection of weights should
be such that they should avoid elements from becoming invalid. One possibility for ’
this is to choose the weights as functions of element geometry (edge length, element
heights or similar quantities). For example we can select the weights such that they

are inversely proportional to the edge lengths

w¢o<l% as I, —0 (7.12)
The idea here is that the edge-lengths are being used to constrain the mesh-motion.
As the edge length goes to zero we see that weights will increase infinitely. Introduc-
tion of such a penalty to the mesh motion procedure will force mesh points which
are very close to each other to move lesser than the rest of the points in the mesh.
However, it is possible that all the nodes of a linear tetrahedra collapse onto a plane
while maintaining the edge lengths to be greater than zero. In order to avoid this
situation either the element volume should be used as weights or the edge length
weighted average smoothing has to be followed by a mesh validity check process.
The latter approach is used in the mesh-motion procedure described here.
In literature, weighted-average smoothing is also known as ”spring analogy”

for mesh motion [69]. The reason for this is that the weights, which are inversely
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proportional to the edge lengths, can be thought as the springs that replace the
mesh edges. Using this analogy the weighted-average smoothing formula, given in
Eq. 7.10, can be obtained by considering the mesh as a spring network exposed to
displacements from its boundaries, and solving for the displacement of the interior
node by the force-equilibrium equations in each coordinate direction. Reference [69]
looks at this issue from this perspective.

Now consider the weighted-average smoothing formula given by Eq. 7.10. One
can easily see that this equation will result in a system of algebraic equations of the

following form

1
AT, — ﬂ—(wllAi”Z + ’LUlefj R wnlAfn) =0
1
1
ATy — ﬁ—(wmﬁfi + W ATy 4 -+ WpaAZ,) =0 (7.13)
2

T~

7.14)

- 1 S - -
AZy — ﬁ—(wiNAxi +wnAZ; + -+ WanAT,) =0
N

where £; is the sum of the weights of the nodes surrounding the node i. In matrix

form, we can write
G(AZ) =0 (7.15)

Note that, this is a nonlinear system. Linearization can be done by using

Taylor series expansion,

oG
Fn+ly G(AT™ n 71
GAT™) = GAT) + 5 =p (7.16)
where, the incremental solution,p, is given by
Pt = AFT - A" (7.17)

Here, superscript n denotes the iteration level. Substituting these relations back
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into the original nonlinear system, we obtain the following relation

oG
n,_n _ pn : no__ n - G" .1
Jpt = —R" with J BAZ andR" = G (7.18)

The resulting system can be solved by a conjugate gradient-type algorithm,
such as GMRES [70]. The other alternative to solve weighted-average smoothing
equations is to handle each node point in the mesh one at a time and solve the
displacements by an iterative solver. Clearly, such an approach will not only ease
the implementation but also will reduce the amount of computer memory and time,

Therefore, consider the following form of the smoothing equations

k1
Allin+ —

|+~

M
SwAzT i=1,2,...,N (7.19)
j=1

where, asterisk denotes a provisional solution between iterations n and n + 1. At

the end of each iteration, the nodal coordinates of the points can be found by
AT = 7" 4 pATH! (7.20)

where p is a relaxation factor that can be adjusted either for under- or over-
relaxation. Also different approximation to explicit displacement terms on the RHS

will yield different algorithms. Following the geometric slope of the line between it-

Iteration

Converged
solution

n+1

Provisional | _____ . ___________

Step 7
n 77“"‘—__>—’7"/ : i
= T L
L
|

L I 7

A%
AT Ax" A Displacement

Figure 7.7: Graphical illustration of provisional step for predictor-corrector method.

erations (see Fig.7.7), it can be shown that the intermediate solution can be written
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as
AT = 2.0A7" — AT (7.21)

This choice will translate to a simple predictor-corrector algorithm. If the interme-
diate solutions are taken only from the iteration level n, then we perform Jacobi

iterations,
AT = A" (7.22)

in this case we do not need to keep the solution from previous two levels of iteration
in computer memory. Both predictor-corrector and Jacobi solution methods are

implemented in the mesh-motion procedure described here.

7.3.2 Parallel Computing Issués of the Mesh-Motion Procedure

In a parallel computing environment, the computational mesh is distributed
over the number of processors being used. That is, each processor works on a part
of the mesh. Mesh partitioning is the procedure utilized to distribute a whole mesh
over the number of processors available. For example in our parallel calculations, the
mesh is partitioned using the recursive bisection [71] algorithm. Both description
and the implementation details of recursive bisection algorithm can be found in
reference [72]. Figure 7.8 shows schematically the mesh partitioning process. The
boundary between two meshes is called a partitioned boundary. The mesh motion

\&\'/i'/\; | \‘\>
/\I/f/l | /\/\
- ,/\/\/j; A

1
S ;
PARTITION L///‘\/A/
— =%
< (>,
/ ?\/\/\\‘ \
VAVAVAY:

Figure 7.8: A schematic view of mesh partitioning process.

equation requires knowledge of neighboring vertices and their displacements for a
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given vertex. When we consider a vertex that is located on a partition boundary, it
is obvious that the vertex will require information from the adjacent processors to
be able to calculate Eq. 7.10. This requirement forces us to apply the mesh motion
algorithm in two steps. The first step in-volves solving the mesh motion equations
for all the internal vertices, and the second step is to solve the mesh-motion for the
partition boundary vertices. Given an internal vertex which has all of its neighbors

in the same partition, the displacements are calculated by

—»n+1

QI*—‘

M
Z i=12...,N (7.23)

where M is the number of neighboring vertices around vertex ¢ and N is the total
number of internal vertices in the partition.
For a vertex, which is located on a partition boundary, Eq. 7.23 can be modified

as follows

(Z AT “w;)
Zivi’i (5 wj)

Af"+l _
i =

where Ny is the number of adjacent partition boundaries for the vertex z, and M,
is the number of neighboring vertices of vertex 4 in partition n.
The inter-processor communication process for vertex ¢ which is located on a

partition boundary, is explained in Fig.7.9. In Figure 7.9 there are four partitions.

PID=0 PID=1
Four Partitions,
Four Partition Boundary to each PID
i
@ Owner vertex
(D
N © (O Holder vertex
PID=3 ) PID=2

Figure 7.9: Owner-holder relationship for a partition boundary vertex.

(7.24)
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In any given partition, vertex ¢ has to communicate with three partition boundaries.
The mesh partition operator [72] used in the calculations flags the partition bound-
ary vertices as either owner or holder. During this flagging process only one vertex
is selected as an owner and all other copies of the vertex i are flagged as holder.
This distinction process allows us to do calculations on only owner vertex and send
the final results to holder vertices in the neighboring processors.

