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ABSTRACT

Stabilized finite element methods have been shown to yield robust, accurate numerical

solutions to both the compressible and incompressible Navier-Stokes equations for lam-

inar and turbulent flows. This work presents an application of mesh entity based, hier-

archical basis functions to a new stabilized finite element formulation, which is shown

to yield high accuracy and more cost effective simulations when compared with the tra-

ditional, linear basis methods. The new formulation is then demonstrated numerically

to yield nearly optimal rates of convergence with respect to the interpolation error. A

second-order accurate, implicit time integrator with user-controllable numerical dissipa-

tion is presented for advancing the semidiscrete system of equations in time. This time

integrator is proven to be stable and second-order accurate for a linear model problem,

and demonstrated to have desirable characteristics on more complicated flows. A variety

of examples are provided that demonstrate that the most cost-effective simulations (in

terms of CPU time, memory, and disk storage) can be obtained using higher-order basis

functions when compared with the standard linear basis. The formulation has also been

successfully applied to unsteady flows, and several examples will be given. An applica-

tion to a direct numerical simulation (DNS) of a turbulent channel flow at Re� � ��� is

then presented to assess the usability of the hierarchical basis for a more complex turbu-

lent flow. Postprocessing techniques are also described for the effective visualization of

hierarchical solutions, as well as numerical evaluation of turbulent statistics.

viii



CHAPTER 1

INTRODUCTION AND HISTORICAL REVIEW

Computational fluid dynamics (CFD) has been rapidly gaining popularity over the past

several years for technological as well as scientific interests. For many problems of in-

dustrial interest, experimental techniques are extremely expensive or even impossible due

to the complex nature of the flow configuration. Analytical methods are often useful in

studying the basic physics involved in a certain flow problem, however, in many interest-

ing problems, these methods have limited direct applicability. The dramatic increase in

computational power over the past several years has led to a heightened interest in nu-

merical simulations as a cost effective method of providing additional flow information,

not readily available from experiments, for industrial applications, as well as a comple-

mentary tool in the investigation of the fundamental physics of turbulent flows, where

analytical solutions have so far been unattainable. It is not expected (or advocated), how-

ever, that numerical simulations replace theory or experiment, but that they be used in

conjunction with these other methods to provide a more complete understanding of the

physical problem at hand. Turbulence researchers are now able to use direct numerical

simulation (DNS) to study the basic physics of turbulent flows. Kim et al. [55] present an

application of DNS to channel flow, and Le et al. [57] present a DNS application to flow

over a backward-facing step. Both of these studies were conducted to gain new insight

into the physical mechanisms involved in turbulent flow.

As computational power grows, the need for more advanced numerical algorithms

also increases. There are many different techniques for constructing numerical solutions

of fluid flow problems, e.g. finite difference methods, finite volume methods, and finite

element methods, to name a few, and all have their strengths and weaknesses. Since the

goal of the present research lies in the development of methods which may ultimately be

used for large-scale applications of industrial interest, finite element methods have been

chosen, given their accuracy as well as their ability to approximate arbitrarily complex ge-

ometric configurations. The finite element method applied to fluid dynamics has reached

a level of maturity over the past two decades such that it is now being successfully ap-

1
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plied to industrial strength problems including turbulent flows (for example, see Haworth

and Jansen [35] for an application to reciprocating IC engines). Due to its robustness

and proven accuracy, this numerical technique has been chosen for the foundation of the

present research.

One of the goals of the present work is to use hierarchical basis functions as a

means to attain more accurate and cost-effective finite element simulations of complex

turbulent flows. It is hoped that this will enable simulations of fluid dynamical problems

that are not presently feasible due to current cost restrictions. With these goals in mind,

we have chosen a stabilized finite element formulation based on the formulation of Taylor

et al. [71] for incompressible flows, that has been generalized to accommodate higher-

order basis functions. This formulation has been demonstrated to be robust and accurate

for laminar as well as turbulent flow simulations using linear basis functions. The new

stabilized formulation builds global conservation into the weak formulation that is lacking

in many previous formulations due to the presence of the stabilization of the continuity

equation. This, combined with the higher-order accuracy that stabilized methods have

been shown to attain, has influenced our selection of this formulation for constructing

higher-order simulations.

Over the last two decades, stabilized finite element methods have grown in popular-

ity, especially for fluid dynamics applications. Starting with the SUPG method of Brooks

and Hughes [11] through the work of Hughes et al. [38] on the Galerkin/least squares

(GLS) method, and the streamline diffusion method (related to the SUPG method) of

Hansbo and Szepessy [30], a number of stabilized formulations have been proposed. Re-

cent work on variational multiscale methods of Hughes [36] and related work on residual-

free bubbles by Ruśso [59] and Brezzi et al. [10] have not only proposed new directions

for these methods, but have also begun to uncover the theoretical basis for their design.

Recent application of the variational multiscale method to large eddy simulation of turbu-

lence by Hughes et al. [41] has also proven extremely fruitful. A key feature of stabilized

methods is that they have been proven (for relevant model problems) to be stable and

to attain optimal convergence rates with respect to the interpolation error (see Franca et

al. [22], and Hughes et al. [38]). Johnson and Szepessy [51] have also carried out a non-

linear analysis of the related streamline diffusion method for the Burgers equation. This
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implies that as the polynomial order of the underlying finite element space is increased,

the error in the numerical solution is of the same order as the interpolation error. This

property is crucial to the effective use of higher-order basis functions.

Over the past several years, many research groups have applied higher-order dis-

cretization methods to fluid dynamics simulations in an effort to achieve highly accurate

simulations on unstructured grids. Sherwin and Karniadakis [67] developed a C� con-

tinuous hierarchical basis based on a generalized tensor product using mixed-weight Ja-

cobi polynomials and applied it to a higher-order splitting scheme for the incompressible

Navier-Stokes equations in [69]. They presented numerical results to verify the conver-

gence properties of their method. For Euler flows, the discontinuous Galerkin method

provides a straightforward way of constructing higher-order solutions (see Biswas et

al. [8] and also Devine [20]). Oden et al. [58] have recently successfully applied the

discontinuous Galerkin method to diffusion type problems using arbitrary polynomial or-

der in each element. Others have generalized spectral methods to unstructured grids to

achieve spectral accuracy without being restricted to regular domains (see Carpenter and

Gottlieb [13] and Sherwin and Karniadakis [68]). All these methods, however, use the

standard Galerkin method for the spatial discretization. The work of Bonhaus [9] uses

a higher-order basis stabilized method (SUPG) for fluid dynamics simulations, however

much of the emphasis was on 2-D problems, and compressible flows, and no turbulent

flows were considered. The work presented here attempts to remedy this situation, and to

quantify the potential benefit of using higher-order, stabilized finite element methods for

fluid dynamics simulations.

In the present work, the spatial discretization of the stabilized formulation for the

Navier-Stokes equations is carried out using a higher-order, hierarchical basis which is

C� continuous between finite elements. The hierarchical basis used here is based on the

abstract mesh data structure of Beall and Shephard [4], where basis functions are associ-

ated with the individual topological entities of the mesh. This type of basis construction

was first introduced by Shephard et al. [66] (using the basis functions of Carnevali et

al. [12]) who considered the basis functions to be associated with the mesh entities in a

special way. Their mesh entity based hierarchical basis functions support non-uniform

k-refinement of meshes of arbitrary element type, e.g. tetrahedral, hexahedral, and pyra-
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midal, by employing an explicit decomposition of shape functions into element blends,

ensuring the correct element support and entity level functions, giving the desired poly-

nomial order on an entity. To gain this generality, we have dispensed with the traditional

finite element mesh data structures consisting of only element nodal connectivity (see

Hughes [42]) in favor of this more general and complete topological adjacency mesh rep-

resentation. To maintain efficiency on large-scale problems, however, the abstract data

structure is only currently used in the pre- and post-processing stages of the simulation,

and is therefore not read by the analysis code. A compact data structure will be described

that is simple to implement within existing finite element codes, as it represents a rela-

tively straightforward generalization of the traditional data structures. Finally, note that

we are using k to refer to the polynomial order of the finite element basis. This is in place

of the more standard notation, p, which we reserve for the pressure variable.

