
ANISOTROPIC TETRAHEDRAL MESH GENERATION

By

Rao V. Garimella

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Ful�llment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Mechanical Engineering, Aerospace Engineering and Mechanics

Approved by the
Examining Committee:

Dr. Mark S. Shephard, Thesis Adviser

Dr. Joseph E. Flaherty, Member

Dr. Robert L. Spilker, Member

Dr. Kenneth E. Jansen, Member

Rensselaer Polytechnic Institute
Troy, New York

December 1998
(For graduation May 1999)

ANISOTROPIC TETRAHEDRAL MESH GENERATION

By

Rao V. Garimella

An Abstract of a Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Ful�llment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Mechanical Engineering, Aerospace Engineering and Mechanics

The original of the complete thesis is on �le
in the Rensselaer Polytechnic Institute Library

Examining Committee:

Dr. Mark S. Shephard, Thesis Adviser

Dr. Joseph E. Flaherty, Member

Dr. Robert L. Spilker, Member

Dr. Kenneth E. Jansen, Member

Rensselaer Polytechnic Institute
Troy, New York

December 1998
(For graduation May 1999)

c
 Copyright 1998

by

Rao V. Garimella

All Rights Reserved

ii

CONTENTS

LIST OF FIGURES . v

ACKNOWLEDGMENT . ix

ABSTRACT . xi

1. INTRODUCTION . 1

2. SURVEY OF PREVIOUS EFFORTS ON ANISOTROPIC MESH GEN-
ERATION . 6

3. DEFINITIONS AND NOTATION . 16

3.1 Notations . 16

3.1.1 Set notation . 16

3.1.2 Geometric model notations . 16

3.1.3 Mesh notations . 16

3.1.4 Adjacencies . 17

3.2 De�nitions . 17

3.2.1 Geometric model de�nitions and concepts (Also see [43, 51]) . 17

3.2.2 Mesh de�nitions and concepts 21

4. BOUNDARY LAYER MESHING - INTRODUCTION 25

4.1 Motivation . 25

4.2 Overview . 27

5. BOUNDARY LAYER MESHING - GROWTH CURVES 30

5.1 Boundary Layer Meshing Notations 30

5.2 Introduction . 30

5.3 Calculating the Number of Growth Curves at a Vertex 33

5.4 Finding Mesh Manifolds For Mesh Vertices 35

5.5 Finding Mesh Face Use Subsets Sharing a Common Growth Curve . . 41

5.6 Growth Curves at Model Vertices and Model edges 44

5.7 Growth Curves on Model Faces . 48

5.8 Node Spacing Along Growth Curves 49

i

6. BOUNDARY LAYER MESHING - ENSURING ELEMENT VALIDITY . 52

6.1 Adjacent Growth Curves . 55

6.2 Validity Checks for Boundary Layer Quads and Prisms 58

6.2.1 Validity of boundary layer quadrilateral 58

6.2.2 Validity of boundary layer triangles 58

6.2.3 Validity of boundary layer prisms 60

6.3 Smoothing Growth Curves . 60

6.3.1 Smoothing interior growth curves 60

6.3.2 Smoothing boundary growth curves 61

6.4 Shrinking Growth Curves . 62

6.4.1 Shrinking interior growth curves 63

6.4.2 Shrinking boundary growth curves 65

6.5 Pruning Growth Curves . 65

7. BOUNDARY LAYER MESHING - ELEMENT CREATION 67

7.1 Conversion of Growth Curves into Boundary Layer Mesh Entities . . 70

7.2 Model Edge Retriangulation . 71

7.3 Triangulation of Boundary Layer Quads 71

7.4 Creation of Boundary Layer Transition Triangles 77

7.5 Creation of Boundary Layer Blend Triangles 78

7.6 Model Face Retriangulation . 78

7.7 Creation of Boundary Layer Prisms 82

7.8 Creation of Transition Tetrahedra 84

7.9 Creation of Boundary Layer Blend Polyhedra 86

8. BOUNDARY LAYER MESHING - FIXING BOUNDARY LAYER IN-
TERSECTIONS . 96

8.1 Localization of Search for Intersections Using an Octree 97

8.2 Intersection Checks . 98

8.3 Fixing Intersections by Shrinking and Pruning Growth Curves 99

9. BOUNDARY LAYER MESH GENERATION - RESULTS 101

9.1 Introduction . 101

9.2 Example meshes for general models 101

9.3 Validation . 109

ii

9.3.1 Laminar
ow over
at plate 109

9.3.2 Turbulent
ow in sharply expanding pipe 112

9.3.3 Crystal growth simulation . 118

9.4 Timing statistics . 119

10.TETRAHEDRALMESH GENERATIONWITHMULTIPLE ELEMENTS
THROUGH THE THICKNESS - INTRODUCTION 122

10.1 Motivation . 122

10.2 Review of Previous Work . 123

11.MULTIPLE ELEMENTS THROUGH THE THICKNESS - IDENTIFY-
ING THIN SECTIONS . 126

11.1 De�nition of Thin Sections . 126

11.2 Determination of Opposite Vertices 127

11.2.1 Forward search . 127

11.2.2 Boundary search . 131

11.2.3 Reverse search . 132

12.MULTIPLE ELEMENTS THROUGH THE THICKNESS - ELEMENT
CREATION . 134

12.1 Point Creation . 134

12.2 Realignment of Edges . 135

12.2.1 Conversion of quads from diagonal to zigzag con�gurations . . 136

12.2.2 Triangle and tetrahedral con�guration 140

12.2.3 Unswappable diagonal quad 140

12.2.4 V-triangulation . 140

12.2.5 Star con�guration . 141

12.3 Constraints in Recon�guring Wedges using Local Mesh Modi�cations 142

12.3.1 Elimination of remaining de�cient paths 145

12.3.2 Creation of multiple layers by local remeshing 145

13.MULTIPLE ELEMENTS THROUGH THE THICKNESS - PRE- AND
POST-PROCESSING . 151

13.1 Pre-processing . 151

13.1.1 Node repositioning . 151

13.1.2 Matching edges and faces on opposite model faces 152

13.1.2.1 Mesh matching by edge swapping 152

13.2 Post-processing . 155

iii

14.GENERATION OF MULTIPLE ELEMENTS THROUGH THE THICK-
NESS - RESULTS . 156

15.CLOSING REMARKS AND FUTURE WORK 163

15.1 Concluding Remarks . 163

15.2 Future Work . 165

APPENDICES . 168

A. LOCAL MESH MODIFICATIONS AND NODE REPOSITIONING 168

A.1 Edge Split . 168

A.2 Face Split . 170

A.3 Region Split . 170

A.4 Edge Swap . 171

A.5 Edge Collapse . 174

A.6 Node Repositioning . 175

A.7 Element Validity . 177

REFERENCES . 179

iv

LIST OF FIGURES

1.1 Framework for anisotropic mesh generation and re�nement. 4

3.1 Model types . 18

3.2 Model face types . 19

3.3 Radial edge representation of a non-manifold boundary 20

3.4 Minimal use representation . 21

3.5 Examples of mesh face use manifolds. 24

4.1 Boundary Layer Meshing steps . 29

5.1 Types of growth curves . 31

5.2 Boundary layer constructs . 33

5.3 Topological need for multiple growth curves 34

5.4 Visibility of growth curves . 36

5.5 Mesh topology and geometry requiring multiple growth curves 37

5.6 Finding mesh manifolds . 38

5.7 Dihedral angle between face uses . 41

5.8 Mesh face use subsets in mesh manifolds 43

5.9 Estimation of dihedral angles . 48

5.10 Incompatibility of boundary growth curves from single vertex 49

5.11 Methods of specifying boundary layers 51

6.1 Invalid elements due to invisibility of node 53

6.2 Growth curve crossover . 53

6.3 Fixing growth curve crossover . 54

6.4 Adjacent boundary growth curves. 56

6.5 Adjacent growth curves . 59

6.6 Recursive adjustment of neighbors . 64

v

6.7 Scale factor for growth curves . 65

6.8 Recursive pruning of neighboring growth curves 66

7.1 Boundary layer blend elements. 68

7.2 Boundary layer transition elements. 69

7.3 Boundary layer quad triangulation template. 72

7.4 Face directions for boundary layer quad triangles 75

7.5 Types of quads at model edges . 76

7.6 Model face retriangulation . 79

7.7 Types of prism triangulations . 84

7.8 Boundary Layer Prism Templates. 85

7.9 Transition Elements. 86

7.10 2D example of blends . 88

7.11 Calculating additional growth curves at blends 89

7.12 Simple �xed blend . 92

7.13 Simple variable blend . 93

7.14 Blend meshes on model faces . 94

7.15 Transitioning of boundary layers at model edge 95

8.1 Fixing intersections of boundary layers 97

8.2 Finding neighborhood faces for intersection checks. 98

9.1 Boundary layer mesh for ONERA-M6 wing 102

9.2 Boundary layer mesh for interior of car 104

9.3 Boundary layer mesh for under-carriage of car 105

9.4 Mesh for simulation of
ow in blood vessels 107

9.5 Boundary layer mesh for space shuttle 108

9.6 Setup for laminar
ow over
at plate 110

9.7 Initial surface mesh for
at plate . 112

vi

9.8 Mesh for
ow over
at plate . 113

9.9 Flow over
at plate - u-velocity contours 114

9.10 Similarity solution of
ow over
at plate at various x = 0.25, 0.5 0.75
and 1.0 . 114

9.11 Flow over
at plate - pressure and velocity contours 115

9.12 Schematic diagram of expanding pipe model 116

9.13 Meshes for expanding pipe model . 118

9.14 Results of
ow in expanding pipe . 119

9.15 Crystal growth simulation . 120

9.16 (a) Growth rate of boundary layer mesher with respect to number of
surface triangles (b) Close-up view of graph near the origin 121

9.17 Growth rate of boundary layer mesher with respect to number of layers 121

10.1 Examples of models with thin sections. 123

11.1 Examples of de�cient meshes . 126

11.2 Detection of locally thin sections . 128

11.3 Need for geometric check in forward search 130

11.4 Edge- and face-connected neighbors of vertex 132

12.1 Creation of multiple nodes by splitting 134

12.2 Illustration of opposite edges and faces. 136

12.3 Abstraction of mesh between opposite faces as a wedge. 137

12.4 Quad and wedge con�gurations . 138

12.5 Sequence of swaps to convert diagonal quad to zigzag. 139

12.6 Conversion to zigzag triangles . 140

12.7 Special quad con�gurations . 141

12.8 Elimination of de�ciencies in general mesh 142

12.9 Wedges with 2 elements throught the thickness 144

12.10 Example of impossible step-by-step conversion 146

vii

12.11 Fixing invalid wedge con�gurations by swapping 149

12.12 Edge bisection patterns to �x an invalid con�guration. 150

13.1 Mesh con�guration without opposite edge 153

13.2 Mesh con�guration with matching entities 154

14.1 Re�nement through the thickness for a simple plate 156

14.2 Re�nement through the thickness of a ring 157

14.3 Re�nement through the thickness for a general model, \asm107" 158

14.4 Re�nement through the thickness for a general model, \asm110" 159

14.5 Re�nement through the thickness for airfoil platform 160

14.6 Re�nement through the thickness for casting setup 161

14.7 Transient heat conduction analysis in crystal growth crucible 162

A.1 Edge split on surface meshes. 169

A.2 Edge split in volume meshes. 169

A.3 Face and region splits . 170

A.4 Edge swap for surface meshes. 171

A.5 Edge swap in the interior of a volume mesh. 172

A.6 Edge swap on boundary of volume mesh 173

A.7 Edge collapse . 174

viii

ACKNOWLEDGMENT

Many people have helped me earn my doctoral degree and more importantly, develop

the skills and knowledge required to aspire to do research. I take this opportunity

to acknowledge their contributions.

I would like to thank my advisor, Dr. Mark S. Shephard, who took a chance

and gave me an opportunity to join his research group although I had no experience

in mesh generation or geometric modeling. Mark has taught me the importance of

focus and quality in research. He has also taught me by example that hard work

and a strong work ethic are essential for success in any �eld. I would like to thank

him for his support and guidance through my stay at SCOREC.

I would like to thank Dr. Kenneth E. Jansen for his invaluable technical ad-

vice. Ken helped take this research to a new level of excellence by many hours of

insightful advice on the desired characteristics of anisotropic meshes for CFD. Ken

also reminded me that main purpose of mesh generation is to be able perform high

�delity �nite element simulations.

I thank both the Investment Casting Cooperative Arrangement members and

Simmetrix, Inc. for providing �nancial support for this thesis work. In particular, I

would like to thank Dr. Bruce E. Webster for his continued faith in me to deliver a

quality mesh generator for his work.

All my colleagues and friends at SCOREC have provided me with a wonderful

research environment and I owe my knowledge of mesh generation and geometric

modeling to their patient tutoring, answering my endless questions, and long, inter-

esting discussions. In particular, I would like to thank my advisor Mark Shephard

and colleagues Marcel Georges, Pascal Frey, Ravi Ramamoorthy, Saikat Dey and

Hugues de Cougny and Kaan Karamete for educating me about mesh generation.

Also, Kaan Karamete's development of edge recovery procedures came at a timely

moment freeing me up to concentrate on other pressing issues in my thesis.

On a personal note, I owe much of what I have achieved to the love and support

of my wonderful parents who have endeavored to provide me with everything I

ix

needed and always propelled me to set high standards for myself. I thank my great-

uncle, P. Rama Rao, my sister, Aruna Prakash and brother-in-law, N. Prakash,

without whose help I would not have been able to pursue my studies in the U.S.A.

Also, I owe a great deal to my uncle, Chalam Garimella, who has been a guardian,

mentor and above all, a wonderful friend. His friendship and a�ection have pulled

me through some of the more trying times during completion of my degree. In

addition, Sita and Chalam Garimella, Lakshmi and Sastry Sreepada, Lalita and

Sanjeev Hirve, and Raji and Kumaraswamy Dikshitar, have all provided me a home

away from home and I am grateful for their care and a�ection.

Finally, my humble gratitude to the almighty for giving me a wonderful life

full of opportunities and I pray that I make the best use of it.

x

ABSTRACT

Many physical problems exhibit strong gradients in speci�c directions compared to

other directions. To successfully perform �nite element analysis and obtain accu-

rate solutions for such problems, elements in the �nite element mesh must be small

enough in these directions. Anisotropic meshes with small dimensions in the direc-

tions of strong gradients and large sizes along others can signi�cantly reduce solution

costs. This research focuses on two classes of problems requiring generation of such

anisotropic tetrahedral meshes.

Viscous
ow problems exhibit boundary layers and free shear layers in which

the solution gradients, normal and tangential to the
ow, di�er by orders of mag-

nitude. The Generalized Advancing Layers Method is presented here as a method

of generating meshes suitable for capturing such
ows. The method is designed

to reliably generate anisotropic elements in boundary layers for arbitrarily complex

non-manifold domains. The boundary layer mesh is created by tetrahedronization

of prismatic, transition and blend polyhedra constructed on top of an initial surface

mesh. The method includes several new technical advances allowing it to mesh com-

plex geometric domains that cannot be handled by other techniques and is currently

being used for simulations in the automotive industry.

Anisotropic meshes are also desirable in problems with a strongly non-linear

solution across thin sections of the analysis domain. A procedure has been developed

to transform an isotropic mesh with insu�cient re�nement through thin sections

into one with a user de�ned number of elements through such sections. The method

automatically identi�es de�cient portions of the mesh and anisotropically re�nes it

using local mesh modi�cation tools.

The two mesh generators form components of an overall framework for adap-

tive analysis in which anisotropic mesh generation and adaptation decrease the com-

putational cost of converging to solutions of the desired accuracy for simulations in

general geometric domains.

xi

CHAPTER 1

INTRODUCTION

Simulation of systems is playing an ever increasing role in the engineering design

cycle. Increasing use of simulations to test designs is propelled primarily by the

high cost of performing tests on physical prototypes and the need to re�ne design

ideas rapidly. The availability of sophisticated numerical techniques and increased

accessibility to high performance computing are central to the ease with which

engineers can perform simulations to evaluate design ideas. The availability of these

resources also feeds the desire to do more extensive analysis of complex coupled

multi-physics, multi-scale systems with fewer idealizations. Thus the envelope of

the current design and analysis technology is constantly being pushed outward to

keep pace with and even outgrow present technological capabilities.

Finite element analysis methods have played a major role in the development

of simulation as a viable tool in many engineering �elds such as stress analysis,

simulation of chemical processes,
ow of
uids, electromagnetics etc. The availability

of reliable automatic �nite element mesh generators is a critical component in the

ability of an analyst to harness the power of the �nite element method. Automatic

mesh generators must be able to mesh arbitrarily complex non-manifold1 geometric

domains derived directly from CAD systems. The important characteristics of a

mesh is good mesh quality, proper mesh gradation and proper element sizes which

will enable the analyst to capture the desired features of the solution within the

available resources. The mesh should be su�ciently re�ned in regions where solution

exhibits sharp gradients without over re�nement or propagation of the re�nement to

parts of the domain where the solution is not changing rapidly. While the optimal

distribution of points may best be achieved by adaptive mesh generation based on

error estimation, a good point distribution obtained a priori by a mesh generator

and careful choice of mesh control speci�cation can signi�cantly reduce the number

of adaptive analysis loops required for the solution to converge.

1Simply put, non-manifold models consist of general combinations of solids, surfaces and wires.
For a more rigorous de�nition see Chapter 3 and ref. [43].

1

2

Many physical problems exhibit relatively strong gradients in certain local

directions compared to the other directions. Some examples of such situations are

thermal and
uid boundary layers, and nonlinear solutions in domains with very

thin sections. A certain minimum element size along these directions is necessary

to capture the solution in these regions. However, isotropic re�nement of the mesh

in these parts of the domain leads to prohibitively large meshes and a wastage of

degrees of freedom in directions which do not need such �ne resolution. Anisotropic

meshes with small element sizes in the directions of strong gradients and large sizes

along the other directions leads to signi�cant savings in solution costs (often up to

several orders of magnitude).

This research focuses on two classes of problems requiring anisotropic re�ne-

ment:

1. Applications requiring the resolution of boundary and free shear layers such

as viscous
ow simulations, and

2. Applications requiring resolution of strongly nonlinear variation of �eld vari-

ables in geometrically thin domains.

High Reynolds number
uid
ow simulations have boundary layers at the wall

and also free shear layers not attached to any model boundary. The relative rates

at which the solution variables change in boundary and shear layers, normal and

tangential to the
ow, may di�er by many orders of magnitude in such problems.

Use of properly aligned anisotropic meshes in these parts of the
ow results in large

reductions in the total number of elements.

A generalization of the popular advancing layers method [11, 31, 34, 40, 54] is

presented here as the method for generating boundary layer meshes. The method is

designed to e�ciently and reliably generate good quality anisotropic elements near

the boundary layer surfaces for arbitrarily complex non-manifold domains start-

ing from a surface mesh. The method has several improvements over the previous

advancing layers techniques reviewed in Chapter 2. It is demonstrated that the

common strategy of in
ating the surface mesh as is to form the boundary layer

leads to invalid meshes for some non-manifold models and poor quality elements at

3

sharp corners in 2-manifold models. Various procedures are described to make the

boundary layer elements valid and to ensure that the mesh is not self-intersecting.

The improvements incorporated into the method has enabled it to be used success-

fully to generate large boundary layer meshes for real industrial models that are

geometrically very complex.

Another class of problems needing anisotropic re�nement of meshes is one in

which the solution is strongly non-linear across thin sections of a domain relative to

other directions. Use of one linear element across such thin sections is unacceptable

for such problems. The simplest and most problematic de�ciency of such a mesh is

in
ow simulations where a \no slip" boundary condition is enforced on the walls

of a section spanned by a single element. An analysis with linear �nite elements

using this mesh incorrectly predicts no
ow through these sections. The second

part of the research presented here describes a method that addresses this problem.

The method is designed to transform an isotropic mesh with insu�cient re�nement

through thin sections into one with a user de�ned number of elements through such

portions of the domain. The procedure uses local mesh modi�cation procedures

to e�ect the re�nement. The method is completely automatic, identifying de�cient

portions of the mesh without any user input. It is designed to handle arbitrarily

complex geometric domains. It functions in conjunction with isotropic automatic

mesh generators [13, 17, 65] and can use input from any mesh generator capable of

providing the necessary information about the initial mesh [5].

The two procedures described in this research form parts of the overall frame-

work for adaptive analysis in which anisotropic mesh generation and adaptation

serves to decrease the computational cost of converging to solutions for complex

problems in general geometric domains (Figure 1.1).

The rest of this thesis is organized in the following manner. A review of the

previous e�orts in anisotropic mesh generation is presented in Chapter 2. De�-

nitions and notations used in the following chapters are described in Chapter 3.

Chapter 4 discusses the motivation for specialized boundary layer meshing tech-

niques and presents an overview of the Generalized Advancing Layers method used

here. Chapter 5 discusses at length the issues in point placement for boundary

4

Error Estimation

A
N
A
L
Y
S
I
S

Refinement
Through The

Thickness

Uniform
Stretching of

elements

Boundary Layer
Mesh Generation

Anisotropic
Surface Meshing

Anisotropic
Mesh Adaptation

Anisotropic
Mesh Size

Specification

Figure 1.1: Framework for anisotropic mesh generation and re�nement.

layer meshing of arbitrarily complex non-manifold geometric domains. Chapter 6

describes techniques to ensure that the boundary layer elements generated will be

valid and the creation of boundary layer elements is presented in Chapter 7. Chap-

ter 8 discusses the method used to guarantee that the boundary layer mesh is not

self intersecting. The discussion of boundary layer meshing concludes with results

and discussion in Chapter 9.

The need for anisotropic re�nement of meshes for thin section domains and the

methodology for achieving it are outlined in Chapter 10. Chapter 11 discusses the

procedure for automatically identifying de�cient portions of the domain for general

geometric models. Chapter 12 describes the creation of multiple layers of elements

through the thickness. This chapter discusses re�nement of the de�cient mesh by

edge splitting and elimination of short paths by edge swapping. Uniform re�nement

of the mesh to eliminate any remaining de�ciencies in the mesh is also discussed in

Chapter 12. Matching of the mesh on opposite model faces and other pre- and post-

5

processing steps to improve the quality of the �nal mesh is discussed in Chapter 13.

Results and discussion follow in Chapter 14.

Closing remarks and future work for a complete anisotropic mesh generation

capability are presented in Chapter 15.

CHAPTER 2

SURVEY OF PREVIOUS EFFORTS ON ANISOTROPIC

MESH GENERATION

Anisotropic meshes for capturing boundary layers in viscous
ows have been gener-

ated by three techniques:

1. Direct creation using anisotropic mesh control information often combined

with transformation of meshing space

2. Modi�cation of an initial isotropic mesh by node reposition and/or local mesh

modi�cations

3. Creation of the anisotropic mesh by a special method followed by the genera-

tion of an isotropic mesh in the rest of the domain.

Direct generation of unstructured anisotropic meshes has been attempted with

both Delaunay and Advancing Front methods.

The Delaunay method ([2, 12, 22{25, 29, 30, 71] are just a few of the extensive

list of references on this subject) for generating simplex meshes in n dimensions

starts with a discretization of the boundary of the domain. To mesh the domain,

an extremely coarse mesh of a convex polyhedron consisting a few simplices is con-

structed such that it completely encloses the boundary discretization. The points

of the boundary mesh are then inserted into this coarse mesh according to the De-

launay criterion. The Delaunay criterion dictates that no vertex in the mesh can

be contained in the circumsphere (circumcircle in 2D) of a simplex not connected

to the vertex. Therefore, when a new point is to be inserted, the elements whose

circumsphere contains the new point are deleted to form a cavity. The new point

must be visible from every point on the boundary of the cavity. Then the new point

is connected to the boundary of the cavity to create a new mesh containing the

new vertex. The resulting mesh satis�es the Delaunay criterion. The distribution

of the points is chosen such that the edges in the mesh have a satisfactory length

6

7

according to the mesh size speci�cation. The simple Delaunay algorithm guarantees

that all vertices of the boundary are present in the mesh. However, it is not guar-

anteed that all the connecting boundary entities between the boundary vertices are

represented in the mesh. The Constrained Delaunay algorithm [23] uses local mesh

modi�cations to recover these missing edges to preserve boundary integrity.

By its nature, satisfaction of the Delaunay criterion tends to produce isotropic

triangulations. In fact, even if the point distribution is anisotropic, the Delaunay

method tries to create low aspect ratio elements resulting in elements of widely vary-

ing sizes [48]. Therefore, various researchers have proposed methods to transform

the meshing space such that an isotropic mesh created by the Delaunay method in

the transformed space is anisotropic in the real space.

Mavripilis [48] has described a method for anisotropic adaptation of trian-

gular meshes constructing a metric based on two independent stretch vectors at

each point. Using this metric the local space is mapped to a control surface in a

transformed higher dimension space in which a Delaunay triangulation is performed.

The triangulation so generated is isotropic in the mapped space but stretched when

mapped back to the real space. The control surface dimensionality is reduced by

assuming local planarity.

M. G. Vallet, F. Hecht and B. Mantel [70] have proposed a similar idea for

the initial mesh generation process as well as adaptation. Researchers P. L. George,

H. Borouchaki, F. Hecht et.al. have generalized the ideas of generating anisotropic

mesh generation by the Delaunay method using metric speci�cations in recent works

[7, 8, 23]. M. J. Castro-Diaz, F. Hecht and B. Mohammadi, in their work [9, 10],

have added to the existing ideas of anisotropic grid adaption by recognizing that,

for viscous
ow simulations, it is desirable to have the near-wall mesh as orthogonal

to the wall as possible and to maintain a certain minimum distance of the �rst node

from the wall nearly. The metrics used for generation of the anisotropic mesh are

modi�ed near the wall to account for these factors.

Borouchaki, George et.al. [7] have presented a generalization of the Delaunay

method that encompasses isotropic and anisotropic mesh creation. In its basic form,

the method bears close resemblance to the classic Constrained Delaunay algorithm.

8

However, the method has the ability to use a modi�ed Delaunay criterion for point

insertion. Consider a domain
 discretized by an initial mesh in which one or more

metrics are speci�ed at each vertex. Each metric is a positive de�nite symmetric

tensor of as many dimensions as the dimension of the domain being meshed. In two

dimensions, the metric is written as

M(X) =

2
4 a(X) b(X)

b(X) c(X)

3
5 (2.1)

where X is any point in
, a(X); c(X) > 0 and a(X)c(X)� (b(X))2 > 0.

When the metric values from the vertices are interpolated over the entire

domain, a Riemannian space is de�ned by the pair (
;M(X)). In the case where

the metrics are identical over all points over the domain, the Riemannian mapping

simpli�es to a Euclidean mapping (the transformations in this case are only scaling,

translation and rotation; skewing is not allowed).

The length of a line segment from PQ = (P + tPQ)0�t�1 in
 is given by

l(P;Q) =

Z 1

0

q
a(t)x21 + 2b(t)x1x2 + c(t)x22dt (2.2)

where

PQ =

0
@ x1

x2

1
A andM(P + tPQ) =

2
4 a(t) b(t)

b(t) c(t)

3
5 (2.3)

If the space is Euclidean, this simpli�es to

l(P;Q) =
q
ax21 + 2bx1x2 + cx22 (2.4)

9

With the above relationships for transforming lengths between the real and

the mapped space, a modi�ed Delaunay criterion may be devised. If the metric is a

true Riemannian metric, it is very di�cult to de�ne the equivalent of a circumcircle

in the transformed space since the metric varies continuously from point to point.

Therefore, the problem is simpli�ed by assuming that the space is Euclidean in the

local neighborhood of the point. Given a triangle K with points P1, P2 and P3

with circumcenter O and a point to be inserted P into the triangulation, the point

violates the Delaunay criterion with respect to the triangle in the transformed space

if lM(O;P) < lM(O;Pi); i = 1; 2; 3. It is possible to re�ne this criterion by assuming

that each vertex of the triangle and the point to be inserted have di�erent locally

Euclidean metrics associated with them.

In their work, the authors also discuss details of smoothly interpolating the

metrics between endpoints of the segments. Given a �eld of metrics, relationships

for transforming length measures from one space to another, a generalized Delaunay

kernel and a method for interpolating the metrics smoothly, it is now possible to

generate a mesh with edge lengths of unity in the Riemannian space so that the mesh

will have the desired sizes in the real space. If the metric is the identity matrix,

I, then an isotropic mesh with edges of unit length is generated. If the metric is

hI where h is the size speci�cation de�ned on the background or initial mesh, then

an isotropic mesh satisfying this size speci�cation may be generated. On the other

hand, if the metric is more general then an anisotropic mesh is created.

The authors derive the metric speci�cation for generating the anisotropic mesh

from solution variables in an adaptive analysis. Since one may require more than

one solution variable to be taken into account, the authors also provide mechanisms

for combining multiple metrics.

This method has been shown to work well for generating anisotropic meshes in

two dimensions based on solutions from an existing mesh [8{10, 70]. The extension

to three dimensions seems natural and is proposed in the papers but no results are

presented. The method possesses the following complexities:

� The anisotropic mesh must be regenerated from scratch at every adaptive

step. This is due to the fact that it is easy to re�ne a mesh based on Delaunay

10

criterion but it is not straightforward to coarsen an existing mesh while main-

taining the Delaunay property. One recent work has been published which

takes a step in this direction for two dimensions [77]. Therefore, to avoid the

cost of carrying the re�nement in uninteresting portions of the domain, the

mesh is regenerated at each step. The regeneration of the mesh can potentially

become an expensive step in itself for complex domains in three dimensions.

� The quality (large angles) of elements degrades rapidly with increasing anisotropy

in this method. It is expected that this characteristic is more pronounced in

three dimensions where the large dihedral angles will degrade quickly with

increasing anisotropy of the Riemannian mapping. Therefore the method is

not very well suited for generation of meshes capable of capturing strong gra-

dients in the boundary layer, where desired aspect ratios of 1000 to 10000 are

quite common. It must be noted, that in a recent work [10], this problem is

indirectly addressed in two dimensions by using a special near wall metric.

The metric is designed to create edges orthogonal to the wall and to maintain

a prede�ned o�set of the �rst layer of nodes from the wall. This characteristic

improves element quality implicitly.

Like the Delaunay method, the advancing front method [28, 42, 50] starts with

a mesh of the model boundaries. The boundary triangles are incorporated into a

front. The mesh is then grown from the boundary inwards by forming elements using

each of the front faces in turn. To form an element using a front face, one or more

candidate locations are chosen in the domain for the fourth vertex of the tetrahedron.

An obvious choice for the location of the fourth point is along the normal to the

front face originating from its centroid. The distance of the candidate point from

the face is designed to generate a well shaped isotropic element respecting the mesh

size speci�cation in the domain. The mesh size distribution may be speci�ed in a

number of ways, common ones being using a user generated background mesh [53]

and a tree structure [13, 17, 64]. For each candidate location considered, a number of

checks must be performed to ensure that the mesh will be valid. The most important

of these is the check to ensure that the new element will not intersect any other front

entities. Since the front can be quite large, it is necessary to localize the search for

11

intersections using a search tree such as an octree [13, 39, 56, 59] or an alternating

digital tree [6]. Once a candidate location passes all the checks, an element is formed

using the front face and a vertex at the chosen location. The front face is removed

from the front and the new faces of the element are added to the front. Element

creation continues until the front is empty indicating that the domain is meshed.

The advancing front, like the Delaunay method, can produce good quality isotropic

meshes quite e�ciently. In addition, it has the advantage of concentrating the best

shaped elements near the boundaries of the domain.

Hassan, Probert, Morgan and Peraire [27] have used a modi�ed advancing

front method to generate anisotropic meshes where a layer of elements is generated

from a front using isotropic criteria and then the layer compressed as a whole to

the desired thickness by node repositioning. Points are constrained to move along

element sides until they lie at a user speci�ed o�set from the model boundary. The

user can specify the number of such layers desired. The thickness of subsequent

layers increases by a geometric progression such that the �nal layer thickness is

half of the isotropic mesh size. Once the special elements are generated, the usual

isotropic advancing front method is used to �ll up the rest of the domain. While

this method worked well in 2D, it is prone to problems in 3D [26]. One di�culty

in the method stems from ambiguities in the direction of movement of the nodes to

achieve good quality of elements. Also, isotropic advancing front methods typically

generate more points for the upper surface of the �rst layer than there are on the

surface triangulation. Compression of the layer then leads to some points coming

too close to each other in the tangential direction to the model boundary.

Most of the work in generating meshes for viscous
ow simulations has been

in the direction of generating an anisotropic mesh next to surfaces where a bound-

ary layer is expected and then �lling the rest of the domain by an isotropic mesh

generator. A popular set of such methods are the advancing layers and advancing

normals methods. The basic strategy in both methods is to use a special method to

generate the anisotropic layers of elements next to model boundaries and then hand

the task of meshing the rest of the domain to one of the common isotropic mesh

generation methods.

12

Kallinderis et.al. [31{34, 37] developed a hybrid prismatic/tetrahedral mesh

generators for viscous
ow simulations by enclosing the body around which the
ow

is to be simulated with layers of prisms and then �lling the rest of the domain

using a combination of octree and advancing front methods. The height of the

prisms increases away from the wall according to user speci�cations. The procedure

incorporates an algorithm to ensure that the interior nodes of the prisms are \visible"

from all the relevant faces of the previous layer [34]. \Visibility" of a node from a face

is a necessary condition for the face and the node to form a positive volume element.