In order to compute the displacements of vertex 4, we do the following steps
1) Compute local contributions of displacements using Eq. 7.23
2) Send/Receive the displacements obtained in step 1
3) Sum all the data received from neighboring processors using Eq. 7.24

4) Send calculated displacements from an owner vertex to its neighboring holder

vertices

For example, in processor p0 the mesh-motion equation can be written as

o S Adw;
A, = 2z AT (7.25)

Zj:l wj
Note that summation is carried over only 1 neighboring vertex. All the holder
vertices are skipped from the summation process since their contributions are going
to come from the adjacent partition boundaries. Similarly, the processors pl,p2 and

p3 are going to carry out the following calculafions

1 — % 2 — X
Zj:l AZj w; Zj:l Azi w;

Afzﬁ+1|pl = |p1> Afimrlhﬂ = |p27
Zgl‘:l w;j Z?:l wj
0 A (7.26)
AGH|, = -1 AT; L
i p3 — P

0
Zj:l wj

Processor 1 carries summation over one vertex, processor 2 two vertices and pro-
cessor 3 carries no summation at all (see Fig. 7.9). As soon as all the processors
finishes their work on the partition boundaries, they receive (or send) two distinct

pieces of data form the sender (or receiver) vertex. They are; the dominator and
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denominator of the displacement equation. For instance, vertex ¢ at partition 0

receives the following info from the surrounding partitions;
1 1
From Partition 1 : (Z AT w;i)p (E W )p1
2
From Partition 2 : Z AT w;)p (E Wj)p2 (7.27)
From Partition 3 : Z AL w;)p (Z Wj)p3

As a result of the data received on processor p0, the displacement at vertex ¢ is

calculated by summing all the contributions as follows

(Zg ) AT wj)po + (Z] L Az w))p1 (25:1 ATy W) )p2 + (Z?:l AT wj)ps

Aty = 1 2 0
(Zg -1 Wj)po + (Zg | Wj)pt + (Zj:l wj)p2 + (Zj:l Ww;)p3

(7.28)

As a last step, the displacements at holder vertices are updated by sending the
results of Eq. 7.28 from processor p0 to processors pl, p2 and p3. The parallel
mesh motion procedure explained here gives exactly the same results as its serial
implementation. The inter-processor message passing for the parallel mesh-motion

is obtained by the parallel mesh database library of reference [72].

7.4 A Torsionally Soft Model Blade

In chapter 6, we analyzed several rotor blades in hover using the adaptive
COFD procedure explained in chapters 3 and 4. In all those hover calculations, the
assumption was that the blades were structurally rigid. Therefore, the deformations
due to aerodynamic loads were not taken into account. In reality, we know that
the helicopter blades are flexible and will deform under aerodynamic loads. In this
section we examine a simple two-bladed rotor that has been used frequently both in
experiments [73] and numerical calculations [74] [75] to analyze its aeroelastic defor-
mations in hover. The example calculation uses the CFD-CSD procedure described

earlier in this chapter.



103

The hingeless model blade used has a rectangular planform and is an untwisted
and untapered NACA0012 airfoil section. The rotational speed of the blade is
1000rpm. Figure 7.10 shows the schematic of the model blade and the definition of
the deformations.

Hub

NACA0DTZ_

, Flap Bending

Lead-Lag Bending
Torsion

Figure 7.10: Schematic of the model blade [73].

A beam-element structural model of the blade is analyzed using the DY-
MORE [63] analysis code. During the structural modeling of this blade, it is assumed
that there is no structural damping, no blade root offset, no precone and droop and
no pitch flexure. The root-end of the blade is modeled as a cantilever beam. Ta-
ble 7.1 summarizes the structural properties used for this model blade [73]. These
structural properties are used to construct a DYMORE model for CFD-CSD cou-
pling. The DYMORE finite element analysis code has the capability to model rotor
blades using linear, quadratic and cubic elements. In our calculations we used cu-
bic elements to construct our CSD models. A mesh dependency study on the CSD
model has been conducted to establish the accuracy of the structural calculations. It
has been concluded that the results showed no dependency on mesh resolution when
a blade is modeled with 4 cubic elements and more. Therefore, the CSD model is
constructed using 4 cubic elements and 13 nodes. 21 air-stations are selected along

the elastic axis of the blade to transfer load and deformation data between CFD
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and CSD calculations. Appendix A gives the details of the DYMORE model used
in our CFD-CSD coupling.

Table 7.1: Structural parameters of the model blade.

[ Parameters | Units ‘ Value J
Running Mass (kg/m) 0.341
Elastic Axis % chord 25.8
Flap Bending Stiffness N-m? 17.22
Chord Bending Stiffness | N-m? 357.8
Torsional Stiffness N-m? 5.10
Polar Moment of Inertia | kg-m? | 1.744x107*

During the calculations, the static analysis option of DYMORE is used to
obtain the equilibrium deformations of the blade at each cycle of the CFD-CSD
coupling. In the static analysis, DYMORE advances the solution to steady-state by
taking pseudo time steps. In our calculations 20 pseudo time steps were taken in
CSD analysis to reach steady-state at each static analysis step. The gravity force is

taken into account.

7.5 CFD-CSD Coupled Results for the Model Blade

A three dimensional model of the blade [73] is constructed for CFD calcula-
tions. The surface of the blade is constructed using 21 airfoil sections from root
of the blade to the tip of the blade. These airfoil sections were selected at radial
locations which are coincident with the air-station radial locations of the DYMORE
CSD model. Surface description of the blade is obtained by lofting a Bezier sur-
face [67] onto the airfoil sections. This model construction process has been coded
as C language routine into the CSD—CFD interface so that during the CFD-CSD
coupling a new deformed geometric model can be constructed without having to
interrupt the calculations. The collective angle, ¢, of the undeformed blade is set to
49,

Using the undeformed geometric model of the blade, a mesh consisting of
200,000 tetrahedral elements is generated to start the CFD calculations. Figure 7.11

shows this initial mesh on the surface of the blade. This initial mesh is partitioned
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onto 8 processors of an IBM-SP2. The CFD calculations are then started at a tip
Mach number, M, = 0.206. At the steady-state, the CFD—CSD interface is called
to integrate the aerodynamic loads and moments using the pressure distribution on
the blade surface. Aerodynamic loads are then transferred to the main routine of
the DYMORE analysis code to start the CSD calculations. Since DYMORE is a
serial code, the CSD calculations are carried on one (root) processor. This means
that during the CSD calculations 7 out of 8 processors were instructed to wait until
DYMORE code finishes its work. However, since one steady-state solution time
for DYMORE code was only a small fraction (less than 1/4) of one steady-state
step of the CFD solver, the wait time was not long. At each CSD solution case, the
calculations are first started with a rotating blade (i.e. centrifugal and gravity loads)
without the aerodynamic loads. Then, aerodynamic loads are applied to obtain a

steady-state deformation of the blade.