Since we are interested in time-accurate large-eddy (LES) and direct numerical

(DNS) simulations of turbulent flows (in addition to steady Reynolds averaged simula-

tions) and we are using higher-order spatial discretization techniques, a time integrator

of at least second order accuracy is deemed necessary. An implicit, second-order accu-

rate time integrator is introduced for advancing the system of equations in time, coupled

with Newton’s method to solve the resulting nonlinear algebraic system in a predictor

multi-corrector format. This time integrator has built into it a user controllable amount

of numerical dissipation, which enables precise control over spurious, un-resolvable fre-

quencies that may appear during the solution procedure (varying from simulation to simu-

lation). After proving that the time integrator is second order accurate and unconditionally

stable for a linear model problem, we apply it to the problem of vortex shedding behind a

circular cylinder to study its temporal resolution properties.

Another key aspect of the present research is the use of parallel computers to ef-

fectively speed up computations. Finite element calculations are extremely well suited to

parallel computing environments since much of the work is in computing element level

integrals, and performing sparse matrix-vector products which both parallelize well. Sev-

eral methods have been proposed which use parallel computers for finite element imple-

mentations, see, for example, Bastin [1], Johan and Hughes [47], Kennedy et al. [54],

Bey et al. [7], and Biswas et al. [8]. Many of these implementations rely on some high
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level language, such as CM-Fortran (used by Johan and Hughes [47] as well as Kennedy

et al. [54]), where interprocessor communication patterns are actually constructed by

the compiler, requiring minimal coding effort, however performance is far from optimal

(Bastin [1] showed these methods can take up to 15% of total CPU time for communica-

tion as opposed to 3% using pre-processed data structures). The current implementation

is closely related to that used by Bastin [1], taking advantage of the MPI library for in-

terprocessor communication using “message passing”. The use of message passing for

these communications also enables the use of distributed computing environments which

are quickly gaining popularity. To enable rapid communication of all information lying

on partition boundaries during the analysis, the data structures necessary for parallel com-

munication are pre-processed. This pre-processed data structure contains all the informa-

tion necessary to carry out the interprocessor communication, which includes hierarchical

degree-of-freedom information associated with mesh entities (edges and faces) that lie on

the interprocessor boundary, as well as the linear vertex modes. Care has been taken to re-

duce communication cost by requiring that any pair of processors communicate no more

than once.

Numerical simulations of the Navier-Stokes equations (through cubic polynomial

order basis) will be presented that verify that nearly optimal convergence rates are ob-

served for problems where analytical results are available, as well as for the linear advection-

diffusion equation (through polynomial order �). The method will then be applied to more

complex (though still laminar) flow simulations which demonstrate a clear advantage of

higher-order methods over the traditional, linear basis methods for the incompressible and

compressible Navier-Stokes equations. Finally, an application will be made to a turbulent

flow using direct numerical simulation (DNS). Although these turbulence results are still

in the preliminary phase, the results are promising. It will be shown that, in the cases

where a direct comparison is possible, the higher-order methods can provide the most

cost-effective solutions in terms of both storage and computer time.

For several of the numerical simulations, a careful cost vs. accuracy study will be

conducted to determine the cost-effectiveness of the hierarchical basis. This study will

consider the cost with respect to various measures (including direct CPU time) which

will quantify where improvements can be made to make the higher-order methods even
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more cost effective. The results presented will show that for steady problems, cubic

basis simulations can be over four times more cost effective than the standard linear-basis

methods. Results will also be presented for unsteady simulations, however, a quantitative

comparison of the costs for these flows is difficult.

The work will be presented as follows. First, after providing necessary prelimi-

nary information relating to the abstract mesh data structures, Chapter 2 will describe

the mesh entity based hierarchical basis to be used in the present work. This chapter

will conclude with an application of the higher-order basis to the 2-D, linear advection-

diffusion equation using the SUPG finite element formulation, and convergence rates will

be verified. Chapter 3 develops the stabilized finite element formulation that will be used

for incompressible flows, as well as the second order time integrator. Also presented in

this chapter will be an application of the basis to compressible flows, and some exam-

ples will be provided. Several implementational aspects relating to the use of hierarchical

basis functions will be discussed in Chapter 4, and numerical examples will be given in

Chapter 5. Next, Chapter 6 will present an initial application of the methods to a direct

numerical simulation of turbulence, and issues related to these types of simulations will

be discussed. Conclusions and future research directions will be given in Chapter 7, and

the contributions of the present research will be summarized.



CHAPTER 2

MESH ENTITY BASED HIERARCHICAL BASIS

The hierarchical basis functions used in the present work are based on the constructions

of Shephard et al. [66] for specifying variable k-order meshes. These constructions are

based on the topological hierarchy of mesh entities (vertices, edges, faces, and regions)

which define the finite element mesh. Due to the restrictions of standard finite element

data structures consisting only of nodal coordinates and element connectivity, variable

k-order finite element meshes must rely on richer structures that allow the independent

assignment of polynomial order over the elements as noted by Demkowicz et al. [19]. The

set of basis functions used here has also been shown to yield better-conditioned matrices

than other hierarchical bases for tetrahedral elements (see Carnevali et al. [12]). This

chapter presents a detailed discussion of the finite element basis used in the present work.

The description of a new compact mesh data structure that is used to maintain efficiency

for large-scale problems will be presented in Chapter 4.

2.1 Abstract mesh data structure

In order to define the finite element basis, we will first introduce the abstract mesh

data structure on which the element level basis will be defined (more detail on the mesh

data structure used in the present work may be found in the work of Beall and Shep-

hard [4]). The abstract mesh is represented by a data structure (mesh database) that

maintains a complete set of adjacency relationships between the various entities in the

finite element mesh, known as “mesh entities”. A mesh entity is defined as an individual

topological object that is used to define the domain and boundary of a traditional finite

element. These entities are of type: region, face, edge, and vertex. The first-order adja-

cencies between these mesh entities are as follows: a region is bounded by faces, a face

is bounded by edges, and an edge is bounded by vertices.

We will refer to the abstract mesh data structure, including the adjacency relation-

ships, as TM . This mesh database is complemented by a set of functions which support

general query operations such as first-order adjacencies (e.g. a function that returns the

7
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four vertices attached to a given tetrahedral mesh region), allows arbitrary data to be

attached to mesh entities (or geometric model entities), and provides additional function-

ality. The mesh database is also a powerful tool for many other tasks relating to pre- and

post-processing higher-order simulations (e.g. boundary conditions and parallel process-

ing data structures rely heavily on the abstract mesh adjacency representation).

In addition to the mesh entity adjacencies (and their auxiliary functions), the mesh

database also maintains a unique relationship between the finite element mesh and the ge-

ometric model of the underlying physical domain. This geometric model is represented in

terms of “geometric model entities”, in analogy with mesh entities, and similar topologi-

cal adjacency information is stored. The relationship between mesh and model is known

as “classification” and defines the unique model entity that each mesh entity is classified

on (more details of mesh-model classification may be found in Beall and Shephard [4]).

Mesh-model classification is critical for the assignment of boundary conditions in a mesh-

independent manner and greatly simplifies the application of boundary conditions (see

Shephard [65]). As part of this work, a graphical user interface (GUI) was developed to

enable the assignment of boundary conditions directly to the geometric model entities,

which are subsequently inherited by the mesh entities based on their classification (there

are generally many fewer model entities than mesh entities). Boundary conditions for a

simulation are thus assigned without reference to a mesh, therefore, different meshes of

the same physical model may be used without re-assigning boundary condition attributes.

In practice, the mesh database is a library of C++ classes that define the various

mesh and model objects and have member functions that return the desired adjacency

information. The concepts introduced here can be illustrated by the simple example C++

code fragment given in Program 2.1.1. First, the geometric model, model.dmg, and the

mesh, mesh.sms, are loaded (it is presumed that the mesh is classified on this model).

Then all regions associated with this mesh are visited and the list of vertices attached to

the current region is retrieved. This vertex list may then be processed in any way, for

example, coordinates or ID numbers could be collected into an array.
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Program 2.1.1 Mesh database example

DiscreteModel *model = new DiscreteModel("model.dmg",0);

Mesh *mesh = MM_new(1,model);
M_load(mesh,"mesh.sms");

MRegion *region;
SimpleMeshRegionIter rIter = mesh->firstRegion();
while ( rIter(region) ) {

SPList<MVertex*> *vertices = region->vertices();
process list of vertices...