Included in this method is a procedure to automatically recede and smoothly grade

layers in con�ned regions of the model based on ray tracing methods although no

explicit check for interference of boundary layer prisms is described [37]. Sharov

and Nakahashi [60] have described a similar method with some modi�cations for

generating better elements and for generating all tetrahedra. They use a Delaunay

method for generating the interior tetrahedra. The use of prisms to capture the

boundary layers leads to fewer elements in the mesh. The method is capable of

handling 2-manifold geometries [32] but may create poor quality meshes at sharp

corners (where boundary layer nodes are not \visible" to mesh faces). The method

also cannot handle non-manifold geometries.

L�ohner [40] describes a similar method for by combining a semistructured

grid consisting of layers of anisotropic tetrahedronized prisms grown on some model

boundaries with an unstructured isotropic mesh in the rest of the domain. The

method starts from a mesh of the surface, grows the tetrahedronized prisms on

mesh faces on selected boundaries with nodes placed along directions derived from

surface normals and then �lls the rest of the domain with isotropic elements created

by an advancing front mesh generator. A Laplacian smoothing procedure is used

to smooth the directions of node placement. The procedure detects poorly shaped,

improperly sized and intersecting elements, and deletes them from the mesh. A

search tree is used to speed up the detecting of intersecting elements. The possibility

of impermissible diagonal combinations in prism tetrahedronization is recognized

and an iterative procedure to correct such con�gurations is introduced. (A recent

paper by L�ohner [41], however, advocates the use of anisotropic re�nement of an

13

isotropic mesh using the Delaunay criterion to generate boundary layer meshes.

Inability of the advancing layers method to mesh complex models is cited as the

reason for switching to the new method.)

Pirzadeh [54] described a similar approach called the Advancing Layers Method

(ALM) for the generation of anisotropic meshes for viscous
ow calculations. The

signi�cant features of this work are:

1. Introduction of prism templates.

2. A non-iterative procedure for obtaining valid diagonals for the prisms.

3. An iterative procedure for obtaining valid directions for placement of points

based on maximization of the minimum angle the direction makes with the

faces connected to the surface vertex.

4. A procedure for avoiding interference between layers based on a virtual springs

connecting front vertices.

Connell and Braaten [11] have described an implementation of the advancing

layers procedure with many enhancements to deal with general situations. They

advocate the use of surface normals for node placement, since they assert that it

gives smoother distribution of nodes in the standard advancing layers method. The

paper details an algorithm to ensure that all prisms have a valid set of diagonals.

The goal of the procedure is to ensure that no prism has all diagonals in the same

direction. In this method, each vertex on the model boundary is visited and the edges

coming into the vertex are assigned a direction pointing into the vertex if they do not

already have one assigned. The direction assigned to the edge uniquely determines

the direction of the diagonal of the prism face associated with the edge. It can be

shown [11] that it is impossible to assign a cyclic set of directions to the edges of any

triangle using this method. Also, discussed is a technique for grading the boundary

layer mesh to avoid exposing highly stretched faces to the isotropic mesh generator

when elements are deleted. If it is seen that the faces of a prism will be exposed to the

isotropic mesh generator at any edge, the number of layers at that edge are reduced

to zero. A recursive procedure then ensures that the number nodes at neighboring

14

vertices are also trimmed so that no two adjacent surface mesh vertices have more

than a one layer di�erence. Then the stretched faces are sealed o� using diagonal

faces which are isotropic (See Chapter 7 for a discussion of transition elements that

are a generalization of this concept). The authors check explicitly for interference

between the prisms based on the advancing front method reported to be O(n2) with

a proposal to reduce the time using a search tree. Their technique for �nding valid

directions at model edges and vertices, however, is not general and is not guaranteed

to always work. Connell and Braaten's work discusses many of the fundamental

issues with viscous
ow simulations and mesh generation for these problems using

the advancing layers methods. They discuss issues of exposing stretched faces to

the advancing front mesh generator, devising assurance algorithms for valid prism

tetrahedronization, the interference of layers, varying thickness boundary layers and

resolution of wakes. They also demonstrate the capabilities of the mesh generator

on a number of complex con�gurations.

Hassan et.al. [26] have also devised another variation of the advancing front

method to circumvent the di�culties with their earlier work. In this method, a new

vertex is generated with respect to each front vertex and all the connected front

faces are combined with the new vertex to form elements of the next layer. The

new vertex is placed at a user speci�ed distance from the previous vertex along

a direction normal to the surface at that vertex. At model edges and vertices,

a special procedure is used to prevent invalid elements from being created. This

procedure tries to compute a direction which is \visible" to all mesh faces using the

base mesh vertex. This procedure may not always succeed in such situations and

when it does, it may produce barely valid elements. An important feature in the

procedures of Hassan et.al. is the ability to merge two directions if they intersect or

two points in the layer being generated come too close to each other. This allows

the procedure to eliminate points in the upper layers on concave boundaries. An

equivalent procedure for adding additional directions when the convexity of the

surface is too high is absent and is evident in the large elements created in some

parts of the example meshes shown. Once the anisotropic elements are generated,

the isotropic advancing front mesh generator takes over and �lls the rest of the

15

domain. The major drawback of this, and other methods based on direct variations

of the advancing front methods, is that they must check for intersections for every

anisotropic element created.

Marcum and Weatherill [45{47] have described an approach for unstructured

grid generation for viscous
ows using iterative point insertion followed by local

reconnection subject to a quality criteria. The point distribution for the anisotropic

mesh is generated along \normals" according to user speci�cations or error estimates

at model boundaries and stream surface based wake surfaces. The isotropic point

distribution in the far �eld is generated using a standard advancing front method.

The quality measure used is a Delaunay in-sphere criterion followed by a min-max

criterion. The most interesting aspect of this work is that they account for sharp

\discontinuities" at edges and vertices and generate points along additional direc-

tions in such cases. \Discontinuities" are identi�ed based on the deviation between

the average normal at a mesh vertex and its deviation from the individual mesh face

normals. When this deviation exceeds a certain angle tolerance, an additional direc-

tion for point placement is created that is the weighted mean of the average normal

and the face normals. This ensures that elements are not very poorly shaped near

sharp corners. This has some parallels to the more general idea of multiple growth

curves presented later in this thesis. Once the anisotropic elements are created, the

same procedure is used to do isotropic point insertion and local reconnection in the

rest of the domain.

Marchant and Weatherill [44] discuss the creation of the boundary layer mesh

by the advancing normals method and using the outer envelope of the boundary

layer mesh as the starting point for a constrained Delaunay type procedure. The

problem of interference between layers is addressed by terminating insertion of points

along a certain direction if they are closer to another surface than the originating

surface. The issue of boundary layers interacting with adjacent model faces with no

boundary layer is dealt with by tapering o� the boundary layers at such interfaces.

The research described herein is a generalization of the advancing layers method

mentioned above combined with an isotropic mesh generator based on a combination

of advancing front and delaunay methods [13, 17].

CHAPTER 3

DEFINITIONS AND NOTATION

In this chapter de�nitions and notations of quantities used in the thesis are intro-

duced. The notation given below expresses mesh and model entity relationships

in a concise form [5]. Other de�nitions are introduced in the relevant chapters as

necessary.

3.1 Notations

3.1.1 Set notation

fg Unordered set

bc Ordered set

[] Cyclically ordered set

hi Set in which ordering of elements is unspeci�ed and may be unordered,

ordered or cyclic

3.1.2 Geometric model notations

G Geometric model

Gd
i ith geometric model entity of order d (d = 0; 1; 2; 3 for vertices, edges,

faces and regions respectively)

(gdi);j jth use of ith geometric model entity of order d

@Gd
i Boundary of model entity Gd

i

Gd
i Closure of Gd

i , G
d
i [@Gd

i

3.1.3 Mesh notations

M Mesh or discretization of the geometric model

Md
i ith mesh entity of order d (d = 0; 1; 2; 3 for vertices, edges, faces and

regions respectively)

(md
i);j jth use of ith mesh entity of order d

16

17

@Md
i Boundary of entity Md

i

Md
i Closure of Md

i , M
d
i [@Md

i

< Classi�cation of Md
i on GD

j which is the unique association of Md
i

with GD
j if Md

i forms all or part of the discretization of GD
j .

Classi�cation of Md
i on GD

j is written notationally as Md
i < GD

j .

It follows that d � D.

3.1.4 Adjacencies

'd1hT d
i i The set of entities in model T of dimension d

that are adjacent to an entity or set of

entities � of dimension d1

(T d1
1 ; T d2

2 ; � � � ; T dn
n)hT d

i i The set of entities of dimension d that are

adjacent to the entities T d1
1 ; T d2

2 ; � � � ; T dn
n

3.2 De�nitions

The basic input for any automatic mesh generator is a properly de�ned geo-

metric model and a set of meshing attributes prescribed on the model. All models

are expected to contain a de�nition of their topology, and a de�nition of the geom-

etry underlying the topological entities (points, curves and surfaces).

3.2.1 Geometric model de�nitions and concepts (Also see [43, 51])

Geometric models may, in general, be 2-manifold or non-manifold. Informally,

non-manifold models are models which are general combinations of solids, surfaces

and wires. A more formal de�nition is given below. The di�erence between 2-

manifold and non-manifold models is illustrated in Figure 3.1.

De�nition 3.1 2-manifold models are geometric models in which the local neigh-

borhood of every point on the model boundary is topologically equivalent or homeo-

morphic2 to a disk [43, 72{74].

2Intuitively, this means the local neighborhood of every point on the boundary may be trans-
formed into a disk without any cutting, tearing or otherwise making points that were separate,
coincident in the new form. See [49] for a discussion of topology and homeomorphism.

18

Figure 3.1: (a) 2-manifold model. (b) non-manifold model.

De�nition 3.2 All models that are not 2-manifold are non-manifold.

Geometric models may have two types of non-manifold faces - embedded faces and

interfaces (See Figure 3.2).

De�nition 3.3 Interface faces in geometric models are faces that partly bound two

di�erent model regions, one on each side.

De�nition 3.4 Embedded faces in geometric models are faces that are connected to

the same region on both sides.

The data structure used to represent the model in this work is based on the

Radial Edge Data Structure developed by Kevin Weiler [72{74]. The Radial edge

data structure presents the idea of uses to represent how topological entities are

used by others in a non-manifold model. Every face in the model has two face uses,

one on each side of the face. An edge carries as many pairs of uses as there are pairs

of face uses coming into it. Each edge use has an edge use mate. A vertex carries as

many uses as there are edge uses coming into it and each vertex use has one vertex

use mate. This is illustrated in Figure 3.3 (adapted from [72]).

The radial edge data structure is more detailed than the minimum amount

of information required to represent many common types of non-manifold model.

The representation is therefore reduced by fusing edge use mates together to form a

single \edge use" connected to two face uses. Similarly, vertex uses are condensed so

19

G
2

1

G
2

2

G
3

0

G
3

1

G
2

0

Figure 3.2: Model face types - G2
0 is embedded face, G2

1 is an interface and G2
2 is a

2-manifold face.

that the minimum number of uses are present at any vertex. Such a data structure

is referred to as the Minimal Use Data Structure [4]. Conceptually, the minimal

use data structure builds a representation of the non-manifold topology such that

the connected face uses locally form a 2-manifold at any point. For example, every

edge use in a minimal use is connected to two or no faces uses. This is even true for

embedded faces in the model. For example, a rectangular face completely embedded

in a region, has two faces with common edge and vertex uses (like a pillow case).

Similarly, the use topology at any vertex use can always be represented locally as

a 2-dimensional disk. Lastly, by its very nature the use topology at any face use is

always a 2-dimensional disk.

De�nition 3.5 Given an entity use, (gdi);j; d = 0; 1; 2, the collection of its con-

nected face uses, f(g2k);m j (gdi);j � @((g2k);m)g in a minimal use representation of a

non-manifold model is called a manifold.

At any point on a model face there are always two manifolds of face uses. One,

both or none of these manifolds may partly or completely bound a model region.

Points on edges and vertices may have multiple face use manifolds connected to

them. As with faces, each of these manifolds may or may not form part of the

20

radial
mate

mate

radial

(g1
1
)

;2

G
2

1

(g1
1
)

;1

G
2

2

G
2

3

G
2

1

G
2

2
G

1

1

face use
mate links

edge use
mate links

edge use
radial links

(g2
1
)

;1

(g2
2
)
;2

(g2
1
)

;2

(g2
2
)

;1

(g23);1

G
2

2

G
2

1

G
2

3

G
1

1

(g23);2

(g1
1
)

;1 (g1
1
)
;2

(g1
1
)
;3

(g1
1
)
;4

(g1
1
)

;5

(g1
1
)

;6

Figure 3.3: Radial edge representation of a non-manifold boundary (Adapted from
[72]).

boundary of model region. At any point it is not possible to travel from one of its

mesh manifold to another without penetrating a boundary model entity. The concept

of a face use manifold is similar to the idea of a separation surface de�ned by Weiler

[72]. Weiler describes a separation surface as \a complete surface formed by the

juncture of faces around a vertex that e�ectively separates the space immediately

around the vertex into two half-spaces, distinguishable from each other because

the surfaces are orientable." Separation surfaces may be made up of one or more

model faces as long as they form a continuous surface at the vertex. One or more

separation surfaces may exist at any vertex. 2-manifold models are characterized by

the presence of only one model region and only one manifold at each point on the

model boundary connected to the region.

With the help of the minimal use representation and its collection of face

uses into manifolds, dealing with a non-manifold boundary becomes equivalent to

dealing with a set of 2-manifold boundaries. Figure 3.4 shows the minimal use

representation equivalent of the non-manifold situations shown in Figure 3.3. For

geometric modelers using a purely 2-manifold representations, non-manifold models

may still be built up in a non-manifold data structure from multiple 2-manifold

components if the appropriate additional information is speci�ed [63, 67].

21

G
2

2

G
2

1

(g1
1
)

;1

G
2

3

G
2

1

G
2

2
G

1

1

(g1
1
)

;1 (g1
1
)
;3

(g1
1
)

;2

(g2
1
)

;1

(g2
2
)
;2

(g2
1
)

;2

(g2
2
)
;1

(g23);1

G
2

2

G
2

1

G
2

3

(g23);2

G
1

1

Figure 3.4: Minimal use representation of non-manifold boundaries shown in Fig-
ure 3.3.

3.2.2 Mesh de�nitions and concepts

The representation for the mesh [5, 57, 58, 66] used in this research is based on

concepts from geometric modeling. The mesh consists of mesh vertices, edges, faces

and regions. If necessary, the mesh may also represent vertex, edge and face uses.

Each entity in the mesh has a unique classi�cation with respect to the model.

De�nition 3.6 Classi�cation is the unique association of a mesh entity, Mdi
i , to

a geometric model entity, G
dj
j , (di � dj) to indicate that Mdi

i forms part or all of

the discretization of G
dj
j but not @G

dj
j . The classi�cation operator is denoted by <

and Mdi
i < G

dj
j is used to denote the classi�cation of Mdi

i on G
dj
j .

The geometry of mesh vertices is described by points associated with them.

The geometry of mesh edges and faces is not stored for linear elements. For higher

order elements, the geometry of edges and faces is a polynomial or other interpolation

implicitly de�ned through additional information stored with the mesh entities or

with the geometric model in terms of the shape of the model entities they are

classi�ed on.

De�nition 3.7 The connectivity of a mesh or model entity to other mesh or model

entities respectively is called Topological Adjacency or simply Adjacency.

22

De�nition 3.8 A valid mesh is one that correctly approximates the geometry of an

object.

The implication of this de�nition is that the mesh should topologically and

geometrically equivalent or congruent to the geometric model. Schroeder and Shep-

hard [57, 58] lay down the following conditions for validity of a mesh:

1. The mesh should be topologically compatible with the geometric model.

2. The mesh should be geometrically similar to the geometric model.

De�nition 3.9 Topological Compatibility: Given a mesh consisting of mesh

entities Md
i with boundary entities Md�1

i classi�ed on the closure of a geometric

model entity Gd
j with boundary entities Gd�1

j , the mesh is topologically compatible

with the model if

1. Each Md�1
i < Gd

j is connected to two and only two Md
i < Gd

j .

2. EachMd�1
i < Gd�1

j is connected to as many number ofMd
i < Gd

j as the number

of times Gd�1
j is used by Gd

j .

A mesh is topologically compatible with a geometric model if it is compatible with

each of the model entities.

Geometric similarity [57, 58] is the relationship of the mesh geometry to the

model geometry and is a way of expressing the condition that in the limit of re�ne-

ment the geometry of a mesh should exactly match that of the geometric model.

This idea may be expressed more practically in a number of ways, one of which is

expressed by Schroeder and Shephard [57, 58] as follows:

De�nition 3.10 Geometric Similarity: A mesh of order d, comprised of N

entities Md
i is geometrically similar to a model entity, also of order d (Gd

k), if M
d
i <

Gd
k; 8i = 1; � � � ; N and the parametric intersection of any two entities of the mesh

is ;, i.e. Md
i u� Md

j = ;, with the parametrization being with respect to some

appropriately de�ned space.

23

Since the mesh is required to topologically compatible with the geometric

model, one can de�ne a concept for meshes that is analogous to a face manifold or

separation surface in geometric models.

De�nition 3.11 A mesh manifold is a set of mesh face uses around a vertex,

connected by edge uses, that locally separate the three dimensional space into two

halves.

Some examples of mesh face use manifolds are shown in Figure 3.5. In Fig-

ure 3.5a, mesh manifolds for a mesh vertex classi�ed on a model face, M0
v < G2

0,

is shown. Since the topology of a model face by itself is 2-manifold, the mesh ver-

tex has two mesh manifolds (Sv
0 and Sv

0), one for each side of the model face. In

Figure 3.5b, mesh manifolds are shown for two mesh vertices classi�ed on model

vertices in a non-manifold model. In the �gure, G2
1 is an embedded face making

edge contact with two model faces G2
0 and G2

2. The mesh manifolds in the picture

are depicted only with respect to the model region common to all three faces. The

local topology at M0
a is non-manifold and two mesh manifolds, Sa

0 and Sa
1 exist at

the vertex with respect to just one side of the model faces G2
0 and G2

1. At M0
b ,

only one mesh manifold, Sb
0, exists in the model region under consideration. Note

how this mesh manifold wraps around the free edge of the embedded face and uses

both sides of mesh faces classi�ed on the embedded model face. In Figure 3.5c, a

non-manifold topological situation at a model vertex is depicted. Assuming that

each mesh face shown is classi�ed on a model face embedded inside a model region

the mesh vertex has 3 mesh manifolds connected to it as shown in the �gure.

24

G
2

0

G
2

1

G
2

2

M
0

a

M
0

b

S
b

0

S
a

i S
a

0

S
v

1

(a) (b)

M
0

i

G
2

0

G
2

1

G
2

2

G
2

3

G
1

2

G
1

0

G
1

2

S
i

0

S
i

1
M

0

i

(c)(i) (c)(ii)

S
i

2

S
v

0

G
2

0

Figure 3.5: Examples of mesh face use manifolds.

CHAPTER 4

BOUNDARY LAYER MESHING - INTRODUCTION

4.1 Motivation

High Reynolds number
ows exhibit high gradients near walls and in free

shear layers requiring �ne resolution of the solution normal to the boundary layer

and across the free shear layers. The gradients in the direction of the
ow (that is,

tangential to the walls) are much weaker in comparison. Re�ning a �nite element

mesh isotropically to capture such strongly directional gradients results in excessive

re�nement along the other directions. Anisotropic elements which are small in the

directions requiring �ne resolution but stretched along others are often employed to

keep the mesh size manageable. The mesh is typically allowed to gradually become

isotropic in parts of the domain where the solution is isotropic.

The requirements on a mesh generator capable of producing such meshes are

severe. Some of the qualities of anisotropic meshes capable of e�ectively capturing

the solution in high Reynolds number
ows are:

1. Elements in the anisotropic region of the mesh must be highly stretched often

with aspect ratios of 1,000 to 100,000 or more. Such high aspect ratios im-

pose severe constraints on advancing front type methods which must perform

intersections under constraints of a �nite geometric tolerance.

2. The elements in the anisotropic region must have good dihedral angles. Di-

hedral angles are harder to control with increasing anisotropy as they can

degrade very quickly with slight repositioning of nodes.

3. The anisotropic mesh must be graded smoothly into the isotropic mesh since

sharp changes in the sizes of elements typically cause inaccuracies in the solu-

tion and even lead to instabilities in the solver.

4. The anisotropy in the mesh must be variable over surfaces in order to minimize

the number of elements in the mesh while capturing the solution accurately.

25

26

A popular strategy for generating boundary layer meshes is the Advancing

Layers Method (also called advancing normals method) [11, 31, 34, 40, 54]. In this

method the anisotropic mesh is generated on surfaces using a special procedure that

explicitly considers the requirements of the boundary layer mesh. The remainder of

the domain is meshed using one of the common isotropic mesh generation techniques.

The advancing layers method starts from a triangulation of the surfaces on

which the boundary layer mesh must be grown. From each surface node a direction is

picked for placing the nodes of the anisotropic mesh. This direction is typically either

the true surface normal or an average discrete normal (an average of the normals

of surface triangles sharing the node). Nodes are placed along these directions

according to user speci�cation. These nodes form the basis for constructing layers

of prisms on top of each surface triangle. For hybrid prismatic-tetrahedral meshes,

the rest of the domain is tetrahedronized by an isotropic mesher [31, 34]. For fully

tetrahedral meshes, each prism is converted into three tetrahedra forming layers

of stretched elements before isotropic meshing. These elements have their short

direction aligned normal to the surface and their long directions tangential to surface.

Care is taken to prevent crossover of the directions along which nodes are placed

which leads to invalid elements. This is done by smoothing of the directions or

deletion of elements when necessary. Also, interference of the boundary layer mesh

on di�erent surfaces has been accounted for in some versions of the algorithm and

it is eliminated by deletion of elements.

The restriction of growing a single set of nodes3 from each surface node con-

strains the method to 2-manifold models and also limits the quality of elements that

can be created by this method.

The boundary layer meshing approach described here employs the advanc-

ing layers approach as its basis and generalizes it for meshing arbitrarily complex

geometric domains with non-manifold topology with good quality anisotropic ele-

ments near the surface. The method is therefore referred to as the Generalized

Advancing Layers Method.

3Some researchers have allowed multiple sets of nodes to emanate at sharp corners like the
trailing edge of airfoils [45].

27

4.2 Overview

The Generalized Advancing Layers Method also uses the surface mesh as the

basic structure on which to grow the anisotropic boundary layer mesh. However,

unlike other methods, the anisotropic mesh is not constrained to purely be an in
a-

tion of the surface triangles into triangular prisms and their tetrahedronization. It

allows for multiple sets of nodes to emanate from each surface mesh vertex thereby

facilitating the creation of:

1. valid meshes for non-manifold models, and

2. good quality elements near boundaries with sharp corners or high curvature.

The presence of multiple sets of nodes originating from a single surface node

eliminates the restriction that boundary layer prisms sharing a surface mesh edge

or vertex must be joined along their sides. This allows the prisms on the mesh faces

to be much better shaped naturally leading to good tetrahedral element quality.

The gaps created between the prisms are abstracted as more general polyhedral

shapes called blends which are tetrahedronized. Filling the gaps between the prisms

is an important part of the algorithm since failure to do so will expose the highly

anisotropic faces to the isotropic mesher.

In the Generalized Advancing Layers method, curves along which the bound-

ary layer nodes must be placed are chosen for all surface mesh vertices. Such curves

are referred to as Growth Curves. Growth curves may be boundary growth curves

(all nodes lie on the model boundary), interior growth curves (all nodes except the

originating boundary node lie in the model region) or partly both. Growth curves

have an arbitrarily general geometry on the boundary due to surface geometry and

are initially straight lines on the interior. It is to be noted that the method itself

places no restriction on the shape of the interior growth curves. The number of

growth curves at a mesh vertex is dependent on the number of mesh face manifolds

present at the vertex and on the geometry of the mesh at the vertex.

First, growth curves are chosen at mesh vertices classi�ed on the model ver-

tices. If any of these growth curves lie partly or fully on a model edge, the boundary

layer mesh entities corresponding to this growth curve are incorporated into the

28

model edge discretization. Next, growth curves are chosen for mesh vertices classi-

�ed on model edges. The growth curves that lie on model boundaries are smoothed,

shrunk or pruned to avoid crossover and self-intersection. Boundary layer mesh ver-

tices and edges are created for these growth curves. After that, neighboring growth

curves are joined to form abstract quadrilaterals and triangles. These boundary

polygonal shapes are triangulated and the triangles incorporated into the model

face discretization. Growth curves are then chosen at mesh vertices classi�ed on

model faces. These growth curves are smoothed, shrunk and pruned to ensure cre-

ation of valid elements. Mesh vertices and edges are created along these growth

curves. Entities from adjacent growth curves are then connected to form quadrilat-

eral and triangular constructs which are then broken up into smaller triangles. Then,

triangular prisms are grown from the surface mesh faces classi�ed on the model face

and tetrahedronized. Whenever the growth curves of a mesh face use have unequal

number of nodes, transition elements are created to seal o� high aspect ratio faces.

As a �nal step in the creation of anisotropic elements, the gaps created between

prisms due to the presence of multiple growth curves are abstracted as more general

polyhedral shapes, called blends, and tetrahedronized. Once the anisotropic mesh

is created, the inner boundary of the boundary layer mesh is checked for any self

intersection. Self intersections are �xed �rst by shrinking the layers locally and then

by deletion of elements, if necessary. This completes the boundary layer mesh which

is then handed over to isotropic mesher for completing the meshing process. The

steps in the process are illustrated in Figure 4.1.

In Chapters 5, 6, 7 and 8, the details of each step of the boundary layer meshing

procedure are described. The salient points that are emphasized and described at

length are:

1. The need for multiple growth curves for arbitrarily complex models.

2. Criteria for choosing growth curves in the Generalized Advancing Layers Method.

3. Ensuring topological compatibility of the mesh with the model.

4. Techniques for ensuring the geometric validity of the mesh.

29

Mesh rest of domain
by isotropic mesher

(a) (b) (c)

(d) (e) (f)

Fix Self Intersections

(g) (h)

Figure 4.1: Steps in creation of mesh for viscous
ow simulations. (a) Surface mesh.
(b) Growth curves on model vertices and model edges. (c) Boundary retriangulation.
(c) Growth curves on model faces. (d) Prism creation. (e) Blend creation. (f) Fixing
self-intersection. (g) Meshing remaining portion of domain by an isotropic mesher.

5. Concepts of transition elements, their necessity and their creation procedure.

6. Concepts of blend meshes, their necessity and their creation procedure.

7. The method for detecting and �xing self-intersections in the boundary layer

mesh.

Results of the mesh generation and simulations with these mesh are also pre-

sented in Chapter 9 to demonstrate the capabilities of the mesh generator.

CHAPTER 5

BOUNDARY LAYER MESHING - GROWTH CURVES

5.1 Boundary Layer Meshing Notations

Ci
j jth growth curve originating from M0

i

pij;k kth node of the jth growth curve Ci
j at M

0
i

M0
i;j;k Mesh vertex associated with pij;k

fpijg Set of all nodes of the growth curve Ci
j at M

0
i

cij;k kth straight line segment between pij;k and pij;k+1

M1
i;j;k Mesh edge associated with cij;k

fcijg Set of all straight line segments between successive nodes of growth

curve Ci
j at M

0
i

fMi
jg jth mesh manifold at vertex M0

i

fF i
jg set of mesh face uses referencing Ci

j

@fF i
jg Boundary entities (edges, vertices) of mesh faces belonging to fF i

jg
Qa;b

i;j or Q Boundary layer quadrilateral between Ca
i and Cb

j

5.2 Introduction

A critical component of any mesh generator is the point placement procedure.

A good point distribution in the mesh greatly improves the mesh quality and sub-

stantially reduces the burden of element creation and optimization routines. For

this reason, point placement in the boundary layer mesh generator described here is

done very carefully. The rationale and procedures for point placement are explained

in this chapter.

Point placement in the boundary layer mesh occurs along general curves while

respecting user requested sizes for the boundary layers. These curves are called

growth curves. Growth curves may be boundary, interior or both. All nodes of an

interior growth curve except the �rst are classi�ed on a region of the model. All

nodes of a boundary growth curve are classi�ed on the boundary of the model. It

30

31

must be noted that only straight line growth curves are used in the interior with the

present capabilities of the mesh generator. Boundary growth curves may still take

an arbitrary shape depending on the surface that the nodes of the growth curves are

classi�ed on. Growth curves may also be partly boundary and partly interior. The

de�nition of growth curves allows them to start o� with the nodes on the boundary

of the model, and then separate from the model surface and grow into the interior of

the model. They may even re-attach to the surface again. In principle, separation

and re-attachment is allowed an arbitrary number of times. An important point

to note here is that the separation of growth curves from surfaces has no relation

to the actual phenomenon of boundary layer separation. Rather, it is dictated

purely by considerations of element quality in the boundary layer mesh as explained

below. In the current implementation, growth curves are permitted to be either

interior or boundary. As will be shown in Chapter 7, even with this restriction,

boundary layer quadrilaterals may be partly boundary and partly interior under

special circumstances. Figure 5.1 illustrates the types of growth curves.

(c)(b)(a)

G
2

0

G
2

1

M
0

0

C
0

0

M
0

1

C
1

0

G
2

0

G
2

1
M

0

0

M
0

1

C
1

0

C
0

0

G
2

0

G
2

1

M
0

0

C
0

0

Figure 5.1: Types of growth curves. (a) Interior Growth curve. (b) Boundary growth
curves. (c) Partly boundary and partly interior growth curves.

Elements in the anisotropic boundary layer mesh are created by tetrahe-

dronization of triangular prisms, blend polyhedra and transition polyhedra grown

from the surface mesh. In particular, the quality of tetrahedra resulting from prisms

is heavily in
uenced by the deviation of the sides of the prism from the normal di-

32

rection to the base triangle. Therefore, nodes of growth curves growing from mesh

vertices classi�ed on model edges and vertices are allowed to lie on the boundary

under the following conditions:

� The normal direction of the growth curve is close to the adjacent model sur-

faces.

� The quality of the elements will be good with the nodes on the boundary.

The Generalized Advancing Layers Method permits multiple growth curves to

originate into a single region from any mesh vertex classi�ed on the model boundary.

Each growth curve is associated with the mesh face uses that will form a prism using

nodes of this growth curve. This information facilitates subsequent connection of

nodes of di�erent growth curves unambiguously. Nodes of growth curves from mesh

vertices of a mesh edge are connected to form an abstraction called a boundary layer

quadrilateral (Figure 5.2a) if they reference a common mesh face use (These will be

referred to simply as boundary layer quads in the rest of the discussion). Nodes of

growth curves from vertices of a mesh face use are connected to form a boundary

layer prism (Figure 5.2b) if they reference a common mesh face use. In other words,

three boundary layer quads from three edges form a boundary layer prism if they

are referenced by a common mesh face use. If growth curves that can form a quad

as per the previous de�nition have unequal number of nodes, transition triangles

are formed on top of the quad. Similarly, transition elements are formed on top

of a prism if its component growth curves have unequal number of nodes. Nodes

from multiple growth curves of a mesh vertex use are connected to form a boundary

layer triangle (Figure 5.2c). The connectivity between nodes of a multiple boundary

layer quads at mesh edge uses and multiple growth curves at mesh vertex uses is

more general. These constructs will be connected using more general procedures

to create blend meshes (Figure 5.2d). It is to be noted that boundary layer quads,

triangles, prisms and blends are abstract constructs that never actually exist in the

mesh. They are only useful for the design of algorithms and their discussion. In

reality, triangles and tetrahedra of the individual layers are created directly in the

mesh generator.

33

Boundary
layer blend

(a) (b)

(c) (d)

Boundary
layer prism

G
2

0

G
2

1

C
0

1

M
0

0

C
1

1

M
0

1

M
0

2

C
2

1

Boundary layer
quadrilateral

G
2

0

M
2

0

G
2

1

M
0

1C
0

1

M
0

0

M
1

0

C
1

1

Boundary layer
quadrilateral

Boundary layer
triangle

G
2

0

G
2

1

G
2

2

G
2

3

Figure 5.2: Abstract polygonal and polyhedral constructs in the boundary layer
mesh.

5.3 Calculating the Number of Growth Curves at a Vertex

The number of growth curves at any mesh vertex with respect to a model

face use depends on the local model topology and mesh geometry. The topological

requirement for multiple growth curves at a mesh vertex with respect to a single

face use arises only at some non-manifold boundaries. At these boundaries, multiple

growth curves are necessary for generating a valid mesh.

Axiom 5.1 The minimum number of growth curves at any boundary mesh vertex

required to produce a topologically valid mesh is equal to the number of mesh mani-

folds at the vertex that include at least one mesh face use classi�ed on a model face

with a boundary layer.

34

The above assertion can be easily demonstrated to be true with the help of

an example shown in Figure 5.3a,b. Here, the embedded face G2
1 is incident on

vertex G0
1 along with two other 2-manifold faces, G2

2 and G2
3. It is assumed that a

boundary layer mesh is being grown on all three faces (note G2
1 has two uses for the

boundary layer to grow on). It can be seen from Figure 5.3a that use of only one

growth curve at M0
i < G0

1 and M0
i < G1

1 will lead to a topologically invalid mesh

as some of the quads will intersect G1
1 or penetrate G

2
1. The correct solution in this

example is to have two growth curves at the vertex, one for each of the two mesh

manifolds at the vertex (Recall Figure 3.5 in Chapter 3). Also, the nodes of each

of these growth curves must lie within the respective mesh manifold (Figure 5.3b).

Similarly, in 3-D, interior edges may penetrate model faces if the right number of

growth curves as dictated by the mesh and model topology are not present at each

vertex.

(a) (b)

G
2

3

G
1

3

G
2

2

G
2

1

G
1

2

G
1

1

G
0

1

G
2

3

G
1

3

G
2

2

G
2

1

G
1

2

G
1

1

G
0

1

Figure 5.3: Need for multiple growth curves at non-manifold boundaries. (a) Single
growth curve along G1

1. (b) Two growth curves along G1
1.