Figure 7.11: Computational mesh of the model blade used in CFD-CSD calculations

Once the deformation information is obtained from CSD analysis, then the

CSD—CFD interface is called to generate a deformed CFD model of the blade.
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To do this, the translations and rotations at each air-station are applied to the
airfoil sections that are used to build the undeformed geometry of the CFD model.
The model construction process is then initiated to build the surface and outer
boundaries of the CFD model. At this point, the CFD mesh still belongs to the
undeformed geometry of the model. To move the mesh points from the undeformed
blade geometry to the deformed geometry, first the mesh vertices classified on the
blade surface are projected from the undeformed blade surface to the deformed blade
surface. This projection operation is done as follows: Every vertex which is located
on the blade surface, has unique parametric coordinates (U,V) which can be obtained
from the CAD definition of the surface. As the blade surface deforms, the global
coordinates (x,y,z) of a mesh vertex change, however the parametric coordinates
of the same vertex remain the same. Using the affine transformation [68] between
Cartesian and parametric coordinates, we can then find the new coordinates of a
vertex on the deformed blade. This vertex projection process is shown schematically

in Figure 7.12. After all the vertices classified on the blade surface are projected

Figure 7.12: Projection of a vertex from undeformed geometry to a deformed geom-
etry.

from undeformed blade surface to deformed blade surface, the relative displacements
of these vertices are used as the boundary condition to the mesh-motion procedure
described in section 7.2. Using the weighted-average mesh-motion procedure the
interior vertices of the mesh are smoothed. Usually, 5-10 predictor-corrector steps

are used to successfuly smooth the interior vertices. We have to note that the
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mesh-motion procedure described in sub sections 7.3.1-7.3.2 cannot take an invalid
mesh and make it valid. Therefore, if the mesh becomes invalid after we project the
vertices on the blade surface, the mesh-motion procedure cannot be used to smooth
interior vertices. To avoid this situation, we monitor the mesh validity (by checking
the element volumes) during the vertex projection step. If the displacement of a
vertex after projection makes the mesh invalid, then we apply only an increment
of displacements. In most cases, the total displacement of a vertex located on the
blade surface had to be applied in 4 increments to avoid mesh invalidity. A sample
mesh-motion convergence plot is shown in Figure 7.13. Note that, the y-axis in
Figure 7.13 is the L2-norm of the maximum displacement of an interior vertex in
the mesh-motion process. After a successful mesh-motion procedure, the CFD-CSD

Convergence History of Mesh-Motion Procedure
T T T T T T T T

Mesh-motion step 1

1e-07

—---- Mesh-motion step 2

Mesh-motion step 3
Mesh-motion step 4

1e-08 |

HAull

1609 £ T N\d

1e-10 | o

Predictor--Corrector Steps

Figure 7.13: A convergence plot of the mesh-motion algorithm.

cycle goes back to the CFD analysis where the finite element analysis is initialized for
the deformed blade to calculate another steady-state CFD solution. This CFD-CSD
coupling cycle is repeated until equilibrium deflections of the blade are obtained. For
the model we performed 4 CFD-CSD cycles and monitored both the deformations
and the rotating frequencies of the blade. Figure 7.14 shows the maximum Hapwise
deformation of the blade versus CFD-CSD cycles.

Table 7.2 gives the first flap, lead-lag, and torsional frequencies computed for
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Maximum Flapwise Deformation
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Figure 7.14: Maximum flapwise deformation of the model blade versus CFD-CSD
cycle.

the equilibrium deflections of the model blade. The only available experimental
data from ref. [73] for this. model blade is the lead-lag frequencies. At 4° collective,
the reported experimental value of lead-lag frequency is 1.516/rev. There is'a 3.7%
difference between computed and measured lead-lag frequency for this case. Ta-
ble 7.2 also compares current calculated values of frequencies with the calculations
of reference [76]. There is about 2.9% difference between the flap frequency of [76]
and the current calculations. Otherwise, both lead-lag and torsional frequencies are

in close agreement.

Table 7.2: Fundamental rotating frequencies for the model blade, 3, = 0 and 0= 49

| | Flap(1/rev) | Lead-Lag (1/rev) | Torsion (1/rev) |
Ref [76] 1.110 1.460 2.950
Current 1.078 1.461 2.967
Experiment 73] - 1.516 -

Radial distributions of flapwise, lead-lad and torsional deformations are shown
in Figures 7.15, 7.16 and 7.17, respectively. It can be seen from these figures that,
with the increasing CFD-CSD cycles, the deformations of the blade converge to an



109

equilibrium condition.

Although the aim of this section was to demonstrate the capability and appli-
cability of CFD-CSD coupling procedure, we also have to address the accuracy of
the procedure. Table 7.3 compares tip deformations obtained in the current study

with the results of reference [74] and [75]. It is believed that the most inaccurate

Table 7.3: Comparison of current tip deformation results with [74] [75]

| | Flapwise(w/R) | Lead-Lag (u/R) | Torsion (deg.) |
Reference [74] 0.015 0.002 0.5
Reference [75)] 0.012 0.0002 0.4
Current 0.011 0.0005 0.1

results are in the torsional deformations due to inaccuracies in pitching moment
calculations. The main reasons for the inaccuracies in pitching moment calculations

are:

e Insufficient mesh resolution to capture leading-edge and trailing-edge suction

peaks
e Changes in location of elastic axis

The major contributions to the pitching moment of an airfoil come from the
leading-edge and trailing-edge pressure loadings. Since flow tends to make a stagna-
tion at the leading and trailing-edges, the pressure exhibits a suction peek at these
points. The trailing-edge and leading-edge are also the farthest two points from the
elastic axis, thus, they have the longest moment arm to the elastic axis. Therefore,
an unresolved suction peak at the trailing-edge translates to a lower pitching mo-
ment of the airfoil section. For this reason it is very important to adjust the mesh
density near the trailing and leading-edges of the rotor blade to capture correct
pressure distributions. Adaptive mesh refinement technique described in chapter 4
is one possible solution for this problem.

The second reason for the inaccuracies in pitching moment calculations is due
to changes in the location of elastic axis. As the blade deforms, the elastic axis

changes its initial location. Since pitching moment is calculated with respect to
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elastic axis, this changes the computed values of pitching moment also. In our
calculations, we assumed a fixed location of the elastic axis.

In summary, we showed a practical application of the CFD-CSD coupling
procedure. The calculated flap deflections of the model blade and the lead-lag
frequency compares well with the similar numerical calculations and experiment,

respectively. However, torsional deformations of the model blade is under-predicted.
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Figure 7.15: Radial distribution of flapwise deformation.
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Figure 7.16: Radial distribution of lead-lag deformation.
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Figure 7.17: Radial distribution of torsional deformation.
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CHAPTER 8
CONCLUDING REMARKS AND FUTURE WORK

8.1 Adaptive Hover Calculations

An adaptive refinement procedure has been developed for computing vortical
flows encountered in rotor aerodynamics. An error indicator based on interpolation
error estimate is formulated and coded into the adaptive finite element framework.
It has been shown that the error indicator based on interpolation error estimate
is effective in resolving the global features of the flow-field. Along with the first
error indicator it has been found that a second error indicator aids in the efficient
resolution of small scale features of the flow such as vortex tubes. For this pur-
pose a topology based vortex core detection technique has been used to capture
vortex tubes for the rotor blade in hover conditions. It has been shown that the

~combination of the two error indicators used in refining the flow shows promise for
- computing rotor-blade flows effectively and efficiently with an acceptable level of
user interference during the adaptation procedure.

For the Caradonna-Tung blade, the tip vortex is resolved for 180° within four
levels of adaptive refinement. Overall quality of the computed surface pressure
distributions with the adaptation is very good. Especially, using the error indicator
formulated in this paper, the leading edge suction peaks are captured successfully.