}

2.2 Finite element basis functions

To proceed with the definition of the element level basis, we first precisely define

the finite element. The definition given here is similar to the standard finite element,

although additional information is also included. Given the topological description of the

mesh along with its adjacency relationships, TM , we define:

Definition 2.1 The closure of a finite element, denoted �e, of dimension de, is defined as

�e � fMde
e �Mde

e fMde��
j g� � � � �Mde

e fM�
j gg� (2.1)

where Mde
e represents mesh entity e of dimension de.

We have followed the notation of Beall and Shephard [4] for the mesh entity adjacencies

as

Mde
e fMdj

j g (2.2)

which is the jth mesh entity of dimension dj, bounding mesh entity e of dimension de.

In other words, a finite element is a mesh region along with its lower order bounding

mesh entities. For example, a tetrahedral finite element has four bounding vertices, six

bounding edges, four bounding faces, and one region. Additional information, such as

the direction a face (or edge) is used by a region (or face), is also maintained in the mesh
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database, and there are functions that return this information.

To construct the discrete, finite element solution, we expand the continuous quan-

tities appearing in the weak form (given in the following chapter) in terms of a C� con-

tinuous, piecewise polynomial basis defined on each element (as described below). We

define this element level basis with the aid of the piecewise polynomial space defined as:

Definition 2.2 Let Pk��e� be the piecewise polynomial space, complete to order k, de-

fined on the finite element �e.

The basis for Pk��e� consists of functions, Na��i�� a � � � � � nes, contributed by the mesh

entities in �e. Here, nes is the number of basis functions contributing to a given element’s

basis and equals the sum of the number of functions associated with each bounding en-

tity. The polynomial order assigned to each entity is used to compute the number of basis

functions it will contribute. The local coordinate system, �i, will be described below.

Although the polynomial order may be assigned independently to each mesh entity, it

should be noted that the order of complete polynomial representable by a given element’s

basis will be constrained by the minimum complete order assigned to any of the entities

in �e, with the exception of vertex modes, which are linear, regardless of the basis order.

The direct assignment of the polynomial order to each mesh entity, however, enables a

straightforward extension to non-uniform k meshes and meshes of mixed-topology el-

ements, and may also be useful to resolve strong gradients in a pre-determined spatial

direction such as boundary layers where strong gradients occur in predictable directions.

2.2.1 Parametric coordinate systems

The basis functions are defined in terms of parametric coordinate systems, ��i, asso-

ciated with the individual mesh entities, as well as, �i, the local coordinate of the element

that is using the function. Each edge, face, and region in the finite element mesh has its

own local coordinates. These coordinate systems need not be the same for all entities (of

a given type) in the mesh, particularly when elements of different topologies are present,

which is in contrast to Lagrange basis functions, that are defined solely in terms of a sin-

gle element coordinate system. Since we will be dealing mainly with meshes composed

entirely of tetrahedral elements, we will concentrate the discussion on “simplex” type co-
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Topology Parametric coordinates

Edge ���� ��� � �� ���
Face ���� ���� ��� � �� ��� � ���

Region ��� ��� ��� �� � �� �� � �� � ��

Table 2.1: Local simplex-type coordinate systems

ordinate systems; more details on coordinate systems useful for different types of element

topologies can be found in Dey [21] and also Shephard et al. [66].

A general methodology has been developed by Shephard et al. [66] for the con-

struction of k-version finite element meshes, which is used in the present work. Each

basis function (for k � �) is decomposed as

N��i� � ���i���j��� 	��i� (2.3)

where 	��i� is a blending function of fixed polynomial order ensuring that N��i� has the

correct global support, ���i���j�� is an entity level function giving the desired polynomial

order on the entity, and �i���j� represents the mapping from entity, ��j, to element, �i,

coordinates. This decomposition allows for the efficient implementation of non-uniform

k-order meshes as well as the use of meshes with mixed-topology elements. Since the

blending function depends only on the element coordinate, it may differ for topologically

different elements sharing the same mesh entity (which provides the correct polynomial

order behavior, regardless of the topology of the bounding element). The decomposition

of a shape function in terms of an entity level function and an element blend is illustrated

in Figure 2.1 for a cubic basis function on a triangular element. In Figure 2.1, the element

blend is shown in the upper left, and the entity level function (specific to the mesh edge)

is shown on the upper right, their product is the resulting (cubic) shape function for the

triangular element and is shown on the bottom.

To evaluate a basis function for a given element, the entity level function must first

be mapped from the entity level coordinate (indicated by a hat) into the local coordi-

nate system of this element. For simplex type elements, the local coordinate systems are

shown in Table 2.1, where � � �i� ��i � �. The subscripts on the parametric coordinates

indicate the local vertex where the coordinate takes on its maximal value, as given by the
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Element blend Entity function

Element basis
function

Mapping

Figure 2.1: Shape function decomposition

vertex ordering in Figure 2.2. Also indicated in Figure 2.2 are the edge directions for

a simplex-type element, crucial to the basis function constructions and the development

of the compact data structures. For these parametric coordinates, the mapping from a

bounding entity (edge or face) to the element (region) is relatively straightforward, in-

volving only a possible sign change.

2.2.2 Blending functions

The blending function appearing in Equation 2.3, 	��i�, depends only on the ele-

ment, and ensures that each basis function has the correct global support (i.e. it must be

zero on lower order mesh entities it does not bound). For tetrahedral regions, the blends



13

will be defined as (see Dey [21]):

	��i� � ���i�j (2.4)

	��i� � �i�j�m (2.5)

for the edges and faces, respectively. The subscripts are defined by the local vertex order-

ing in Figure 2.2, for example ������ is the element blend for the edge between vertices

� and �. These choices of element blend are not the only possibility and additional ones

are explored in Dey [21]. The blending functions are also useful for meshes comprised of

multiple topology elements. Figure 2.1 shows the element blend and entity level function

for a triangular element. Here, the blend is given by (2.4) and the entity level function

(defined below) is ����j� � ���� ���. Note that the mapping from edge (hat) coordinates to

element coordinates before is also described below.

1 2

1 2

3

1 2

3

4

Edge

Face

Region

Figure 2.2: Local simplex-type vertex ordering and edge direction
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2.2.3 Entity level functions

The entity level function (in Equation 2.3), ����i� provides the desired polynomial

order for a given entity’s basis function. These functions can be comprised of any set of

hierarchical basis functions, and in general are of order (k � q), where q is the order of

the blend, and k is the desired order. The hierarchical basis functions used here are taken

from Carnevali et al. [12] and have been shown to yield better element level conditioning

than standard Legendre polynomials for tetrahedral regions. The entity level functions

are given by the following expressions (see also Dey [21]):

Edge (k 	 �):

����i� �
k��X
m��

����m �

m� �

�
k � �

m

��
k � �

m

�
��m�

���
k���m

(2.6)

Face (k 	 	):

����i� �
����X
i��

����X
j��

�
��
�
�i�j i� j� �i� j��

�
�� � �

j

��
��
j

��
�� � �

i

��
��
i

�

� �Qi�j
m���m ��� � ����m �m� ��
��

���
�����j ���

�����i
(2.7)

where ��� �� � �� � � � � k � � and �� � �� � �� � k .

Region (k 	 �):

����i� � ��� ��� ��� �A� B � C�

A �
����X
i��

����i i�
�
�� � �

i

��
��
i

�
��m� �� i��

�m� �
���
�����i

B �
����X
i��

i�

�
�� � �

i

��
��
i

�
��n� 	� i��

�n� 	
���
�����i

� ��� � ��i

C �
����X
i��

i�

�
�� � �

i

��
��
i

�
���� � i��

���
���
�����i

� ��� � ��� � ��i

(2.8)
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where ��� ��� �� � �� � � � � k � 	 and �� � �� � �� � �� � k and also m �

�� � �� � �� � 	� n � �� � �� � �.