At some mesh vertices, multiple growth curves may become necessary due to

the geometry of the model faces or the coarseness of their discretization. This is

because creation of valid prisms requires that the nodes of a growth curve at any

mesh vertex be \visible" from any mesh face connected to the mesh vertex. Visibility

of a node from a mesh face means that an element formed by connecting the mesh

face to the node must have positive volume. If the surface discretization is very coarse

or the model geometry itself changes drastically, the normals of the mesh faces may

35

vary so much that it may not possible to �nd a valid common node that is visible

from all the faces (even with the methods described in [31, 54]). Such impossible

situations are the limit of the case where the growth curve deviates greatly from the

mesh face normal leading to large dihedral angles in elements. Therefore, in general,

it is desirable to have multiple growth curves at mesh vertices where the normals

of the connected mesh faces are very disparate. The concept of visibility of growth

curves is illustrated in Figure 5.4 in which a set of mesh faces uses connected to a

mesh vertex classi�ed on a model edge are shown. In Figure 5.4a, the growth curve

from the mesh vertex makes nearly equal angles with the plane of the two model

faces using the model edge. This makes the growth curve visible to all mesh face

uses connected to the mesh vertex. On the other hand, in Figure 5.4b, the growth

curve is skewed to one side making the growth curve visible to mesh faces classi�ed

on G2
1 and invisible to those classi�ed on G2

0.

An example showing a combination of the topological and geometric need for

multiple growth curves is shown in Figure 5.5. The situation illustrated is borrowed

from a real mesh. In this �gure, the di�erent face uses form a total of three manifolds

and therefore at least three growth curves are necessary to create topologically valid

connections in the boundary layer mesh. In addition, the \convex" mesh manifold,

Si
2, requires multiple growth curves so that the nodes of each growth curve are visible

from the mesh face uses that reference them and geometrically valid boundary layer

elements may be formed.

In keeping with the necessity of creating a topologically valid mesh and desir-

ability of creating well shaped prisms, mesh manifolds are �rst found at each vertex

and these are then divided up based on geometric criteria into subsets of mesh face

uses. Each of these subsets of mesh face uses then share a common growth curve to

be used in their prisms.

5.4 Finding Mesh Manifolds For Mesh Vertices

The procedure to �nd mesh face use manifolds at a boundary mesh vertex is

described in this section. The algorithm does not require explicit use information for

the mesh entities. The only requirement is that the mesh faces be orientable. The

36

(a) (b)

Faces that can "see" growth curve

Faces that cannot "see" growth curve

Normal to model face

n̂1

C
i

0

M
0

i

G
2

1

G
2

0

n̂2

n̂1

C
i

0

G
2

1

M
0

i

G
2

0

n̂2

Figure 5.4: Visibility of growth curves. (a) Example where growth curve is visible
to all mesh faces shown. (b) Example where growth curve is visible to only some of
the faces in the set shown.

central idea used in �nding mesh face use manifolds is that a pair of adjacent face

uses in a mesh manifold must use the common edge in opposite directions. In case

of multiple choices, the candidate mesh faces uses are ordered around the common

edge and the radially closest ones are paired together based on the dihedral angles.

The steps of the procedure are (refer to Figure 5.6):

1. Given a mesh vertex M0
i , �nd the connected set of mesh face uses (as pairs of

mesh faces and associated directions) fSig = f(M2
j ; s) j s = �1;M0

i � @M2
j g,

where s represents the side of the face.

37

C
i

2

C
i

3
C

i

4

C
i

0

C
i

1

M
0

i

(a) (b)

(c)

S
i

0

S
i

1

S
i

2

Figure 5.5: Mesh topology and geometry for which multiple growth curves are nec-
essary. (a) Local view of real surface mesh. (b) Schematic of local mesh shown in
'a'. (c) Exploded view of the mesh manifolds with growth curves.

38

(a)

(d)(c)

(b)

M
2

cur

M
2

nxt

M

1
+
0

=

M

1
c
u
r

M
1

+1

M
1
�

2
=

M
1

n
x
t

M
1

+
2

M
2

cur

M
2

nxt

M
0

i

M
1

nxt

M
1

cur

G
2

0

G
2

1G
2

1

M
2

cur

M
2

nxt

M
0

i

M
1

cur

M
1

nxt

M
2

cur

M
1

+0

M
1

�2

M
1

+1

M
0

i

M
0

i

Figure 5.6: Finding mesh manifolds. (a) Face use with its edge uses. (b) Getting
the next face use on a model face. (c) Getting the next face use at non-manifold
model edge. (d) Getting the next face use at free edge of an embedded face.

In the absence of explicit face use information in the mesh, the set of candidate

\face uses" is determined using the classi�cation of mesh faces and modeler

queries. A face-side pair is considered as a mesh face use if the mesh face is

classi�ed on a model face and the particular side of the model face is connected

to a model region.

2. Choose a face use of the set fSig as a starting face use, M2
cur < G2

k.

3. Initialize a new mesh manifold set, fFig and add M2
cur to it.

39

4. Find the loop of edges, [M1
�0;M

1
�1;M

1
�2]; M1

i=0;1;2 � @M2
cur of the face in

the direction s starting with vertex M0
i . Note that M0

i � @M1
0 ; @M

1
2 , and

M0
i 6� @M1

1 (Figure 5.6a).

5. Denote M1
0 as M1

cur and M1
2 as M1

nxt.

6. The next face use in the mesh face use manifold is found as follows:

� if M1
nxt < G2

k, then there is only one other face connected to M1
nxt. Pick

this as the next face, M2
nxt. The direction in which the face is used is s

(Figure 5.6b).

� if M1
nxt < G1

k and G1
k is a 2-manifold edge, there is only one other model

face connected to G1
k and equivalently, only one other boundary mesh

face connected to M1
nxt. Pick this as the next face, M2

nxt.

The direction in which the M2
nxt is used in the current mesh manifold is

determined by the relative directions in which M2
cur and M2

nxt use M
1
nxt.

If M2
cur and M2

nxt use the edge M1
nxt in opposite directions, then the

direction of M2
nxt continues to be the same as that of M2

cur. if M1
nxt is

used in the same direction, the direction of the face is reversed (same as

Figure 5.6b).

� if M1
nxt < G1

k and G1
k is a non-manifold edge, there are multiple choices

for the next face in the manifold set of mesh face uses. The choice of

which face use to pick next, is based on radially ordering the face uses

around the edge. This is done by �nding the dihedral angle between the

di�erent face uses and the current face use (Figure 5.6c). Note that the

radial ordering is of face uses and not just faces. This implies that just

picking the smallest angle between two faces using the natural orientation

of the faces is not su�cient.

� if M1
nxt < G1

k and G
1
k is the free edge of an embedded face then there are

no other faces connected to G1
k. In this case the mesh manifold wraps

around the free edge and goes from one side of the face to the other.

Thus the next face in the manifold for this situation is the current face

40

used in the opposite direction, or in other words, the mesh face use mate

of the current face use (Figure 5.6d).

7. If the next face is the same as the starting face then the mesh manifold is

complete. Continue at step 3 above if any mesh face uses are left to be put

into the manifold set.

If not, make the next face the current face (M2
cur = M2

nxt) and the next edge

the current edge (M1
cur = M2

nxt). Continue adding face uses to the current

manifold set, i.e., continue at 4 above.

The procedure to �nd the unique angle (and not just the principal angle)

between two face uses M2
s1;1

and M2
s2;2

(s1; s2 = �1) at the mesh vertex M0
i and

sharing an edgeM1
j is as follows (See Figure 5.7a,b). Get the ordered set of vertices of

each of the faces, fV1g = [M0
i ;M

0
j ;M

0
k] � @(M2

1) and fV2g = [M0
i ;M

0
l ;M

0
j] � @M2

2 .

Note that fV1g;0 = fV2g;0 = M0
i is the �rst vertex in each of the two adjacency

sets and the vertices of the common edge M1
j are fV1g;0 = M0

i and fV1g;1 = M0
j or

fV2g;2 = M0
j and V2;0 = M0

i . Say the geometric point associated with each vertex

fVkg;m is fPkg;m.

~v11 = P1;1 � P1;0

~v12 = P1;2 � P1;0

n̂1 =
~v11 � ~v12
k~v11 � ~v12k

~v21 = P2;1 � P2;0

~v22 = P2;2 � P2;0

n̂2 =
~v21 � ~v22
k~v21 � ~v22k

41

cos �0 = n̂1 � n̂2

~ve1 = P1;1 � P1;0

~ve2 = n̂2 � n̂1

� = ~ve1 � ~ve2

� = �0 if � � 0

= � + �0 if � < 0

M
0

i

M
0

j

M
0

k

M
0

lM
1

j

~v11

~ve1

~v21

~v12

~v22

M
2

1

M
2

2

~ve2

n̂2

n̂1

M
0

i

M
0

j

M
0

k

M
0

l

M
1

j

~v11

~ve1

~v21

~v12

~v22

M
2

1

M
2

2

~ve2

n̂2

n̂1

(a) (b)

Figure 5.7: Dihedral angle between face uses. (a) Dihedral angle less than �. (b)
Dihedral angle greater than �.

5.5 Finding Mesh Face Use Subsets Sharing a Common

Growth Curve

The determination of subsets of mesh face uses in a manifold sharing a com-

mon growth curve is based on the dihedral angle between pairs of face uses. The

42

procedure starts with �nding a convex edge in the manifold of mesh face uses. A

convex edge is de�ned as one where the dihedral angle between the two connected

face uses in the manifold of mesh face uses is greater than some tolerance, �, where

� < � � 2�. If no such edge can be found in the manifold, then all the mesh face

uses share a common growth curve (Figure 5.8a). If such an edge is found, then

the procedure traverses the face uses around the common mesh vertex as described

above until another convex edge is found or the starting face is reached. The face

uses between the starting convex edge and the next convex edge are put into a set of

face uses that will share a common growth curve, a new set is initialized and process

continued (Figure 5.8b,c). If there is only one convex edge in the manifold set (for

example, at the interface between a free edge of an embedded face and a 2-manifold

face or as shown in Figure 5.8d), the set is split into two subsets. The bisection is

performed such that face uses of the manifold on one side of the convex edge is one

subset and the face uses on the other side form the other subset. The procedure

ensures that all face uses in a subset will always have a growth curve whose nodes

are visible to every face use in that subset.

43

(a)
(b)

(c) (d)

C
i

0

C
i

0

C
i

1

C
i

2

C
i

0

C
i

0

C
i

1

C
i

1

Figure 5.8: Mesh face use subsets in mesh manifolds. (a) All mesh face uses share
common growth curve. (b) Two convex edges, shown by curved double headed
arrows, in mesh manifold. (c) Three convex edges in mesh manifold. (d) Only
one convex edge in mesh manifold which is subdivided into two subsets. Note that
although all the convex edges shown in �gure are classi�ed on model edges, convex
edges may occur on model faces as well and are not dependent on the classi�cation
of the edge.

44

5.6 Growth Curves at Model Vertices and Model edges

In the interest of creating a good quality boundary layer mesh, growth curves

from mesh vertices classi�ed on model vertices and model edges are �rst attempted

to be grown as boundary growth curves. In doing so, the growth curves must respect

topological compatibility of the mesh with the model and estimated geometric valid-

ity of mesh. If creating a boundary growth curve violates any of these requirements,

the growth curve is grown into the interior.

Consider a mesh vertex,M0
i < Gd

j ; d = 0; 1, and a set of mesh face uses, fFg,
sharing a growth curve, Ci

j. The set of mesh face uses is determined as described

above. Then the determination of Ci
j is �rst carried out by a simple procedure

which assumes a single classi�cation for all the nodes of the growth curve. If this

causes problems with geometric or topological validity that cannot be resolved then

a more general procedure is proposed in which the nodes of a growth curve can

have di�erent classi�cations. In both cases an attempt is made to place the nodes

of the growth curve on the lowest order model entity possible. For example, when

constructing a growth curve from a mesh vertex on a model vertex, the lowest order

model entity that can carry the growth curve is a connected model edge. Since

model edges and faces may be curved, a straight line approximation of the growth

curve (obtained from an average normal of the given mesh face uses) is used to �nd

locations on the model entity close to the initial positions of the nodes. The detailed

procedure to �nd a growth curve on the boundary is given below.

As before consider a mesh vertex, M0
v < Gd1

1 ; d1 = 0; 1, and a set of mesh

face uses, fFv
j g, which will share a growth curve, Cv

j at this vertex. Say the growth

curve is being grown onto the model entity Gd2
2 . Since the fFv

j g is known, the model
region into which the growth curve is being grown is �xed, i.e., Gd2

2 � @(G3
r) and

pvj;k < G3
r; k = 1; n � 1 where n is the number of nodes the growth curve has

(indexed from 0 to n� 1). The steps in constructing a boundary growth curve are:

1. Find fGd2
i j Gd1

1 � @Gd2
i ; Gd2

i � @(G3
r); d1 < d2 < 3g in ascending topo-

logical order. These are candidate model entities on to which the boundary

layer growth curve may be classi�ed provided it meets all the topological and

geometric criteria.

45

2. Perform a series of checks for each entity, Gd2
i until a suitable entity to grow

the boundary layer growth curve onto is found. The selected entity must pass

the following checks:

(a) Check if any model face connected to the boundary entity or the boundary

entity itself are to have a boundary layer mesh growing into this region or

into a region which has already been processed. In this case the candidate

entity is rejected since the boundary layer from this set of mesh faces will

interfere with the boundary layer on the connected model face.

(b) Find the closest point to the node pvj;n�1 where n is the number of nodes

to grow on the growth curve. If the closest point is coincident within

geometric tolerance of the originating node pvj;0, reject the entity. This

happens when the model entity is locally nearly perpendicular to the

growth curve.

(c) Check if fFv
l g or @fFv

l g < Gd2
i , where fFlg � fFv

j g. If not, reject Gd2
i .

(d) Make sure the connections that will result between the growth curve and

any adjacent boundary growth curves that have already been created

do not violate topological compatibility; if not, reject this entity. The

adjacent boundary growth curves are determined by �nding the vertices

of the mesh face uses in the set that are classi�ed on a model edge or

vertex and checking the boundary growth curves at those vertices (See

Chapter 6 for a precise de�nition of adjacent growth curves).

(e) Make sure that the boundary layer node placement on this entity will not

inevitably lead to large dihedral angles. If it does lead to large dihedral

angles, then reject the entity.

Note that the actual boundary layer entities from the growth curve under

investigation and its adjacent growth curve are not yet formed at this

stage and only the local geometry at the potential locations of the growth

curve nodes is being considered. Therefore, it is only possible to estimate

the worst dihedral angles of elements connected to this growth curve and

not accurately calculate them. The estimation of the dihedral angles that

46

will be formed is done by calculating the dihedral angles between the half

planes represented by:

i. the tangent plane of the model face on which the boundary layer is

being grown, evaluated at the location of the base node, and

ii. the tangent plane of the model face or each of the model faces ad-

jacent to the model entity on which the boundary layer node (other

than the base node) is classi�ed, evaluated at the location of that

node.

Since evaluation of the normals (or tangent planes) of model faces yields

only in�nite planes, the dihedral angles between them is not uniquely de-

�ned. The unique dihedral angle of interest is calculated by determining

the two half planes that represent the planes of two faces that will share

an edge during element creation (Figure 5.9). The half tangent plane of

the model face on which the boundary layer is being grown can easily be

determined using a mesh face use of the manifold that is classi�ed on the

model face. The half plane of the model face on the closure of which the

boundary layer node will be classi�ed on can be determined by its relation

to the �rst half plane. To do this, a mesh edge is found which is (i) on

the boundary of a mesh face using the growth curve and (ii) is classi�ed

on the closure of the two model faces. In this calculation, the direction of

use of the model faces in the mesh manifold must be accounted for in the

calculation of the normals of the two model faces. Directly adopting the

natural normal of the model face without consideration of the uses may

yield the complement of the dihedral angle instead of the angle itself.

(f) Make sure that no node of the growth curve (except the originating or

base node) is forced to be on the boundary of the candidate model entity.

If so, this simple approach cannot handle it and one must switch to a

more general approach. The general approach does not attempt to �nd

a single classi�cation for all the nodes of the growth curve. Rather, it

proceeds layer by layer attempting to �nd a good and valid location and

classi�cation for the node based on the properties of the previous node.

47

This is a computationally more expensive option and is not used for now.

Instead an interior growth curve is grown in its place.

(g) Sometimes two growth curves from a mesh vertex in a non-manifold

model may lie on the same model face. For example, consider two model

faces, G2
i and G2

j , in the same plane sharing a model edge, G1
l . Also,

let another planar model face, G2
k, perpendicular to the �rst two, be in-

cident on the edge. If the �rst two model faces have a boundary layer

mesh and the perpendicular face does not, nodes from the two sets of

growth directions at M0
i < G1

l will lie on G2
k. Such growth curves are

�rst checked to see if they are coincident; if they are, the growth curves

and the respective sets of mesh face uses referencing them are merged. If

the growth curves are not coincident, it must be veri�ed that the bound-

ary layer quads that will be formed using these growth curves will not

intersect each other thereby creating an invalid mesh. The check for in-

terference of the quads using these growth curves is performed as follows

(see Figure 5.10). Consider two growth curves Cv
0 and Cv

1 at the mesh

vertex M0
v < G1

l . Let all nodes of the two growth curves be classi�ed on

the model face G2
k. For each growth curve, Cv

g ; g = 0; 1, �nd a mesh

edge M1
e < G1

l of a mesh face use referencing the growth curve Cv
g . Form

an abstract triangle Tg with the vertices ofM
1
e and the top node of C

v
g . If

Cv
g0 ; g0 = 1� g intersects Tg in any place other than M0

v , then the two

growth curves are incompatible. The intersection is done in real space by

projecting the triangles onto a tangent plane of the face, G2
k. The para-

metric space is not used as it is not guaranteed that it is well behaved

locally. In case of interference, one of the growth curves is deleted and

the other is used in its place.

If two growth curves from a mesh vertex lie on the same edge, then they

are checked to see if they overlap and merged if they are. Note that the

only case two such growth curves will not interfere is when they originate

from the vertex of a closed edge and grow in opposite directions on the

edge, a feasible but rare situation.

48

3. If all the above checks are passed for a model entity then the growth curve

nodes are placed onto this entity. If not, the procedure returns without cal-

culating a boundary growth direction and an interior growth curve must be

created instead.

Half plane 1

Half plane 2

M
2

1

M
2

2

M
2

3

n̂1

n̂2

M
1

2

M
0

1

G
2

2

M
1

1

G
1

1

G
2

1

C
1

1 p
1

1;n�1

Figure 5.9: Estimation of dihedral angles of elements during growth curve creation.

5.7 Growth Curves on Model Faces

Growth curves from the mesh vertices classi�ed on model faces are always

classi�ed in the interior of the model. The model region on which the entities of

the growth curve are classi�ed is determined by the model face use on which the

boundary layer is being grown. Growth curves in the interior are straight lines

although the mechanism to represent them as curved (either during their creation

or later by node repositioning) exists fully in the design of the mesh generator.

The direction of a growth curve from a mesh vertex classi�ed on a model face is

determined by the average of the normals of the face uses sharing the growth curve.

49

M
0
i G

2

1

G
1

1

G
2

0

G
2

k

C
v

0

C
v

1

M
2

0

M
2

1

M
1

e

M
0

v

Figure 5.10: Check for interference of boundary layer quads connected to two growth
curves of a single mesh vertex.

Since the topology on the model faces is simple (it is 2-manifold) multiple growth

curves on the model faces occur solely due to geometry.

5.8 Node Spacing Along Growth Curves

Node spacing for growth curves may be speci�ed in one of three ways - geo-

metric, exponential or adaptive. In all three cases, the �rst layer thickness must be

speci�ed by users (or a calling application if the procedure is incorporated into an

adaptive analysis and remeshing loop). In the geometric method of specifying the

node spacing, the two additional parameters that are prescribed are the number of

layers and the total thickness of the boundary layer mesh. Using this, the thickness

of the individual layers and the node spacing along the growth curves is calculated

(Figure 5.11a). Given the thickness of the ith layer in the mesh to be ti, the total

thickness of the boundary layer mesh to be T and the number of layers to be n, the

following relation holds for geometric growth:

50

ti+1 = rti (5.1)

T = t0 + t0r + t0r
2 + t0r

3 � � � t0rn�1 (5.2)

= t0
(rn � 1)

(r � 1)
(5.3)

where r is the growth factor between the layers. Knowing t0, T and n, r can be

calculated using any method to solve a non-linear equation like the Newton-Raphson

method.

For exponential growth, only the �rst layer thickness and number of layers

is speci�ed for calculation of the node spacing (Figure 5.11b). For this type of

speci�cation, the following relationships hold:

ti+1 = ti0 (5.4)

T = t0 + t20 + t30 + � � �+ tn�10 (5.5)

= t0
(tn0 � 1)

(t0 � 1)
(5.6)

In the adaptive method of boundary layer thickness speci�cation, the �rst layer

thickness t0 and the number of layers, n, are speci�ed. The growth of the boundary

layer thickness is still geometric but the layer thickness growth factor r is calculated

to ensure a smooth gradation of the boundary layer mesh into the isotropic mesh

(Figure 5.11c). The isotropic mesh size in the neighborhood is taken to be the same

as the average mesh size at the base node of the growth curve. To see how the layer

thicknesses are calculated, consider that the average mesh size at the base node is

�have where 0 < � � 1. � is chosen as 0:5 in the current implementation. A value

for r must be found such that the thickness of the last layer, tn�1 � �have. Since

tn�1 = t0r
n�1, r may be calculated as (�have=t0)

(1=n�1).

The attribute speci�cation system [52, 61, 76] used for prescribing boundary

layer mesh parameters allows spatial variation of all the variables, t0, T and n while

maintaining the geometric growth rate of layer thicknesses (Figure 5.11d). In the

51

case of a varying number of layers on a single topological entity, the number of

layers is evaluated by rounding of the distribution function to the nearest value.

Figure 5.11e shows the boundary layers when the boundary layer thickness and the

number of layers both vary on a model entity. The boundary layers parameters may

also vary from one model face use to another.

(a)

t0 = 0:01

T = 0:15

n = 6

T =
t0(r

n
� 1)

(r � 1)
ti = rti+1

x = 1x = 0

(e)

t0 = 0:005 +
x
1=5

e
x1=5

50e

T = 0:02 +
x
1=5

e
x1=5

5e
ti = rti�1

n = 5� 3x

(c)

t0 = 0:01

T = f(hav); where hav(x) = average mesh size at x

n = 5

ti = rti+1

(d)

T = 0:03 +
x
1=3

e
x1=3

4e

ti = rti�1n = 4

t0 = 0:01

(b)

T =
(t0

n
� 1)

(t0 � 1)

ti = t
i

0

T = 0:15

n = 4

t0 = 0:01

t0 = first layer thickness

T = Total boundary layer thickness

n = Number of layers

r = Stretch ratio

Figure 5.11: Methods of specifying boundary layers. (a) Geometric variation of
layer thickness. (b) Exponential variation of layer thickness. (c) Adaptively varying
boundary layer thickness. (d) Prescribed variation in boundary layer thickness. (e)
Prescribed variation of boundary layer thickness and number of layers.

CHAPTER 6

BOUNDARY LAYER MESHING - ENSURING

ELEMENT VALIDITY

Growth curves are created with maximum consideration for topological validity and

topological compatibility with the model. However, only preliminary consideration

is given to geometric validity of future elements during the point placement phase.

This is because geometric invalidities in the generalized advancing layers method

arises mostly due to interactions between entities of neighboring growth curves con-

nected to form tetrahedral elements. For this reason, it is only viable to check for

geometric validity after creation of all growth curves. Invalidity of boundary layer

elements originates from two sources (See Figure 6.1,6.2):

1. Invisibility of nodes of a growth curve from a mesh face use

This typically occurs at vertices where the mesh is very coarse relative to sharp

changes in the model face normals, i. e., where there are sharp convexities

in the model/mesh boundary representation (Figure 6.1). This is handled

by recognizing these situations properly and utilizing multiple growth curves

where necessary, as discussed in Chapter 5.

2. Crossover of growth curves

This typically occurs at concavities in the model boundary either at an edge

where two model faces form an acute angle (Figure 6.2a) or where the model

face is curved su�ciently relative to the boundary layer thickness that the

growth curves cross over (Figure 6.2b). This situation is not accounted for in

the creation of the growth curves and is speci�cally dealt with in a separate

procedure described in this chapter.

The Generalized Advancing Layers Method attempts to correct growth curve

crossover by three di�erent methods, Smoothing, Shrinking and Pruning applied

in that order. In the smoothing step, a weighted laplacian smoothing procedure is

52

53

(a) (b)

(c) (d)

M
0

i

M
0

i

M
0

j(M 2

i
);1

(M 2

i
);0

M
0

j

(M 2

i
);1

(M 2

i
);0

Figure 6.1: Invalid boundary layer elements due to invisibility of node. (a) 2D
illustration of minimum visibility of nodes - leads to zero area elements. (b) 2D
illustration of invisibility of node from surface mesh elements - leads to inside out
elements. (c),(d) 3D illustration of invisibility of growth curves.

(a) (b)

Figure 6.2: 2D illustrations of invalid boundary layer elements created by growth
curve crossover due to (a) acute angle between model faces, (b) high curvature in
model face geometry.

54

applied to growth curves to eliminate crossover. Although this distorts previously

well shaped elements, it also corrects crossover in many cases. In addition it helps

even out shape and size variations in the boundary layer mesh. The shrinking

procedure is based on the principle that crossover often occurs because the thickness

of the boundary layer is high relative to the curvature of the model face or relative

to the acuteness of the angle between model/mesh faces. Therefore, the shrinking

process locally reduces the thickness of the boundary layers if it will make the

a�ected elements valid. In some very severe or degenerate case, neither smoothing

nor shrinking can �x the invalidity of the elements. In such cases the growth curves

of a�ected elements are pruned, i. e., some of their nodes are deleted, so that only

valid elements are remaining. Figure 6.3 illustrates the three methods for �xing

growth curve crossover in a 2D boundary layer mesh.

(a) (b)

(c) (d)

Figure 6.3: Fixing growth curve crossover in 2D mesh. (a) Invalid mesh. (b) Mesh
�xed by smoothing. (c) Mesh �xed by shrinking. (d) Mesh �xed by pruning.

55

6.1 Adjacent Growth Curves

Adjacent growth curves of a growth curve are those that can be connected to

the growth curve through a boundary layer construct such as a boundary layer quad,

prism or some other general polygon or polyhedron. Given below are de�nitions for

adjacent boundary growth curves and general adjacent growth curves. Recall that

the jth growth curve at a vertex, M0
i , is C

i
j comprised of the set of nodes fpijg and

segments fcijg, the mesh face use set referencing the growth curve is fF i
jg and that

fF i
jg � fMi

kg where fMi
kg is the kth mesh manifold at M0

i .

De�nition 6.1 An adjacent boundary growth curve of a boundary growth curve Ci
n1,

fcin1g < Gd1
k1
, d1 = 1; 2 (denoted by A@(C

i
n1
)) is either:

1. a growth curve Ci
n2 (also at M0

i) under the following conditions:

n1 6= n2

fcin2g < Gd2
k2

if d1 =

8>>>>>>>>>>><
>>>>>>>>>>>:

1 and d2 =

8>>>><
>>>>:

1 then G1
k1
\G1

k2
= G0

k4
; and

9 G2
k3
; G1

k1
; G1

k2
� @G2

k3

2 then G1
k1
� @G2

k2

2 and d2 =

8><
>:
1 then G1

k2
� @G2

k1

2 then k1 = k2

fF i
n1g; fF i

n2g � fMi
kg

2. a growth curve Cj
n2, under the following conditions:

fcjn2g < Gd2
k2
; d2 = 1; 2

9M2
f ; M0

i ;M
0
j � @(M2

f) ; M2
f �fF i

n1
g; fF j

n2
g

9 G2
k3 ; Gd1

k1
; Gd2

k2
� G2

k3

56

The above de�nition means that given a fully boundary growth curve Ci
n1
,

its adjacent boundary growth curves must have a classi�cation conforming to the

rules described below. If Ci
n1

is classi�ed on a model face, the adjacent boundary

growth curve must be classi�ed on the closure of that model face. If it is classi�ed

on a model edge, the adjacent boundary growth curve must be classi�ed on the

closure of a connected model face. In addition, the adjacent boundary growth curve

must be another growth curve at the same mesh vertex or must be at another

mesh vertex on the boundary of the mesh face uses referencing Ci
n1 . The concept

of adjacent boundary growth curves is illustrated in Figure 6.4. In the �gure, the

adjacent boundary growth curves of C1
1 are A@(C

1
1) = fC1

2 ; C
3
1g. Note that C2

1 is

not considered adjacent to C1
1 since G1

1 and G
1
3 do not share a common model face.

M
0

2 < G
0

2

G
2

1

G
2

2

G
2

3

G
2

4

G
1

1

G
1

2

G
1

3

G
1

5

C
2

1

C
1

2

C
1

1
C

3

1

M
1

1
< G

1

4

M
1

2
< G

1

2

M
0

3
< G

0

1

M
2

2

M
2

1

M
0

1 < G
0

1

G
1

4

M
2

3

G
2

4

Figure 6.4: Adjacent boundary growth curves.

57

De�nition 6.2 An adjacent growth curve of a growth curve Ci
n1
, fcin1g < G3

k1
(de-

noted by A(Ci
n1)) is one which satis�es the following conditions:

1. a growth curve Ci
n2, also at M0

i used by the mesh face use set F i
n2 under the

following conditions:

n1 6= n2

fcin2g < G3
k1

fF i
n1
g; fF i

n2
g � fMi

kg

2. a growth curve Cj
n2 under the following conditions:

fcjn2g < Gd2
k2
; d2 = 1; 2; 3

9M2
f ; M0

i ;M
0
j � @(M2

f) � fF i
jg

Gd2
k2

� G3
k1

The above de�nition states that given a growth curve, Ci
n1
, its adjacent growth

curves may be boundary or interior growth curves conforming the following rules.

The adjacent growth curve may be another growth curve at the same mesh vertex

or at another vertex. If it is at the same vertex, the mesh face uses referencing this

growth curve and mesh face uses referencing Ci
n1

must belong to the same mesh

manifold. If it is at another vertex, the two vertices must be connected by an edge

on the boundary of the mesh face use set of Ci
n1
. In addition, the segments of

the adjacent growth curve must be classi�ed on the closure of the model region

that the �rst growth curve is classi�ed on. Note that at model edges and vertices,

A@(C
i
n) � A(Ci

n). The concept of adjacent growth curves for a general growth curves

is clari�ed with the help of examples in Figure 6.5a,b. In Figure 6.5a, the adjacent

growth curves of C1
1 are A(C1

1) = fC2
1 ; C

3
1 ; C

4
1 ; C

5
1 ; C

6
1 ; C

7
1g. Similarly, A(C5

1) =

fC6
1 ; C

1
1 ; C

4
1g. In Figure 6.5b, the vertices classi�ed on model edge G1

1 have two

growth curves each. At M1
0 , the mesh faces uses referencing C1

1 are indicated in

a lighter shade than those that reference C1
2 . From the �gure, it can be seen that

58

A(C1
1) = fC1

2 ; C
3
1 ; C

4
1 ; C

5
1 ; C

5
2 ; C

6
1 ; C

7
1g. Note how the growth curves C3

2 , C
2
1 and C7

2

are not considered to be adjacent the growth curve C1
1 .

6.2 Validity Checks for Boundary Layer Quads and Prisms

6.2.1 Validity of boundary layer quadrilateral

The validity of boundary layer quadrilaterals is checked by a series of tests per-

formed in real and parametric spaces. First, the individual triangles of the boundary

layer quad are checked in real space for zero area (within some tolerance)4. Then

adjacent triangles are checked to see if the dihedral angle along their common edge

is greater than an assumed tolerance � (taken to be 90�). This is to measure if the

discretization of the surface is excessively distorted thereby violating the principle

of geometric similarity. Finally, the lateral edges of the boundary layer quad are

checked for intersection in parametric space to verify that the growth curves are not

crossed over. In this check, every growth curve segment is checked for intersection

with all the segments of the adjacent growth curve unless an intersection is detected

during the process. Since the boundary layer thickness is typically small, it is as-

sumed that the parametric space is well behaved locally. This permits the use of

straight line approximations of growth curve segments in the parametric space. For

boundary layer quads which are only partially on the model face only those mesh

entities that will be classi�ed on the model boundary are tested as described above.

In the future, the parametric space checks for crossover is proposed to be replaced

by equivalent real space checks. In this method, the quad points will be projected

onto a suitable plane in real space and the intersection checks performed there.

6.2.2 Validity of boundary layer triangles

The checks for the validity of an abstract boundary layer triangle follow the

same rules as those for boundary layer quads except that the �rst layer in this con-

struct is only one triangle and that an intersection check is not performed between

the �rst segments of the two adjacent growth curves (since they already share a

common vertex).

4Note that negative area does not have any meaning for triangles on a general surface in 3-space.

59

(a)

(b)

G
1

2

C
1

1

C
3

1

C
4

1

C
5

1

C
6

1

C
7

1

G
1

1

G
1

3

G
1

4

G
2

1

G
2

2

G
2

3

G
2

4

M
0

2

M
0

3

M
0

4M
0

5

M
0

6

M
0

7

C
2

1

M
0

1

C
1

2

C
7

2

G
1

4

G
2

5

C
1

1

C
2

1

C
3

1

C
4

1
C

5

1

C
6

1

C
3

2

C
7

1

C
5

2

G
1

1

G
1

2

G
1

3

G
1

5

G
2

1

G
2

2

G
2

3

G
2

4

M
0

2

M
0

3

M
0

4M
0

5

M
0

6

M
0

7

M
0

1

Figure 6.5: Adjacent growth curves of a growth curve, (a) without multiple growth
curves. (b) with multiple growth curves.