For the UH-60A rotor blade, a zero thrust and a high thrust hover cases are
studied. The effect of tip vortex for the zero thrust UH-60A computations is found
to be minimal. However for this case, another bound vortex in strong interaction
with the blade is identified at 75-80% radius and it is believed that this vortex tube
exists due to an abrupt differential change in thrust loading. The inboard shed wake,
in this case, should have a discontinuity around 80% radial span. Existence of this
inboard vortex tube clearly demonstrated a deviation from empirical wake geometry
studies in which the inboard shed wake was assumed continuous between the root

and the tip of the blade. Finally, the sectional thrust and torque distributions
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computed by the adapted mesh are in good agreement with experimental data.
For the high-thrust case, it is found that the tip vortex interaction is strong and
has to be computed as accurately as possible to get good agreement between com-
puted and measured performance characteristics of the UH-60A blade. Progressive
adaptive refinement steps, using both interpolation error estimate and the vortex
core detection technique, resulted in a correct prediction of tip vortex structure.
The sectional thrust distribution with the final adapted mesh showed a remarkable

improvement with respect to initial mesh where the tip vortex could not be resolved.

8.1.1 Extension to a Navier-Stokes Solver

In this thesis, we assumed that the viscous forces are not going to be very
important for the kind of problems we want to solve. In fact, the hover cases for
both Caradonna-Tung blade and the UH-60A blade were selected such that, there
were no stall or separation reported by the experiments. We also assumed that the
formation of the tip vortex will mainly be driven by the up-wash flow at the tip
of the blade. Nevertheless, we know that viscous forces play an important role in
accurate drag calculations. Furthermore, for forward flight calculations viscosity
has to be taken into account because of the separated and stalled flow region on the
retreating blade.

Addition of viscous forces to the current adaptive finite element procedure is
not a difficult task. In fact, the finite element code used in this thesis has already
have the infrastructure to extend into a Navier-Stokes solver. However, there are
two issues that need addressed before upgrading the current inviscid solver to a

Navier-Stokes solver. They are:
e Mesh generation for high Reynolds number flows
e Turbulence

When viscous flows are considered, we also have to consider the length scales
that need to be resolved during the calculations. Most problems in rotorcraft aero-
dynamics fall into turbulent flow category, where the chord-based Reynolds number,

Re.is 1—10x 10°. In general, to resolve viscous turbulent layers in flow calculations,
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the mesh resolution normal to solid surfaces should be less than 1/v/Re. [77]. For
example, the UH-60A blade which we analyzed in chapter 6, is reported to have a
Reynolds number between 1 — 1.4 x 10° [56], based on airfoil chord. The minimum
mesh size that we adaptively generated during the inviscid solution of the UH-60A
blade was around 0.001R or 0.015¢. Where R and ¢ are the rotor radius and rotor
nominal chord length, respectively (R/é ~ 15). Whereas the length scale (nor-
mal to solid surfaces) that needs to be resolved for the UH-60A viscous-turbulent
calculations should be 0.0008¢ or 0.00005R.

An efficient mesh generation procedure that facilitates generation of unstruc-
tured grids suitable for high Reynolds number flows has to be used. The length
scales in chord-wise and span-wise directions are at least 2-3 orders of magnitude
larger than the length scale in surface normal direction. Therefore, for efficiency
purposes, the elements can be stretched-out in directions other than the surface
normal direction. The methods described in references [78], [79] and [87], address
the issues of mesh generation for viscous flows. In our inviscid calculations we
adaptively refined the meshes up to 2-3 million tetrahedral elements. Even with

- the efficient mesh generation procedures for viscous flows, one should expect ‘that
the mesh size for viscous calculations would be 2-4 times of inviscid calculations.
The most important issues that need to be satisfied for viscous calculations with
unstructured grids are mesh quality and available computer resources.

The problem of turbulence has to be addressed and studied for viscous calcula-
tions. If Reynolds-Averaged Navier-Stokes (RANS) equations are formulated, then
this requires addition of an appropriate turbulence model. Turbulence modeling for
aerodynamic flows is a very rich area of research. A turbulence model suitable for
unstructured meshes has to be implemented within the GLS finite element formu-
lation. Possible candidates for such turbulence models are one-equation models of

reference [80] and [81].

8.1.2 Forward-Flight Calculations

A hovering rotor blade problem can be solved as a steady-state problem in a

rotating reference frame. The flow conditions on the blade surface are the same at
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every azimuth angle. Because of these simplifications, we are able to solve only one
blade of a rotor system in steady-state hover conditions.

However, the flow conditions of a rotor blade in forward flight are different
from a hovering rotor blade. First of all, in forward flight the rotor system not only
rotates around its hub but also translates in the flight direction. Because of this,
the flow conditions on the blade are different at every azimuth angle. As a result,
the aerodynamic loads and moments of the rotor system are more complex. To
trim a rotor system in forward flight additional degrees of freedom have to be added
to its rigid body motion. The fundamental rigid body motions of a rotor system
in forward flight are flapping and feathering (pitching). The flapping motion of a
rotor blade is provided by the flapping hinge located at hub (see Figure 8.1). The
feathering or pitching rigid body motion of the blade is controlled by a swash plate

as shown in Figure 8.1. Aeroelastic deformations of the blade are not negligible and

Flapping Hinge

Pitch Horn

Feathering Axis

Top View Side View

Figure 8.1: A simplified mechanism of rotor blade hub for controlling feathering and
flapping

should be accounted for. Aerodynamic loads, aeroelastic deformations and rigid

body motions of a rotor system are inter-connected to one another. Therefore, a

trimmed forward flight calculation should consider all the ingredients indicated.
This overwhelmingly complex scenario of forward flight may be simplified with

certain assumptions. For example, both flapping and feathering rigid body motions
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can be represented by an infinite Fourier series [3}:

B =8 — a1sco8 — bysSin ) — a5 c08Y — bagsSiny - - - — aps COS ny — by sinny
g =0, + %Qt — Ajsco8t — Bigsintg) — Agscosy) — Bagsing - -

— Apscosny — Bpgsinny
(8.1)

where, 1 is the azimuth angle, By is the pre-cone angle, fp is the average pitch
angle, 0; is the structural twist of the blade and @ns, bns, Ans, Bns, 7 = 1,2,
are the coefficients of the Fourier series, respectively. In practice, only the first
harmonics of the flapping and feathering motion are included in calculations. The
second and higher harmonics represented by the remaining terms of Eq. 8.1 are
relatively small and have very little effect on rotor thrust and torque [3]. Therefore,
we can write the flapping and feathering equations of a rotor blade in the following

form:

B = fo — arscos P — bissiny,

T ' (8.2)
6= 90 + Eﬁt - Als COS?ﬁ —_ Bls Slﬂlp.

where the coefficients ais, bs, A1s and By either have to be calculated in an iterative
manner inside the trim loop of forward flight calculations or they can be taken from
a flight test data, if available.

A second simplification can be made by assuming the aeroelastic deformations
of the rotor blade in hover are smaller than the rigid body motions. This assumption
has to be weighted carefully and considered only if the rotor blades are structurally
stiff and the flow conditions are at low advance ratios. Nevertheless, with this
assumption the CFD-CSD coupling part of the forward-flight calculations can taken
out of the trim loop and this is a substantial saving in terms of complexity of the
computational procedure.

In summary, one has to be concerned with the following kinematic motions of

a rotor system in forward flight:

e Rotational rigid body motion,
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e Translational rigid body motion,
e Flapping,
e Feathering.