In these formulas,
�
a

b

�
represents the standard binomial coefficient, i.e. a items taken b at

a time, which can also be expressed as

�
a

b

�
�

���
��

a�a��	����a�b��	
a


if b 	 �

� if b � �
(2.9)

To construct element matrices and residual vectors the discrete solution is expanded

in terms of these basis functions as

�e��i� t� �
nesX
a��

�a�t�Na��i� (2.10)

where �e��i� t� is the finite element approximation of any variable (e.g. pressure or ve-

locity) on element e and �a�t� are the desired coefficients with respect to the basis (since

we are using a semi-discrete formulation, the coefficients depend on time). As mentioned

above, the number of basis functions contributed by each mesh entity depends on the

polynomial order assigned to the entity. When only C� continuity is desired, vertices

contribute one basis function (equivalent to the standard linear Lagrange basis function).

For an element level basis complete to order k, Table 2.2 provides the number of basis

functions contributed by each mesh entity type. From this table, we can compute the total

number of shape functions contributed by a tetrahedral element complete to order k as

nes � �nv � �ne � �nf � nr

�
�

�
�k � ���k � ���k � 	��

(2.11)

At this point we would like to point out some important differences between hier-

archical and Lagrange basis functions. The main difference is that the hierarchical basis

of order k is a subset of the basis of order k � �, i.e. Pk��e� 
 Pk����e�. This property

greatly simplifies the generation of basis functions, and the varying of polynomial order.

Hierarchical and Lagrange basis functions also differ as follows: for a given polynomial
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Vertex: nv � � �k 	 ��
Edge: ne � �k � �� �k 	 ��
Face: nf � �

�
�k � ���k � �� �k 	 	�

Region: nr �
�
�
�k � ���k � ���k � 	� �k 	 ��

Table 2.2: Number of contributed shape functions

order, sayN , all functions for the Lagrange basis are of orderN , in contrast, the individual

hierarchical basis functions will be of different order, however the complete polynomial

order is stillN . The polynomial order of each of the basis functions for each entity type is

discussed in detail in Shephard et al. [66]. To get the total (global) number of basis func-

tions, ns (related to the total number of equations to be solved), we sum over the number

of shape functions contributed by each mesh entity for all entities in the mesh. (Note that

for a Lagrange basis ns simply equals the number of “nodal points” in the mesh.) An-

other key difference is that the hierarchical basis function coefficients do not correspond

to solution values at specific spatial locations (as they do for Lagrange elements), they

are actually related to higher-order moments of the solution (and its derivatives) on the

associated entity. This property makes many routine operations on finite element data

more difficult to carry out. For example, post-processing and collecting turbulence statis-

tics must rely on more advanced techniques when dealing with the higher-order basis

functions. More will be said about these topics later.

2.3 Application: Advection-Diffusion equation

This section presents an application of the basis functions described above to the

linear advection-diffusion equation, a simple model problem for the fluid flow equations

containing many of their numerical difficulties. This application provides a good testbed

for the hierarchical basis functions in the context of a well-understood linear problem.

The finite element formulation used for this equation is the SUPG (Streamwise Upwind

Petrov-Galerkin) method described in Franca and Frey [22]. The formulation will be

thoroughly described for the Navier-Stokes equations in Chapter 3. For more details on

the method, as well as the stability and convergence proofs, see Franca and Frey [22],

also see Whiting et al. [76]. The formulation presented was proven stable and higher-
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order accurate by Franca and Frey [22] which implies that as the polynomial order of the

basis is increased, the error in the finite element solution will converge at a rate equal to

the interpolation error, or O�hk���. This important property is verified numerically below

for polynomial order � through �. An example will also be provided which shows the

application to an advection-dominated case.

Consider the homogeneous-Dirichlet boundary value problem for the steady, ad-

vection-diffusion equation where � � ��xi� is sought such that

ai ��i � ���ii � f in �� (2.12)

� � g on �g (2.13)

where � is the spatial domain of the problem and �g is the portion of the boundary with

prescribed essential boundary conditions (denoted by g), ai are the Cartesian components

of a divergence-free advective velocity field, � �� �� is the diffusion coefficient, and

f�xi� is a prescribed source term. Here and in what follows, the summation convention is

in effect on repeated indices and an inferior comma denotes differentiation with respect

to the variables following it.

2.3.1 Weak form

To proceed with the finite element discretization of (2.12), we first introduce the

finite element approximation spaces for the advection-diffusion equation. Recall that �

represent the physical spatial domain of the problem. H���� represents the usual Sobolev

space of functions with square-integrable values and derivatives on �. The domain �

is discretized into nel finite elements, �e, which may be identified with the regions (or

faces in 2 dimensional problems) in the mesh, TM , along with their lower order bounding

entities. With this, we can define the trial solution space as

Sk
h � f�j� � H����� �jx��e � Pk��e�� � � �g on �gg� (2.14)
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and the weight function space

Wk
h � fwjw � H����� wjx��e � Pk��e�� w � � on �gg� (2.15)

where Pk��e� (described in Section 2.2) is the piecewise polynomial space, complete to

order k 	 �, and �g is the portion of the boundary where essential boundary conditions

are prescribed. Also note that �g represents the interpolation of the prescribed boundary

conditions, g, in the finite element basis.

The discrete system of equations is derived by multiplying the original PDE (2.12),

the so-called strong form, by a weight function (which is a member of the weight space),

integrating over the physical domain, and performing integration by parts on the diffusive

terms to reduce the continuity requirements on the solution space. This results in what

is known as the standard Galerkin method applied to Equation (2.12). It is well known

that the Galerkin method is unstable for advection dominated problems (see, for example,

Brooks and Hughes [11]), so the weak form is modified. To the Galerkin term we add an

SUPG stabilization term acting only in the “upwind” direction as originally introduced

by Brooks and Hughes [11]. The weak form may then be stated as: find ��h�k	 � Sk
h such

that

B�w�h�k	� ��h�k	� � F �w�h�k	�� �w�h�k	 � Wk
h (2.16)

with

B��� w� � �w� ai��i� � �w�j� ���j�

�

nelX
e��

�aiw�i� ��ai��i � ���ii���e

(2.17)

and

F �w� � �w� f� �

nelX
e��

���aiw�i�� f�� (2.18)

These equations show the Galerkin portion plus an SUPG stabilization parameter, � , mul-

tiplying the residual of the strong form of the differential operator times the advective
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portion of the operator acting on the weight space. Note that the boundary integral result-

ing from the integration by parts has been omitted, which implies only Dirichlet or zero

natural boundary conditions.

An important ingredient in these methods is the stabilization parameter, � , which

appears in the weak form (2.16). The particular form of � we have chosen for the

advection-diffusion equations is defined based on considerations of the error analysis,

and is generalizable to higher polynomial order (see Franca et al.[23]); it takes the form:

��Pe� �
he
�jaj��Pe�� (2.19)

Pe �
mkjajhe

��
� (2.20)

��Pe� �

���
��
Pe if � � Pe  ��

� if Pe 	 �
(2.21)

mk � min�
�

	
� �Ck�� (2.22)

X
�e�TM

h�ekw�iik� � Ckkw�ik�� �w � Wk
h � (2.23)

In the definition of � , he represents a suitably chosen element diameter and Ck is a con-

stant that depends on the polynomial order of the basis and represents a modification of

� for higher-order elements. The existence of such a constant follows from standard in-

verse estimates (see Ciarlet [16]), however, since it appears in the formulation, we need

to have a numerical value for this constant. Some guidance as to how to choose this con-

stant for some polynomial orders is provided by Harari and Hughes [31], however the

results are somewhat limited. Our experience has shown, however, that the exact value

for this parameter is not critical to the performance of the higher-order methods. It has

been shown that the SUPG method with the stabilization parameter � defined above is

stable and converges at the same rate as the interpolation error for any polynomial order

basis (see Franca and Frey [23]), the convergence rate given by O�hk���.

This is not the only possible definition of � and another definition will be provided

below in the context of the Navier-Stokes equations, where the situation is more com-
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plicated, this is also well documented in Shakib [61]. It is possible that the hierarchical

basis functions may be applied to the development of new stabilized methods based on

recent subgrid scale analysis (see Hughes [36] and related work on residual free bubbles

by Ruśso [59] and Brezzi et al.[10]). These new formulations may be used to explic-

itly solve for the stabilization parameters based on local element level problems coupling

neighboring elements. The solutions to the local problems may include higher-order poly-

nomials in their basis, increasing the accuracy of the local problem. It is hoped that these

new methods will yield more accurate simulations while maintaining the same desirable

stability properties.