60

6.2.3 Validity of boundary layer prisms

The validity of boundary layer prisms is done by checking the validity of all

its component tetrahedra, i. e., all tetrahedra are checked to ensure that the worst

dihedral angle is lesser than some angle, �. While minimum element validity is

satis�ed if � < 2�, � is taken to be lesser than that value (2���=30) in the interest

of creating elements of good quality.

6.3 Smoothing Growth Curves

Smoothing of growth curves is the �rst tool applied in the process of elimi-

nating growth curve crossover. The smoothing procedure applied here is a weighted

laplacian smoothing procedure applied to the growth curves. It is the preferred

method of eliminating growth curve crossover since it respects the original spacing

of nodes along the growth curves.

Smoothing of boundary and interior growth curves is done separately on a

model edge-by-edge and model face-by-face basis respectively. The reasons for this

are twofold. Firstly, all boundary quads must be made valid and the model faces

retriangulated with the boundary quads incorporated before growth directions are

determined on the mesh vertices classi�ed on the model face. Secondly, boundary

growth directions may be general curves on model surfaces preventing a straightfor-

ward application of the laplacian smoothing technique used for straight line interior

growth directions.

6.3.1 Smoothing interior growth curves

Smoothing of interior growth curves from mesh vertices classi�ed on the closure

of a model face is done by multiple passes (typically 10 passes) of a weighted laplacian

scheme.

Given a growth curve Ci
j, fcijg < G3

r at a mesh vertex M0
i < G2

f , the steps in

calculating a new direction for the growth curve are as follows:

1. Get the vector, vij from the �rst node pij;0 to the top node pij;nj�1, where nj is

the number of nodes in Ci
j.

61

2. Get the adjacent growth curves, fA(Ci
j)g.

3. Get the weighted average vector, viave of the adjacent growth curves as follows:

(a) For each adjacent growth curve Ca
k , �nd the vector, v

a
k from pak;0 to p

a
k;nk�1

,

where nk is the number of nodes in Ca
k .

(b) For each Ca
k , �nd jeakj = jp0nk�1 � p

0
aj, where p0i is the position vector to

a point, p0i , of a mesh vertex M0
i .

(c) Calculate viave as

v
i
ave =

Pn
a=1 jeakjvakPn
a=1 jeakj

4. The visibility of the viave is checked for all the mesh faces uses referencing Ci
j.

If the newly calculated direction is not visible from all the mesh face uses, it

is discarded and the existing growth curve is retained.

5. The new positions of the nodes of the growth curve are then found by rotating

each vector from the �rst node to the ith by an angle equal to the angle between

v
i
j and v

i
ave:

6.3.2 Smoothing boundary growth curves

Smoothing of boundary growth curves is done di�erently from interior ones as

the former are general growth curves whose nodes are constrained to lie on the model

boundary. A boundary growth curve is allowed to be in
uenced only by its adjacent

boundary growth curves as boundary quads must be valid before retriangulation of

the face they lie on. Naturally, smoothing of boundary growth curves only applies

to those growth curves that lie partly or fully on a model face and not those that

lie on a model edge.

Given a growth curve Ci
j, fcijg < G2

f at a mesh vertex M0
i < G1

e, the steps in

calculating a new direction for the growth curve are as follows:

1. Get the vector, vij from the �rst node to the pij;0 to the top node p
i
j;nj�1

, where

nj is the number of nodes in C
i
j.

62

2. Get the adjacent boundary growth curves, A@(C
i
j) as described above.

3. Get the weighted average vector, vi
ave of the adjacent boundary growth curves

as follows:

(a) For each adjacent boundary growth curve Ca
k , �nd the vector, vak from

pak;0 to p
a
k;nk�1

, where nk is the number of nodes in Ca
k .

(b) For each Ca
k , �nd jeakj = jp0nk�1 � p

0
aj, where p0i is the position vector to

a point, p0i , of a mesh vertex M0
i .

(c) Calculate viave as:

v
i
ave =

Pn
a=1 jeakjvakPn
a=1 jeakj

4. The visibility of the viave is checked for all the mesh faces uses referencing Ci
j.

If the new direction is not visible from all the mesh face uses referencing it, it

is discarded and the old direction is retained.

5. This new direction is then used to determine a new boundary growth curve as

described in Section 5.6 since the new positions of the nodes cannot be directly

calculated using simple transformations as done for interior growth curves.

6.4 Shrinking Growth Curves

Most growth curve crossovers in the boundary layer mesh are �xed by the

smoothing procedure described above. If any crossover still remains then the growth

curves are shrunk to �x this problem. Shrinking of growth curves is based on the idea

that the thickness of the boundary layer mesh may be too large relative to the local

curvature of model boundary or the acuteness of the angle between two adjacent

model faces. In this procedure, the local thickness of the boundary layer mesh is

reduced in an attempt to correct the crossover. This is accomplished by progressively

reducing the node spacing of the growth curves which are connected to invalid

prisms or in the case of of boundary growth curves, invalid quads. The reduction

in the height of the growth curve is always accompanied by a recursive adjustment

63

of neighboring growth curve heights to ensure a smooth gradation of boundary

layer thickness. Also, the shrinking process is constrained so that previously valid

elements are not allowed to become invalid. Multiple passes (typically 5 passes) of

the shrinking procedure are carried out on the boundary layer mesh to maximize the

possibility of the �xing invalid quads and prisms. However, if an iteration does not

produce any improvement in the prisms on that model face, then further iterations

are not carried out.

6.4.1 Shrinking interior growth curves

Given a prism that is invalid, it is attempted to be �xed by shrinking each

of its interior growth curves. If this does not �x the prism then pairs of interior

growth curves are shrunk. If this too does not work then all the interior growth

curves are shrunk at once to try to �x the prism. The shrinking of each growth

curve itself is done in multiple passes using a larger reduction factor with each pass.

The decrease in height at each pass is 75% and a total of 15 attempts are made with

decreasing node spacing. To be acceptable, the new growth curve(s) must not only

�x the prism under consideration but also maintain the status of any previously

valid prisms connected to the growth curve. Also, the height of any layer is not

allowed to become less than a chosen tolerance. This tolerance must be at least as

large as the tolerance used for intersection checks by the isotropic volume mesher.

In the implementation, it is conservatively chosen to be 10 times the intersection

tolerance. If the prism cannot be made valid by shrinking, the nodes of its growth

curves are restored to their original position.

Once a growth curve curve has been shrunk, a recursive procedure to adjust

the heights of neighboring growth curves is applied. The ratio of the heights of two

adjacent growth curves is not allowed to be greater than a factor,
, which is designed

to control the increase in the dihedral angles formed due to the change in heights of

the growth curves. The procedure recurses out and adjusts as many growth curves

as necessary. The recursion procedure is convergent since it is controlled by the

factor
. The actual procedure to shrink the neighboring growth curves is similar

to those used for shrinking itself (Figure 6.6).

64

(a) (b) (c)

Invalid Element

Figure 6.6: Recursive adjustment of neighbors in two dimensions to ensure smooth
gradation and better element quality. (a) Invalid element formed by growth curves.
(b) Element corrected by shrinking growth curves. (c) Neighboring growth curves
recursively adjusted.

The model used to determine
 is a simpli�ed two-dimensional situation shown

in Figure 6.7. Consider two adjacent straight line growth curves perpendicular to

the edge connecting the two vertices. Let the heights of the two growth curves be

T1 and T2 respectively and the length of the connecting edge be Le as shown in

Figure 6.7. If we want to limit the angle � to some value �max, then we have to

control the ratio of the growth curve heights,
 = T2
T1
. From the �gure we can see

that:

T2 = T1 + Le tan �; or

 =
T2
T1

= 1 +
Le tan �

T1

Thus, to limit � to �max, we must limit
 �
max; e.g., if �max = �
4
, then

 � 1+ Le

T1
. For computational e�ciency, an approximate value of
 is calculated at

the vertex using only the root mean square value of edge lengths.

65

Letan �

Le

�

T2
T1

Figure 6.7: Simpli�ed model used for calculating scale factor between adjacent
growth curve heights.

6.4.2 Shrinking boundary growth curves

Shrinking of boundary growth curves is similar to the shrinking of interior

growth curves except that in this case the primary concern is the validity of quads.

The new growth curves are calculated as in the smoothing procedure by calculating a

straight line approximation of the existing growth curve, calculating the new heights

of the layers along this direction and then recomputing a new boundary growth curve

as described in Section 5.6. Once one or both growth curves of a boundary quad

are reduced, their neighboring boundary growth curves are recursively shrunk if

necessary to obtain a smooth gradation in boundary layer heights.

6.5 Pruning Growth Curves

If both smoothing and shrinking of growth curves fail to �x all the crossover

situations due to strong constraints or degenerate growth curve direction, then the

nodes of the growth curve are pruned. The process of pruning growth curves elimi-

nates as many nodes as necessary starting from the top of the growth curve (since

growth curve crossover is more likely to occur in the top layers of the boundary

layer mesh). As with shrinking, adjacent growth curves are also recursively pruned

so that adjacent growth curves are allowed to di�er by only one node. This is done

to facilitate closing o� the anisotropic faces of the boundary layer mesh that will

66

get exposed due to local deletion of some layers which will later cause di�culty for

the isotropic mesher invoked to mesh the rest of the domain (See Chapter 7). At

the end of the pruning procedure, the boundary layer mesh has no invalid elements.

Pruning of interior growth curves is done until the remaining prisms connected to

the growth curves are all valid and pruning of boundary growth curves is done until

the connected boundary quads are all valid (Figure 6.8).

(a) (b)

(c)

Invalid Element

(d)

Transition Element

Figure 6.8: Recursive pruning of neighboring growth curves in two dimensions to
ensure smooth gradation and better element quality. (a) Invalid element formed
by growth curves. (b) Mesh with invalid elements deleted. (c) Neighboring growth
curves recursively pruned to ensure one level di�erence. (d) Mesh with transition
elements added to bridge steps in growth curves.

CHAPTER 7

BOUNDARY LAYER MESHING - ELEMENT

CREATION

The Generalized Advancing Layers method attempts to grow anisotropic elements on

all requested model faces while maintaining good element quality and shielding the

isotropic mesh generator from the highly stretched faces of the boundary layer mesh.

The primary construct in the creation of the boundary layer mesh is the triangular

prism formed by connecting the nodes of three growth curves from the vertices of

a single mesh face. Other constructs are boundary layer transition elements and

boundary layer blends.

As explained in Chapter 5, multiple sets of nodes are allowed to emanate from

a single mesh vertex. The presence of multiple growth curves allows adjacent prisms

to be separated from each other. This reduces the distortion of the prisms, a neces-

sary condition for good quality of the tetrahedra formed by subdividing the prism.

The separation of adjacent boundary layer prisms leads to the formation of gaps

in between the prisms. The walls of these gaps consist of highly stretched faces

of the anisotropic mesh and must be shielded from the isotropic mesh generator;

otherwise the isotropic mesher tends form poorly shaped elements in their neigh-

borhood and also su�ers in reliability. It is proposed that these gaps will be �lled

by constructs referred to as boundary layer blends similar to the blends used in

geometric modeling to round o� sharp corners (See Figure 7.1 which is reproduced

here from Chapter 5 for easy reference). Boundary layer blends may occur at mesh

edges or at mesh vertices. In principle, boundary layer blends may or may not have

�xed number of elements along the model edge. Variable blend constructs typically

occur at model edges where the dihedral angle between the connected mesh faces is

changing along the edge. While boundary layer blends at mesh edges are easy to

mesh using templates since only two prisms contribute to their boundary, boundary

layer blends at mesh vertices are harder since an arbitrarily large number of prisms

and blends incident on the mesh vertex may contribute to the polyhedral cavity

67

68

to be meshed. Therefore, such cavities must be meshed by more general meshing

procedures tailored for this purpose (Figure 7.1d).

G
2
0

G
2
1

G
2
2

G
2
3

Boundary layer
blend triangle

Boundary layer variable
blend polyhedron

Boundary layer fixed
blend polyhedron

Boundary layer vertex
blend cavity

(a)
(b)

(c) (d)

Figure 7.1: Boundary layer blend elements.

When the growth curves of a mesh face forming a prism have di�erent number

of nodes, a step is formed in the boundary layer mesh. This too exposes stretched

faces to the isotropic mesh generator. The di�erence in the number of nodes in the

growth direction comes from user requested mesh attributes, deletion of nodes due to

invalidity of elements or deletion of elements to avoid intersection of boundary layers

(Chapter 8). The step in the boundary layer mesh is formed since boundary layer

quads and prisms can be formed only by connecting nodes of growth curves at equal

levels. To avoid leaving highly stretched faces of the step exposed to the volume

mesher, tetrahedra are created to bridge the the growth curves with more nodes to

those with less nodes (See Figure 7.2). Since the process of recursively adjusting the

number of nodes on growth curves after pruning them tries to enforce a one layer

69

di�erence between adjacent growth curves, transition tetrahedra generally span only

one layer. However, as will be described in Chapter 8, multiple level di�erence may

be created between adjacent growth curves during pruning of growth curves to

�x self-intersections. Therefore, the capability to create multiple level transition

elements also exists to be used when necessary. The idea of a one level transition

element is similar to the procedure used in the work of Connell and Braaten [11] to

phase out the boundary layer at some edges.

All of the boundary layer constructs described above are allowed to abut

a model face and therefore modify the model face triangulation. The equivalent

boundary layer constructs for the boundary layer prisms are boundary layer quads,

boundary layer blend triangles and boundary layer transition triangles.

(c) One level
transition tetrahedra

(d) Multi-level
transition tetrahedra

(a) One level
transition triangles

(b) Multi-level
transition triangles

Figure 7.2: Boundary layer transition elements.

Element creation in the generalized advancing layers procedure is done in the

following steps:

1. Growth curves are �rst determined at mesh vertices classi�ed on model ver-

tices. If any of these growth curves lie partly or fully on a model edge, the

boundary layer entities classi�ed on the model edges are created.

70

2. Boundary layer mesh entities classi�ed on model edges are incorporated into

the model edge discretization.

3. Growth curves are determined at mesh vertices classi�ed on model edges.

Boundary layer entities from these growth curves, and growth curves at model

vertices that are classi�ed on model faces are created.

4. Growth curves on the model boundary are combined to form boundary layer

quads, boundary layer transitions and boundary layer blends. First, corre-

sponding nodes of adjacent boundary growth curves from neighboring vertices

are combined to form quads lying partially or fully on model faces. If a level

di�erence exists between the growth curves, transition triangles are formed

on top of the quads. Finally, blends are formed between appropriate multiple

boundary growth curves at mesh vertices.

5. Boundary layer quads, transitions and blends lying on model faces are incor-

porated into the triangulations of model faces.

6. Growth curves are determined at mesh vertices classi�ed on model faces. The

entities of these growth curves and growth curves from model vertices and

model edges that are classi�ed in the interior are created.

7. The interior growth curves are connected up to form prisms, transitions and

blends. First, adjacent growth curves from neighboring vertices are connected

up to form prisms. If a level di�erence exists between growth curves forming

a prism, then transition tetrahedra are formed atop the prisms to bridge the

step. Finally, blends are created between the multiple growth curves at mesh

vertices.

7.1 Conversion of Growth Curves into Boundary Layer Mesh

Entities

The creation of boundary layer mesh entities from growth curves is done in

one step if all the nodes of the growth curve are classi�ed on only one entity. If

the growth curves that are partly boundary and partly interior are permitted, then

71

the parts of the growth curve classi�ed on a model edge, model face and model

region can be converted into mesh entities during model edge retriangulation, face

retriangulation and region triangulation respectively.

Nodes of growth curves are directly converted into mesh vertices with their

classi�cation being derived from the growth curve node classi�cation. On the other

hand, classi�cation of the growth curve segment is not explicitly stored. Therefore,

when converting growth curve segments to mesh edges, their classi�cation has to

be derived from the classi�cation of the mesh vertices. Given two mesh vertices of

a boundary layer mesh edge representing a growth curve segment, the classi�cation

of the mesh edge is determined by �nding the lowest order model entity common

to the two entities that the mesh vertices are classi�ed on. In case there is more

than one common entity that the edge can be classi�ed on, an additional check is

performed. In this additional step, the midpoint of the straight line approximation

of the mesh edge in parametric space is checked if it maps to a point in the interior

of one the candidate model entities. The edge is then classi�ed on the entity that

satis�es this condition.

7.2 Model Edge Retriangulation

The insertion of boundary layer mesh edges and vertices classi�ed on model

edges is carried out through local mesh modi�cation operators [35] (Also see Ap-

pendix A). Given an edge to be inserted into the discretization of a model edge,

existing mesh edges overlapping the edge to be inserted are identi�ed by examining

the one-dimensional parametric space of the model edge. The end vertices of the

edge to be inserted are introduced into the model edge discretization by an edge split

if coincident vertices do not already exist in the mesh. Then all edges overlapping

the edge to be inserted are collapsed out into a single edge. Finally the edge to be

inserted is merged with the duplicate edge in the mesh.

7.3 Triangulation of Boundary Layer Quads

Boundary layer quads are formed by connecting nodes of adjacent growth

curves not originating from the same mesh vertex. Given two adjacent growth

72

curves, Ci1
j1
having n1 nodes and Ci2

j2
having n2 nodes, n � 1 boundary layer quads

are formed (n = min(n1; n2)). For each layer l, a boundary layer quad is formed by

connecting the nodes pi1j1;l, p
i1
j1;(l+1)

, pi2j2;l and pi2j2;(l+1). In converting these boundary

layer quads to triangles the choice of the diagonal is dictated by the future validity

of the connected prisms. For reasons explained in the section describing prism

tetrahedronization (Section 7.7 below), the diagonal is made so that it connects

node l of the growth curve at the mesh vertex with a lower identifying number

(vertex ID) to node l + 1 of the growth curve at the other vertex. If one of the

growth curves has more nodes than the other, the transition triangles are formed

on top of the quads as explained below.

M
0

i1;j1;0
=M

0

i1 M
0

i2;j2;0
=M

0

i2

M
0

i2;j2;l

M
1

s2
=M

1

i2;j2;l

M
0

i2;j2;l+1

M
1

s1
=M

1

i1;j1;l

M
0

i1;j1;l

M
0

i1;j1;l+1

M
2

t

M
2

b

C
i2
j2

C
i1
j1

M
1

t

M
1

d

M
1

b

M
1

e

Figure 7.3: Boundary layer quad triangulation template.

The algorithm for constructing a boundary layer quad between the n nodes

of the growth curves Ci1
j1
and Ci2

j2
is given below (See Figure 7.3). In the algorithm,

it is assumed that mesh entities have been created from the two growth curves and

that ID(M0
i1
) < ID(M0

i2
) (where ID(M0

i) is the identi�cation number assigned to

each mesh vertex) which implies that for a layer l, the diagonal of the quad goes

from pi1j1;l to p
i2
j2;(l+1)

. The steps of the algorithm are:

1. The bottommost edge of the boundary layer quad isM1
e , whereM

0
i1 ;M

0
i2 � @M1

e .

Make this the bottom edge of the bottommost quad.

2. For each layer l; l = 1; n � 1, do the following (Refer entities of layer l in

Figure 7.3):

73

(a) Get the bottom mesh edge of the quad,M1
b , between mesh verticesM

0
i1;j1;l

and M0
i2;j2;l

.

(b) Get the side mesh edges, M1
s1 = M1

i1;j1;l
and M1

s2 = M1
i2;j2;l

of the quad

from the two growth curves Ci1
j1
and Ci2

j2
respectively.

(c) Create the diagonal edge, M1
d between vertices M0

i1;j1;l
and M0

i2;j2;(l+1)
for

this layer. The classi�cation of the edge is derived from its end nodes.

(d) Figure out the classi�cation of the lower triangular face M2
b (where

M1
b ;M

1
s2
;M1

d � @M2
b) of the quad from its 3 edges.

(e) If M2
b < G3

r, then the orientation of the face is not important as long it

is taken into account by the regions that use it. On the other hand, if

M2
b < G2

f , then the face must be oriented in the same direction as the

model face5. In this case, the orientation of the mesh face is determined

by examining M1
b .

The natural de�nition of the face is such that its edges are ordered

as M1
b , M

1
s2
, M1

d used in directions de�ned by the fact that the ver-

tices around the face starting from M0
i1;j1;l

are the ordered cyclic set

[M0
i1;j1;l

;M0
i2;j2;l

;M0
i2;j2;(l+1)

].

� IfM1
b < G2

f , then the other mesh face, M
2
p connected to the edge and

classi�ed on G2
f is found, if it exists. If such a face exists, then M2

b

usesM1
b in a direction opposite to the direction in whichM

2
p usesM

1
b

(See Figure 7.4a). If the direction of use con
icts with the selected

direction of use ofM1
b then the orientation of the face is reversed and

the ordered set of edges and vertices around the natural direction

of the face becomes [M1
b ;M

1
d ;M

1
s2
] and [M0

i1;j1;l
;M0

i2;j2;(l+1)
;M0

i2;j2;l
]

(Figure 7.4b).

� If M1
b < G2

e � @G2
f , then it is assumed that the mesh edge has

the same direction as the model edge (i. e. the �rst vertex of the

5This is an assumption that is enforced throughout all the mesh generation tools described or
referenced here. While this is not a necessary condition for successful mesh generation, it make the
procedures much simpler without adversely a�ecting the reliability of the mesher or the quality of
the generated meshes

74

edge has a lower parameter with respect to the model edge than the

second except when it spans a periodic boundary). In this case the

direction of use of G1
e by G2

f is found and M2
b must use M1

b in the

same direction (Figure 7.4c,d).

In the special case when G2
f uses G

1
e both ways, �rst a check is made

for a mesh faceM2
p < G2

f already connected to the edge. If such a face

exists, then the orientation of the current face is checked in the same

way that it was done for mesh edges classi�ed on the model faces. If

not, a geometric check is performed to see if the direction of the face

is right. To do this a mesh face use using the two growth curves of the

boundary layer quad is found and a virtual region constructed using

the vertices of the M2
b and the node of the mesh face use opposite

the base edge M1
e ; M

0
i1
;M0

i2
� @M1

e of the boundary layer quad. If

the volume of this region is positive, the orientation of M2
b is correct;

if not, it must reversed (See Figure 7.4e).

(f) Create the top edge of the boundary layer quad for this layer, M1
t ,

M0
i1;j1;(l+1)

;M0
i2;j2;(l+1)

� @M1
t , deriving its from the classi�cation from

its end nodes.

(g) Figure out the classi�cation of the upper face M2
u ; M

1
t ;M

1
s1
;M1

d � @M2
u

of the quad from its 3 edges. Reverse its orientation, if necessary, as was

done for the lower face using the diagonal edge as a reference edge. Thus

in its natural orientation, the ordered set of edges and vertices of M2
u

are [M1
t ;M

1
s1
;M1

d] and [M
0
i2;j2;(l+1)

;M0
i1;j1;(l+1)

;M0
i1;j1;l

] respectively. In the

reversed orientation, these sets become [M1
t ;M

1
d ;M

1
s1] and

[M0
i2;j2;(l+1)

;M0
i1;j1;l

;M0
i1;j1;(l+1)

] respectively.

(h) Label M1
t as M1

b .

An important point to note here is that although the current implementation

has precluded the existence of partially boundary and partially interior growth curves,

a special type of quad with some faces classi�ed on the boundary and others in

the interior may still exist in the boundary layer mesh. This happens under the

75

(a) (b)

M
0

i2;j2;l

M
0

i2;j2;l+1

M
0

i1;j1;l

M
2

b

M
2

p

M
0

i2;j2;l�1

M
1

b

M
1

d M
1

s2

M
0

i2;j2;l

M
0

i2;j2;l+1

M
0

i1;j1;l

M
2

b

M
2

p

M
0

i2;j2;l�1

M
1

b

M
1

d M
1

s2

M
0

i2;j2;l

M
0

i2;j2;l+1

M
0

i1;j1;l

M
2

b

M
1

b

M
1

d M
1

s2

G
1

e

G
2

f

(c) (d)

M
0

i2;j2;l

M
0

i2;j2;l+1

M
0

i1;j1;l

M
2

b

M
1

b

M
1

d M
1

s2

G
1

e

G
2

f

(e)

M
0

i2;j2;l

M
0

i2;j2;l+1

M
0

i1;j1;l

M
2

b

M
1

b

M
1

d M
1

s2

G
1

e

G
2

f

M
0

r

M
2

r

G
2

h

Assumed direction

Correct direction

Figure 7.4: Determining face directions for boundary layer quad triangles. (a) Bot-
tom edge classi�ed on model face and assumed face direction is correct. (b) Bottom
edge classi�ed on model face and face direction must be reversed. (c) Bottom edge
classi�ed on model edge and assumed face direction is correct. (d) Bottom edge
classi�ed on model edge and face direction must be reversed. (e) Geometric check
when bottom edge classi�ed on model edge used twice by the model face.

76

(a) (b)

(c)

Interior triangle

Boundary triangle

G
2

f

M
1

b
< G

1

e

M
0

j
< G

1

e

M
0

i
< G

1

e

M

1
d
<

G
2
f

M
2

b < G
2

f

M
2

u
< G

3

r

M

1 i
;0
<

G
3 r

M

1 j;
0

<

G
2 f

M
0

j;1 < G
2

f

C
i

0 < G
3

r

C
j
0 < G

2

f

M
1

t
< G

3

r

M
0

i;1 < G
3

r

G
2

f

M
1

b
< G

1

e

M
0

j
< G

1

e

M
0

i
< G

1

e

M
1

t
< G

3

r

M
2

b < G
3

r

M
2

u
< G

3

r

M
0

i;1 < G
3

r

M
0

j;1 < G
2

f

C
i

0 < G
3

r

C
j
0 < G

2

f

M
1

d
<
G 3
r M

1 j;
0

<

G
2 f

M

1 i
;0
<

G
3 r

G
2

f

M
1

b
< G

1

e

M
0

j
< G

1

e

M
0

i
< G

1

e

M
1

t
< G

2

f

M
2

b < G
2

f

M
2

u < G
2

f

M
0

i;1 < G
2

f

M
0

j;1 < G
2

f

C
i

0 < G
2

f

C
j
0 < G

2

f

M
1

d
<
G 2
f

M

1 i
;0
<

G
2 f M

1 j;
0

<

G
2 f

Figure 7.5: Types of quads at model edges. (a) Quad with partly boundary and
partly interior classi�cations. (b) Quad with all interior classi�cation. (c) Quad
with all boundary classi�cation.

77

particular circumstance in which the one growth curve is fully interior and the other

is fully boundary and the diagonals of the quad have their lower vertices on the

interior growth curve. This is illustrated in Figure 7.5. In the �gure, M0
i ;M

0
j < G1

e

and Ci
0 < G3

r, C
j
0 < G2

f . In the Figure 7.5a, ID(M0
i) < ID(M0

j). Therefore, by the

methods described above, in the �rst layer M1
d < G2

f and M1
t < G3

r. As a result of

the classi�cations of their component edges, the bottom face of the lower triangle in

the �rst layer is classi�ed on model face G2
f and the top triangle on model region G

2
r.

Note that only the �rst layer triangles of such boundary layer quads have di�erent

classi�cations and the rest of the triangles are classi�ed interior. In Figure 7.5b,

ID(M0
j) < ID(M0

i) and therefore, all the triangles are classi�ed as being interior.

In Figure 7.5c, both growth curves are classi�ed on the same model face and therefore

it is immaterial what the IDs of the vertices are - all triangles are classi�ed on the

model face.

When quads are partly boundary and partly interior, the boundary triangles

are created �rst and inserted into the surface mesh and the interior triangles are

completed later when other fully interior quads are being created. Although it is true

that the procedure can avoid dealing with the quads with multiple classi�cations in

most cases by simply exchanging the ID numbers of vertices, it is not guaranteed that

this type of quad will never be needed since neighboring quads get a�ected by the

change in IDs. In addition, the availability of such mechanisms in the mesh generator

provides the basis for handling more general types of quadrilateral abstractions in

future implementations.

7.4 Creation of Boundary Layer Transition Triangles

Transition triangles are formed atop boundary layer quads with a level di�er-

ence between the two growth curves. This is done by simply connecting the top

node of the growth curve with fewer nodes with nodes of the other growth curve

which are at a higher level. It is important to note that the mesh vertex with the

lower ID may have the growth curve with more nodes and therefore, diagonal edge

of the transition triangle may go in an opposite direction to the diagonals of the

boundary layer quad (Figure 7.2a,b).

78

7.5 Creation of Boundary Layer Blend Triangles

Creation of boundary layer blend triangles is similar to the creation of bound-

ary layer quads. The di�erence is that boundary layer blend triangles establish

connections between nodes of two growth curves originating from the same mesh

vertex. The �rst layer of a blend triangle is made up of a single triangular mesh face

and the rest of the layers contain triangulated quads as in the case of the boundary

layer quad. The direction of the diagonal for the quads in a boundary layer triangle

is arbitrary and may be based solely on the quality of the triangles (Figure 7.1a).

7.6 Model Face Retriangulation

The choice of the method used for the incorporation of mesh entities classi�ed

on model boundaries is very important to the reliability of the boundary layer mesh

generator. While the use of an advancing front type method to retriangulate the

model faces is attractive, it requires the use of the parametric space of the model

faces to check for intersections. This is an error prone procedure if the parametric

space is highly distorted since the underlying assumption is that straight line ap-

proximations of the parametric curves representing mesh edges can be used to check

for intersections. In fact, examples exist of commercial modelers using highly dis-

torted parametric spaces for model faces constructed from a existing set of facets.

An alternative is to create the boundary layer mesh entities on model edges and

then complete the triangulation of the model edges, create entities classi�ed on the

model faces and then complete the triangulation of the faces and �nally create the

interior boundary layer mesh entities before handing the mesh over to a volume

mesher. This may be convenient or di�cult to do depending on the approach of the

isotropic mesher and may require tight integration with the sub-components of the

surface mesh generator. To avoid the use of the parametric space for intersection

checks and to keep the surface meshing, boundary layer meshing and volume mesh-

ing independent and modular, a third alternative is adopted here. This method

uses local mesh modi�cation operators combined with checks for the smoothness

of the surface discretization to incorporate boundaries of the boundary layer mesh

79

(a) (b)

(c) (d)

(e) (f)

Figure 7.6: Model face retriangulation by local mesh modi�cations. (a) Initial sur-
face mesh. (b) Surface mesh with boundary layer elements overlayed. (c) Insertion
of outermost boundary layer vertices into surface mesh. (d) Recovery of outermost
boundary layer edges by edge swapping and edge collapsing. (e) Deletion of surface
mesh triangles overlapping the boundary layer mesh. (f) Incorporation of boundary
layer mesh into surface mesh.

into the existing surface triangulation. It then replaces overlapping triangles of the

underlying mesh with the boundary layer triangles [35].

The model face retriangulation procedure is done for each model face that the

growth curves of each model edge a�ect. Given a model edge and a model face on

which growth curves from mesh vertices of the model edge lie, the following steps

are carried out to create and incorporate the boundary layer mesh into the surface

mesh triangulation:

1. Boundary layer quads and triangles classi�ed on the the model face are created

as described above (Figure 7.6b).

80

2. The boundary layer quads and triangles are temporarily disconnected from

the mesh entities of the original face triangulation. This is done to prevent

the procedures recovering the boundary layer edges from being misled by the

presence of the boundary layer mesh entities in the discretization of the model

face.

3. Each boundary layer mesh entity that forms the outer boundary of the set

of boundary layer mesh faces classi�ed on the model face is incorporated into

the surface mesh by the edge recovery procedure. The recovery procedure

is brie
y described below and discussed in full detail in [35]. Once all the

necessary edges have been recovered, the outer boundary of the set of faces to

be inserted into the mesh exactly matches the outer boundary of a set of faces

in the underlying surface mesh (Figure 7.6c,d).

4. Mesh faces of the existing surface triangulation overlapping the boundary layer

mesh faces are deleted (Figure 7.6e). The set of faces overlapping the boundary

layer mesh faces are found using only topological checks and searches.

5. The boundary layer faces are incorporated into the surface mesh in place of

the deleted elements (Figure 7.6f).

The edge recovery procedure �rst identi�es where to insert the vertices of the

edge to be recovered into the existing mesh. The insertion point may be an existing

vertex (in which case no explicit insertion of the vertex is required), a mesh edge or

and mesh face. The mesh entity to be modi�ed for insertion of the vertex or in other

words, the mesh entity \containing" the vertex to be inserted is �rst localized using

the parametric space. However, the �nal decision is made with real space checks

since the results of containment checks in the parametric space can be misleading

for highly distorted spaces. The criterion for �nding the mesh entity to split for

insertion is based on the observation that a good choice for an insertion entity is

one that will preserve or improve the approximation of the true geometry by the

surface mesh since it is guaranteed that the point to be inserted will lie on the true

geometry. Therefore, the methodology used projects the insertion point onto a local

set of mesh faces along their respective normals and among the mesh faces containing

81

the projected point, the one that maintains or improves the approximation of the

true geometry is chosen. The dihedral angles between mesh faces before and after

insertion of the new point is a good measure for assessing the choice of the mesh

entity to be split, the alternative being to use one of many forms of comparison

between the discrete normals (normals of mesh faces) before and after the split.

The point is inserted into the mesh either by merging with an existing vertex, by

an edge split or by a face split operation (See Appendix A).

Once the vertices to be recovered are inserted into the mesh, a path of edge

connected mesh faces is found from one vertex to another. Once again this is done

by projection of the edge to be recovered onto planes of the mesh faces in the

neighborhood. If any mesh vertices lie in the path of the edge to be recovered, they

are either collapsed along a connected edge or perturbed. If the collapses have not

already recovered the edge, it is recovered by successive swaps of mesh edges of the

faces in its path.