Aerodynamic calculations of rotor blades in forward flight can be modeled
several ways. One possibility is to use a so-called overset grid approach [84]. Mainly
used by finite-difference type calculations, an overset grid approach is based on
decomposing the entire physical domain into several pieces in order to reduce the
complexity of the mesh generation process for arbitrary geometric configurations.
For example, an overset grid approach models a wing and a fuselage as two separate
domains. A computational mesh is created for each domain (i.e., wing and the
body) that has an overlap with the neighboring domains. Then the meshes for wing
and and the fuselage are placed in a Cartesian mesh that encloses both bodies.
After this, the boundary-connectivity of each mesh is determined by using a point-
in-a-cell search algorithm [83]. During the flow solution process, mesh connectivity
between the domains are used to provide the continuity of flow variables between the

-neighboring domains. For unsteady flow calculations with rigid body motion, the
boundary-connectivity between the domains have to be established at each time step.
Successful applications of the overset grid approach to forward flight calculations of
rotor blades can be found in references [18] and [82].

Although the overset grid approach simplifies the modeling of a complex ge-
ometry and provides the capability to do rigid body motion, it also has certain
drawbacks. The first drawback is regarding the overset mesh generation process.
When more than one domain is meshed for overset grid calculations, the user has to
be very careful to generate meshes for each domain such that there will be an overlap
between two the neighboring domains. This requires experienced users to generate
meshes and the overall modeling process is time consuming. The second drawback
of overset grid approach is about the boundary connectivity of individual domains.
As mentioned earlier, the overlap between the two neighboring domains are needed
to provide the continuity of the flow variables. However, with this approach the flow

quantities (density, velocity and energy) between the two neighboring domains are
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C° continuous. Therefore, the derivatives of flow variables between the two neigh-
boring domains are discontinuous. For example, in an overset grid approach, the
flow velocity is continuous across an overlap boundary, but the vorticity is discon-
tinuous. For rotorcraft aerodynamics, where the accuracy of solution depends on
the accurate wake and vortex flow computations, discontinuous vorticity between
the domains is a potential reason for inaccurate results.

Another approach to model forward flight of rotor blades is the Arbitrary La-
grangian Eulerian (ALE) formulations. In an ALE approach, once again the domain
decomposition idea is utilized to model different pieces of a complex problem. Do-
mains that contain objects with rigid body motion (or structural deformation) are
modeled as Lagrangian domains. The Eulerian domain is used to solve the conser-
vation laws for a fluid. Lagrangian and Eulerian domains are then connected to each
other via an interface surface to transfer information between the two. For example,
using the ALE approach, the forward flight problem can be modeled as follows: A
computational domain that encloses the rotor blade is generated and designated as
the Eulerian domain. This is the domain where conservation laws for air will be
solved. Inside the this Eulerian domain, the rotor is modeled as a Lagrangian object
that rotates around its hub. The Eulerian domain and the Lagrangian domain have
their own computational mesh, but they share a common interface between each
other. While the Eulerian domain is used to calculate the flow-field and pressure
loads around the rotor blade (Lagrangian body), the structural deformations of the
rotor blade are calculated in the Lagrangian domain. Loads and deformations are
exchanged between the two domains during the coupling process. Although the
ALE approach has applications in problems like store-separation [59], the author is
not aware of any ALE applications for forward flight computations.

It is this author’s belief that the forward flight problem of rotorcraft can be
solved efficiently and accurately by utilizing the domain decomposition idea of over-
set grid methods for unstructured grids and the adaptive finite element procedure
described in chapters 3 and 4. The main idea here is to decompose the compu-
tational domain into stationary and rotating components as shown in Figure 8.2.

Here we have two computational domains: The first domain encloses the rotor sys-
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Figure 8.2: A suggested domain decomposition for forward flight calculations
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tem and rotates with it, and the second one is a stationary domain which encloses
the rotating domain. The rotor blade inside the rotating domain is allowed to flap,
pitch and deform freely. The computational mesh inside the rotating domain can be
updated by a mesh-motion procedure (e.g., the one described in chapter 7). Thus, as
the blade pitches, flaps and deforms the mesh inside the rotating domain, the mesh
is moved with the blade. At the same time, the mesh inside the rotating domain
is rotated with the rotational speed Q. The computational mesh for the stationary
domain is kept fixed and we have to do something about the interface between the
stationary and rotating domains. Finally, the forward motion of the rotor blade is
provided by imposing a wind velocity upstream of the stationary domain.

The interface between the two domains, which are in relative motion with
respect to one another, can be handled in two ways: In the first case, we can let the
computational meshes for fixed and rotating domains to be independent from each
other. In this case, the continuity of flow variables across the interface has to be
provided by developing special non-conforming elements. An example of this type of
interface boundary condition can be found in [37]. A drawback of such an interface
is that the finite element procedure has to be modified to allow the flexibility of non-
conforming elements. A second way to deal with this interface problem is to use a

local mesh modification process to provide the connectivity of the meshes between
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Figure 8.3: A Partial view of mesh at the beginning of the time step n

two domains at all times. What we mean by this is that, the mesh connectivity
between the two domains can be updated such that both rotating and stationary
domains are tied to each other as if the whole computational domain is covered by
a single mesh.

We exemplify the latter choice of interface using the schematics in Figures 8.3-
8.6. In Figure 8.3 we are looking at the top view of arotor blade. The blade is located
inside a cylindrical domain and the mesh for this cylindrical domain is rotating with
speed Q. This rotating cylindrical domain is located inside another domain. We
are showing only the partial view of the meshes (in 2D) for these two domains to
simplify the explanation. At time ¢”, the elements adjacent to the sliding interface
are tied to each other. We want to advance the flow solution by At time step and
rotate the blade (and the mesh inside the cylindrical domain) by At azimuth angle.
At this point, let us assume we target to modify the elements (marked with black
circles) in the stationary domain (see Figure 8.3). As the blade and the mesh inside
the cylindrical domain rotates, the connectivity between the meshes for stationary
and rotating domains is broken and we end up with a non-conforming mesh at the
interface (see Figure 8.4). After this, the elements marked with black circles are
removed from the stationary mesh to create a gap as shown in Figure 8.5. Finally,

the gap between the two meshes are filled with a mesh generation procedure such
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that, once again the rotating and the stationary meshes are tied to each other at
time step t"™! (see Figure 8.6). This process is repeated for each time step.

The space-time Galerkin/least-squares (GLS) finite element procedure explained in
chapter 3, is suitable for solving the forward flight calculations of a rotor blade using
the “sliding mesh” approach that was just outlined. As explained earlier, the space-
time GLS formulation allows the computational mesh to change from one time-slab
to the other. Successful applications of space-time GLS finite element formulation
to moving boundary problems can be found in [85]. One issue that needs to be
addressed at this point is the time-accuracy of the GLS finite element formulation.
In steady-state hover calculations, we used constant-in-time formulation for the
GLS method. For transient calculations, at least linear-in-time formulation needs
to be considered. Because of the moving mesh, the space-time jump term for the
variational formulation (see chapter 3) has to be calculated carefully. The jump
term imposes the continuity of solution variables between the time slabs. When
we consider forward flight calculations, the mesh changes from one time slab to the
other. Evaluation of the jump term for transient GLS formulation requires a solution
projection procedure between the time-slabs. Reference [85] is a good starting point
to understand the issues surrounding the moving meshes and implementation details

of the jump condition for space-time GLS method.
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Figure 8.4: Mesh configuration after the blade is rotated by At angle
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8.2 CFD-CSD Coupling

In chapter 7, we presented a method to couple aerodynamic loads and struc-
tural deformations of a rotor blade in hover. The method uses the adaptive CFD
solver explained in chapters 3 and 4 and a beam-element CSD solver. The CFD and
the CSD are loosely coupled in this procedure. The necessary interfaces are devel-
oped to transfer aerodynamics loads and deformations between the CFD calculation
and the CSD calculation. In order to update the CFD mesh for the deforming rotor-
blade, a parallel mesh-motion procedure is implemented.