The weak formulation described above was implemented in Trellis, an object ori-

ented framework for the numerical solution of PDE’s by Beall and Shephard [5]. A

complete description of this numerical framework, and many more details on its use, can

be found in the work of Beall [3]. By using this framework, we are able to generate

numerical simulations to the advection-diffusion equation by implementing (for the most

part) only the element level contributions to the weak form and information pertaining

to boundary condition specification. In this manner we can test the convergence of the

formulation through polynomial order 6 (Trellis uses the same hierarchical basis func-

tions described here). Details of the Trellis implementation for the advection-diffusion

equation are included in Appendix A. It should be emphasized that it takes a relatively

small amount of code (less than a total of 1000 lines) to implement the 2-D equation

and gain access to all of the features of the Trellis analysis framework. These features

include: hierarchical basis functions (through polynomial order 8), various linear solvers

and preconditioners, geometry based boundary condition specification, and other features

described in Beall [3]. Of particular importance to the present work is the ability to test

the convergence of the stabilized formulation for the advection-diffusion equation for

k � � � � � �. Many other implementational features are also in place in Trellis, e.g. nu-

merical integration of the element integrals and force vectors, which greatly reduce the

coding effort.
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� � �

� � �

� � �

x�

x�

� � sin��x��

a � f�� �g

Figure 2.3: Geometry for one-direction advection-diffusion problem

2.3.2 Advection-diffusion example: convergence study

The finite element formulation for the advection-diffusion equation was programmed

in Trellis as described in Appendix A. It should also be pointed out that for these sim-

ulations, the entire rich mesh data structure was used (as opposed to the compact data

structures to be introduced later). We have chosen to present an example with an exact

analytical solution which is used to verify the theoretical error estimates as the polynomial

order of the basis is varied (additional examples may be found in Whiting et al. [76]). The

geometry is described in Figure 2.3 where � � xi � �, and the exact solution (readily

obtained using separation of variables) is given by

��xi� �
�

em��m� � �
�em��m�em�x� � em�x�� sin��x�� (2.24)

where

m��� �
�p� � �����

��
(2.25)

Figure 2.4 illustrates the convergence to the exact solution for k � � � � � � (and
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Figure 2.4: Normalized L� error vs� h for k � � � � � �

� � ���) in terms of the normalized L� error (evaluated using numerical quadrature):

E� �

R

��� ��h�k	�� dxR


�� dx

(2.26)

The slopes of these curves are given in Table 2.3 and clearly obey the optimal convergence

results (or O�hk���). The only slight exception is k � �, where the error is close to the

machine precision and therefore questionable. Note that, over the range of interest to

accuracy, the curves do not cross, indicating that even on coarse meshes there is great

advantage to using higher polynomial order.

k symbol slope
1 � 2.0
2 � 3.0
3 4.0
4 + 5.0
5 x 5.8
6 � 6.6

Table 2.3: Convergence rates for one directional advection-diffusion
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Figure 2.5: Geometry for rotating field problem

2.3.3 Advection-diffusion example: Advection in a rotating field

This problem illustrates an application to a problem with a large Peclet number

(advection dominated), with � � ����. It is solved on a fixed coarse mesh of 	� uniform

triangular elements (5 vertices across the box) for k � � � � � �. The geometry and problem

parameters are shown in Figure 2.5, where the problem domain is given by ��
� � xi �
�
�. Figure 2.6 presents line plots of ��x� � �� x�� for � � x� � �
�. Symbols for the

various polynomial orders may be found in Table 2.3. Since � is small, the exact solution

is approximately given by the data along the internal line, rotated around the center of the

domain. This plot demonstrates the ability of the high order simulations to almost exactly

represent the solution, even with only two edges (3 vertices) across the profile.

2.4 Chapter summary

This chapter presented the hierarchical basis that will be used for the fluid dynamics

simulations presented in the following chapters. The shape function decomposition in

terms of entity level function and element blend was discussed in detail, as was the use

of the abstract mesh data structure, on which the constructions are based. The chapter

concluded with an application of the hierarchical basis to the linear advection-diffusion

equation using the SUPG finite element formulation. We then verified the convergence

rate of the formulation through polynomial order 6, for a problem with a known analytical
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Figure 2.6: Line plots of � for k � � � � � �

solution. An additional problem was also described to further demonstrate the accuracy

of the formulation. In the following chapters, the hierarchical basis will be used for

numerical simulations of both compressible and incompressible flow, and its accuracy

and cost effectiveness will be demonstrated.



CHAPTER 3

NUMERICAL SOLUTION OF THE NAVIER-STOKES

EQUATIONS

This chapter presents the finite element formulation for the Navier-Stokes equations. Al-

though the main thrust of this research is with incompressible flow, an application will be

made at the end of the chapter to the compressible system of equations. A semi-discrete

finite element formulation that has restored conservation properties is presented which

uses the hierarchical basis functions for the spatial discretization. Stabilized finite el-

ement formulations have been used by several researchers and have been shown to be

robust, accurate, and stable on a variety of examples from steady and unsteady laminar

flows to large eddy simulations (LES) and Reynolds averaged simulations of complex

turbulent flows (see, for example, Jansen [44], Jansen [43], Tezduyar et al. [73], Hughes

and Jansen [39], Bastin [1], and Taylor et al. [71]). The temporal discretization is based

on the generalized-� method of Chung and Hulbert [15], generalized to first-order sys-

tems in Jansen et al. [46]. This new implicit time integrator is proven to be second-order

accurate (on linear model problems) and contains a user specified amount of numerical

dissipation.

Stabilized finite element methods have been proven to be stable and higher-order

accurate for a linear advective-diffusive system (the closest model problem to the Navier-

Stokes equations) in Hughes et al.[38], for the linearized incompressible Navier-Stokes

equations in Franca and Frey [22], and for a representative nonlinear problem (the Burgers

equation) in Johnson and Szepessy [51]. The higher-order accuracy properties, as well as

the robustness on complex flows has motivated our choice of finite element formulation.

We first present the strong form of the incompressible Navier-Stokes equations, followed

by a description of the semi-discrete, stabilized finite element formulation used to dis-

cretize the spatial portion of the associated weak form. The generalized-� method time

integrator is then introduced to integrate the system of ordinary differential equations re-

sulting from the spatial integration. This time integrator is proven stable and second order

accurate for a linear model problem. An example is presented to explore the character-

25
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istics of the time integrator in the context of a well understood flow. An application of

the hierarchical basis to the compressible Navier-Stokes equations is then given, and ex-

amples are presented to demonstrate the optimal convergence and application to a more

complicated flow. Finally, the chapter concludes with a discussion of the numerical eval-

uation of the diffusive flux terms that appear in the formulation, and methods will be

presented for use with both linear and higher-order basis functions.

3.1 Incompressible strong form

Consider the application of the mesh entity based hierarchical basis functions (de-

scribed in Chapter 2) to the time-dependent, incompressible Navier-Stokes equations.

First, consider the strong (or differential) form of the continuity and momentum equa-

tions written in the so-called advective form (see Gresho and Sani [29])

ui�i � � (3.1)

�ui � ujui�j � �p�i � �ij�j � fi (3.2)

where ui is the ith component of velocity, p the pressure divided by the density � (assumed

constant), fi the prescribed body force, and �ij the viscous stress tensor given by:

�ij � ��ui�j � uj�i� (3.3)

where � � �

�
is the kinematic viscosity, and the summation convention is used through-

out (sum on repeated indices). We have chosen to write the diffusive terms in the stress-

divergence form, which gives rise to a more meaningful set of natural boundary condi-

tions. This system of equations is supplemented with an appropriate set of prescribed

boundary conditions on � � ��. The incompressible Navier-Stokes equations can be

written in many equivalent forms (for the continuous system) which are not necessarily

equivalent when discretized. A complete description of the various forms of the equations

and the strengths and weaknesses of each, as well as a complete discussion of boundary

conditions, are described in the book by Gresho and Sani [29].
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3.2 Weak form – Finite element discretization

Finite element methods are based on the weak form (or integral form) of the Navier-

Stokes equations (3.1) and (3.2) which is obtained by dotting the entire system from the

left by a vector of weight functions and integrating over the spatial domain. The diffusive

term, pressure term, and continuity equation are all integrated by parts. The diffusive term

is integrated by parts to reduce continuity requirements, otherwise we would have second

derivatives on our solution space. The pressure term is integrated by parts to provide

symmetry with the continuity equation which is integrated by parts to provide discrete

conservation of mass. The consequences of not integrating the pressure term by parts are

discussed in detail in Gresho and Sani [29] pages 449–450.