The edge split and face split operations used to insert the vertices of the edge

to be recovered often cause poorly shaped elements to be formed. The nearly
at

elements then cause numerical imprecision in the remaining steps of the recovery

algorithm thereby reducing its reliability. Two strategies may be used to eliminate

the creation of such poorly shaped elements. The �rst is to use an increased point

tolerance for checking if point lies on a vertex or an edge. This prevents points from

being inserted too close to an existing vertex or an edge. Care has to be taken in

this approach to ensure that use of the increased tolerance does not cause a single

mesh vertex to capture both endpoints of the edge. Also, if the point is declared

to be coincident with a mesh vertex then the vertex must be repositioned within

the real point tolerance of the insertion point. The second approach is to insert the

point using the real point tolerance of the modeler and then perform edge swaps

and edge collapse in the immediate neighborhood to eliminate the poorly shaped

mesh faces. This method has the disadvantage that it is harder to estimate how well

the mesh will approximate the true geometry after the insertion and modi�cation

operations.

82

Once the edge is recovered successfully, a local mesh optimization is performed

to eliminate any other poorly shaped faces created during the edge recovery process.

The optimization procedures are constrained to not modify any existing boundary

layer edges already recovered or any edges classi�ed on model edges. If the edge

cannot be recovered then the procedures split edges of the mesh in its path and

return a list of edges forming a path of edges from one vertex of the original edge to

be recovered to the other. In such a case, the boundary growth curve is deleted and

replaced with an interior growth curve, in e�ect peeling the boundary layer away

from the adjacent wall in the neighborhood. This requires deletion of some existing

boundary layer quads, recalculating one or two growth curves, insertion of newly

exposed edges and updating of data structures. Alternately, it is possible to go back

to the triangulation of the face on which the boundary layer is grown, split the edge

from which the boundary layer quad originates and regrow the boundary layer from

the new vertices. This way the exposed edges of the new quads will match the mesh

edges that the edge recovery algorithm actually created in place of what was earlier

requested.

Finally, after the model face retriangulation procedure is completed, the re-

sulting mesh is subjected to a series of checks to ensure that it is not self intersecting

[13]. If an intersection is found it is �xed by edge splits of unconstrained entities (i. e.

entities that do not belong to the boundary layer mesh and are not constrained in

any other way). This step is necessary to ensure that the �nal mesh that is handed

over to the volume mesher is not self-intersecting.

7.7 Creation of Boundary Layer Prisms

The bulk of the elements in the boundary layer mesh are comprised of tetrahe-

dronized layers of boundary layer prisms. Boundary layer prisms are grown on mesh

face uses by connecting the three growth curves at the face vertices which share each

mesh face use. The tetrahedronization of each boundary layer prism in a layer gives

rise to three tetrahedra. The number of layers of such elements grown atop any

mesh face use is determined by the growth curve forming the smallest number of

nodes.

83

Boundary layer prisms can be thought of as being formed by three quadri-

laterals that are grown from the edges of the mesh face. There are eight possible

combinations of diagonals for the quads of a prism. Of these only six are con�gura-

tions which can be tetrahedronized without the insertion of any new points inside

the prism (Figure 7.7a). Therefore, in assigning directions for the diagonals of the

quads in the boundary layer mesh, care must be taken not to assign directions such

that some prisms cannot be tetrahedronized. This is done by a simple algorithm

based on numbering of the surface mesh vertices. Given a surface mesh with any

arbitrary assignment of unique numbers (IDs) for the mesh vertices, the IDs of ver-

tices of a face in either clockwise or counterclockwise direction cannot be strictly

increasing or strictly decreasing. In other words, the ID of one vertex in each mesh

face has to be lesser than the IDs of the other two vertices. Using this notion, the

diagonals of boundary layer quads are constrained to go from the lower node of the

growth curves of vertices with a lower ID to the upper node of growth curves of

vertices with a higher ID. This is shown in Figure 7.7b.

The tetrahedronization of boundary layer prisms is done using templates. The

six con�gurations for the boundary layer templates are reduced to just two by always

tetrahedronizing the prism using the face vertex with the lowest ID as a reference

vertex. The face vertex with the lowest ID is also the face vertex which has two

prism diagonals connected to it. The two templates are shown in Figure 7.8. Wher-

ever necessary, boundary layer prisms utilize the boundary layer quads previously

incorporated into the model face triangulation.

The process of creating boundary layers prisms in the interior is comprised of

three steps. First all growth curves classi�ed as interior are converted into mesh

entities (edges and vertices). Also, the interior portions of growth curves classi�ed

partly on the boundary and partly interior must converted into mesh entities. Next,

boundary layer quads are grown from all mesh edges classi�ed on model faces as

done for mesh edges classi�ed on model edges. In this step partially created bound-

ary layer quads are also fully converted into mesh entities. Finally, the boundary

layer quads from mesh faces are suitably combined according to the two templates

described above into boundary layer prisms and their component tetrahedra.

84

1
2

0

3

45

1
2

0

3

45

1
2

0

3

45

1
2

0

3

45

1
2

0

3

45

1
2

0

3

45

(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

(a)

ID0 < ID2 < ID1

ID1
ID2

ID0

ID1

ID2

ID0

(b)

1
2

0

3

45

1
2

0

3

45

Figure 7.7: (a) (i)-(vi) Valid prism triangulations. (vii)-(viii) Invalid prism con�gu-
rations. (b) Choice of prism diagonals based on Base Vertex IDs to assure validity
of prism con�gurations.

7.8 Creation of Transition Tetrahedra

Atop a prism with one level di�erence between its component growth curves,

there may be one or two transition tetrahedra depending on whether one or two

growth curves have fewer nodes than the others. Similar to the transition triangles

for the boundary layer quads, the diagonal faces of the transition tetrahedra may

run counter to the pattern that is used for the diagonal faces of the underlying

prisms. If the level di�erence between the growth curves is more than one, then

85

0

1

2

3

4

5

1

2

0

3

4
5

(a) (b)

(c) (d)

0

3

4
5

2

0

4
5

1

2

0

4
0

3

4
5

0

1

4

5

0

1

2

5

Figure 7.8: Boundary Layer Prism Templates.

several layers of transition elements are created on top of the prism. Consider the

case when one of the growth curves has one more node than the other two which

have n nodes. Then the topmost nodes of the two shorter growth curves (nodes

n), the topmost node (node n+1) of the tall growth curve and its previous node

(node n) form one transition tetrahedron (Type I transitions, Figure 7.9a). On the

other hand, if two growth curves have one more node (n+1) than the third growth

86

curve, then two transition tetrahedra are formed on top of the base prism (Type

II transitions, Figure 7.9b). These two transition tetrahedra together use the nth

node of the short growth curve, and the nth and (n+1)th nodes of the taller growth

curves. The diagonal connection between the two tall growth curves is chosen to be

in the same direction as the rest of the quad below it, i. e., it is based on the IDs of

the base nodes. Multiple transition layers may be completely Type I (Figure 7.9c),

completely Type II (Figure 7.9d) or may start o� as Type II transitions and then

switch to Type I transitions (Figure 7.9e). It is not possible to switch from Type I

transition to Type II.

It is worthwhile to mention here that the checks for the validity of elements to

be formed in the boundary layer mesh that are performed in the smoothing, shrink-

ing and pruning operations take into account the presence of transition triangles

and tetrahedra.

(b) One level Type II
 transition layer

(a) One level Type I
 transition layer

(c) Multi-level Type I
 transition layers

(d) Multi-level Type II
 transition layers

(e) Multi-level Type II/I
 transition layers

Pn

Pn

Pn

Pn+1 Pn+1

Pn

Pn+1

Pn Pn

Figure 7.9: Transition Elements.

7.9 Creation of Boundary Layer Blend Polyhedra

As mentioned before, the introduction of multiple growth curves at mesh ver-

tices due to surface mesh geometry introduces gaps between prisms. These gaps

87

are made up of highly stretched faces present on the sides of prisms. If left as they

are, the highly anisotropic faces of the gaps cause problems for the isotropic volume

mesher. Therefore, the concept of blend meshes is introduced in the generalized

advancing layers procedure. The blend meshes are designed to �ll the gaps between

prisms while maintaining a good mesh gradation in the boundary layer mesh.

Consider a situation in two dimensions where there are two growth curves

at a model vertex representing a convex corner (Figure 7.10a,b). The gap in the

two dimensional boundary layer mesh formed at this vertex must be �lled by blend

triangles (Figure 7.10c). If the angle between the two growth curves is too large,

bridging the gap with a single set of blend elements results in disparate mesh sizes

on the outer surface of the boundary layer mesh exposed to the isotropic mesh.

Therefore, to maintain a good mesh gradation on this outer surface, additional

growth curves may have to be introduced at a mesh vertex in between the growth

curves used by the standard boundary layer elements (quads in 2D and prisms in

3D) as shown in Figure 7.10d.

The number of additional growth curves required at a mesh vertex can be

calculated quite simply by using the model shown in Figure 7.11. Consider a mesh

vertex M0
i at which there are two original growth curves separated by an angle �.

Let the average mesh size at the vertex be have. Assuming that all the growth curves

forming quads are nearly perpendicular to their respective base edges, the average

mesh size on the outer boundary of the boundary layer mesh is also taken as have.

Therefore, n additional growth curves must be introduced between the two original

growth curves such that the outer entities of the blend mesh also have a mesh size

of have. It is assumed that the n growth curves will be equispaced in the gap. Also,

the average boundary layer thickness in the neighborhood is taken to be H. The arc

length between the outermost nodes of the two original growth curves is L = H�

Therefore the arc length between the outermost nodes of any two consecutive

growth curves in the blend is:

l =
L

n
=
H�

n
(7.1)

88

(a) (b)

(c) (d)

Figure 7.10: Two dimensional illustration of the need for blends and multiple growth
curves within blends. (a) Boundary layer mesh on two surfaces with convex corner.
(b) Gap between the corners shown in greater detail. (c) Blend mesh directly bridg-
ing the two existing growth curves. (d) Blend mesh with introduction of additional
growth curve.

Since the aim is to make l � have, it can be deduced that

have =
H�

n
; or

n =
H�

have
(7.2)

rounded o� to the nearest integer.

In three dimensions, gaps may occur at mesh edges or mesh vertices. For

simplicity of discussion, it is assumed for now that the need for blend meshes occurs

only at mesh edges (and vertices) classi�ed on model edges and at mesh vertices

89

C
i

0

C
i

1

C
i

j

C
i

n+1

M
0

i

�

�H

have

ht

Figure 7.11: Calculating number of additional growth curves for blend meshes.

classi�ed on model vertices. At model edges, the dihedral angle between two model

faces connected to the model edge may be constant or vary continuously. If the

dihedral angle is constant, then the same number of growth curves are created at

each mesh vertex classi�ed on the model edge. A blend mesh on such a model edge

will be termed a �xed or constant blend since its structure does not vary along the

model edge (Recall Figure 7.1b earlier in the chapter). If the dihedral angle does

vary along the model edge then it is clear that some mesh vertices may have more

growth curves than the others. In this case the topology of the blend mesh must also

change along the model edge. Such blend mesh are referred to as variable blends.

In the discussion below, a further simpli�cation is introduced by assuming that no

additional growth curves are introduced in a blend and that the gap is directly

bridged by connecting the original growth directions used to create prisms in the

mesh. Such blends are referred to as simple blends. As noted above, this may result

in poor mesh gradation. Therefore, this is compensated for by reducing the angle

between multiple growth curves by 25%.

Simple blends require only two sets of templates to mesh. The �rst case is the

simple �xed blend in which the vertices of a mesh edge have two growth curves each

and the mesh edge has two quads which are joined to form a blend polyhedron.

90

A simple �xed blend between two quads at a mesh edge M1
i with vertices M0

j

and M0
k is shown in Figure 7.12a. As seen in the �gure, the �rst layer of simple

�xed blend consists of a prism while subsequent layers are hexahedra stacked on

top of each other (in the �gure, only one hexahedron is shown since the mesh has

only two layers). A triangulation of the simple �xed blend is shown in Figure 7.12b

and an individual view of the triangulated prism and hexahedron are shown in

Figure 7.12c,d. The salient points of the triangulation are:

1. The sides of prisms and hexahedra formed by the quads always have matching

diagonals since the quads contributing to them arise from the same mesh edge.

2. It is impossible to obtain an invalid triangulation of the bottom prism since

the two matching diagonals from the quads will always meet at a vertex. The

third diagonal (forming the base of the hexahedron can be chosen arbitrarily

and is selected to provide the best element shapes.

3. Since the shape of the tetrahedra resulting from a regular hexahedron is op-

timal when all its opposite diagonals are matching, the free diagonals on the

blend hexahedron are chosen to match each other if possible. The diagonals

that are �xed are the ones from the quads (which have already been shown

to be matching) and the bottom face of the hexahedron (which is inherited

from the bottom prism). The diagonal of the top face of the hexahedron is

unconstrained and is chosen to match the bottom diagonal unless this causes

a geometrically invalid triangulation. The diagonals on the side faces of the

hexahedron are also unconstrained unless one or both of their faces lie on the

model boundary and their diagonals have already been �xed. Even if both

the side diagonals are �xed and are not matching, the hexahedron can still

be triangulated if the top and bottom diagonals match. No tetrahedroniza-

tion is possible without introducing an interior vertex if two sets of diagonals

do not match for a hexahedron. Naturally, if two blend polyhedra share a

common interface originating from a vertex their diagonals are expected to be

conforming.

91

The two prism templates used before can be used as is for meshing the bottom

prism. Accounting for the possibility of a mismatch between the top and bottom

diagonals, and side diagonals, the blend hexahedron can be triangulated by three

distinct templates. The number of di�erent possible templates is reduced to only

three by assuming that the hexahedron will always be considered with a quad di-

agonal and the \bottom" face diagonal meeting in the front lower left corner. Note

that to satisfy this condition and apply one of the templates, the hexahedron may

have to viewed upside down.

The second case is when one vertex of a mesh edge has one growth curve and

the other has two (the edge still has two quads joined at one end and separated at

the other). This is called the simple variable blend and is shown Figure 7.13a. The

simple variable blend is comprised of a 5-vertex wedge and a number of 6-vertex

wedges stacked on top of each other. The 5-vertex and 6-vertex wedges are shown

in Figure 7.13b(i) and Figure 7.13b(ii) respectively. As with the simple �xed blend,

the diagonals of the side faces of the blend polyhedra are constrained to match

each other. The 5-vertex wedge may yield two or one tetrahedra depending on the

direction of the diagonal of the quads as shown in Figure 7.13c(i) and Figure 7.13c(ii)

respectively. In the latter case the triangulation of each quad from the base mesh

edge results in an edge between vertices M0
j and M0

k;0;1. Therefore, there are two

coincident edges between the two vertices M0
j and M0

k;0;1, and two coincident faces

between the vertices M0
j , M

0
k and M0

k;0;1, one from each quad. These coincident

entities are merged to prevent the mesh from becoming topologically invalid. This

leaves only one tetrahedron fM0
j ;M

0
j;1;1;M

0
j;0;1;M

0
k;0;1g to be created from the 5-

vertex edge. The two tetrahedra that result from the other 5-vertex wedge are easy

to see. The 6-vertex wedge can be triangulated by two templates accounting for the

various symmetries in the polyhedron.

Using the above concepts for simple blends, the gap between prisms at edges

can be closed o� from the isotropic mesh generator. These templates may also be

used to build up general �xed and variable blend meshes.

As mentioned in earlier discussions, gaps between the various boundary layer

constructs at model vertices are much more general since an arbitrary number of

92

(a)

(c)

(b)

(d)

M
0

k;0;1

M
0

k;1;1

M
0

j;0;1

M
0

j;1;1

M
0

j;1;2

M
0

j;0;2

M
0

k;0;2

M
0

k;1;2
M

0

k

M
0

j

M
0

j;0;1

M
0

j;1;1

M
0

k;0;1

M
0

k;1;1

M
0

j

M
0

k

M
0

k;1;1

M
0

k;1;2

M
0

k;0;2

M
0

j;0;2

M
0

j;0;1

M
0

j;1;1

M
0

j;1;2

M
0

k;0;1

M
1

i

M
0

k;0;1

M
0

k;0;2

M
0

j;0;2

M
0

j;1;1
M

0

j;1;2

C
k

0

C
j
0

C
j
1

C
k

1

M
0

j = M
0

j;0;0

= M
0

j;1;0

M
0

j;0;1

M
0

k;1;1

M
0

k;1;2

M
0

k = M
0

k;0;0

= M
0

k;1;0

Figure 7.12: Simple �xed blend.

prisms and blends may can contribute to them. However, their anisotropy is also

much lesser than that of edge blends making them easier to handle using less spe-

cialized procedures. It is proposed that the vertex blends be created using general

mesh generation techniques tailored for the purpose of �lling these gaps.

The above discussion has focused on �lling gaps between boundary layers at

model edges and model vertices. In fact, multiple growth curves and therefore,

93

(a) (b)

(c) (d)

M
1

i

M
0

k =M
0

k;0;0

M
0

k;0;1

M
0

k;0;2

M
0

j;0;1

M
0

j;0;2

M
0

j;1;1
M

0

j;1;2

C
k

0

C
j
0

C
j
1

M
0

j = M
0

j;0;0

= M
0

j;1;0

M
0

j

M
0

k

M
0

j;0;1

M
0

j;1;1

M
0

k;0;1

M
0

j

M
0

k

M
0

j;0;1

M
0

j;1;1

M
0

k;0;1

M
1

d

M
0

k;0;1

M
0

k;0;2

M
0

j;0;1

M
0

j;1;1

M
0

j;1;2

M
0

j;0;2

M
0

j

M
0

k

M
0

j;0;1

M
0

j;1;1

M
0

k;0;1

M
0

k;0;1

M
0

k;0;2

M
0

j;0;1

M
0

j;1;1

M
0

j;1;2

M
0

j;0;2

M
0

k;0;1

M
0

k;0;2

M
0

j;0;1

M
0

j;1;1

M
0

j;1;2

M
0

j;0;2

(i)

(ii)

(i)

(ii)

Figure 7.13: Simple variable blend.

94

gaps between prisms may occur at any mesh edge or mesh vertex classi�ed on the

boundary. Therefore, a complex blend structure may be constructed on a model

face with sharp corners as shown in Figure 7.14. The procedures and templates to

build blend meshes simply proceed on a mesh entity by entity basis and can be used

throughout the mesh. It must be noted here, that blend meshes are not present in

the current implementation but are expected to be incorporated into the procedures

as described above.

(a)

(b) (c)

Figure 7.14: Blend meshes on model faces. (a) Model face discretization. (b) \Pris-
matic" boundary layer mesh on model face with gaps between \prisms". (c) Bound-
ary layer mesh with gaps �lled in by edge and vertex blends.

The combination of prism, transition and blend constructs presented in this

chapter may be used e�ectively to construct a good anisotropic mesh for capturing

boundary layers while shielding the isotropic mesh generator from most stretched

faces. However, there may still be some situations where the boundary layer mesh

ends abruptly at a sharp corner. To absolutely prevent the isotropic volume mesher

95

(a) (b)

Figure 7.15: Transitioning of boundary layers at model edge. (a) Boundary layer
without elimination of exposed faces. (b) Boundary layer with elimination of ex-
posed faces by transitioning.

from seeing the stretched faces of the boundary layer mesh, the number of nodes

along the sharp corner edge are reduced to zero and the boundary layer transitioned

out from the edge (as described in [11]). This is shown in Figure 7.15.

CHAPTER 8

BOUNDARY LAYER MESHING - FIXING BOUNDARY

LAYER INTERSECTIONS

When boundary layer elements are generated on model faces that are too close to

each other the layers may run into each other. When boundary layers run into

each other the polyhedral cavity that remains to be meshed is self-intersecting.

Since the isotropic mesher expects a polyhedral cavity with no self-intersections,

this situation must recti�ed. Boundary layer intersection is �xed by local shrinking

of layers and if that fails, then by local pruning of growth curves leading to deletion

of elements. However unlike the procedures to ensure validity of elements, correction

of self intersections is done after element creation. This is because it is simpler to

�nd the entities of the boundary layer mesh that make up the polyhedral cavity

when actual boundary layer entities exist in the mesh and because the checks for

self intersections can be more localized.

The technique used to detect self intersections in the mesh draws upon con-

cepts from advancing front methods for mesh generation. After creation of the

boundary layer elements, mesh faces that have fewer regions connected to them

than is necessary for �lling the domain are considered to be on a front. Front faces

may be faces classi�ed on model faces with no boundary layer, and top and side faces

of the boundary layer prisms, blends and transition polyhedra. Internal faces with

no mesh region attached to them are not permitted. The front faces are referred to

as exposed faces since they are exposed to the volume mesher. Exposed faces are

checked for intersection with other exposed faces in the neighborhood. If an inter-

section is found, its connected prisms are shrunk to �x the intersection. Since the

algorithm only checks and �xes the intersection between exposed faces and not of en-

tire prisms, it is possible that shrinking of two prisms to correct interference between

their exposed faces results in new intersections of other faces in the neighborhood.

Therefore, the algorithm is iterative and continues until all intersections are �xed.

The intersections that cannot be �xed by shrinking are dealt with by the pruning of

96

97

growth curves. Given that the initial surface mesh was not self-intersecting and that

the face retriangulation did not cause any new self-intersections, pruning of growth

curves must eventually �x all self intersections that could not be �xed by shrinking.

The process of �xing boundary layer run-in is illustrated in Figure 8.1 using a 2D

example.

Figure 8.1: Iterative procedure for �xing boundary layer intersections - 2D example.

8.1 Localization of Search for Intersections Using an Octree

Since the front is typically quite large, the search for intersections between

exposed faces is made more e�cient by using an octree. An octree is built in the

domain to serve as a localization structure for intersection checks. The tree is built

using a rough estimate of the average size of the exposed faces as a criterion for

subdivision of the tree. Speci�cally, at each mesh vertex the mesh size is approx-

imated by the root mean square length of the edges of exposed faces. This size is

used to de�ne the level of re�nement of an octant containing this vertex. This ap-

proximation is made to make the subdivision process less precise and more e�cient

since the tree is only used as a search structure. Exposed faces lying partly or fully

in a terminal octant are attached in a list to the octant to avoid repetitive search

for frequently required information.

Intersection checks in the Generalized Advancing Layers algorithm are per-

formed between exposed faces of the boundary layer constructs on surface mesh

face uses. Therefore, the de�nition of neighborhood for intersection checks is based

98

on face uses of the surface mesh on which the boundary layer elements have been

built. Given a surface mesh face use, its growth curves are �rst found. The bound-

ing box of the three growth curves together is found and expanded by 10 percent.

The set of octants intersecting this bounding box is quickly found using coordinate

checks. The exposed faces lying in these octants are found and their base faces in the

surface mesh are determined through appropriate links. Knowing the other surface

mesh faces that lie in the neighborhood of a particular mesh face then sets the stage

for �xing any intersection between the respective elements by shrinking or pruning

of the component growth curves. This idea is illustrated in 2D in Figure 8.2.

Face whose neighbors
are to be found

Neighbor face

Bounding box of
boundary layer
elements

Enlarged
bounding box

Octant boundaries

Growth curve

Exposed or
front entity

Figure 8.2: Finding neighborhood faces for intersection checks.

8.2 Intersection Checks

Given two surface mesh face uses, exposed faces of the boundary layer con-

structs on the �rst face are checked against exposed edges of the boundary layer

constructs on the second face. Although it is possible that the reverse may be true,

99

that is, an exposed edge of the second face use's boundary layer entities may inter-

sect an exposed face of the �rst, this is not explicitly checked since the intersection

check will be invoked later (or has already been invoked) with the order of the face

uses reversed. In addition to the normal intersection check, an additional check is

performed for a rare but possible situation. Consider a mesh face use whose vertices

are all classi�ed on the closure of the model face the mesh face is classi�ed on. If

all the growth curves from the vertices of this face classi�ed on a single model face,

then a mesh face may exist connecting the top nodes of the three growth curves

and classi�ed on the same model face. However, the prism template creates a mesh

face classi�ed on the model region between these three nodes. This creates two

coincident mesh faces which are detected and merged.

8.3 Fixing Intersections by Shrinking and Pruning Growth

Curves

The procedure to detect and �x intersections proceeds on a model face use by

model face use basis excluding those model face uses that do not carry a boundary

layer. For a given model face, the list of mesh faces classi�ed on the model face

are obtained. For each mesh face in this set, its set of neighboring mesh face uses

is obtained and intersection checks performed between the exposed faces of the

boundary layer constructs of the mesh face use and each mesh face use in the

neighborhood as explained above. If an intersection is found it is recognized that

the exposed faces of the boundary layer elements from the face use may intersect

the exposed faces of more than just the one neighboring mesh face use. Therefore,

at this stage the intersections of the exposed faces from the primary mesh face use

are checked with the exposed face uses of each of the neighboring mesh face uses and

attempted to be �xed by shrinking the growth curves. At the end of this step any

intersections between exposed faces from the mesh face use and any mesh face uses

in the neighborhood are resolved, if this is possible to achieve through shrinking of

growth curves. Shrinking of the growth curves is constrained to keep elements valid.

Also, when growth curves are shrunk, vertices associated with their nodes move and

as a result, exposed faces may move out of some octants and partially or fully enter

100

others. This is accounted for by �nding the octants containing the face in its old

and new positions, and updating both sets.

The algorithm is made more e�cient by recognizing that if an intersection

between two faces has been detected and �xed there is a good possibility that the

�x has caused new intersections or that there are already more intersections in

the neighborhood. Therefore, when an intersection is found in the global iteration

described above, a locally recursive intersection detection and correction is applied

to try and �x the problems in the entire neighborhood. When an intersection is

detected and �xed while iterating through the global list of front faces, its adjacent

exposed faces are pushed into a local queue. Each member of the local queue is

then popped, checked and �xed if an intersection is present. Only if an intersection

is detected for a face in the local list are its neighbors also pushed into the queue.

The local intersection correction procedure ends when the queue is empty. If a face

has been checked in a local step and then it is not checked in that global iteration

through the front faces.

Again, due to the fact that only front face intersections are checked, the lo-

cal correction procedure is not guaranteed to detect all prism interferences in the

neighborhood. That is why multiple iterations of the global iteration through the

front face list are carried out. The global iterations are performed until no more in-

tersections remain or the procedures can �x no more iterations by shrinking prisms.

In practice, it has been observed that one global iteration �xes all the intersections

that can be �xed by shrinking and a second one is necessary to verify that.

If all the intersections between front faces cannot be �xed by shrinking prisms,

then the growth curves contributing to the intersections are pruned using a similar

algorithm as described above. Pruning of growth curves introduce some additional

complexities in the algorithm to �x intersection. Firstly, pruning of a growth curve

introduces di�erences between the number of nodes in growth curves of surface mesh

faces connected to the base vertex. To avoid exposing the anisotropic faces on the

sides of prisms, transition elements must be created to bridge the di�erence in the

number of nodes. Also, deletion of elements introduces new exposed faces and the

octants containing the old and new exposed faces must be updated.

CHAPTER 9

BOUNDARY LAYER MESH GENERATION - RESULTS

9.1 Introduction

The boundary layer mesh generator described in the previous chapter has been

tested against a wide range of complex models for generation of multi-millionmeshes

for
uid
ow simulations. The mesh generator has been used for various applications

such as capturing thermal boundary layers for complex automobile con�gurations

with complete under-the-hood and under-carriage detail, climate control simulations

in automobile interiors, blood
ow simulations, crystal growth, RANS simulation of

turbulent
ow and aeroacoustics. In this chapter some of the meshes and results

of simulations are presented to demonstrate the capabilities of the mesh generator.

Also, results of analysis on two problems, one involving laminar
ow and the other

involving turbulent
ow with shear layers are presented to validate the method.

9.2 Example meshes for general models

Figure 9.1 shows the boundary layer mesh for the ONERA-M6 wing model.

Figure 9.1a shows the surface mesh for the wing and the Figure 9.1b shows the

boundary layer mesh for the wing. Figure 9.1c(i),(ii) show two close-ups of the

surface mesh, Figure 9.1d(i),(ii) show close-ups of the boundary layer mesh on the

wing only and Figure 9.1e(i),(ii) show close-ups of the boundary layer mesh on the

wing and wing tip. This mesh was constructed for illustrative purposes only and

does not re
ect the mesh sizes and gradations required for performing a reliable

simulation on the wing.

The boundary layer mesh generator has been used to generate meshes for

simulation of climate control systems in the interior of automobiles. Several cut-

away views of the boundary layer mesh on all the interior surfaces of such a model6

are shown in Figure 9.2. The boundary layer mesh in the example shown here has

deliberately been made very thick and also the behavior of the mesh generator (while

6Courtesy: Simmetrix Inc.

101

102

Figure 9.1: Boundary layer mesh for ONERA-M6 wing. (a) Surface mesh. (b)
Boundary layer mesh. (c)(i) Close-up 1 of surface mesh near leading edge wing
tip intersection. (ii) Close-up 2 of wing tip and leading edge. (d)(i) Close-up 1
of boundary layer mesh on wing. (ii) Close-up 2 of boundary layer mesh on wing.
(e)(i) Close-up 1 of boundary layer mesh on wing and wing tip. (ii) Close-up 2 of
boundary layer mesh on wing and wing-tip.

103

shrinking layers) has exaggerated to reveal the features of the mesh. In Figure 9.2a,

the boundary layer mesh is shown on the entire car while the rest of the insets

show zoomed in views of the boundary layer mesh. Figure 9.2b shows the mesh

near the windshield, Figure 9.2c shows the mesh on a seat, two registers and the

oor and �nally Figure 9.2d shows the boundary layer mesh in the gap between

the rear seat bottom and back rest. In all three close-up views, the shrinking of the

boundary layers to avoid self-intersection is clearly visible in the example along with

the gradation introduced by the recursive adjustment of growth curve heights. The

boundary layer in this mesh has half a million tetrahedra and the complete mesh

has approximately a million tetrahedra.

The generalized advancing layers method described here has been used ex-

tensively to generate boundary layer meshes for thermal management simulations

of complex automobile con�gurations with complete under-the-hood and under-

carriage detail. The boundary layer mesh on the under-body of one such vehicle7

is shown in Figure 9.3a with part of the boundary layer cut away to show the com-

plexity of the surface. The model is a non-manifold model with 11 model regions

and 1236 model faces of which 71 are embedded faces. In the mesh actually used

for simulations, the �rst layer thickness was 1:0E�02 and the total thickness of the

boundary layer was 5:0E � 01 with 4 layers of elements in the boundary layer. The

largest requested element size was 25.0. In the mesh shown here, the total thickness

of the boundary layer was increased by 2 orders magnitude to 25.0 for clarity of

visualization. The original surface mesh has 168,000 mesh faces, the boundary layer

mesh has 1.7 million tetrahedra and the complete mesh has 3.1 million tetrahedra.

The aspect ratio (i. e. the longest edge length to shortest height ratio) of elements

in the �rst layer are approximately 2500 on the most coarsely re�ned surfaces of

the automobile. Figure 9.3b shows a close-up of the surface mesh and boundary

layer mesh under the hood and near the front wheels while Figure 9.3c shows the

under-carriage at the rear. The largest meshes generated for these types of models

have been of the order of 4.5 million elements. It can be seen from the �gures, that

the mesh generator has successfully created a boundary layer mesh for this complex

7Courtesy: Simmetrix Inc.

104

(a)

(b) (c)

(d)

Figure 9.2: Boundary layer mesh for interior of car. (a) Cut-away of boundary layer
mesh. (b) Close-up of mesh at juncture of windshield and dashboard. (c) Close-up
of seat,
oor and two registers. (d) Close-up of gap between rear seat bottom and
back rest.

105

Figure 9.3: Boundary layer mesh for under-carriage of car. (a) Complete boundary
layer mesh on all surfaces of car. (b) Cut away of boundary layer mesh revealing
under-the-hood detail. (c) Zoom in of front end of under-carriage. (d) Zoom in of
rear end of car.

geometry and has resolved self-intersections even in the most constrained portions

of the domain.

The next example shows the use of the boundary layer mesh in simulations of

ow in blood vessels for surgical planning [68, 69]. Figure 9.4a shows the model 8 of

the arteries while Figure 9.4b shows a zoom in of the surface mesh which has a total

8Courtesy: Dr. Charles Taylor, Assistant Professor, Dept. of Surgery and Department of
Mechanical Engineering, Stanford University.

106

44,000 triangles. Figure 9.4c,d display various cuts through the mesh showing the

boundary layer and volume mesh inside the arteries. The boundary layer mesh has 5

layers with a �rst layer thickness of 0.002 units. The total boundary layer thickness

is determined adaptively in the mesh based on the surface mesh size. Ideally, the

boundary layer mesh thickness should be a function of the vessel diameter. Currently

there is no mechanism to determine boundary layer mesh parameters on a pointwise

basis based on an arbitrary user-de�ned function. Therefore, the available adaptive

method is used under the assumption that the surface mesh size re
ects changes

in the diameter of the blood vessel. The number of boundary layer tetrahedra are

650,000 while the total number of tetrahedra are 800,000.

The example shown next is a model of the space shuttle with center tank

and booster rockets. Only half the shuttle is modeled to take advantage of the

symmetry. Figure 9.5a shows the geometric model (without the boundaries of the

enclosing domain). Shown in Figure 9.5b,c and d are the retriangulated surface

mesh on the symmetry plane, a cut-way of the boundary layer mesh and a close-up

of the boundary layers showing the element anisotropy. The boundary layer mesh

in this model has 810,000 elements while the complete mesh has 1 million elements.