Example CFD-CSD coupling results are presented for a model rotor-blade.
This model rotor blade corresponds to a stiff in-plane hingeless rotor with dimen-
sionless lead-lag frequency of approximately 1.5. During the CFD-CSD calculations
the lead-lag frequency of the model rotor system was calculated to be 1.461. Also,
the flapwise, lead-lag and torsional deformations of the model blade is calculated

and compared with the similar numerical computations of others.

8.2.1.  Enhancements to CFD-CSD Coupling Procedure

In chapter 7, we noted that the calculated torsional deflections of the model
rotor blade is under-predicted in comparison to other numerical calculations. The
main reason for under-predicted torsional deflections is believed to be resulting from
poor pitching moment calculations. The major contributions to the pitching moment
of an airfoil come from the leading-edge and trailing-edge pressure loadings. Since
flow tends to make a stagnation at the leading and trailing-edges, the pressure
exhibits a suction peak at these points. The trailing-edge and leading-edge are also
the farthest two points from the elastic axis, thus, they have the longest moment
arm to the elastic axis. Therefore, an unresolved suction peak at the trailing-edge
translates to a lower pitching moment of the airfoil section. For this reason it is
very important to adjust the mesh density near the trailing and leading-edges of
the rotor blade to capture correct pressure distributions. Adaptive mesh refinement
technique described in chapter 4 is one possible solution for this problem. Therefore,
further calculations are needed in CFD-CSD coupling of rotor blades in hover using

finer CFD meshes.
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The second issue concerning the CFD-CSD coupling is the transient aeroelas-
tic calculations in forward flight. It is more likely that the current loosely coupled
CFD-CSD procedure has to be modified for transient rotor blade calculations. A
more coordinated coupling between CFD and CSD may be required. In forward
flight calculations, obtaining a trimmed rotor solution is the most important is-
sue. A trimmed rotor system requires that all the moments add up to zero. For
a trimmed forward flight calculation both rigid body motion and the aeroelastic
deformations of the rotor system have to be account for. Aeroelastic deformations
of the blade can be obtained from the same CSD procedure that we utilized in our
hover calculations. However, in forward flight mode, both CFD and CSD solvers
have to be advanced in time simultaneously. Neither CFD nor CSD should lag in
time during the solution process. Since aerodynamic loads are affected by structural
deformations and vice versa, simultaneous integration of CFD and CSD solutions
have to be done accurately. Reference [86] suggest a CFD-CSD coupling scheme for
transient problems. In [86] and iterative scheme is used to attain equilibrium per
time step of the transient calculations. This means, within a At time step, CFD
and CSD solvers may be visited more than once to improve the accuracy of overall
calculations. Figure 8.7 suggest a possible CFD-CSD coupling strategy in forward
flight.

In Figure 8.7, we start the forward flight calculations by first setting the flight
conditions: Rotor speed, 2, advance ratio, x and the disk angle of attack, a. These
are the flight parameters which are going to be set once and remain unchanged
during the calculations. Advance ratio is the ratio of forward speed of a helicopter
to its main rotor tip speed [3]. After deciding on the flight conditions, we set the
flapping and feathering controls for main rotor blades. Flapping and feathering
motion of of the blades can be set by using Eq. 8.2. If available, first flapping and
feathering Fourier coefficients can be obtained from experimental data, otherwise
they have to be adjusted during the calculations to trim the rotor system. Once the
initial settings of the blade flapping and feathering are set, then we start CFD and
CSD calculations for a rotor system in forward flight. The calculations start at zero

degree azimuth, ¥ = 0, and each time step the blades are rotated by A degrees.
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The CFD—CSD and CSD—CFD interfaces operate in the same way which they did
in hover calculations. They are used to transfer force-moment and deformation data
between the flow solver and the structural solver. At each time step of forward flight
calculations, if needed, the CFD and CSD solvers can be visited more than once
to increase the accuracy of CFD-CSD coupling. This is done by the “sub-cycle”
block shown in the flowchart. At the end of a time step, At, the azimuth angle
is incremented by A1 and new aerodynamic loads and structural deformations are
calculated. When the rotor makes one complete revolution, we check and see if
the total moments, M, and M, are equal to zero. This is the trim condition for a
rotor system. If the rotor system is trimmed, then the forward flight calculations
are stopped, otherwise we go back to the beginning of the flowchart and adjust the

flapping and feathering controls for a new forward flight calculation.
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Figure 8.7: CFD-CSD coupling for forward flight calculations
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APPENDIX A
The DYMORE model of the example blade used in

CFD-CSD calculations

a3 3K ok ok 3 o oK ke ok ok ok oK ok ok ke ok ok Kok sk ok o sk sk o sk ok ok ok sk Kok ok ok oK ok K Kok K

* CENTER OF EXCELLENCE IN ROTARY WING TECHNOLOGY *

* RENSSELAER POLYTECHNIC INSTITUTE *
* *
* - - - DYMORE - - - *
* *

* PRE-ANALYSIS OF THE FINITE ELEMENT MODEL *

2k ok ok 3k ok 3 oK ok ok ok ook ok ek e ok e sk sk ok s sk ok ok ok oKk ok ok Kok 3 sk ok Ak ok ok o sk ok ok ok ko ok

{PRF-1}: =---- Sharpe’s blade -- NASA TP 2546

sk sk ok ok ok 3K oK oK oK o oK KoK oK Sk o R ok Kk Rk KoK R ok
* CONTROL PARAMETERS {PRF-2} *
ok ok Kook ok ok sk ok ko kR ook sk okok ok ok K KoK Kok Kok
NUMBER OF NODES 13
NUMBER OF TRIADS
NUMBER OF BODIES

1} [} [}
- =

ANALYSIS TYPE: 0

[0] = STATIC ANALYSIS;

[1] DYNAMIC ANALYSIS: ENERGY PRESERVING SCHEME;
[21 DYNAMIC ANALYSIS: ENERGY DECAYING SCHEME.