The finite element formulation is based on finite dimensional subspaces of the con-

tinuous weight and solution spaces. Recall that � 
 RN represents the closure of the

physical spatial domain, ���, inN dimensions; onlyN � 	 is considered. The boundary

is decomposed into portions with natural boundary conditions, �h, and essential bound-

ary conditions, �g, i.e., � � �g � �h. In addition, H���� represents the usual Sobolev

space of functions with square-integrable values and derivatives on �. Subsequently �

is discretized into nel finite elements, �e, as defined above. With this, we can define the

discrete trial solution and weight spaces for the semi-discrete formulation as

S
k
h � fvjv��� t� � H����N � t � ��� T �� vjx��e � Pk��e�

N � v��� t� � �g on �gg� (3.4)

W
k
h � fwjw��� t� � H����N � t � ��� T ��wjx��e � Pk��e�

N �w��� t� � � on �gg�
(3.5)

Pk
h � fpjp��� t� � H����� t � ��� T �� pjx��e � Pk��e�g (3.6)

where Pk��e� is as defined in Definition 2.2. Here, �g represents an approximation to the

prescribed boundary condition in the finite element basis. Let us emphasize that the local

approximation space, Pk��e�, is the same for both the velocity and pressure variables

(although this is not necessary, it is computationally convenient, especially when working

with higher-order discretizations). This equal-order interpolation is possible due to the

stabilized nature of the formulation to be introduced below, without which, attention must
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be paid to the Babus̆ka-Brezzi condition. Note that here and throughout, we have omitted

the superscript h that is normally included in the discrete representation of the continuous

variables, as in u�h�k	i , for notational simplicity. Where there is any chance of confusion,

the full notation is retained.

The stabilized formulation used in the present work is based on that described by

Taylor et al. [71] generalized to include the higher-order basis functions. Given the spaces

defined above, we first present the semi-discrete Galerkin finite element formulation ap-

plied to the weak form of (3.1) as:

Find u � Sk
h and p � Pk

h such that

BG�wi� q� ui� p� � �

BG�wi� q� ui� p� �

Z


fwi � �ui � ujui�j � fi� � wi�j ��p�ij � �ij�� q�iuigdx

�

Z
�h

fwi �p�in � �in� � qung ds
(3.7)

for all w �Wk
h and q � Pk

h . The boundary integral term arises from the integration by

parts and is only carried out over the portion of the domain without essential boundary

conditions. Since all the weight coefficients are arbitrary, this gives us a separate equation

for each of the i components (and for each of the basis functions). The standard Galerkin

method is well known to be unstable for advection-dominated flows (see Brooks and

Hughes [11]) and in the diffusion dominated limit for equal-order interpolation of the

velocity and pressure, i.e. the Babus̆ka-Brezzi condition. Stabilized methods are well-

known to address both of these issues (see Brooks and Hughes [11] and Hughes et al. [37],

respectively). To remedy both of these situations we add additional stabilization terms as

follows:
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Find u � Sk
h and p � Pk

h such that

B�wi� q� ui� p� � �

B�wi� q� ui� p� � BG�wi� q� ui� p�

�

nelX
e��

Z
�e

f�M�ujwi�j � q�i�Li � �Cwi�iuj�jg dx

�

nelX
e��

Z
�e

fwi

�
ujui�j � �

�
ujwi�j

�
ukui�kg dx

(3.8)

for all w � Wk
h and q � Pk

h . We have used Li to represent the residual of the ith

momentum equation,

Li � �ui � ujui�j � p�i � �ij�j � fi (3.9)

The second line in the stabilized formulation, (3.8), represents the typical SUPG stabi-

lization added to the Galerkin formulation for the incompressible set of equations (see

Franca and Frey [22]). The first term in the third line of (3.8) was introduced by Taylor et

al. [71] to overcome the lack of momentum conservation introduced as a consequence of

the momentum stabilization in the continuity equation. The second term on this line was

introduced to stabilize this new advective term. To see that this formulation conserves

momentum, set w � f�� �� �g and q � u� in (3.8) which leaves only boundary terms if

we choose

�
ui � ��MLi (3.10)

which may be identified with a modified, conservation-restoring, advective velocity. This

term must itself be stabilized since it is an advective type term which will lead to advective
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instabilities. The stabilization parameters for continuity and momentum are defined as

�M �
�q

c�

t
� � uigijuj � c���gijgij

(3.11)

�C �
�

��M tr�gij�
(3.12)

and the stabilization of the new advective term is defined in direct analogy with the ad-

vective portion of �M as

� �
�q

�
uigij

�
uj

(3.13)

where c� and c� are defined based on considerations of the one-dimensional, linear

advection-diffusion equation using a linear finite element basis and gij � �k�i�k�j is the

covariant metric tensor related to the mapping from global to element coordinates. It

should be noted that for tetrahedral elements, this mapping depends on the orientation

of the element, and therefore must be corrected to create an invariant element length-

scale by permuting the possible choices of orientation. This term may be identified with

the element length-scale, and is hence a mesh dependent parameter. These stabilization

parameters are related to those proposed by Shakib [61] and were also used (in a slightly

different form) by Taylor et al. [71]. The constant c� is a modification for higher-order

elements to obtain the correct order of convergence in the diffusive limit as required by

the use of the inverse estimates in the accuracy analysis of Franca and Frey [22]. There

is some guidance as to how to select this parameter, however, experience has shown the

method to be relatively insensitive to its choice. Currently we use c� � 	�� ��� ��� for

linear, quadratic, and cubic basis, respectively, for the modification, which has provided

good results in all cases presented. The parameter c� is related to the temporal portion of

the stabilization, and we have selected it to be � for most problems.

To derive a discrete system of algebraic equations, the weight functionswi and q, the

solution variables ui and p, and their time derivatives are expanded in terms of the finite

element basis functions (c.f. Equation 2.10). Gauss quadrature of the spatial integrals

results in a system of first-order, nonlinear differential-algebraic equations which can be



31

written as

RA�ui� �ui�p� � �� A � � � � � ns (3.14)

where we have assumed the coefficients of the weight functions to be arbitrary, indicated

by the index A, and ui� �ui, and p are vectors of the basis coefficients for the discrete

representations of these flow variables. The generalized-� method described below is

used to solve this nonlinear system in a predictor corrector format utilizing Newton’s

method.

3.3 Generalized-� time integrator

While several methods have been proposed for the integration of the Navier-Stokes

system (both semi-discrete as well as space-time), there has yet to emerge a clear favorite.

For example, space-time finite element methods where proposed and analyzed by Shakib

et al. [62, 63] and expanded and used extensively by Tezduyar et al. [74, 75, 49, 50].

Here, as the name implies, the weight and solution space are both given a temporal de-

pendence in addition to the usual spatial dependence. While these methods have yielded

very accurate results, the cost has only been justifiable on problems with a moving do-

main such as free surface flows and/or deforming spatial domains that account for moving

solid boundaries. In these cases, the additional cost of space-time methods is put to good

use by providing a consistent tracking of the moving boundary.

In cases where the boundary is not moving, semi-discrete methods remain in favor

(see Behr et al.[6]). Part of the attraction to semi-discrete methods is their long history

of use in computational solid dynamics. Many algorithms have been proposed, analyzed

and even designed to provide particular behaviors needed in particular conditions. Of

particular interest is the behavior of these algorithms in situations where a broad range

of temporal scales are present, such as the case of turbulent flows. In this case, the time

step is often chosen (out of necessity) such that certain frequencies are only marginally

resolved or perhaps even completely unresolved. Given the nonlinearities present in most

interesting engineering systems, it is of great importance to ensure that there is tempo-

ral damping for frequencies beyond the chosen resolution level. However, it is equally
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important that this damping not effect the frequencies within the chosen resolution level,

leading to a degradation of accuracy (see Jansen et al. [46]).