The �rst layer thickness is 1:0E� 05 while the total thickness of the boundary layer

is 2:5E � 02 with a total of 10 layers. With the requested surface mesh sizes aspect

ratio of the boundary layer elements is on the order of 20,000.

107

(c) (d)

(b)(a)

Figure 9.4: Boundary layer mesh for simulation of
ow in blood vessels. (a) Geo-
metric model. (b) Zoom in of surface mesh in the encircled region. (c),(d) Cross
sections showing the boundary layer and isotropic meshes.

108

(a) (b)

(c) (d)

Figure 9.5: Boundary layer mesh for space shuttle, (a) Model geometry. (b) Re-
triangulated surface mesh. (c) Cut away of boundary layer mesh. (d) Close-up of
boundary layer showing anisotropic elements.

109

9.3 Validation

9.3.1 Laminar
ow over
at plate

The �rst example used to demonstrate the capabilities of the mesh generator

to appropriately control element sizes and mesh gradations so as to capture the

solution accurately is simulation of laminar
ow of an incompressible viscous
uid

over a semi-in�nite
at plate. The domain used for the simulation is a rectangular

plate, which is very thin in the z-direction and is taller in the y-direction than in

the z-direction (Figure 9.6a). The
ow is in the direction of the positive x axis and

is uniform at the inlet with a Reynolds number of 10000. The length of the plate

is chosen to be 1.0 unit. The domain in which the
ow is simulated itself starts 0.3

units ahead of the plate to capture the
ow characteristics around the singular point

or the stagnation point at the lead edge of the plate. The domain is 5.0 units in

length perpendicular to the plate so that the upper wall is well beyond the boundary

layer. The thickness of the domain in the simulation is chosen to be 1.0 unit. The

geometric model used for meshing is only 2:0E � 04 units thick so as to restrict

the mesh to have only one element through the thickness. Therefore, the mesh is

scaled prior to the analysis. The reason for this scaling in the thickness direction

is to maintain the in
uence of the stabilization term in the �nite element method

(Stabilized Galerkin method) which depends on element size.

The boundary conditions applied to the analysis model are as follows:

1. Uniform
ow on the inlet face G2
i .

2. Symmetry boundary conditions on G2
s, i. e., v = 0.

3. No-slip boundary conditions on the plate, G2
p, i. e. u = v = w = 0.

4. Symmetry boundary conditions on the top face, G2
t , i. e., v = 0.

5. Zero cross
ow on front and back faces, G2
b and G2

f , i. e. w = 0.

6. Constant pressure on out
ow face, G2
o.

7. Zero viscous traction and pressure on out
ow face.

110

The expected solution in the domain is shown in Figure 9.6b [75]. The
uid

shears against the plate due to the no-slip boundary condition and the velocity

distribution u(y) at any point downstream of the leading edge shows a smooth

reduction from the free stream velocity to zero at the wall. The boundary layer

pro�le as given by Blassius equation is given by:

�99%
x

� 5:0p
Rex

(9.1)

where Rex = �Ux=�, � and � being the density and viscosity of the
uid respectively.

The �rst layer thickness in the boundary layer mesh is required to be [75]:

�0
x
� 0:1p

Rex
(9.2)

Outflow

G
2

o

G
2

f1G
2

f2

G
2

b2
G

2

b1

G
2

t

G
2

pG
2

s

G
2

i

x

y

z

Inflow

(a) (b)

y+ = 0:1x=
p
Rex

�99% = 5:0x=
p
Rex

U

U

No-slip boundary condition
u = v = 0

x = 0:0x = �0:3 x = 1:0

y = 5:0

y = 0:0

Figure 9.6: Schematic diagrams of setup for simulation of laminar
ow over
at
plate. (a) Schematic description of domain and important boundary conditions. (b)
schematic diagram of geometric model (Figures not drawn to scale).

111

The surface mesh generated as a starting point for the boundary layer mesh

generator is shown in Figure 9.7a,b,c. In the geometric model, the front and back

walls (z = 0 and z = 2:24�10�4) are each split into two faces for better mesh

control. The maximum size of entities in the surface mesh is 0.2 which is achieved

only far out in the domain. Since a singularity is expected at the leading edge of

the plate, a very small mesh size is requested around that point. The mesh size

requested is close to the thickness of the boundary layers at the singular point (note

that since the singularity is at x = 0 where the boundary layer thickness is zero,

a threshold value of x = 0:04 is used for calculating the minimum boundary layer

thicknesses). All surfaces but the in
ow, out
ow and top face have an imposed mesh

size distribution on them as follows:

1. G2
f1
; G2

b1
: e3000(1�

x
2
)y2:3(5�10�4 + 0:04x

p
x)

2. G2
f2
; G2

b2
: 5�10�4e(50

p
x2+y2)

3. G2
p : 5�10�4 + 0:04x

p
x

4. G2
s : max(e

�x; 5�10�4)

The boundary layer mesh size parameters requested are as follows:

1. 20 layers of elements in the boundary layer mesh.

2. First layer thickness of max(3�10�4; 0:00015px).

3. Total boundary layer thickness of max(0:006; 0:052
p
x).

The boundary layer mesh and a zoom-in of the mesh around the singular

point is shown in Figure 9.8a,b,c. The mesh has a total of 47040 elements. Note

the smooth transition of the boundary layer mesh into the isotropic mesh above the

boundary layer mesh and in front of the boundary layer mesh at the singular point.

The solution obtained for this problems is shown in Figures 9.9 and 9.11.

Figure 9.9a(i) shows the constant u-velocity contours on the front face while Fig-

ure 9.9a(ii) shows a zoom-in of the domain near the singularity. It can be seen

that the boundary layer has been captured very well, and so has the behavior of

112

(a) (b)

(c)

Figure 9.7: Initial surface mesh for
at plate mesh at various zoom factors.

the solution near the singularity. In Figure 9.9c a close-up of the out
ow boundary

along with u-velocity pro�le at x = 1:0 is shown and is in very good agreement to

the expected pro�le. The results of the simulation are validated using the similarity

solution [75] as shown in Figure 9.10 at various points along the
at plate. As seen

in the �gure the similarity solution of the
ow at each of the points matches very

well as predicted by theory. Figures 9.11a,b and 9.11c,d show the v-velocity and

pressure contours on the front face along with close-ups of the singular point.

9.3.2 Turbulent
ow in sharply expanding pipe

The second example used to demonstrate the capability of the boundary layer

mesh generator to generate meshes capable of accurately capturing the solution is

simulation of turbulent
ow in a sharply expanding pipe. A schematic of the domain

113

(a)

(b)

(c)

Figure 9.8: Close-up views of Boundary layer mesh for laminar
ow over
at plate
simulation.

is shown in Figure 9.12a. Fluid enters the narrow pipe which is joined to a large

pipe without transition. For this problem, in addition to the boundary layers on

the pipe walls, a free shear layer is expected in the
ow which leaves the walls at

the junction of the two pipes and reattaches to the walls of the large pipe further

downstream. A recirculation region is expected behind the shear layers as shown in

the �gure. It will be shown that with an appropriate model de�nition the
ow can

be captured accurately for this problem. The diameter of the small pipe is 1.0, the

diameter of the large pipe is 2.0, the length of the small pipe is 2.5 and the length

of the large pipe is 15 units. The junction of the two pipes is at x = 0 and the axis

of the pipe coincides with the x-axis.

114

(a)

(b)

(c)

Figure 9.9: u-velocity contours and pro�le for laminar
ow over
at plate. (a) u-
velocity contours. (b) Close-up view at singular point. (c) Pro�le of u-velocity at
out
ow.

Similarity
solution

0.00 1.25 2.50 3.75 5.00
0.0

0.2

0.4

0.6

0.8

1.0

1.2

U

u

� = y

vuuuut
U

x�

Figure 9.10: Similarity solution of
ow over
at plate at various x = 0.25, 0.5 0.75
and 1.0

115

(a)

(d)(c)

(b)

Figure 9.11: Pressure and v-velocity contours for laminar
ow over
at plate. (a)
Pressure contours. (b) Close-up view of pressure contours at singular point. (c)
v-velocity contours. (d) Close-up of v-velocity contours at the singular point.

A schematic of a vertical cross section of the geometric model is shown in Fig-

ure 9.12b. Since the generalized advancing layers can build boundary layer meshes

on from model boundaries, an arti�cial surface is de�ned in the larger pipe based

on an estimate of the shear layer path. The two pipes are made into di�erent model

regions to maintain better control over the mesh sizes in the interior of the pipes.

Furthermore, the shear layer surface divides the larger pipe into two model regions.

The large pipe in the geometric model is only a third of the required length and

the mesh that is generated in this part is stretched to match the original domain

de�nition. This is done to keep the size of the mesh low and make use of the inherent

anisotropy of the whole solution.

The surface mesh (without any stretching) on the original geometric model is

shown in Figure 9.13a. The element size is 0.1 in the small pipe, 0.15 between the

116

G
2

i

G
2

n

G
2

l

G
2

o

G
2

s

G
3

n

G
3

l

G
3

e

Artificial shear layer surface

OutflowInflow x
y

Free shear layer

(a)

(b)

Figure 9.12: Schematic diagram of expanding pipe model. (a) Problem domain. (b)
Geometric model cross section.

shear layer and the large pipe and 0.25 in the large pipe. Figure 9.13b shows a cross

section of the solid mesh with the di�erent boundary layers clearly visible. Boundary

layer elements are created on walls of the small pipe, on both sides of the shear layer

surface and on the wall of the large pipe downstream of the reattachment point. The

boundary layer thickness and number of nodes are di�erent on the various model

faces (and on each side of the shear layer face). The thickness of the boundary layer

also varies as a function of the x coordinate. The e�ect of this is to reduce the total

number of elements required for the simulation since the re�nement required in the

small pipe and on the shear layer need not be carried all the way to the out
ow.

The speci�c boundary layer parameters used are (t0: �rst layer thickness, T : Total

thickness, N : number of layers)

117

1. Small pipe:

t0 = (1 + 1:6(x+ 2:5))�10�4; T = 0:2; N = 18

2. Side 1 of shear surface (towards the interior of large pipe):

t0 = 5�10�4; T = 0:2 + 0:08(x� 2:5); N = 17

3. Side 0 of shear surface:

t0 = 5�10�4; T = 0:2; N = 12

4. Large pipe (downstream of reattachment point):

t0 = (5 + 4(x� 2:5))�10�4; T = 0:4 + 0:08(x� 2:5); N = 16

With these parameters the solid mesh has 311000 elements and largest aspect ratio

of elements is approximately 3000.

The boundary conditions for the model are described below given that Reynolds

number is Re = 106, u� = 0:038, and the parameters in the similarity solution for

the turbulent boundary layer, � = 0:4 and B = 5:5.

The distance of a point from the wall is d = 0:5�
p
y2 + z2 and the parameter

y+ = utRed.

1. An inlet velocity pro�le on the in
ow face described as follows:

u� min(y
+; B +

ln y+

�
)

2. No-slip boundary conditions on all the solid wall.

3. Natural pressure of zero on the out
ow face.

118

(a)

(b)

Figure 9.13: (a) Surface and (b) boundary layer meshes for simulation of
ow in
expanding pipe.

4. An eddy viscosity term on all faces as follows:

max(0:0;min(0:018�10�6�(e
 � 1:0�
 �
2

2
); 1:24�10�3))

where
 = �min(y+; B + ln y+

�
)

The results of the simulation are shown in Figure 9.14. It can be seen that

the overall features of the solution have been captured well with the free shear layer

clearly captured. However, it is clear that the mesh must have more re�nement near

the singularity to capture the solution better.

9.3.3 Crystal growth simulation

Figure 9.159 shows the results of the simulation of the Czochralski process

of bulk crystal growth of indium-phosphide [1] using a boundary layer mesh with

approximately 600,000 elements. Finer meshes of 1.5 and 3 million elements have

9Courtesy: Dr. Slimane Adjerids, Formerly at Dept. of Computer Science, Rensselaer Poly-
technic Institute

119

(a)

(b)

(c)

(d)

Figure 9.14: Results of simulation for turbulent
ow in expanding pipe. All isocurves
shown on a vertical cross section through the domain. (a) Pressure distribution. (b)
Velocity in x direction. (c) Velocity in y direction. (d) Turbulent or eddy viscosity
distribution.

been generated for capturing the solution better. The �gure shows velocity vectors

and temperature distribution in the horizontal and vertical planes in the domain.

9.4 Timing statistics

The Generalized Advancing Layers method has been observed to produce el-

ements at an average rate of 1000 tetrahedra per second or 3.6 million elements

120

Figure 9.15: Crystal growth simulation - velocity vectors and temperature distribu-
tion on the horizontal and vertical planes through a crucible for the simulation of
the Czochralski process of bulk crystal growth of indium-phosphide.

an hour on SUN Ultra Sparc 2 workstation. The maximum obtained rate of mesh

generation is 2200 tetrahedra per second or 7.9 million elements per hour.

The growth rate of the algorithm with respect to the num of layers and with

respect has been observed to be O(NlogN) as shown in Figures 9.16 and 9.17.

Figure 9.16a shows the factor increase in time to generate the boundary layer mesh

versus the factor increase in the number of surface mesh faces. A zoom-in near the

origin is shown in Figure 9.16b. Figure 9.17 shows the factor increase in the time

to generate the boundary layer mesh versus the requested number of layers in the

mesh. The O(NlogN) behaviour is clearly evident in both graphs and is expected

due to the use of a search tree to resolve intersections.

121

� =
T ime to create mesh

T ime to create first mesh in dataset

� =
Num of surface triangles

Num of surface triangles in first mesh in dataset

O(�log(�))

0 200 400
0

500

1000

1500

Normalized growth rate w.r.t. num. of surface triangles
Time and num. of triangles normalized w.r.t.

min. value in each data set

 p9tri_1

 evap1

 sregist2

 epipe

 p9tri_2

 epipe_2

0 20 40 60 80
0

50

100

Close−up view of normalized growth rate w.r.t.
num. of surface triangles

 p9tri_1

 evap1

 sregist2

 epipe

 p9tri_2

 epipe_2

τ
-

fa
ct

o
r

in
cr

ea
se

 in
 t

im
e

η - factor increase in number
 of surface triangles

τ
-

fa
ct

o
r

in
cr

ea
se

 in
 t

im
e

η - factor increase in number
 of surface triangles

Figure 9.16: (a) Growth rate of boundary layer mesher with respect to number of
surface triangles (b) Close-up view of graph near the origin

� =
T ime to create mesh

T ime to create first mesh in dataset

O(�llog(�l))

3 4 5 6 7 8 9 10 11 12 13 14 15 16
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

Normalized growth rate w.r.t. num. of layers

 p9tri_1

 bmw8

 epipe

 epipe_2

τ
-

fa
ct

o
r

in
cr

ea
se

 in
 t

im
e

- Number of layersη
l

Figure 9.17: Growth rate of boundary layer mesher with respect to number of layers

CHAPTER 10

TETRAHEDRAL MESH GENERATION WITH

MULTIPLE ELEMENTS THROUGH THE THICKNESS -

INTRODUCTION

10.1 Motivation

Finite element simulations with linear elements in domains with thin sections

present a special challenge to mesh generation algorithms. A few examples of such

models are shown in Figure 10.1. If the solution has strong gradients across the thin

section, the mesh must have multiple elements through the thin section to capture

these gradients. Flow simulations are particularly susceptible to this problem since

prescribing a no-slip essential boundary condition on the walls of a thin section

spanned by one linear element incorrectly precludes any
ow through the element

in the solution. Even when the problem is not as severe, obtaining a mesh with

a certain number of elements through the thickness is an important consideration

in many areas such as heat transfer, structural mechanics, electro-magnetics and

biphasic analysis of soft tissue. If the solution gradients are not as strong in the

tangential direction then isotropic re�nement to introduce multiple elements through

the thickness leads to too many elements along the other direction. Therefore,

it is desirable to generate anisotropic meshes with multiple elements through the

thickness that are stretched in the tangential direction.

The challenges of this mesh generation problem lie in:

� automatically identifying thin sections of arbitrarily complex models which do

not necessarily have matching topology on either side of the thin sections.

� ensuring that the �nal unstructured tetrahedral mesh has the requested num-

ber of elements through these sections without over-re�ning in other directions.

This is a very practical problem faced by analysts dealing with automatic mesh

generators who often revert to using semi-automatic mesh generation techniques to

obtain a usable mesh.

122

123

Figure 10.1: Examples of models with thin sections.

10.2 Review of Previous Work

From the literature, there appears to be no automatic mesh generator that

speci�cally addresses this important problem. There are, however, a number of

general isotropic and anisotropic mesh generation techniques that may be attempted

to be used for generating such meshes.

Although not automatic, mapped mesh generators available in many CAD

systems merit mention in the context of creating meshes with multiple elements

through the thickness. Thin sections of a model may be isolated during the process

of decomposing a model into simpler subdomains. Then mesh sizing information

can be prescribed on these sections with more points across the thin sections that

124

along them. This naturally produces an anisotropic mesh with a guaranteed num-

ber of elements across the thin sections of interest. Although very attractive in its

guarantee of the number of elements through the thin sections, this method is im-

practical for meshing arbitrarily complex and large domains. Not only is the process

time consuming, the model may not even have clearly demarcated thin sections or

matching topology on either side of the thin sections.

General automatic mesh generation and mesh re�nement procedures are at-

tractive options since they require no special procedures to generate the mesh. Also

with isotropic re�nement [15, 55] the quality of the re�ned mesh can be controlled

even in three dimensions [3, 38]. However, in the absence of any de�nition of thin

sections, general re�nement procedures are impossible to apply to obtain meshes

with the requested number of elements through the thickness. Also, isotropic re-

�nement leads to considerable over-re�nement (one or more orders of magnitude) in

directions with relatively weaker gradients resulting in greater computational costs.

Of the anisotropic mesh generators discussed in Chapter 2 the Delaunay method

for generating anisotropic meshes and the advancing layers methods may be of lim-

ited use in generating meshes with multiple elements through the thickness (See

Chapter 2 for a brief description of the Delaunay method). To use the Delaunay

method, an anisotropic metric must be constructed from the model de�nition so that

elements are stretched in the tangential direction of the thin section and compressed

in the thickness direction. To be automatic, this still requires a de�nition of thin

sections in a geometric model. Identi�cation of thin sections in a general geometric

model and the construction of an anisotropic metric using modeler enquiries can

both be computationally expensive.

The advancing layers method may be considered for generating multiple ele-

ments through the thickness. Use of this method would require a priori speci�ca-

tion or automatic recognition of surfaces forming the opposite walls of thin sections.

While this method can be used for generating layers of elements on surfaces forming

the walls of the thin section, it is likely to be ine�cient since the gap between the

opposite walls of the thin section is narrow by de�nition. Therefore, the layers of ele-

ments on opposite walls are more than likely to interfere with each other. Although,

125

the generalized advancing layers procedure is capable of resolving this interference

(See Chapter 8), the computational cost is expected to be high.

Since the existing methods are not well suited to address the issue of gener-

ating a mesh with a user de�ned number of elements through thin sections, a new

method to address the issue is proposed here. The method is based on anisotropic re-

�nement of an isotropic mesh followed by local reconnection procedures to generate

meshes with multiple elements through the thickness. A de�nition of thin sections

is devised based on de�ciency of the starting isotropic mesh. Therefore, the problem

of identifying thin sections is recast as a problem of identifying portions of the mesh

which do not have su�cient elements through the thickness. After automatically

identifying de�cient portions of an initial mesh, the necessary number of points are

introduced in the thickness directions by performing edge splits. Splitting edges

to introduce points does not necessarily eliminate all de�ciencies in the mesh and

even creates new ones due to the new connections created in the mesh. These de-

�ciencies are eliminated using local reconnection procedures (local edge swapping).

Local mesh modi�cation and node repositioning procedures are also used to improve

the quality of the �nal mesh. Results will be presented to show that the method

works well for generating meshes with anisotropic re�nement through thin sections

for arbitrarily complex models.

CHAPTER 11

MULTIPLE ELEMENTS THROUGH THE THICKNESS -

IDENTIFYING THIN SECTIONS

11.1 De�nition of Thin Sections

De�nition 11.1 An ordered set of mesh edges between two mesh vertices is de�ned

as an edge path. The edge path with the least number of edges among all edge paths

between a pair of vertices is called the shortest edge path.

De�nition 11.2 A mesh is considered to be locally de�cient in the thickness direc-

tion if the shortest edge path between mesh vertices on opposite model faces has less

than a user requested number of edges. Such an edge path is referred to as a de�cient

path.

Figure 11.1 shows examples of locally de�cient meshes in two types of do-

mains. In Figure 11.1a, the domain has varying thickness and the mesh is uniform.

Assuming that three elements are desired through the thickness, the mesh is locally

de�cient in the thickness direction in indicated portions of the domain. In Fig-

ure 11.1b, the domain is of uniform thickness but due to non-uniform re�nement of

the mesh, only some parts of the domain are considered to be locally de�cient.

Deficient Deficient

(a) (b)

Figure 11.1: Examples of de�cient meshes. (a) De�ciency in uniform mesh due
to changing cross section. (b) De�ciency in uniform cross section due to mesh
gradation.

126

127

De�nition 11.3 A mesh vertex, M0
p < G2

o, is de�ned as an opposite vertex of

another mesh vertex, M0
v < G2

f , with respect to model face G2
f if

� it is the closest to M0
v among all M0

p < G2
o.

� all edges of the shortest edge path are classi�ed on one model entity Gd
e 6� G2

f .

11.2 Determination of Opposite Vertices

The determination of the opposite vertex of a boundary mesh vertex, M0
v , is

a 3 step procedure (refer Figure 11.2) consisting of:

1. Forward search: Using the normal of the model face at the mesh vertex M0
v as

a guiding direction, the forward search attempts to �nd a candidate opposite

mesh vertex, M0
c on another (or the same) model face (referred to as the

opposite model face). The search is conducted along mesh edges.

2. Boundary search: The boundary search re�nes the result of the forward search

by �nding the closest vertex classi�ed on the opposite model face to the start

vertex. This vertex is the opposite vertex, M0
p . The search is conducted along

mesh edges and mesh faces on the closure of the model face.

3. Reverse search: The reverse search determines the shortest edge path between

the opposite vertex M0
p and the start vertex M0

v . The search is conducted

along mesh edges.

Each of these steps are discussed in detail below and it is shown that the

computational cost of the search procedure is a constant for each mesh vertex under

certain conditions.

11.2.1 Forward search

The forward search assumes the thickness direction at a mesh vertex M0
v < G2

f

with respect to the model face G2
f to be the normal toG

2
f atM

0
v . The true model face

normal is preferred over the average discrete normal10 since it gives more consistent

10The average discrete normal at a boundary mesh vertex is average of the normals of all the
boundary mesh faces connected to the mesh vertex.

128

Face normal

M
0

c

M
0

p

M
0

v

G
2

f

G
2

p

Figure 11.2: Detection of locally thin sections: M0
v - start vertex, M0

c - candidate
opposite vertex, M0

p - opposite vertex, G2
f - reference model face, G2

p - opposite
model face.

results. Under this assumption, the forward search attempts to �nd a potential

opposite vertex, M0
c , approximately in the direction of the normal and classi�ed on

the closure of a model face.

Assume that Nt elements are requested through the thickness of a geometric

model. Starting from a vertexM0
v the forward search proceeds from one mesh vertex

to another along mesh edges until a potential opposite vertex is reached. At a given

vertex, M0
i in the forward search, the following steps are carried out to �nd the edge

along which the search should proceed:

� All mesh edges, fM1
e jM0

i � @(M1
e)g, connected to the vertex are found.

� The other vertices of the edges, fM0
j jM0

j � @M1
e ; M

0
j 6=M0

i g, are found.

� For each edge, the vector ve from M0
i to M0

j , is found.

� Find the vector vi that is best aligned with the search direction vf , i. e., �nd

the vector that minimizes the expression 1� ve � vf .

� The mesh edge M1
i � fM1

e g corresponding to vi is the next edge to traverse

in the forward search.

129

The other vertex of M1
i , M

0
i+1 � @M1

i ;M
0
i+1 6= M0

i is the next vertex in the

forward search.

The forward search ends when a potential opposite mesh vertex is found or

su�cient number of edges have been traversed without reaching the closure of a

model face. In the true thickness direction it would be su�cient to end the search as

soon as (Nt�1) edges are found in the edge path. However, since the forward search

direction is not necessarily aligned with the true thickness direction, the forward

search is not ended until (Nt + 1) edges have been found without encountering an

opposite model face. A vertex, M0
i , in the forward search is considered to be a

potential opposite vertex, M0
c , when the following topological conditions are met:

M0
i < Gd

p; d 6= 3 (11.1)

d < d0 where M1
i�1 < Gd0

e (11.2)

In addition, given the reference model face normal at the start vertex, n̂v and

normals of the N model faces connected to Gd
p at the candidate opposite vertex,

n̂i; i = 1; N respectively, the following geometric criteria must be satis�ed for a

model face to be considered an opposite model face.

If

�i = cos�1(n̂v � n̂i); 0 < �i < 2� (11.3)

then

� � � < �i < � + �; 8i = 1; N (11.4)

�p = min (j � � �i j) ; i = 1; N (11.5)

where � is an empirical angle tolerance for determining if the two model faces are

opposite to each other or not. In practice, the value of � is taken to be �
12
. The

check on the dot product of the two normals is necessary to ensure that a forward

search proceeding on a boundary does not end at a vertex classi�ed on the boundary

130

of a model face not really opposite to the reference face. Therefore if none of the

model faces satisfy the above condition, the vertex reached is considered to be a

spurious opposite vertex and the search for the real opposite vertex continues. The

geometric criteria for evaluating opposite model faces is illustrated in Figure 11.3.

In the �gure, the forward search from M0
v1

�rst reaches M0
1 which satis�es the

topological conditions for being an opposite vertex. However, it is rejected based

on geometric criteria and the search continues on to �nd M0
2 < G2

p1
as a more

appropriate opposite vertex. In the �gure, the forward search from M0
v2 ends at

M0
3 < G1

e which has two model faces connected to it, G2
p1
and G2

p2
. Of the two, G2

p1

is chosen as the opposite model face since its normal at M0
3 is best opposed to the

normal of G2
v.

G
2

v

G
2

f1

G
2

p1

G
2

f2
n̂p1

n̂f2

n̂v

G
2

p2

n̂p2

G
1

e

M
0

v1

M
0

v2

M
0

1

M
0

2

M
0

3

Figure 11.3: Need for geometric check in forward search to avoid termination at
spurious opposite vertex.

If the search terminates because (Nt+1) edges have been traversed, the vertex

is labeled as not having an opposite vertex.

As the forward search is terminated when (Nt+1) edges have been traversed,

its computational complexity is O(Nt).

131

11.2.2 Boundary search

The boundary search is a discrete closest point search on the opposite model

face, G2
p, with respect to M0

v . Therefore, the closest vertex classi�ed on the closure

of G2
p to M0

v is found in this search. The search starts at the candidate opposite

vertex, M0
c , found in the forward search. From the current vertex, say M0

i , the

search goes to an \adjacent" vertex M0
j which is closer to M0

v than M0
i . Given an

edge M1
e or a face M2

f connected to M0
i , an \adjacent" vertex is an edge-connected

or face-connected vertex de�ned as:

M0
j ; such that M0

i ;M
0
j � @M1

e ; and M0
i ;M

0
j ;M

1
e < G2

p; (11.6)

or

M0
j ; such that M0

j � @M2
f 0 ; M0

i 6� @M2
f 0 ; (11.7)

M2
f \M2

f 0 = M1
e0 and M0

i ;M
0
j ;M

1
e0;M2

f ;M
2
f 0 < G2

p

To �nd the edge connected adjacent vertex, �nd all edges classi�ed on the

closure of the model face connected to the current vertex and �nd their other vertices.

To �nd the face connected neighbors, �nd all faces classi�ed on the model face

connected to the current vertex. For each of these faces, �nd the edge opposite to

the current vertex and check for another face connected to this edge and classi�ed

on the model face. If such a face exists, then the vertex of the face opposite the

common edge of the two faces is a face connected neighbor of the current vertex.

Edge and face connected neighbors are shown in Figure 11.4a. Face neighbors must

be accounted for in the discrete point search since it is possible for all the edge

neighbors to be farther away from the start (or reference) point yet have a face

neighbor closer to the reference point than the current vertex (See Figure 11.4b).

The procedure is repeated until no adjacent vertex is closer to the reference

vertex than the current vertex. If the boundary search ends on a vertex classi�ed

on the boundary of the original model face, G2
f , the forward search is repeated

ignoring that M0
c . The boundary search is then repeated with the new result of

the forward search. It is reasonable to assume that the number of edges traversed

132

(a) (b)Vertex

Edge neighbors

Face Neighbors

Reference vertex

a

d

b

c

a > b,c > d

Figure 11.4: Edge- and face-connected neighbor vertices of a vertex.

in the boundary search is on the order of Nt since it is expected that the forward

search direction is not too far o� from the true direction in most cases. Therefore

the computational cost of the boundary search can be taken to be O(Nt).

11.2.3 Reverse search

The reverse search �rst tries to �nd a path between the opposite vertex, M0
p

and the start vertex M0
v using the same search method as the forward search. The

reverse search is required since the forward search yields a path between start vertex

and the candidate opposite vertex, which may not be the actual opposite vertex.

The search direction of the reverse search is the vector from M0
p to M0

v . The search

is along mesh edges as in the forward search. If this fails to reach the start vertex,

a greedy shortest path algorithm is applied between the opposite vertex and the

original vertex. The greedy reverse search begins with M0
v as the target and M0

p as

the current vertex. From the current vertex, the search goes to an adjacent edge

connected vertex which minimizes the distance to the target vertex. This is repeated

until the target vertex or a local minimum is reached. If a local minimum is reached,

the direction of the search is reversed and attempted again from the start vertex to

133

the opposite vertex. If the shortest path still cannot be found, M0
v is assumed to

have no opposite vertex.

Since the reverse search is subject to a limit on the number of iterations and

the steps of the reverse search and the forward search are similar, the computational

complexity of the reverse search may be assumed to be on the order of the forward

search. Therefore, the computational cost of the reverse search can be taken as

O(Nt).

Thus, the total cost of �nding an opposite vertex for any boundary mesh

vertex may be considered to be O(Nt) or a constant, since Nt is a constant for a

given problem. If there are Nb boundary mesh vertices, the total cost of �nding

their opposite vertices is O(Nb).

Once the search for opposite vertices of all the mesh vertices on the closure of

model face is complete, an additional check is made to verify if any logical choices

for opposite vertices may have been missed during the search process. If a mesh

vertex does not have an opposite vertex and all its edge connected neighbors have

opposite vertices, it is assumed that the vertex must also have an opposite vertex.

Therefore, the closest of the opposite vertices of the adjacent vertices is taken as an

opposite vertex to such a vertex.

The algorithm to determine opposite vertices is designed to e�ciently �nd

opposite vertices for creation of multiple elements through the thickness. Although

the algorithm is not guaranteed to always �nd the absolute best opposite vertex,

it has been found to do quite well in �nding the best or nearly the best opposite

vertex.

CHAPTER 12

MULTIPLE ELEMENTS THROUGH THE THICKNESS -

ELEMENT CREATION

12.1 Point Creation

The introduction of the required number of elements in the mesh through the

thickness is done by splitting edges of paths that have fewer edges than necessary

(Figure 12.1). The edges of a path to be split are picked in decreasing order of their

lengths. If there are fewer edges in the path than vertices to be added, edges may be

split more than once. Edge split points are determined by bisection and subsequent

snapping of the calculated point to the boundary, if the edge is a boundary edge. If

snapping to the boundary results in the new regions being invalid, the edge is not

split.

A B C D E F H I

A’ B’ C’ D’ E’F’ G’H’ I’

G

A B C D E F H I

A’ B’ C’ D’ E’F’ G’H’ I’

G

Figure 12.1: Creation of multiple nodes through the thickness by edge splitting - 2D
example.

134

135

Since splitting of edges changes the paths determined in the initial opposite

vertex search, the path information is updated as its edges are being split. This is

more e�cient than redoing the opposite vertex search.

12.2 Realignment of Edges

From Figure 12.1 it can be seen that splitting of path edges:

� does not eliminate all de�cient paths through the mesh,

� creates new de�cient paths through the thickness,

� creates large number of connections at some vertices, and

� results large face angles in 2D and large dihedral angles in 3D.

Therefore, realignment of the diagonal mesh edges along and perpendicular

to the thickness direction is necessary as shown in Figure 12.1. The realignment

of edges is accomplished through the use of edge swapping. The process of edge

swapping is equivalent to retriangulation of the polyhedron formed by deletion of

all regions connected to the edge such that the new triangulation does not contain

any new points and does not contain the edge being swapped (Appendix A).

De�nition 12.1 A mesh edge, M1
i < G2

k, is de�ned as an opposite edge of another

mesh edge, M1
j < G2

l , if each of the vertices of M
1
i are opposite to one of the vertices

of M1
j .

De�nition 12.2 A mesh face, M2
i < G2

k, is de�ned as an opposite face of another

mesh face, M2
j < G2

l , if each of the edges of M2
i is opposite to one of the edges of

M2
j .

The idea of opposite edges and faces is illustrated in Figure 12.2. In the �gure,

M0
1 , M

0
3 , M

0
5 , M

0
7 and M0

9 are opposite to M0
0 , M

0
2 , M

0
4 , M

0
6 and M0

8 respectively.

Also, the edge M1
1 is opposite to edge M1

0 and the face M2
1 is opposite to M2

0 .

However, the edge M1
2 connecting vertices M0

4 and M0
6 does not have an opposite

edge since an edge does not exist between the opposite vertices, M0
5 and M0

7 . Face

136

M2
2 does not have an opposite face because two of its edges do not have opposite

edges. On the other hand, in spite of all vertices and edges of face M2
3 having

opposite vertices and edges respectively, the face still does not have an opposite face

since no common face connects the opposite edges.