NUMBER GF TIME STEPS = 20
NUMBER OF HARMONIC TIME FUNCTIONS = ]
NUMBER OF USER DEFINED TIME FUNCTIONS = 1

0
1

NUMBER OF PRESCRIBED LOADING CASES
NUMBER OF CROSS SECTIONS

NUMBER OF SPRING PROPERTY SETS = 0
SCALING FACTOR FOR THE CONSTRAINTS = 1.00000E+05

—--- STRUCTURAL ELEMENTS:
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NUMBER
NUMBER
NUMBER
NUMBER

OF BEAM ELEMENTS
OF ADVANCED BEAM ELEMENTS
OF RIGID BODIES =
OF FLEXIBLE JOINTS

oo
o O O b

—--- CONSTRAINT ELEMENTS:

NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER

OF PRESCRIBED DISPLACEMENTS =

OF LINEAR CONSTRAINTS = 0
OF REVOLUTE JOINTS =
OF UNIVERSAL JOINTS =
OF SPHERICAL JOINTS =
OF PRISMATIC JOINTS =
OF SLIDING JOINTS =
OF LINK ELEMENTS =

©C O O O O O

--- AERODYNAMIC COMPONENTS:

NUMBER OF LIFTING ROTOR ELEMENTS = 1
'NUMBER OF AERODYNAMIC REFERENCE LINES = 1
NUMBER OF AIRFOILS TABLES = 0
NUMBER OF MOMENTUM THEORY INFLOW ELEMENTS
NUMBER OF GENERALIZED DYNAMIC INFLOW ELEMENTS
NUMBER OF TRIM ELEMENTS = 0
ROUND-OFF ERROR FOR THIS MACHINE = 1.0E-15
ke o ok ok ok ok s kKR R ok ok Rk
* TRIADS {GEO-1} *
ke s sk ke R koK K ok ok ok ko sk Kok
TRIAD REFERENCE RO
NUMBER TRIAD
1 0 E1 VECTOR = 1.00000E+00

E2 VECTOR = 0.00000E+00
E3 VECTOR 0.00000E+00

TATION

0.00000E+00
1.00000E+00
0.00000E+00

MATRIX

0.00000E+00
0.00000E+00
1.00000E+00
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*  NODAL COORDINATES {GE0-2} *

ok o o o ok o kKoK Kok ok ok kK K KRR R R Rk Kok ok ok ok
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NODE  LOCAL AXIS SYSTEM NODAL COORDINATES DEGREES OF FREEDOM CONSTRAINTS
NUMBER AT NODE TRIAD X1 X2 X3 ID1I ID2 1ID3 ID4 1ID5 1ID6
1 0 [ 1.65000E-02 0.00000E+00  0.00000E+00 1 1 1 1 1 1
2 0 1 2.62000E-02  0.00000E+00  0.00000E+00 0 0 0 0 0 0
3 0 1 3.59000E-02 0.00000E+00  0.000QQE+00 0 0 0 0 0 0
4 0 1 4.56000E-02  0.00000E+00  0.00000E+00 ] 0 0 0 0 0
5 0 1 5.15000E-02  0.00000E+00  0.00000E+00 0 [¢] 0 0 0 0
6 0 1 5.75000E-02 0.00000E+00  0.00000E+00 0 0 0 0 0 0
7 0 1 6.34000E-02  0.00000E+00  0.00000CE+00 0 0 0 0 0 0
8 0 1 2.13000E-01  0.00000E+00  0.000Q0E+00 0 0 0 0 0 0
9 0 1 3.62700E-01  0.00000E+00  0.00000E+00 0 0 0 0 0 0
10 0 1 5.12400E-01  0.00000E+00  0.00000E+00 0 0 0 0 0 0
11 0 1 6.62100E-01  0.00000E+00  0.00000E+00 0 0 0 0 0 0
12 0 1 8.11800E-01  0.00000E+00  0.00000E+00 0 0 0 0 0 ¢}
13 0 1 1.00000E+00  0.00000E+00  0.00000E+00 0 0 o] 0 0 0
ok o kKO KoK KRR oK o o Rk K ok R Ro o sk R Rk sk koK kKoK
*  BLADE ELEMENT DEFINITION {BLD-1} *
SRR K KRR KK K R R KRRk ok KRR ok kKK
ELEMENT BODY N 0O D E S T R I A D 8 CROSS - SECTIONS
NO NO NI N2 N3 N4 vi vz V3 V4 S1 82 83 54
1 1 1 4 2 3 1 1 1 1 1 1 1 1
2 1 4 5 6 1 1 1 1 1 1 1 1
3 1 7 10 8 9 1 1 1 1 1 1 1 1
4 1 10 13 11 12 1 1 1 1 1 1 1 1

ok ok ko ok ok ok ok R Kk R K ok 3k oK KR ok sk ok kKRR Kok R

*  DEGREES OF FREEDOM ASSIGNMENT  *

ke o oKk o o oK ok o e Kok Kook o oK okl K ke oK e ok ok ok ko K ok ok ko ok

TOTAL NUMBER OF DEGREES OF FREEDOM = 72
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NODE ELASTIC DEGREES OF FREEDOM ASSIGNED AT THIS NODE
ID2 ID3 1ID4 1ID5 1ID6

NUMBER BODY ID I
1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1
10 1
11 1
12 1
13 1

D1

13
19
25
31
37
43
49
55
61
67

14
20
26
32
38
44
50
56
62
68

w o

15
21
27
33
39
45
51
57
63
69

10
16
22
28
34
40
46
52
58
64
70

11
17
23
29
35
41
47
53
59
65
71

12
18
24
30
36
42
48
54
60

66 -

72

ok ke ok ok ok ok 3K o 3k oK oK ok Ko kK K ok ok 6 ek o sk ok o oK oK ok oK ok ok K Kok

*

TIME STEPPING CONTROL {TIM~-1}

*

ok ok oK oK ke ok ok sk oK oK o ook ok ok ok ok ok 3 ks o ok ok ok oK ok Sk ok ok Kok

* SIMULATION INITIAL TIME
FINAL TIME
TIME STEP SIZE

MAXIMUM NUMBER OF RETRYS
TIME STEP SIZE SELECTION FLAG

0.00000E+00
1.00000E+00
1.00000E-03

1

0 [YES = 1]

* TIME STEP SIZE SELECTION CONTROL PARAMETERS:

DESIRED NORMALIZED LOCAL ERROR
TIME STEP SIZE BOUNDS
REFERENCE ENERGY LEVEL

MAXIMUM NUMBER OF TIME STEP REJECTS

sk 3k ok s ok ok ok 2 ok Kk ok ok ok Ok Kok K

*

1.00000E-05;

(ALLOWABLE BOUNDS:

1.00000E-06 < TIME STEP SIZE <

1.00000E+00

10

* koK Kok Aok

kK

USER DEFINED TIME FUNCTIONS {TIM-3} %

ook o o ok o ok oK oK R KK K KRR o sk ok s e sk ok ok K KK R AR oK

—--- FUNCTION ID NUMBER:

1
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2.00000E-06 < LOCAL ERROR <
1.00000E-02

5.00000E-05
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TIME FUNCTION TIME FUNCTION TIME FUNCTION
VALUE VALUE VALUE

0.000E+00  1.000E+00  1.000E+01 1.000E+00

ook o o o o o o oK K KoK KR R K K KoK KKK oK ok o KR oK R o kR ok o

*  GRAVITY VECTOR DEFINITION {GRV-1} =*

ok K R R oK KoKk oK o o ok K KK KKK R ok ko sk sk ok ok ko

NORM OF GRAVITY VECTOR = 1.00000E+00
ITS COMPONENTS ARE GRAV1 = 0.00000E+00 GRAV2 = 0.00000E+00  GRAV3 = -1.00000E+00

o o R R R o o Rk K KR R o o ok ok KKK KKK SRR K KRR R K

*  RIGID BODY ROTATIONS {RIG-1} *

ok R R R R KoK KoK oK o K ok KoK oK KR ok sk ok sk sk ok ek

ELASTIC BODY  ABOUT ANGULAR VELOCITY VECTOR
NUMBER NODE NO oM1 oM2 0M3
1 1 0.000E+00  0.000E+00  1.047E+02

a4k ok ok e ok ok ok ok Kok ok ook ok ok 3k ok ok ok e ok ok ok ok ok ok sk ok ok ok ke