3.3.1 Analysis of Generalized-� Method

The system of nonlinear differential-algebraic equations resulting from the spatial

integration of the stabilized Navier-Stokes formulation is nonlinear, making it unwieldy

for analysis. Much insight into the properties of the time integrator may be gained by

studying the application to a simple, linear problem. As described in Hughes [42] the

linearized version of the nonlinear system can be un-coupled into many single degree of

freedom problems by diagonalizing the linear operator in terms of its orthogonal eigen-

vectors. This procedure results in the following model problem

�y � �y (3.15)

where � is the eigenvalue associated with the chosen mode.

We proceed to introduce the generalized-� method for integrating (3.15) from tn to

tn�� (i.e. 
t � tn�� � tn)

�yn��m � �yn��f (3.16)

yn�� � yn �
t �yn �
t�� �yn�� � �yn� (3.17)

�yn��m � �yn � �m� �yn�� � �yn� (3.18)

yn��f � yn � �f�yn�� � yn� (3.19)

where �m� �f and � are, at this point, free parameters. These four equations can be

rewritten in the form

ayn�� � byn� or yn�� � cyn (3.20)

where the solution vector at tn is given by yn � fyn�
t �yngT (similarly for yn��) and the
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amplification matrix c � a��b is

c �
�

d

	

�m � ��f � ���� �m � �

� �m � � � �f���� ��

�
� (3.21)

where � � �
t and d � �m � �f��. It is fairly straightforward to show (see Hughes

[42]) that

yn�� � trace�c�yn � det�c�yn�� (3.22)

If we further substitute a Taylor series expansion of yn�� and yn�� about yn in time we

find that second order accuracy can be obtained so long as

� �
�

�
� �m � �f (3.23)

This is the same result found by Chung and Hulbert [15] for a second order system.

Stability can be assessed by looking at the eigenvalues of c. To make our model

problem reflective of both advective and diffusive phenomena requires that � be complex.

We are interested in proving stability for the left half of the complex plane since we will

assume positive diffusive coefficients in our fluid dynamics problems. Stability will be

attained so long as the modulus of each eigenvalue is less than or equal to one. The

expressions for the eigenvalues of (3.21) are too lengthy to express here. Instead we will

illustrate the stability constraints on �m and �f through the limiting values of �.

First consider the case when the time step is taken to be very small. Regardless of

the value of �, � vanishes, and the eigenvalues of c in this limit are

lim
�t��

�i �


�� �

�m
� �

�
(3.24)

from which we may deduce that stability requires

�m 	 �

�
(3.25)

We next consider the limit of an infinite time step for any eigenvalue in the left
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complex half plane (i.e � tending to complex infinity). The eigenvalues of c in this limit

are

lim
�t��

�i �

�� � ���m � �f �

� � ���m � �f �
� �� �

�f

�
(3.26)

from which we may deduce that stability also requires

�m 	 �f 	 �

�
(3.27)

Again, this is the same result obtained by Chung and Hulbert [15] for the second order

system. Since they had an additional eigenvalue (and an additional parameter in their

method) they had a third constraint that is not present here.

While having two parameters free in the method has a certain appeal, we recall that

our goal was to find a method with strict control of high frequency damping. Therefore it

is enlightening to express the two parameters �m and �f in terms of the spectral radius of

an infinite time step or maximum absolute value of the eigenvalue as 
t tends to infinity,

what Chung and Hulbert referred to as ��,

�� � lim
�t��

max���� ��� (3.28)

By requiring the �� from each eigenvalue in (3.26) to take on the same value we can

express �m and �f in terms of ��, viz.

�m �
�

�

�
	� ��
� � ��

�
� �f �

�

� � ��
(3.29)

thereby defining a second-order accurate family of methods with a specified high fre-

quency damping.

The importance of casting the parameters in this way is that one has precise control

over the damping of frequencies that are high relative to the resolution level. If �� is

chosen to be zero, the method is said to annihilate the highest frequency in one step (only

for a linear problem). This method has the same spectral stability as Gear’s two step

backward difference method [25]. If �� is chosen to be one, then the highest frequency

(as well as all others) are preserved (for the linear problem). This method corresponds to
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the midpoint rule which is equivalent to the trapezoidal rule for linear problems.

For linear problems with all frequencies resolved, the midpoint rule has the very

nice property of introducing no damping, regardless of the time step. However, when the

eigenvalue � is purely imaginary (i.e. when the flow is convection dominated) with the

modulus equal to one, the eigenvalue lim��� �� � ��, which has the effect of causing

the solution to switch sign on each step. This behavior is clearly unacceptable. In these

cases it is important to have �� strictly less than one so that high frequencies do not

spoil long term integrations. The example of vortex shedding from a circular cylinder

(presented below) will illustrate this effect.

3.3.2 Generalized-� Method for the Navier-Stokes Equations

In addition to the application of the time integrator to a nonlinear system, the ap-

plication of the generalized-� method to the Navier-Stokes equations introduces the diffi-

culty of integrating the pressure in time, which has no explicit temporal dependence. This

type of a system is technically referred to as a differential-algebraic equation (or DAE),

and the theory for integrating such systems is quite involved (see Gresho and Sani [29]).

The pressure here is not really integrated in time, it is just iterated to remain consistent

with the velocity which is integrated with the generalized-� method. A comprehensive

study of the many alternative methods for temporal integration of the DAE’s and their

implications, though interesting, is well beyond the scope of the present research. A more

complete discussion of such topics may be found in the work of Gresho and Sani [29].

The other primary difficulty in extending the work from the previous section to the full

Navier-Stokes equations is the nonlinearity that is introduced. We first recall from Sec-

tion 3.2 that, once spatially discretized, the momentum and continuity equations may be

written in the form:

RA�ui� �ui�p� � �� A � � � � � ns (3.30)
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which will be the starting point of the application. Note that this system can also be

written as:

�
�Rm

Rc

�
A �

�
��

�

�
A (3.31)

where Rm and Rc represent the residuals of the momentum and continuity equations,

respectively (i.e. the portions of R multiplying wi and q, respectively), and we have

dropped the subscript A, related to the weight space, to clarify the presentation.

With these considerations in mind, application of the method introduced in Sec-

tion 3.3.1 yields the following set of equations describing the time integration algorithm.

The first equation is the nonlinear residual with the velocity and acceleration evaluated at

the intermediate time steps tn��f and tn��m , respectively

R�un��f � �un��m � pn��� � � (3.32)

followed by the update equations relating the velocity to its time derivative,

un�� � un �
t �un � �
t� �un�� � �un� (3.33)

and finally the equations that relate the temporal locations n and n � � to n � �m and

n� �f

�un��m � �un � �m� �un�� � �un� (3.34)

un��f � un � �f�un�� � un� (3.35)

Here we have introduced R to be the vector of nodal values of the nonlinear residual in-

cluding both the continuity and momentum equations. The nonlinearities are best handled

by introducing a predictor-multicorrector algorithm similar to those proposed by Brooks

and Hughes [11]. By making a prediction of the solution and its time derivative at time

tn��, we start the algorithm. Since we will be making multiple corrections, we intro-

duce a superscript (inside parentheses) to represent the corrector iteration number. In this
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notation our predictor is initialized with an iteration count of zero and is given by

p
��	
n�� � pn (3.36)

u
��	
n�� � un (3.37)

�u
��	
n�� �

� � �

�
�un (3.38)

where (3.36) and (3.37) predict that the solution will be the same as it was at the previous

time step and (3.38) is the time derivative at tn�� that is consistent with (3.33) (i.e. the

predictor that preserves second order accuracy). Other choices of predictors are also

possible.