M
0

9

M
0

2

M
0

4

M
0

6

M
0

8

M
1

2

M
2

2

M
2

3

M
1

0

M
0

0

M
2

0

M
0

1

M
0

3

M
0

5

M
0

7

M
1

1

M
2

1

Figure 12.2: Illustration of opposite edges and faces.

12.2.1 Conversion of quads from diagonal to zigzag con�gurations

The knowledge of the special mesh topology created by splitting is used in

the identi�cation of mesh edges to swap and the sequence in which to swap them.

The identi�cation of edges to swap is facilitated by abstracting portions of the

mesh between opposite faces as wedges (triangular prisms). The lateral faces of

such wedges are abstracted as triangulated quadrilaterals. For example, shown in

Figure 12.3 is a portion of a mesh in which multiple elements have been introduced

through the thickness. In the �gure, M2
1 is the opposite face of M2

0 . One of the 3

137

abstracted quadrilaterals shown is formed by the vertex set M0
0 ;M

0
1 ;M

0
4 ;M

0
3 . The

wedge shown is formed by the vertex set M0
0 ;M

0
1 ;M

0
2 ;M

0
3 ;M

0
4 ;M

0
5 .

Thickness
of

wedge
M

0

1

M
0

2

M
0

3

M
0

4

M
0

5

M
0

0

M
2

1

M
2

0

Figure 12.3: Abstraction of mesh between opposite faces as a wedge.

The triangulation on a quadrilateral resulting from edge splitting is shown

in Figure 12.4a(i) while the triangulation desired after realignment is depicted in

Figure 12.4a(ii). The former triangulation is called a diagonal triangulation while the

latter a zigzag triangulation. A wedge has a diagonal or a zigzag con�guration if all

of its quadrilateral faces have a diagonal (Figure 12.4b(i)) or a zigzag triangulation

(Figure 12.4b(ii)) respectively. If some of the quadrilateral faces have a diagonal

triangulation and others have a zigzag triangulation, the wedge is said to be partially

zigzag (Figure 12.4b(iii)). Any other con�guration is a general con�guration that

cannot be classi�ed and is dealt with by general mesh modi�cation procedures. Note

that the sides of the quadrilaterals in the thickness direction are edge paths between

opposite vertices.

With this abstraction de�ned, a major component of the process of realigning

edges along and perpendicular to the thickness direction can be viewed as a con-

version of all triangulated quadrilaterals in the mesh from a diagonal to a zigzag

con�guration. This allows the edge realignment process to be driven largely by topo-

logical considerations and is therefore more e�cient than using geometric criteria.

138

(a) (b)

(i) (ii)

(i) (ii)

(iii)

Figure 12.4: (a) Diagonal and zigzag con�gurations for quadrilaterals. (b) Diagonal,
zigzag and partially zigzag con�gurations for wedges.

The conversion of the diagonal triangulation on each quadrilateral to zigzag

is done in a templated sequence of swaps illustrated in Figure 12.5. This sequence

can be easily generalized for a quadrilateral with any number of edges through

its thickness. Consider a diagonal quadrilateral with Nv vertices along its lat-

eral sides. Let the vertices of the two sides of the quadrilateral be labeled as

fM0
0;0;M

0
0;1;M

0
0;2; : : : ;M

0
0;Nv�1g and fM0

1;0;M
0
1;1;M

0
1;2; : : : ;M

0
1;Nv�1g. Then the edge

swapping sequence for converting a diagonal quad con�guration to a zigzag one can

be written as follows

for i = 0 to Nv � 1 do
for j = Nv � 1 to i + 2 do
Swap edge between M0

0;i,M
0
1;j to edge between M0

0;i+1,M
0
1;j�1

end for
end for

If the triangulation created by splitting is such that a quadrilateral is not com-

pletely diagonal or completely zigzag then multiple iterations of the above of swaps

139

(a)
(Diagonal configuration)

(b) (c) (d)

(e) (f) (g)

(h)
(Zizgzag configuration)

New edge

Swapped edge

Figure 12.5: Sequence of swaps to convert diagonal quad to zigzag.

is applied to the edges of the quad so that it may be converted into a zigzag con-

�guration. Before each swap it is checked whether the edge actually exists between

the vertices M0
0;i and M0

1;j.

If the wedge topology is not present in a portion of the mesh, it is still possible

to introduce multiple elements through the thickness and realign mesh edges to

eliminate de�cient paths through the thickness. For general mesh topology through

the thickness, edges may be realigned using geometric criteria such as the thickness

direction in the local neighborhood. Also, more complex topology of the mesh

requires general re�nement methods. However, a small number of other cases which

can be dealt with are handled speci�cally in the code and are described below.

140

12.2.2 Triangle and tetrahedral con�guration

A special situation dealt with in the algorithm is two adjacent mesh vertices

having the same opposite mesh vertices (Figure 12.6a). In this case, the edge con-

nected to the opposite vertex in each path is ignored and the remaining edges used

for the quadrilateral abstraction. Swapping of edges then proceeds as usual with

this topology. Similarly, three vertices of a mesh face may have a common opposite

vertex forming a master tetrahedron. The three edge paths are split and the edges

are swapped on the faces of the master tetrahedron to eliminate any de�cient paths

in the tetrahedron.

12.2.3 Unswappable diagonal quad

If a diagonal quad's edges cannot be swapped to convert it into a zigzag con-

�guration, then an alternative approach is adopted to eliminate de�cient paths in

the quad. In this approach, the main diagonal of the quad is also split as many

times as the sides of the quadrilateral (See Figure 12.6b). This creates two diag-

onal con�guration \triangles" which can be converted to a zigzag con�guration as

described above (Figure 12.6b). Further, the direction of the diagonals of the two

\triangles" is switched, if possible, since this leads to better face angles. It has been

seen that this approach often succeeds when conversion by swapping alone fails.

(a) (b)

Figure 12.6: (a) Conversion of triangle from diagonal to zigzag con�guration. (b)
Conversion of quad into two zigzag triangles.

12.2.4 V-triangulation

In the V- quad con�gurations, a pair of vertices have opposite vertices but the

edge between them does not have an opposite edge (or vice-versa). This is illustrated

141

in Figure 12.7a(i). In this case the diagonal edges comprising the V-con�guration

are split as many times as the lateral edges of the quad giving rise to three diagonal

con�guration quads which are then converted to zigzag (Figure 12.7a(ii-iv)).

12.2.5 Star con�guration

In the star con�guration, the main diagonal of a regular quad is split into two

as shown in Figure 12.7b-(i). As before, the original diagonal edges of the quad are

split to form a total of six diagonal con�guration triangles (Figure 12.7b-(ii)). Thus

the star con�guration quad can be viewed as a V-quad and an inverted V-quad

together. Conversion of the diagonal con�guration \triangles" to zigzag follows the

same procedure as before (Figure 12.7b(iii-iv)).

(a)

(i) (ii) (iii) (iv)

(b)

(i) (ii) (iii) (iv)

Figure 12.7: Special quad con�gurations. (a) V-con�guration and its conversion.
(b) Inverted V-con�guration and its conversion (c) Star con�guration and its con-
�guration.

The removal of de�ciencies in a general con�guration mesh using the proce-

dures described up to this point is illustrated in Figure 12.8.

142

(a)

(b) (c)

Figure 12.8: Elimination of de�ciencies in a general mesh con�guration. (a) Initial
mesh. (b) Mesh after splitting. (c) Mesh after swapping.

12.3 Constraints in Recon�guringWedges using Local Mesh

Modi�cations

The description of the realignment procedure until now assumed that multiple

elements were introduced into a mesh which had only one element through the

thickness. If the initial mesh had more than one element through the thickness

and additional elements were introduced, then multiple wedges, stacked on top of

each other, will exist between opposite faces. The procedures for recognition of

quadrilaterals and wedges accounts for this. Once the individual wedges through

the thickness have been identi�ed, the swapping sequence can be applied to the

quadrilateral faces of the wedge as before.

When converting a quadrilateral triangulation from diagonal to zigzag, care

must be taken that wedges on either side of the quadrilateral are not forced into

a con�guration for which a tetrahedronization does not exist. The following rules

143

may be stated about the validity of wedge con�gurations with 2 elements through

the thickness (See Figure 12.3):

� Rule 1 : If the directions11 of triangulations of all 3 quadrilaterals of a wedge

is the same, then the wedge cannot be tetrahedronized, regardless of the type

of the triangulations.

� Rule 2 : If 2 of the triangulations are diagonal, their directions must be op-

posite for the wedge to have a valid tetrahedronization. The direction of

triangulation of the third quadrilateral is immaterial.

� Rule 3 : If 2 of the triangulations are zigzag, at least their directions must

be the same for the wedge to have a valid tetrahedronization. In addition, if

the third triangulation is zigzag, its direction must not violate Rule 1; if it is

diagonal, its direction is immaterial.

Corollary: If the number of edges through the thickness of the wedge is more than

2, then no valid tetrahedronization is possible with 1 diagonal and 2 zigzag triangu-

lations (i.e. Rule 3 no longer holds). Rule 1 and Rule 2 are still valid.

The invalidity of all wedge con�gurations with two zigzag and one diagonal

triangulation for wedges with more than two elements through their thickness places

an important restriction on the mesh enrichment process. This restriction is that

multiple elements must be introduced iteratively with edges through the thickness

being split only once before the realignment procedure is applied to the modi�ed mesh.

Therefore, if an initial mesh has one element through the thickness everywhere and

Nt elements have been requested through the thickness, the splitting and realignment

process has to be performed log2Nt times rounded o� to the next integer. To lift

this restriction, the local nature of the diagonal to zigzag conversion process must be

sacri�ced and propagated out into the mesh.

If a quadrilateral triangulation could not be converted to zigzag due to one of

its adjoining wedges becoming invalid, it is revisited later to account for the possi-

bility that other quadrilaterals in the local neighborhood may have been changed

11The direction of triangulation of a quadrilateral indicates which end of the diagonals in the
triangulation are at a higher level. It is indicated schematically by an arrow on the base edge
pointing towards the side of the quadrilateral with the higher end of the diagonal

144

(a)

(b)

Figure 12.9: Wedge con�gurations with 2 elements through the thickness. (a) Valid
wedge con�gurations. (b) Invalid wedge con�gurations.

to zigzag allowing for successful conversion. Still, in their current form, the realign-

ment procedures may be prevented from converting all quadrilateral triangulations

to zigzag by the invalidity of certain wedge con�gurations, even with two edges

through the thickness.

145

12.3.1 Elimination of remaining de�cient paths

When the topology of the mesh between thin sections is more general than

that described before, it is necessary to use general re�nement isotropic techniques

to introduce multiple elements through the thickness. Several re�nement techniques

by means of edge bisection such as Rivara bisection, Bansch's method and alternate

bisection are reviewed in [15]. Many of these techniques have been described to be

stable in three dimensions (the re�ned mesh quality is bounded from above or below

by the initial mesh quality). Although most of these techniques over-re�ne due to

the propagation of non-conformity, a careful selection of a re�nement technique

adapted from the above can be used to obtain isotropic re�nement with su�cient

elements through the thickness. It can be shown that an important component of

obtaining a good quality mesh by these re�nement methods is the ability to modify

the initial surface triangulation.

12.3.2 Creation of multiple layers by local remeshing

While the above procedures to eliminate de�cient paths using local mesh mod-

i�cations do a good job of eliminating the de�cient paths in the mesh, they su�er

from the following shortcomings:

� They cannot deal well with portions of the mesh with general topology through

the thickness, i.e., portions which do not have a wedge or quadrilateral struc-

ture.

� Even if wedge topology exists in portions of the mesh, they cannot guarantee

conversion of all wedges from a diagonal to zigzag con�guration.

� They are less e�cient than direct creation of elements knowing the �nal topol-

ogy of the mesh.

Of the above, the second shortcoming is very restrictive and directly prevents

the procedures from achieving the goal of eliminating all de�cient paths through the

mesh. Even though the initial and �nal con�gurations are valid, it can be shown

that a step-by-step conversion process by local mesh modi�cations cannot convert

146

all wedges from a diagonal to a zigzag con�guration. This can be illustrated by a

simple example shown in Figure 12.10. In the �gure, the base triangulation for a

set of four wedges is shown with the arrows representing the diagonal directions for

the wedges. Also, \D" or \Z" next to the edge indicates that the quad growing on

top of the edge is a diagonal or a zigzag con�guration respectively. Assume that

the triangulations of the four outer quads are constrained. It can be seen from Rule

2 above (Section 12.3) that all the wedges of the initial con�guration are valid.

Also, by Rule 1, the �nal con�guration is valid. However, to go from the initial

to the �nal con�guration, the four interior quads must be made zigzag one after

another. However, by Rule 3, the con�guration will be invalid since the two zigzag

quads of the wedge have opposite diagonal directions. Therefore, it can be seen

that incremental conversion of the mesh from one con�guration to the other is not

always possible with the above procedures in the presence of constraints.

Z Z

Z Z

Z

ZZ
Z

Z

Z Z

Z

D
D

D

D

Not possible
by sequential
modifications

Figure 12.10:]
Illustration that step-by-step modi�cations of wedge triangulations from diagonal

to zigzag is not always possible.

Hence, it is proposed that multiple elements through the thickness be created

by deleting the portion of the mesh that is de�cient and creating an anisotropic

mesh with su�cient number of elements through the thickness in its place. In the

following discussion the conditions under which a de�cient portion of a mesh can be

deleted and replaced with a su�ciently enriched set of wedges is investigated.

Consider a set of edge connected triangles upon which wedges with 1 edge

through the thickness and connected to each other along the quadrilateral faces are

to be built. It is known that a wedge with 1 edge through the thickness and all its

147

diagonals in the same direction cannot be tetrahedronized without the introduction

of any new points. Therefore, given such a con�guration it must be determined if it

is possible to �nd a combination of directions for the diagonals of the connected set

of wedges such that all the wedges have a valid triangulation.

As before if we think of the wedges in terms of the base triangulations and di-

agonal directions associated with them, the above question can rephrased as whether

it is possible to �nd a combination of diagonal directions on the edges of the base

triangular mesh representing the connected set of wedges such that all the triangles

have a valid combination of diagonal directions.

The answer to the above question is shown below to depend on:

� whether the direction of the diagonals on the quadrilaterals bounding the set

of wedges (referred to henceforth as bounding quadrilaterals) is constrained.

� whether the surface triangulation (upon which the wedges are to be con-

structed) can be altered or not.

If the edges of the triangles are assigned \diagonal directions" arbitrarily, then

some of the triangles may end up with an invalid con�guration. The methods for

correcting these invalid con�gurations without altering the base triangular mesh are:

1. Flipping the \diagonal direction on an edge of the invalid triangle if does not

make an adjacent triangles con�guration invalid (Figure 12.11a). Lohner [40]

has proposed an iterative scheme using this method but this method is not

proved to guarantee correction of all triangles.

2. Propagating the invalid con�guration through the mesh until another invalid

con�guration is reached at which point the diagonal direction for the common

edge may be
ipped. The
ip makes both triangle con�gurations simultane-

ously valid (Figure 12.11b,c). The process of propagating an invalid con�gura-

tion involves successively making a neighboring triangle con�guration invalid

to make the current one valid.

148

3. Propagating the invalid con�guration through the mesh to the boundary of

the set of triangles where the diagonal direction of a bounding edge may be

ipped (if permitted) to make the triangle con�guration valid (Figure 12.11c).

If the diagonal directions on the bounding edges are not constrained, then it

is always possible to �nd a valid combination of directions on the edges of all the

triangles under consideration. In fact, it is possible to prove that only one bounding

edge diagonal direction of the connected set of triangles needs to be unconstrained to

always get a valid combination of directions everywhere in the connected set. To see

this, consider a set of connected triangles with a certain number of invalid con�gu-

rations. Since this is a connected set of triangles, there must exist a path connecting

any pair of triangles. Every pair of invalid con�gurations can be propagated towards

each other and nulli�ed as described in method 2 above. Therefore, if the set has

an even number of invalid con�gurations, they must nullify each other out. If on

the other hand, it has an odd number of invalid con�gurations, then after nullifying

every pair of invalid con�gurations, one invalid triangle con�guration remains. This

invalidity can be propagated out to the boundary where it becomes necessary to

ip the direction on one of the boundary edges of the triangle. Therefore, only one

edge on the boundary of a set of connected triangles must have no constraints on

its diagonal direction.

If all the bounding edges of the set of triangles is constrained, then it may

not be possible to always obtain a valid set of triangles. This can be easily seen by

considering a single triangle in an invalid con�guration with all its edges constrained.

The only way to obtain a valid con�guration in such a case is to re�ne the surface

triangulation in speci�c ways.

Consider a triangle with an invalid combination of diagonal directions associ-

ated with its edges (Figure 12.12a). This situation may be recti�ed by one of several

ways shown in Figure 12.12. In Figure 12.12b, the face is split at the centroid and

the new edges assigned diagonal directions appropriately so as to form 3 valid trian-

gle con�gurations. This form of re�nement is not the most desirable since it leads

to large face angles on the surface and large dihedral angles in the volume mesh. In

Figure 12.12c, the large angles have been bisected by bisecting the original edges of

149

Invalid
configuration

(a) (b)

(c)

(v)

(iii)(i) (ii)

(iv)

Figure 12.11: Fixing invalid wedge con�gurations by edge swapping. (a) Fixing one
invalid triangle by swapping the diagonal direction on an edge. (b) Fixing a pair
of invalid triangles by swapping the diagonal direction of their common edge. (c)
Fixing an invalid con�guration by propagation of the triangle to the boundary.

150

the triangle. In Figure 12.12d, only one of the edges is bisected and the direction

on one of the split edges is
ipped, Note that the last two techniques make adjacent

triangles non-conforming (having more than three vertices) which can be �xed by

a bisection of the non-conforming triangles. If the adjacent triangle was invalid to

begin with, it can be further split in the same way as the �rst to make it valid. On

the other hand, if it was valid to start with, then regardless of the con�guration, a

direction for the bisection edge can be found such that the resulting two triangles

will always be valid. Thus it can be seen that the described method of re�nement

is always guaranteed to generate a combination of diagonal directions that will all

be valid.

(a) (b) (c) (d)

Figure 12.12: Edge bisection patterns to �x an invalid con�guration.

If the quality of the surface triangulation is to be preserved, it is not su�cient

to terminate the re�nement process in the adjacent triangle arbitrarily by bisection.

This is because bisecting an edge at the midpoint may result in creation of new

poorly shaped elements and the re�nement process is no longer stable (the angles

are not bounded from below or above by the worst angle in the initial mesh). The

process of alternate bisection or longest edge bisection may be applied wherein the

re�nement is propagated until all the triangles shapes are acceptable. Both methods

tend to to over-re�ne due to propagation of non-conformity and must be used only

when all other methods for obtaining a valid set of diagonal directions on the edges

have failed.

CHAPTER 13

MULTIPLE ELEMENTS THROUGH THE THICKNESS -

PRE- AND POST-PROCESSING

13.1 Pre-processing

A number of pre-processing steps are incorporated into the procedures to gen-

erate multiple elements through the thickness. These steps are designed to maximize

the number of wedges present through the thickness since subdivision of the wedges

provides the desired topology and quality in the �nal meshes. The pre-processing

steps consist of a combination of local mesh modi�cations and node repositioning.

All of these tools are used to match the meshes on locally opposite model faces as

closely as possible.

13.1.1 Node repositioning

After the initial search for opposite vertices, nodes on locally opposite model

faces are repositioned so that opposite nodes and edge paths between them are more

closely aligned with the local thickness direction. This helps reduce the distortion of

the wedges and other constructs which are further subdivided into multiple layers.

For example, it can be demonstrated that the more the distortion of an isotropic

wedge, the greater the largest dihedral angle in the subdivided elements will be.

To align opposite vertices as closely as possible along the local thickness direc-

tion, the opposite vertex of a vertex is moved as close as possible on the entity it is

classi�ed on. Since the opposite vertex may be classi�ed on a model edge or a face,

special procedures are required so that the movement of the vertex is constrained to

be on the model entity. Procedures for repositioning vertices on a model edge, on a

model face and in a model region are described in Appendix A. The target location

is determined by querying the geometric modeler for the closest point on the oppo-

site model entity to the reference vertex. If the closest point search or the movement

of the vertex does not succeed, then the reference vertex itself is attempted to be

moved. After alignment of the reference vertex and the opposite vertex, any vertices

151

152

in the path between the reference vertex and the opposite vertex are moved to be

in alignment with the straight line between the reference and opposite vertices.

13.1.2 Matching edges and faces on opposite model faces

13.1.2.1 Mesh matching by edge swapping

Consider an edge classi�ed on a model face. It is possible that the vertices of

the edge have respective opposite vertices but an edge does not exist between the

opposite vertices. In such a case, due to the absence of quad topology on top of

the reference edge (and therefore the absence of wedge topology on top of the two

boundary faces connected to it), the quality of elements in the local neighborhood

will be poor. In fact, the creation of large dihedral angles is inevitable in such a

situation. This is illustrated in Figure 13.1. In the �gure, M1
0 and M1

1 do not have

an opposite edge even though the vertices of the edge M0
0 and M0

1 have opposite

vertices (M0
4 and M0

5 respective). Given that all the neighboring edges and vertices

ofM0
0 and M0

1 have opposite edges and vertices respectively, the mesh con�guration

can be considered to be a hexahedron which must be broken into tetrahedra. From

the individual tetrahedra resulting from this construct, it can be clearly seen that

the con�guration is prone to large dihedral angles as the height of the hexahedron (or

in other words the distance between the opposite vertices) decreases. In particular,

the tetrahedron formed by the vertices fM0
0 ;M

0
6 ;M

0
5 ;M

0
7g has a large dihedral angle

even when the aspect ratio of the hexahedron is not very large.

The above situation can be greatly improved by swapping the edge between

M0
6 and M0

7 to form a new edge between the vertices M0
4 and M0

5 (Figure 13.2). In

this case, the hexahedron can be split into two well shaped wedges which in turn

will result in good quality tetrahedra (with respect to large dihedral angles) even if

the aspect ratio of the hexahedron decreases.

Therefore, the pre-processing procedures try to match the mesh edges on op-

posite model faces by edge swapping. If an edge classi�ed on a model face does

not have an opposite edge but its vertices do, then the two adjacent faces of the

edge classi�ed on the same model face are found. The vertices of each of these faces

opposite to the edge under consideration are found and then their opposite vertices

153

Tetrahedra:

fM 0

0
;M 0

2
;M 0

1
;M 0

6
g

fM 0

0
;M 0

6
;M 0

1
;M 0

5
g

fM 0

0
;M 0

1
;M 0

5
;M 0

7
g

fM 0

0
;M 0

6
;M 0

5
;M 0

7
g

fM 0

0
;M 0

6
;M 0

7
;M 0

4
g

fM 0

0
;M 0

1
;M 0

7
;M 0

3
g

M
0

0

M
0

1

M
0

2

M
0

6

M
0

0

M
0

4

M
0

6

M
0

7

M
0

1

M
0

0

M
0

3

M
0

7

M
0

0

M
0

5

M
0

6

M
0

7

M
0

0

M
0

1

M
0

5

M
0

7

M
0

0

M
0

1

M
0

5

M
0

6

M
1

0

M
1

1

M
0

0

M
0

1

M
0

2

M
0

3

M
0

4

M
0

5

M
0

6

M
0

7

Figure 13.1: Mesh con�guration and resulting tetrahedra where one edge does not
have an opposite edge. Such mesh con�gurations are prone to large dihedral angles
with decreasing height.

154

M
0

0

M
0

4

M
0

5

M
0

7

M
1

0

M
1

1

M
0

0

M
0

1

M
0

2

M
0

3

M
0

4

M
0

5

M
0

6

M
0

7

M
0

0

M
0

1

M
0

2

M
0

6

M
0

5

M
0

4

M
0

0

M
0

6

M
0

0

M
0

1

M
0

5

M
0

6

M
0

0

M
0

1

M
0

5

M
0

7

M
0

0

M
0

1

M
0

3

M
0

7

Tetrahedra:

fM 0

0
;M 0

2
;M 0

6
;M 0

1
g

fM 0

0
;M 0

6
;M 0

1
;M 0

5
g

fM 0

0
;M 0

1
;M 0

5
;M 0

7
g

fM 0

0
;M 0

6
;M 0

5
;M 0

4
g

fM 0

0
;M 0

1
;M 0

7
;M 0

3
g

fM 0

0
;M 0

5
;M 0

4
;M 0

7
g

Figure 13.2: Mesh con�guration and resulting tetrahedra with matching mesh en-
tities on opposite model faces. Large dihedral angles are well controlled in such
con�gurations even with decreasing height.

155

are found. If an edge exists between them, then it is attempted to be swapped to

create a new edge between the opposite vertices of the original edge. This swapping

is subject to standard geometric and topological constraints [58, 66].

13.2 Post-processing

Once multiple elements are generated through the thickness, post-processing of

the mesh is performed to match user requirements and improve mesh quality. Node

repositioning is used to smooth nodes along edge paths (Also see Appendix A).

Although the current procedures attempt to equidistribute the nodes along the

edge path, any criterion may be used for this process. For example, if the gradients

are stronger near the walls, a smoothing function that clusters the nodes towards

the walls may be used instead. Finally, a generalized mesh optimization procedure

is applied to the entire mesh to improve mesh quality, in particular to improve

large dihedral angles. The procedures once again use a combination of local mesh

modi�cation and node repositioning techniques to e�ect this improvement. During

the mesh optimization phase, the newly inserted nodes and the realigned edges by

the main procedures to eliminate de�ciencies in the mesh are constrained from being

a�ected.

CHAPTER 14

GENERATION OF MULTIPLE ELEMENTS THROUGH

THE THICKNESS - RESULTS

In this chapter, results are presented to demonstrate the capabilities and utility of

the procedures to generate multiple elements through the thickness.

Figure 14.1a shows the initial solid mesh for a simple rectangular plate for

which 4 elements have to be introduced through the thickness. The mesh after

mesh matching on opposite faces and splitting edges through the thickness is shown

in Figure 14.1b. The mesh after swapping is completed is shown in Figure 14.1c.

The largest dihedral angle is 150 degrees in the initial mesh and 96 degrees in the

�nal mesh. The initial mesh has 96 elements while the �nal mesh has 384 elements.

(a)

(b) (c)

Figure 14.1: Re�nement through the thickness for a simple plate. (a) Initial mesh.
(b) Mesh after splitting of edges. (c) Mesh after swapping to realign edges. Maxi-
mum dihedral angle in �nal mesh is 96 degrees.

156

157

Another illustrative example is shown below in Figure 14.2. The initial mesh is

shown in Figure 14.2a and the anisotropically re�ned mesh is shown in Figure 14.2b.

The largest dihedral angle in the initial and �nal mesh are 144 degrees and 146

degrees respectively.

(a) (b)

Figure 14.2: Re�nement through the thickness of a ring. (a) Initial mesh with 145
elements and largest dihedral angle of 144 degrees. (b) The re�ned mesh with 1179
elements and largest dihedral angle of 146 degrees.

This demonstrates that when the topology and geometry of the model and

mesh permit it, the algorithm generates high quality elements while introducing

multiple elements through the thickness. Naturally, geometric models of any practi-

cal interest and their meshes do not have this perfect structure throughout and some

reduction in quality is expected due to constraints in mesh modi�cation procedures.

Figure 14.3 and Figure 14.4 show the initial and re�ned meshes with close-

up views of two models with general topology and no single thickness direction.

It can be seen from the �gures, that the procedures have correctly captured the

local thickness directions in the various sections of the model. In Figure 14.4 the

close-up pictures show a transparent view of the initial and �nal mesh of the base

plate verifying that re�nement and the structure of the mesh is as desired even in

the interior of the model. 99.98% of the elements in the �nal mesh in Figure 14.3

158

have large dihedral angles less than 170 degrees. All elements in the �nal mesh in

Figure 14.4 have large dihedral angles less than 161 degrees.

(a)(i)

(ii)

(iii)

(b)(i)

(ii)

(iii)

Figure 14.3: Re�nement through the thickness for a general model, \asm107". (a)(i)
Initial mesh. (ii)(iii) Close-up views of initial mesh. (b) Re�ned mesh with 4
elements through the thickness. (ii)(ii) Close-up views of re�ned mesh. 99.98% of
elements in �nal mesh have large dihedral angles less than 170 degrees.

Figure 14.5 shows a simpli�ed airfoil platform in which the thin sections not

very clearly demarked and the sections vary in thickness with the result that the

initial mesh (Figure 14.5a) has varying number of elements through the thickness

along the length of the platform top. Figure 14.5b shows the re�ned mesh with

a close-up view shown in Figure 14.5b. From the �gures it can be seen that the

procedures have identi�ed the de�cient parts of the mesh well and re�ned correctly

through the thickness. For example the smaller \leg" of the platform initially had

two elements through the thickness and two more were added to it. On the other

hand the top of the platform is of varying thickness and the initial mesh had one ele-

ments in some parts and two in others. The procedures correctly recognize this and

159

(a)(i) (b)(i)

(a)(ii) (b)(ii)

Figure 14.4: Re�nement through the thickness for a general model, \asm110". (a)(i)
Initial mesh. (ii) Transparent close-up view of initial mesh of base plate. (b)(i)
Re�ned mesh with four elements through the thickness. (ii) Transparent close-up
view of re�nement in base plate. 100% of elements in �nal mesh have large dihedral
angles less than 161 degrees.

re�nement has been performed so that there are 4 elements through the thickness

throughout. The example also illustrates that not only the conversion of diagonal

quads to zigzag works but that the procedure is able to identify the other types of

con�gurations and realign their edges as well.

The various capabilities and features of the procedures to introduce multiple

elements through the thickness are also demonstrated in the following example which

is a simpli�ed setup for investment casting of an airfoil (Figure 14.6)

160

(a) (b)

(c)

Figure 14.5: Re�nement through the thickness for airfoil platform. (a) Initial mesh.
(b) Re�ned mesh with 4 elements through the thickness. (c) Close-up view of re�ned
mesh in one of the thin sections.

Finally, the results12 of a transient heat conduction analysis with radiative

heat transfer in a crucible for crystal growth simulation using a mesh re�ned by this

method are shown in Figure 14.7. The schematic model is shown in Figure 14.7a

while shows the mesh with 4 elements introduced through the thickness. The mesh

has 32,221 elements compared to an equivalent isotropic mesh, i.e., uniformly re�ned

to have 4 elements through the thickness, which has 317,841 elements, a reduction of

an order of magnitude. The temperature distribution near the top of the crucible and

through a vertical section (expected to be exponential) are shown in Figures 14.7b,c.

12Courtesy: Hongwei Li, formerly at SCOREC, RPI

161

Figure 14.6: Re�nement through the thickness for model representing the setup for
investment casting of an airfoil.

162

Prescribed periodic transient
temperature distribution

Insulated

Heated by
radiation

(c) (d)

(a) (b)

Figure 14.7: Transient heat conduction analysis with radiative heat transfer in crys-
tal growth crucible using a mesh with 4 elements introduced through the thickness.
(a) Schematic of problem. (b) Mesh with 4 layers through the thickness. (c) Tem-
perature distribution near the top. (d) Temperature distribution through a vertical
section.

CHAPTER 15

CLOSING REMARKS AND FUTURE WORK

15.1 Concluding Remarks

Two procedures for generation of anisotropic tetrahedral meshes were pre-

sented. The �rst is a procedure for generating boundary layer meshes for viscous

ow simulations. The method, called the Generalized Advancing Layers Method is

designed for reliable generation of valid, good quality meshes for arbitrarily com-

plex non-manifold geometric model. It includes several technical advances to be

able to handle complex domains that cannot be handled by other techniques. It

also provides control and
exibility in the creation of meshes suitable for
uid
ow

simulations.

The technical contributions of the Generalized Advancing Layers Method are:

1. Ability to create valid meshes for general non-manifold models through the

de�nition and use of mesh manifolds (Section 3.2.2 and Section 5.4).

2. Complete approach to controlling mesh quality and gradations in the bound-

ary layer through the use of multiple growth curves (Section 5.5), multi-level

transition elements (Section 7.8) and �xed and variable edge blends, (Sec-

tion 7.9). Also, included in this approach are smoothing, shrinking and prun-

ing for boundary layer mesh quality improvement and recursive adjustment of

neighboring growth curves for improved mesh gradation (Sections 6.3, 6.4 and

6.5 respectively).

3. Comprehensive approach to shield the isotropic mesher from anisotropic faces

using transition elements, blends and pruning of growth curves.

4. De�nition and implementation of well de�ned set of checks for the creation

of topologically and geometrically valid meshes particularly in the context

of modi�cation of the initial surface mesh to account for boundary layers

(Section 5.6).

163

164

5. Several technical developments for the robustness of the procedure includ-

ing development of new procedures for retriangulation of badly parameterized

model faces based on recovery of edges in a surface mesh using local mesh

modi�cations (Section 7.6 and [35]), alternate procedures to compensate for

inability to modify the surface, assurance algorithms for prism validity (Sec-

tion 7.7), and assurance algorithms to resolve self-intersections of boundary

layers (Section 8.3).

6. Development of powerful but
exible methods for boundary layer speci�cation

and control (Section 5.8).

Results were presented to demonstrate the capability of the mesh generator

to mesh complex non-manifold models while creating meshes with element sizes

and gradations required to accurately capture the solution. Results of two classical

problems in
uid mechanics were presented to demonstrate the suitability of the

mesh for viscous
ow simulations and its ability to capture the solution accurately.

Also, the application of the mesh generator to create meshes suitable for simula-

tions with free shear layers was demonstrated. The Generalized Advancing Layers

Method has succesfully generated meshes of the order of 3-4 million elements for

other large complex geometric models and is currently being used for simulations

on real automobile con�gurations in industry.