*  SECTION NO: 1 {CRS-1} *

K ok ok o o o o o o oK K KoK oK o o ok ok ok ok K Ko koK Rk ok

——~ SECTIONAL COEFFICIENT DIRECT INPUT {CRS-3} ---

————— Blade Section at root

STIFFNESS PROPERTIES WITH RESPECT TO CENTROID:

AXTAL STIFFNESS = 1.20000E+08
BENDING STIFFNESS ABOUT E2 DIRECTION AXIS 1.72200E+01
BENDING STIFFNESS ABOUT E3 DIRECTION AXIS 3.57800E+02
CROSS BENDING STIFFNESS W.R.T. E2 & E3 0.00000E+00
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STIFFNESS PROPERTIES WITH RESPECT TO SHEAR CENTER:

TORSIONAL STIFFNESS 5.10000E+00
SHEAR STIFFNESS IN E2 DIRECTION = 1.00000E+08
SHEAR STIFFNESS IN E3 DIRECTION = 1.00000E+08
CROSS SHEAR STIFFNESS W.R.T. E2 & E3 0.00000E+00

MASS PROPERTIES WITH RESPECT TC LOCAL AXIS ORIGIN:

MASS 3.41000E-01
MASS MOMENT OF INERTIA ABOUT THE E1 AXIS = 1.74400E-04
MASS MOMENT OF INERTIA ABOUT THE E2 AXIS = 1.74400E-04
MASS MOMENT OF INERTIA ABOUT THE E3 AXIS = 1.57000E-04

COORDINATES IN LOCAL AXIS SYSTEM:

CENTER OF MASS : XM2 = 0.00000E+00; XM3 = 0.00000E+00
SHEAR CENTER : XK2 = 0.00000E+00; XK3 = 0.00000E+Q0
CENTROID ¢ XC2 = 0.00000E+00; XC3 = 0.00000E+00

$$$.MASS MOMENT OF INERTIA ABOUT E2 QR/AND.E3 AXIS IS .ADJUSTED TO ENSURE CONSISTENT MASS MATRIX. $$$

4 2k >k ok %k ok ok K ok k% k %k kk

*  AIRFOIL PROPERTIES {AIR-1} *

o o o oK oK oK o oK oK o ok oK o K oK Rk oK oK KoK K KK K oK K KoK K

--— AIR PHYSICAL PROPERTIES ---

AIR DENSITY = 1.108E+00
SPEED OF SOUND = 3.400E+02

FAR FIELD VELOCITY = 5.34649E+01
ITS VECTOR COMPONENTS ARE VINF1 = 9.94353E-01 VINF2 = -5.31189E-03 VINF3 = -1.05995E-01

—--- STANDARD AIRFOIL COEFFICIENTS —--

5.730E+00
1.800E-02

LIFT CURVE SLOPE [dCl/da]
PROFILE DRAG COEFFICIENT fcal
CAMBER PITCHING MOMENT COEFFICIENT [Cm0] = 0.000E+00
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QUARTER-CHORD PITCHING MOMENT CURVE SLOPE [dCm/dal = 0.000E+00

ok o ok ok ok ke ok ok sk sk ok ok ok oK oK o o koK K Kok oK ok ok Kok ok HokKK
*  LIFTING ROTOR ELEMENT DEFINITION {ROT-1} *

6 ek ok oK K KRR R R KK oK K Kok o ook ok oK Kok KoK Ko o ok Kok KRk

* ROTOR NUMBER
ROTOR CENTER POINT IS AT NODE
ROTOR PLANE IS NORMAL TO THE 3-AXIS OF TRIAD:
NUMBER OF BLADES

[ N S

ROTOR RADIUS = 1.00000E+00
ROTOR ANGULAR VELOCITY = (.00000E+00
ROTOR THRUST COEFF. = 5.20000E-03

0.00000E+00
0.00000E+00

ROLLING MOMENT COEFF.
PITCHING MOMENT COEFF.

ROTOR ANGLE OF ATTACK (DEGREES) = 6.08448E+00

ko o o o o oK oK KoK R KR KK oK oK o R oK K ok K Ko oKk o o ok KoK ok o ook ok ok ok o o o ok ok Kok ok ok

*  AERODYNAMIC REFERENCE LINES DEFINITION {LFN-1} =*

skt sk o ok o ok st koK KoK ok SR oK K Ko Rk ok ok ko kK *okokok dokok
AERQ REFERENCE LIFTING ROTOR NUMBER OF AXIS SYSTEM
LINE NUMBER NUMBER AIRSTATIONS AT NODE TRIAD
1 1 21 0 1

e o 3k o o o o o R oK oK Ko o oK oK K o oo o R K o K KoK K ok oK o K

*  AIRSTATION DEFINITION {AST-1} x*

o o o ok ok ok K KK oK oK ok K KoK oK o o o oK o R R ok ok oK Ko ok koK oK R oK

* ATRSTATIONS ASSOCIATED WITH AERODYNAMIC REFERENCE LINE No: 1

LOCAL COORDINATE SYSTEM DEFINED AT NODE No: 0, TRIAD No: 1.

ROOT CUT-OUT LOCATION XR1 = 9.51000E-02 XR2 = 0.00000E+00 XR3 = 0.00000E+00
TIP LOCATION XTi = 1.00000E+00 XT2 = 0.00000E+00 XT3 = 0.00000E+00




AIRSTATION AT BEAM

NUMBER ELEMENT

W 0 N ;U W N e

NN = B R e R e
B O O 0N U W N = O

R s B R R s R R B R W W W W W W W W W W

TRIAD
NUMBER

R e T T = T = T = S STy Sy S U P TP U U

LIFT
MODEL

©C O O O © O 0O O O O 0O O O O O O O O O o O

AIRFOIL
COEFFICIENTS

O O O O O O O O O O O O O O O O © O © © O

® o o 00 o W 0 W 0 ® W O W W W 0 0 0 0 W 0

CHORD
LENGTH

.98600E-02
.98600E-02
.98600E-02
.98600E-02
.98600E-02
. 98600E-02
.98600E-02
.98600E-02
.98600E-02
. 98600E-02
.98600E-02
.98600E-02
.98600E-02
.98600E-02
.98600E-02
.98600E-02
.98600E-02
.98600E-02
.98600E-02
.98600E-02
.98600E-02
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COORDINATES IN REFERENCE LINE AXIS SYTEM

OO © 00NN o W W NN P e O

X1

.51000E-02
.40345E-01
.85590E-01
.30835E-01
.76080E-01
.21325E-01
.66570E-01
.11815E-01
.57060E-01
.02305E-01
.47550E~01
.92795E-01
.38040E-01

83285E-01

.28530E-01
.73775E-01
.19020E-01
.64265E-01
.09510E-01
.54755E-01
.00000E+00

©C O O O O O O O 0O O 0O O O O O O O O O O O

X2

.00000E+00
.00000E+00
.00000E+00
. 00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00

O O O O 0O O O O O 0O 0O O O 0O O O O o O O O

X3

.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
. 00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00