The second capability developed creates anisotropic meshes in models with

thin sections using local mesh modi�cations. The procedures are designed to work

in conjunction with any automatic isotropic mesh generator capable of providing

an initial mesh. The method to create multiple elements through the thickness

automatically identi�es portions of the mesh that have less than the requested num-

ber of elements through the thickness and anisotropically re�nes those parts of the

mesh using edge splits and swaps. The re�nement algorithm can handle arbitrarily

complex non-manifold models reliably.

Results were presented to demonstrate the capabilities of the procedures to

create multiple elements through the thickness for various complex geometric mod-

els. Also, results of a heat transfer analysis were given to demonstrate the ability of

the mesh to capture non-linear gradients through the thickness and to demonstrate

165

the savings in the number of elements that can be achieved using this mesh genera-

tor. The procedures were seen to identify de�ciencies in the initial isotropic meshes

well and re�ne them while controlling mesh quality.

The key technical contributions of the research on generation of tetrahedral

meshes with multiple elements through the thickness are:

1. Automatic identi�cation of thin sections in an initial mesh with insu�cient

number of elements through the thickness (Section 11.1).

2. Creation of multiple elements through thin sections by local mesh modi�ca-

tion procedures followed by template based edge swapping (Section 12.1 and

Section 12.2).

3. Quali�cation of constraints in wedge triangulations and techniques to over-

come these constraints in the generation of multiple elements through thin

section models (Section 12.3).

Results were presented to demonstrate the ability of the anisotropic re�ne-

ment procedure of thin sections to handle complex domains and properly introduce

the necessary number of elements through the thickness. This mesh generator has

proven to be of considerable practical importance and has been used succesfully to

generate meshes for a wide range of applications including semiconductor device

modeling, casting, injection molding, modeling of MEMS, electromagnetics, biome-

chanics, heat transfer analysis, coupled
uid-thermal simulations in intercoolers,

chemical corrosion and structural analysis.

Both procedures presented here are being used within an overall framework for

reliable automatic mesh generation of complex geometric domains for �nite element

simulations in a wide variety of engineering applications [62].

15.2 Future Work

There are number of ways the research presented in here can be further de-

veloped. Some of the necessary and desirable developments to boundary layer mesh

generator to create better meshes for viscous
ow simulations are:

166

1. Ability to create prism elements in the boundary layer.

2. Implementation of blend elements: This a key feature of the procedures nec-

essary to shield the isotropic mesh generator from the anisotropic faces of the

boundary layer mesh and is critical to the overall robustness of the mesh-

ing framework. In addition, the introduction of general blends with multiple

growth curves is necessary for smooth mesh gradations.

3. Capability to generate boundary layer meshes with matching meshes on faces

with periodic boundary conditions: This capability is of great practical im-

portance as it can result in large savings in mesh sizes by taking advantage of

symmetries in the solution. The central issue here is the matching of prism

and blend diagonals on boundaries to be matched. As the reader may recall

from discussion of boundary layer prism creation and prism templates in the

generation of multiple elements through the thickness, there are constraints

on how individual prisms and a set of connected prisms may be triangulated

without re�nement of the surface triangulation. These constraints must be

respected and if necessary, a surface mesh re�nement strategy devised to be

able to match the boundary layer diagonals on two model faces.

4. Separation of growth curve from model boundaries: Recall that in this im-

plementation, growth curves are constrained to be interior or boundary and

only a speci�c type of partially boundary quad is dealt with. The ability to

handle growth curves and quads with general classi�cation is important to

mesh quality.

5. General curvilinear shape for interior growth curves: This will allow better

control over mesh quality.

6. Ability to partially unite or coalesce growth curves: While the current proce-

dures allow the number of nodes to vary along a model face, they do not allow

joining of two neighboring growth curves. This is an important capability that

will allow the mesh generator to decrease the number of nodes and thereby

automatically increase mesh size as the mesh proceeds towards the interior.

167

The key issue to be addressed for introducing this capability is the rede�nition

of adjacent growth curves.

7. Capability to adapt shear layers without rede�ning the geometric model: The

current procedures require a model surface de�nition to be able to grow a

boundary layer forcing the introduction of an arti�cial surface in the geometric

model to represent shear layers or wake surfaces behind blu� bodies. It is

more desirable to adapt the shear layer mesh independent of the shear or

wake surface de�nition.

8. Parallel boundary layer mesh generation: The generation of large meshes for

turbulent
ow simulations, particularly Large Eddy Simulations, makes it nec-

essary to parallelize the creation of boundary layer meshes and raises a number

of open issues.

Future work in the development of the research on tetrahedral mesh gen-

eration with multiple elements through the thickness must primarily address the

direct creation of layers of prisms between matching sets of mesh faces on op-

posite model faces. As per the discussion in Section 12.3, a surface re�nement

strategy must be incorporated into the procedures that will introduce the least

number of points while maintaining mesh quality. In addition, general re�ne-

ment procedures to eliminating remaining de�cient paths must also be incorporated.

In conclusion, two robust automatic procedures for the generation of anisotropic

meshes for complex non-manifold geometric models were presented as components

in an overall framework for anisotropic mesh generation. The two works of re-

search described addressed many key issues in the reliable generation of good quality

anisotropic meshes for speci�c classes of problems. They were demonstrated to reli-

ably generate quality meshes with suitable mesh sizing and gradation for capturing

the solution in various problems accurately.

APPENDIX A

LOCAL MESH MODIFICATIONS AND NODE

REPOSITIONING

In this chapter the local mesh modi�cation and node repositioning procedures used

in the previously described work are described. Local mesh modi�cation of tetrahe-

dral meshes consist of three basic operations [15, 18]:

� Edge, face or region split - introduces one new vertex into the mesh.

� Edge swap - Does not change the number of nodes in the mesh.

� Edge collapse - Deletes one node from the mesh.

Complex transformations of tetrahedral meshes can be e�ected by application

of one or more of these procedures. The local mesh modi�cation procedures always

maintain a valid topological connectivity of the mesh. However, additional proce-

dures are required to maintain topological validity of the mesh with the model and

geometric validity of the elements.

A.1 Edge Split

An edge split operation breaks an edge into two edges and also splits each

of the connected higher order entities into two entities. The edge split for surface

meshes consists of the following steps (Figure A.1):

� Create a new vertex at the split location. This vertex inherits the classi�cation

of the split edge.

� Create two new edges between the new vertex and vertices of the split edge.

The new edges inherit the classi�cation of the new edge.

� Split each face connected to the original edge with an edge between new vertex

to the face vertex opposite the original edge. The faces inherit the classi�cation

of the respective original faces.

168

169

For volume meshes one additional step follows the steps in two dimensions.

The regions connected to the original edge are divided into two by introducing a

face between the new vertex and the two vertices of the region opposite the original

edge. This is illustrated in Figure A.2.

Split location on straight edge

Split point pulled to model boundary

Figure A.1: Edge split on surface meshes.

(a)

M
1

i

(b)

M
1

j

M
1

k

M
0

v

Figure A.2: Edge split in volume meshes.

If the edge being split is a boundary edge, then the split point must be located

on the boundary. In some situations, this may make the elements invalid according

to some measure (See Section A.7). The split operation cannot create any topological

incompatibility of the mesh with the model.

170

A.2 Face Split

A face split divides a face into three new faces. Additionally, for volume

meshes, it divides each region into three new regions. To perform a face split, a

new vertex is created inside the face. Three new faces are created by connecting the

new vertex to two vertices of the original face in turn. If the face has tetrahedra

connected to it, each of the new faces is combined with the fourth vertex of the

tetrahedron to form a new region (Figure A.3a). As with an edge split, the face

split operation cannot in itself produce any topological incompatibility of the mesh

with the model. Also, if the face is a boundary face, the newly created point must

be relocated on the model boundary and the validity of the element must be checked

with respect to that location.

A.3 Region Split

A region split divides a region into four new regions. The new regions are

formed by each of the faces of the original element and the newly created vertex.

The newly created vertex can be classi�ed only on the interior. This operation is

not used very commonly (Figure A.3b).

(a) (b)

Original vertex
Newly created vertex

Figure A.3: (a) Face split on model boundary. (b) Region split.

171

A.4 Edge Swap

The edge swap is a reconnection procedure that e�ectively deletes an edge and

its connected elements and retriangulates the polygon or polyhedron without the

deleted edge. For triangular meshes, the swapping procedure consists of deleting

the edge and its two connected faces, and reconnecting the quadrilateral so formed

with an edge between the opposite face vertices of the deleted edge (Figure A.4).

The process is more involved for volume meshes and consists of the following steps

in general (Figure A.5):

1. Delete the regions connected to the edge.

2. Delete the faces connected to the edge.

3. Delete the edge. At this point we have a polyhedral cavity with the two

vertices of the deleted edge opposite to each other (not connected by an edge).

4. Create any boundary faces necessary if the swapped edge is a boundary edge.

5. Find the set of edges that are not connected to the vertices of deleted edge.

These edges form the boundary of a closed polygon.

6. Triangulate this polygon. Since the polygon does not contain the vertices of

the original edge, the original edge cannot be recreated.

7. Connect each face of the polygon to each vertex of the deleted edge to form a

region.

Figure A.4: Edge swap for surface meshes.

172

If there are n connected regions around an interior edge, then a n vertex

polygon (excluding the edge vertices) is formed by deletion of these regions. This

polygon can be triangulated in Nn ways, Nn =
nP
i=3

Ni�1Nn+2�i with N2 = 2 [18].

Each triangulation has n � 2 triangles and therefore, swapping this edge produces

2(n�2) tetrahedra. If the edge is classi�ed on a 2-manifold model face (Figure A.6a),
then there is only one con�guration for the new boundary edge. This new edge is on

the boundary of the retriangulation polygon. The number of vertices in the polygon

is n + 1 where n is the number of regions deleted to form the polyhedral cavity.

The number of triangles formed in the polygon are n� 1 and therefore the swapped

con�guration has 2(n� 1) tetrahedra.

(a)

M
1

i

(b)

Figure A.5: Edge swap in the interior of a volume mesh.

Swapping an edge on a non-manifold face, on the other hand, requires a more

careful look. Since the edge is on a non-manifold face, the new boundary edge can be

created only between two vertices classi�ed on the closure of the face (Figure A.6b).

Also, because the swapped edge had a connected set of regions completely sur-

rounding it, the polygon that needs to be retriangulated has n vertices where n is

the number of regions connected to the edge. Therefore, the n vertex polygon is

divided into two polygons with n1 + 1 and n2 + 1 vertices respectively where n1

and n2 are the number of regions connected to the edge on the two sides of the

non-manifold model face. The number of regions formed is still 2(n � 2) but the

number of topologically possible triangulations is reduced.

173

(b)

(a)

Figure A.6: Edge swap on boundary of volume mesh. (a) Edge swap on 2-manifold
model face. (b) Edge swap on non-manifold boundary face.

Not all of the di�erent triangulations possible topologically in an edge swap

operation may be geometrically valid. Therefore, each triangulation must evaluated

to ensure that all the created elements will be valid (See Section A.7).

The topological constraints in an edge swap are as follows:

1. An edge classi�ed on a model edge may not be swapped since this will cause

the mesh to violate topological compatibility with the model.

2. An edge classi�ed on a model face may be swapped with the restriction that

the quadrilateral cavity formed on the boundary is retriangulated in the only

other way possible.

174

A.5 Edge Collapse

Edge Collapsing is the process of deleting a vertex from the mesh while keeping

the mesh geometrically and topologically valid. Conceptually, edge collapsing can

be thought of as the process of deleting all the elements connected to the vertex

to be removed and retriangulating the resulting polygon or polyhedron. In actual

implementations, it is more e�cient to carry out a collapse by the following steps

(Figure A.7):

(b)

(a)

Vertex to be deleted

Vertex to be retained

Figure A.7: Edge collapse. (a) Collapse on surface mesh. (b) Collapse in volume
mesh.

1. Delete the regions around the edge to be collapsed including the edge itself.

2. Merge the vertex to be removed with the vertex to be retained.

175

3. Merge the entities of the polygon or polyhedron connected to the vertex to be

removed with the entities of the connected to the vertex to be retained.

Since the shape of the elements connected to the vertex to be removed changes

after the collapse, they must be checked for geometric validity.

The topological restrictions on collapsing are the most stringent of all local

mesh modi�cation operations since they have the potential to cause topological

incompatibility of the mesh with the model and also cause dimensional reduction of

the mesh ([19]). The conditions under which an edge can be collapsed are as follows:

1. If the two vertices of the edge are classi�ed on equal order entities then the

two entities must be the same and the edge must be classi�ed on the same

entity.

2. If the two vertices are classi�ed on di�erent order model entities,

(a) The vertex to be removed must be classi�ed on a higher order model

entity than the vertex to be removed.

(b) The edge must be classi�ed on the higher order entity.

3. If the two vertices of the edge to be collapsed are connected to two edges

sharing a third vertex, then the three vertices must bound a face classi�ed on

the same entity as the edge to be collapsed. If this condition is not satis�ed,

there will be coincident edges in the mesh after the collapse.

4. (For volume meshes only) If the two vertices of the edge to be collapsed are

connected to two faces sharing a common edge, then the two edge vertices

and the common edge must bound a region. If this condition is not satis�ed,

there will be coincident faces in the mesh after the collapse. In addition, both

faces should not be classi�ed on model faces or else their collapse will cause a

dimensional reduction.

A.6 Node Repositioning

Node repositioning is commonly used to improve element quality and mesh

gradation in the mesh [20, 21, 36]. The node repositioning criteria used in this thesis

176

are improvement of mesh gradations by weighted Laplacian smoothing and equidis-

tribution of nodes through the thickness. The discussion of node repositioning here

focuses on the considerations in repositioning of a node from the current location

to a target location particularly on model boundaries.

Reposition a node classi�ed in the interior of a model is a straightforward

process. The node is attempted to be moved from its current location to the target

location subject to constraints on element validity or quality. If these constraints

are violated, then the node is attempted to be moved to the midpoint of the line

joining the current and target locations. This process of bisection continues until a

valid target location for the node is found with a limit on the number of bisections

(typically 3 to 5).

Repositioning of nodes on model faces is done di�erently for model faces with

a continuous and discontinuous (in particular, periodic) parametric spaces. If the

initial move on model face with a continuous parametric space fails, the process

of bisecting the line segment between the current and original target locations is

done in the parametric space. The midpoint of the current and original target

parameter locations is picked iteratively as the next target location. Given the

target parametric location, the location of the node on the surface in real space

is computed and the local mesh checked for validity. On the other hand, if the

face is periodic, the line segment joining the current and target locations may cross

the periodic jump in the parametric space. Using an average of the two parameter

values to compute a new target location gives erroneous results and results in the

point being pulled to a location diametrically opposite to the desired location in

real space. To account for this, the points on the face corresponding to the average

parameter and the average parameter added with half the parametric range are

computed. Of the two locations, the one closest to the current location is chosen.

Note that this is equivalent to doing a closest point search on the model face but

is considerably more e�cient. The underlying assumption of this strategy is that no

edge in the mesh spans more than half the parametric space of the model face.

Repositioning of nodes on model edges is similar to the repositioning on model

faces except that only one parameter needs to be dealt with.

177

A.7 Element Validity

The geometric validity of elements in a volume mesh can be easily checked by

checking if all the elements in the mesh have positive volume. However, an equivalent

check is harder to de�ne for a surface mesh. While it is simple to check whether a

triangle has zero area or not (if necessary within some tolerance) checking whether

the triangle has \positive" or \negative" area is poorly de�ned for general three-

dimensional surfaces. Schroeder and Shephard [58, 66] de�ned rigorous conditions

for the validity of meshes and in particular imposed the condition that the mesh

should be geometrically similar to the model with reference to an appropriately

de�ned parametric space. This means that in that chosen parametric space no

elements can overlap each other. However, how to choose an appropriate parametric

space such that a mesh that is geometrically similar to the model in that space results

in an acceptable mesh in the real space is still an open question.

Violation of geometric similarity of the mesh of a curved surface results in a

large di�erence between the \smoothness" of the discretization of surface relative

to the local smoothness of the surface itself. This discrepancy in the \smoothness"

of the discretization may be approximated in a number of ways, some of which are

listed below:

1. Measure the di�erence between the mesh face normal and the model face

normal sampled at a suitable point within the parametric boundaries of the

mesh face. This is an error prone check, particularly for coarse discretizations

of highly curved surfaces, since the model and mesh face normals might di�er

signi�cantly.

2. Construct a local parametric space by projecting all the faces in the local

neighborhood onto a plane. The projection plane may be de�ned by the

model face normal or by an appropriate average of the mesh face normals.

The projected triangles can be checked for inside-out condition or negative

area with respect to this plane. This method is sensitive to the choice of the

projection plane and it is very easy to perceive a triangle as having \negative"

area due to sharp changes in the mesh face normals.

178

3. Measure the dihedral angles between mesh faces to determine if the surface

discretization is folded thereby causing a large \change" in the mesh face

normals when the surface normals itself are not changing that dramatically.

The advantage of this measure over the �rst method, is that it does not rely on

comparison of the mesh and model face normals avoiding some of the problems

with coarse meshes. Its advantage over the second method is that the extent

of the approximation and therefore the possibility of an undesirable decision

is much lesser since only two mesh faces are involved at any time in the check.

The dihedral angle check for surface \smoothness" involves setting a tolerance

for the allowable angles and is dependent on how strictly one wants to control

the mesh generation or modi�cation procedures.

In the context of mesh modi�cation procedures, a meaningful alternative to

checking the absolute validity of the surface mesh is to check if the modi�ed mesh

deviates considerably from the original. This ensures that given a good discretization

of the model to start with, each local mesh modi�cation procedure in itself does not

cause drastic changes in the mesh. In fact, such a criterion may also be used to

preserve important geometric features in the initial discretization. In particular,

edge swapping, edge collapsing and node repositioning are prone to the problem of

eliminating geometric features in the surface mesh and the above criterion can be

successfully used to preserve them [13, 14].

Another important consideration in surface meshing and surface mesh modi�-

cations is the self-intersection of the mesh. While a self-intersecting surface mesh in

itself is not a problem, it may be unusable in the context of using it as the boundary

of a volume mesh. Therefore, procedures to ensure that mesh is not self-intersecting

are necessary. One such procedure is presented in [13, 16] and is found to work well.

This procedure is based on the assumption that in the limit of re�nement the mesh

cannot self intersect is the model is not self intersecting.

REFERENCES

[1] S. Adjerid, J.E. Flaherty, K. Jansen, and M.S. Shephard. Parallel �nite

element simulations of czochralski melt
ows. In S.N. Atluri, editor,

Proceedings of ICES98, Atlant, GA, 1998. to be published.

[2] T. J. Baker. Automatic mesh generation for complex three-dimensional

regions using a constrained Delaunay triangulation. Engineering with

Computers, 5:161{175, 1989.

[3] E. B�ansch. Local mesh re�nement in 2 and 3 dimesnions. Impact of

Computers in Science and Engineering, (3):181{191, 1991.

[4] M. W. Beall. Framework for the Reliable Automated Solution of Problems in

Mathematical Physics Over Aribitrary Domains Using Scalable Parallel

Adaptive Techniques. PhD thesis, Rensselaer Polytechnic Institute, Troy, NY

12180, 1998. In preparation.

[5] M. W. Beall and M. S. Shephard. A general topology-based mesh data

structure. International Journal for Numerical Methods in Engineering,

40(9):1573{1596, May 1997.

[6] J. Bonet and J. Peraire. An Alternating Digital Tree (ADT) algorithm for 3D

geometric searching and intersection problems. International Journal for

Numerical Methods in Engineering, 31:1{17, 1991.

[7] H. Borouchaki, P. L. George, F. Hecht, P. Laug, and E. Saltel. Delaunay mesh

generation governed by metric speci�cations. Part I. Algorithms. Finite

Elements in Anlaysis and Design, 25:61{83, 1997.

[8] H. Borouchaki, P. L. George, and B. Mohammadi. Delaunay mesh generation

governed by metric speci�cations. Part II. Applications. Finite Elements in

Anlaysis and Design, 25:85{109, 1997.

179

180

[9] M. J. Castro-Diaz, F. Hecht, and B. Mohammadi. New progress in anisotropic

grid adaptation for inviscid and viscous
ow simulations. In 4th International

Meshing Roundtable, Albuquerque, NM, Oct 1995. Sandia National Labs.

[10] M. J. Castro-Diaz, F. Hecht, B. Mohammadi, and O. Pironneau. Anisotropic

unstructured mesh adaptation for
ow simulations. International Journal for

Numerical Methods in Engineering, 25(4):475, 1997.

[11] S. D. Connell and M. E. Braaten. Semistructured mesh generation for three

dimensional Navier-Stokes calculations. AIAA Journal, 33(6), 1995.

[12] H. L. de Cougny. Automatic generation of geometric triangulations based on

octree/Delaunay techniques. Master's thesis, Civil and Environmental

Engineering, Scienti�c Computation Research Center, Rensselaer Polytechnic

Institute,Troy, NY 12180-3590, May 1992. SCOREC Report # 6-1992.

[13] H. L. de Cougny. Parallel Unstructured Distributed Three Dimensional Mesh

Generation. PhD thesis, Rensselaer Polytechnic Institute, Troy, NY

12180-3590, May 1998.

[14] H. L. de Cougny. Re�nement and coarsening of surface meshes. Engineering

with Computers, 14(3):214, 1998.

[15] H. L. de Cougny and M. S. Shephard. "parallel re�nement and coarsening of

tetrahedral meshes". Technical Report 21-1995, Scienti�c Computation

Research Center, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, 1995.

submitted to International Journal of Numerical Methods in Engineering.

[16] H. L. de Cougny and M. S. Shephard. Surface meshing using vertex insertion.

In Proceedings of the 5th International Meshing Roundtable, 1996.

[17] H. L. de Cougny and M. S. Shephard. Parallel unstructured grid generation.

In CRC Handbook of Grid Generation. CRC Press, to appear.

[18] B. E. de l'Isle and P. L. George. Optimization of tetrahedral meshes. In Ivo

Babuska, Joseph E. Flaherty, John E. Hopcroft, William D. Henshaw,

181

Joseph E. Oliger, and Tayfun Tezduyar, editors, Modeling, Mesh Generation,

and Adaptive Numerical Methods for Partial Di�erential Equations, pages

97{128. Springer-Verlag, New York, 1995.

[19] S. Dey, M. S. Shephard, and Marcel K. Georges. Elimination of the adverse

e�ects of small model features by the local modi�cation of automatically

generated meshes. Engineering with Computers, 13(3):134{152, 1997.

[20] D. A. Field. Laplacian smoothing and Delaunay triangulations. Comm. Appl.

Num. Meth., 4:709{712, 1988.

[21] W. H. Frey and D. A. Field. Mesh relaxation: A new technique for improving

triangulations. International Journal for Numerical Methods in Engineering,

31:1121{1133, 1991.

[22] P. L. George. Automatic Mesh Generation. John Wiley and Sons, Ltd,

Chichester, 1991.

[23] P.-L. George and H. Borouchaki. Delaunay Triangulation and Meshing -

Application to Finite Elements. Hermes, 8, quai du March�e-Neuf, 7500, Paris,

1998.

[24] P. L. George, F. Hecht, and E. Saltel. Automatic mesh generator with

speci�ed boundaries. Computer Methods in Applied Mechanics and

Engineering, 92:269{288, 1991.

[25] P. J. Green and R. Sibson. Computing Dirichlet tesselation. The Computer

Journal, 2:168{173, 1978.

[26] O. Hassan, K. Morgan, E. J. Probert, and J. Peraire. Unstructured

tetrahedral mesh generation for three-dimensional viscous
ows. International

Journal for Numerical Methods in Engineering, 39:549{567, 1996.

[27] O. Hassan, E. J. Probert, K. Morgan, and J. Peraire. Mesh generation and

adaptivity for the solution of compressible viscous high speed
ows.

International Journal for Numerical Methods in Engineering,

38(7):1123{1148, 1995.

182

[28] H. Jin and R. I. Tanner. Generation of unstructured tetrahedra by advancing

front technique. International Journal for Numerical Methods in Engineering,

36:1805{1823, 1993.

[29] B. Joe. Delaunay triangular meshes in convex polygons. SIAM J. Sci. Stat.

Comp., 7(2):514{539, 1986.

[30] B. Joe. Delaunay versus max-min solid angle triangulations for

three-dimensional mesh generation. International Journal for Numerical

Methods in Engineering, 31:987{997, 1991.

[31] Y. Kallinderis, A. Khawaja, and H. McMorris. Hybrid prismatic/tetrahedral

grid generation for complex 3-D geometries. In AIAA-95-0211, 1995.

[32] Y. Kallinderis, A. Khawaja, H. McMorris, S. Irmisch, and D. Walker. Hybrid

prismatic/tetrahedral grids for turbomachinery applications. In Proceedings of

the 6th International Meshing Roundtable, pages 21{32. Sandia National

Laboratories, Albuquerque, NM, 1997.

[33] Y. Kallinderis and S. Ward. Hybrid prismatic/tetrahedral grid generation for

complex 3-d geometries. In AIAA-93-0669, 1993.

[34] Y. Kallinderis and S. Ward. Prismatic grid generation for three-dimesnional

complex geometries. AIAA Journal, 31(10):1850{1856, 1993.

[35] B. K. Karamete, R. Garimella, and M. S. Shephard. Recovery of an arbitrary

edge on an existing surface mesh using local mesh modi�cations. submitted to

International Journal for Numerical Methods in Engineering, 1998. SCOREC

Technical Report #19-1998.

[36] A. Khamasayseh and A. Kuprat. Anisotropic smoothing and solution

adaption for unstructured grids. International Journal for Numerical Methods

in Engineering, 39:3163{3174, 1996.

[37] A. Khawaja, H. McMorris, and Y. Kallinderis. Hybrid grids for viscous
ows

around complex 3-D geometries including multiple bodies. In AIAA-95-1685,

pages 424{441, 1995.

183

[38] A. Liu and B. Joe. On the shape of tetrahedra from bisection. Mathematics of

Computation, 63(207):141{154, July 1994.

[39] R. L�ohner. Some useful data structures for the generation of unstructured

grids. Communications in Applied Numerical Methods, 4:123{135, 1988.

[40] R. L�ohner. Matching semi-structured and unstructured grids for

Navier-Stokes calculations. In AIAA-93-3348-CP, 1995.

[41] R. L�ohner. Generation of unstructured grids suitable for rans calculations. In

S. Idelsohn, E. O~nate, and E. Dvorkin, editors, Computational Mechanics -

New Trends and Applications, pages 1{11. CIMNE, Barcelona, Spain, 1998.

[42] R. L�ohner and P. Parikh. Three-dimensional grid generation by the advancing

front method. International Journal for Numerical Methods in Engineering,

8:1135{1149, 1988.

[43] M. M�antyl�a. Introduction to Solid Modeling. Computer Science Press,

Rockville, Maryland, 1988.

[44] M. J. Marchant and N. P. Weatherill. Unstructured grid generation for

viscous
ow simulations. In 4th International Conference on Numerical Grid

Generation in Computational Fluid Dynamics and Related Fields, pages

151{162, Swansea, Apr 1994.

[45] D. L. Marcum. Generation of unstructured grids for viscous
ow applications.

In AIAA-95-0212, 1995.

[46] D. L. Marcum and N. P. Weatherill. Generation of unstructured grids for

viscous
ow applications. In AIAA-95-1726, 1995.

[47] D. L. Marcum and N. P. Weatherill. Unstructured grid generation using

iterative point insert and local reconnection. AIAA Journal, 33(9):1619{1625,

1995.

[48] D. J. Mavriplis. Adaptive mesh generation for viscous
ows using delaunay

triangulation. Journal of Computational Physics, 90:271{291, 1990.

184

[49] B. E. Meserve. Fundamental Concepts of Geometry. Dover Publications, Inc.,

New York, 1983.

[50] P. M�oller and P. Hansbo. On advancing front mesh generation in three

dimensions. International Journal of Numerical Methods in Engineering,

38:3551{3569, 1995.

[51] M. Mortenson. Geometric Modeling. J. Wiley and Sons, New York, 1985.

[52] R. O'Bara, M. W. Beall, and M. S. Shephard. Specifying analysis information

within a geometric framework. In 4th US National COngress on

Computational Mechanics, San Francisco, CA, August 6-8 1997.

[53] J. Peraire, K. Vahdati, K. Morgan, and O. C. Zienkiewicz. Adaptive

remeshing for compressible
ow computations. J. Comp. Phys., 72:449{466,

1987.

[54] S. Pirzadeh. Viscous unstructured three-dimensional grids by the

advancing-layers method. In Proceedings of the 32nd Aerospace Sciences

Meeting & Exhibit, number AIAA-94-0417, Reno, NV, Jan 1994.

[55] M.-C. Rivara. A 3-D re�nement algorithm suitable for adaptive and multi-grid

techniques. Communications in Applied Numerical Methods, 8:281{290, 1992.

[56] H. Samet. The Design and Analysis of Spatial Data Structures.

Addison-Wesley Publishing Co., 1990.

[57] W. J. Schroeder. Geometric Triangulations: with Application to Fully

Automatic 3D Mesh Generation. PhD thesis, Rensselaer Polytechnic

Institute, Scienti�c Computation Research Center, RPI, Troy, NY 12180-3590,

May 1991. SCOREC Report # 9-1991.

[58] W. J. Schroeder and M. S. Shephard. On rigorous conditions for

automatically generated �nite element meshes. In J. Turner, J. Pegna, and

M. Wozny, editors, Product Modeling for Computer-Aided Design and

Manufacturing, pages 267{281. North Holland, 1991.

185

[59] R. Sedgewick. Algorithms in C++. Addison-Wesley Publishing Co., Inc.,

1992.

[60] D. Sharov and K. Nakahashi. Hybrid prismatic/tetrahedral grid generation

for viscous
ow applications. AIAA Journal, 36(2):157{162, Feb 1998.

[61] M. S. Shephard. The speci�cation of physical attribute information for

engineering analysis. Engineering with Computers, 4:145{155, 1988.

[62] M. S. Shephard. Meshing environment for geometry based analysis.

International Journal of Numerical Methods in Engineering, R. H. Gallagher

Special Issue.

[63] M. S. Shephard, M. W. Beall, R. Garimella, and R. Wentorf. Automatic

construction of 3-D models in multiple scale analysis. Computational

Mechanics, 17(3):196{207, Dec 1995.

[64] M. S. Shephard, H. L. de Cougny, R. M. O'Bara, and M. W. Beall.

Automatic grid generation using spatially-based trees. In CRC Handbook of

Grid Generation. CRC Press, to appear.

[65] M. S. Shephard and M. K. Georges. Automatic three-dimensional mesh

generation by the Finite Octree technique. International Journal for

Numerical Methods in Engineering, 32(4):709{749, 1991.

[66] M. S. Shephard and M. K. Georges. Reliability of automatic 3-D mesh

generation. Computer Methods in Applied Mechanics and Engineering,

101:443{462, 1992.

[67] M. S. Shephard, T.-L. Sham, L.-Y. Song, V. S. Wong, R. Garimella, H. F.

Tiersten, B.J. Lwo, Y. LeCoz, and R. B. Iverson. Global/local analyses of

multichip modules: Automated 3-d model construction and adaptive �nite

element analysis. In Advances in Electronic Packaging 1993, volume 1, pages

39{49. American Society of Mechanical Engineers, 1993.

186

[68] C. A. Taylor. Clinical applications of cfd, visualization and virtual reality in

cardiovascular medicine. In Proceedings of the ASME Winter Annual Meeting,

Anaheim, CA, 1998. ASME.

[69] C. A. Taylor, T. J. R. Hughes, and C. K. Zarins. Finite element modeling of

blood
ow in arteries. Computer Methods in Applied Mechanics and

Engineering, 158(1-2):155{196, 1998.

[70] M. G. Vallet, F. Hecht, and B. Mantel. Anisotropic control of mesh

generation based upon a voronoi type method. In A.S.-Arcilla, J.H�auser,

P.R.Eiseman, and J.F.Thompson, editors, Numerical Grid Generation in

Computational Fluid Dynamics and Related Fields, pages 93{103. Elsevier

Science Publishers B.V. (North-Holland), 1991, 1991.

[71] D. F. Watson. Computing the n-dimensional Delaunay tessellation with

application to Voronoi polytopes. The Computer J., 24(2), 1981.

[72] K. J. Weiler. Topological Structures for Geometric Modeling. PhD thesis,

Rensselaer Design Research Center, Rensselaer Polytechnic Institute, Troy,

NY, May 1986.

[73] K. J. Weiler. Boundary graph operators for non-manifold geometric modeling

topology representation. In M. J. Wozny, H. W. McLaughlin, and J. L.

Encarnacao, editors, Geometric Modeling for CAD Applications. North

Holland, 1988.

[74] K. J. Weiler. The radial-edge structure: A topological representation for

non-manifold geometric boundary representations. In M. J. Wozny, H. W.

McLaughlin, and J. L. Encarnacao, editors, Geometric Modeling for CAD

Applications, pages 3{36. North Holland, 1988.

[75] F. M. White. Viscous Fluid Flow. McGraw Hill, Inc., 2nd edition, 1991.

[76] V. S. Wong. Quali�cation and management of analysis attributes with

application to multi-procedural analyses for multichip modules. Master's

187

thesis, Mechanical Eng., Aeronautical Eng., & Mechanics, Rensselaer

Polytechnic Institute, Troy, NY 12180-3590, 1994.

[77] X. Xu, C. C. Pain, A. J. H. Goddard, and C. R. E. de Oliviera. An automatic

adaptive meshing technique for Delaunay triangulations. Computer Methods

in Applied Mechanics and Engineering, 161:297{303, 1998.