After making the prediction, the algorithm enters a loop of multi-corrector passes

with i initialized to zero. The first operation within the loop is the calculation of velocity

at tn��f and the acceleration at tn��m

u
�i	
n��f

� un � �f�u
�i��	
n�� � un� (3.39)

�u
�i	
n��m � �un � �m� �u

�i��	
n�� � �un� (3.40)

These quantities enable the evaluation of R�i	�u
�i	
n��f

� �u
�i	
n��m � p

�i	
n��� which, for small i,

can be expected to be far from its desired value of �. To find an improvement to the current

values of (3.39) and (3.40) we use a Newton type linearization ofR�i	 with respect to the

acceleration, �ui, for both the momentum and continuity residuals which yields a matrix

problem to solve for the acceleration and pressure increments, given by

�
�K�i	 G�i	

D�i	 C�i	

�
A
�
�
 �u

�i	
n��


p
�i	
n��

�
A � �

�
�R�i	

m

R�i	
c

�
A (3.41)

which is solved for each corrector pass and the solution is updated according to

�u
�i��	
n�� � �u

�i	
n�� �
 �u

�i	
n�� (3.42)

u
�i��	
n�� � u

�i	
n�� � �
t
 �u

�i	
n�� (3.43)

p
�i��	
n�� � p

�i	
n�� �
p�i	 (3.44)
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and i is incremented. The definition and numerical evaluation of the sub-matrices K�i	,

G�i	, D�i	, and C�i	 is discussed below. If i  imax the algorithm returns to solve (3.41)

thus initiating the next corrector pass. Otherwise, the solution at time step tn�� is updated,

and the algorithm proceeds to the next time step. This completes the step from tn �
tn��. If more time steps are required, n is incremented and the algorithm returns to

the prediction phase for the next step (i.e. (3.39) and (3.40)). The entire algorithm is

summarized in Algorithm 3.3.1.

The linear system of equations, (3.41), is difficult, and special care should be taken

in setting up and solving it. The linear algebra solver of Shakib [64] (a highly optimized

linear algebra package for the incompressible Navier-Stokes equations) is used to solve

this linear system, after it is set up as described below. This linear solver is based on a

Generalized Minimum Residual (GMRES, see Shakib [61]) type solution method for the

velocity and a conjugate gradient projection method for the pressure.

The matrices appearing in (3.41) are the tangent matrices of the residual vectors

with respect to the acceleration and pressure at time tn��, and are defined as follows:

K�i	 � �R�i	
m �u

�i	
n��f � �u

�i	
n��m � p

�i	
n���

� �u�i	
n��

(3.45)

G�i	 � �R�i	
m �u

�i	
n��f

� �u
�i	
n��m � p

�i	
n���

�p
�i	
n��

(3.46)

D�i	 � �R�i	
c �u

�i	
n��f

� �u
�i	
n��m � p

�i	
n���

� �u
�i	
n��

(3.47)

C�i	 � �R�i	
c �u

�i	
n��f

� �u
�i	
n��m � p

�i	
n���

�p
�i	
n��

(3.48)

The approximation symbols are used here to indicate that these matrices are only approx-

imations to the consistent tangent matrices (given on the right-hand-sides of Equations

(3.45)-(3.48)) which have been shown to yield better convergence, and are given in detail

below. Care should be taken in computing (3.45) through (3.48), e.g. the differentia-

tion in equation (3.45) gives rise to a mass term since �un��m is related to un��f through



39

Given solution at time tn: un, �un, and pn

predict:

u
��	
n�� � un

�u
��	
n�� �

� � �

�
�un

p
��	
n�� � pn

correct:
for i � � to imax

(compute intermediate solution values)

u
�i	
n��f � un � �f�u

�i��	
n�� � un�

�u
�i	
n��m � �un � �m� �u

�i��	
n�� � �un�

(solve linear system)

�
K�i	 G�i	

D�i	 C�i	

��

 �u

�i	
n��


p
�i	
n��

�
� �

�
R�i	

m

R�i	
c

�

(update solution values)

�u
�i��	
n�� � �u

�i	
n�� �
 �u

�i	
n��

u
�i��	
n�� � u

�i	
n�� � �
t
 �u

�i	
n��

p
�i��	
n�� � p

�i	
n�� �
p�i	

end

Algorithm 3.3.1: Predictor-multi-corrector algorithm
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equation (3.33). Since we are differentiating with respect to �u
�i	
n��, we also need to use the

chain rule, i.e.

�R�i	
m

� �u
�i	
n��

�
�R�i	

m

�u
�i	
n��f

�u
�i	
n��f

� �u
�i	
n��

�
�R�i	

m

� �u
�i	
n��m

� �u
�i	
n��m

� �u
�i	
n��

� �f�
t

�R�i	
m

�u
�i	
n��f

� �m
�R�i	

m

� �u
�i	
n��m

(3.49)

which enables us to directly update our solution to tn�� after the linear solve.

Following the standard finite element assembly process described in Hughes [42],

the matrices are formed by evaluating element level integrals (using numerical quadra-

ture). The matrices are given by

Kab
ij �

Z
�e

f�mNa
i N

b
j � �f�
t�ukN

a
i N

b
j�k

�Na
i�k��N

b
j�k � �MukumN

b
j�m � �LkLmN

b
j�m�

� �Na
�i	��j	N

b
�j	��i	 � �CN

a
�i	��i	N

b
�j	��j	�g dx

(3.50)

Gab
p � �

Z
�e

Na
i�iN

b
p (3.51)

Dab
i �

Z
�e

Na
p�iN

b
p (3.52)

Cab � ��M
Z
�e

Na
p�iN

b
p�i (3.53)

where, here, a� b � � � � � nes refer to the individual basis function contributions, the sub-

scripts i� j � � � � � 	 are included to indicate the basis functions related to the momentum

equations (velocity degrees of freedom) and the subscript p indicates continuity equation

(pressure degrees of freedom). Here, indices enclosed in parentheses imply that no sum

should be carried out. Since, as mentioned above, we are interpolating velocity and pres-

sure with the same basis functions, the subscripts i and j are only used to indicate the

place of these terms in the resulting matrices. The terms we have chosen to include in
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the tangent matrices given above are essentially formed from the frozen coefficient as-

sumption while differentiating the equations. Assumptions on these matrices also enable

the relationship,D � �GT which is a desirable symmetry property between the discrete

divergence and gradient operators (G andD, respectively). Gresho and Sani [29] provide

additional details pertaining to this symmetry.

3.3.3 Temporal accuracy: flow past a circular cylinder

Vortex shedding around a circular cylinder in an incompressible flow at a Reynolds

number of ��� (based on the cylinder diameter and inflow velocity) will provide an ap-

plication of the generalized-� method to the relatively well understood flow. Since we

are primarily interested in studying the temporal accuracy, we have chosen to present re-

sults from the linear basis calculations; however the results for other polynomial order

simulations are similar. The problem geometry and boundary conditions are depicted in

Figure 3.1. In addition to the boundary conditions shown, we have imposed zero x�-

u2 = u3 = 0.0

u = u0 p = 0.0

u = 0.0

u2 = u3 = 0.0x1

x2

Figure 3.1: Cylinder geometry and boundary conditions

velocity and no tangential traction on the two x� planes to simulate 2-D conditions with

our 3-D code. A complete description of this problem can be found in a variety of ref-

erences: Shakib et al.[63], Hauke and Hughes [34], and Behr et al. [6]. At a Reynolds

number of ���, the salient feature of this flow is the periodic shedding of vortices from

the cylinder creating time varying lift and drag forces determined by integrating the forces

on the cylinder surface. This single, dominant frequency allows a convenient study of the

new time integrator.

In this context, we will study the effect of the high-frequency damping parameter,
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��, on the lift and drag profiles. The flow is solved in time assuming the cylinder is

initially at rest, and is immediately accelerated to a velocity of u� (often referred to as an

impulsive start). We have taken a time step of ��� (normalized by the cylinder diameter)

and for each time step, three Newton corrector passes are performed, insuring that the

normalized change in the velocity increment is less than ������ for each step. This time

step affords 60 steps per period of the lift force and 30 steps per period of the drag force,

which should be sufficient to completely resolve this frequency.

The first four plots in Figure 3.2 show the lift and drag forces (fl and fd, respec-

tively) plotted against the non-dimensional time, t�, for �� � ���� ����� ���, and ����

for two different time windows (the one on the right being a zoomed view). From these

plots we make the following observations: i) the period and amplitude of both the lift and

the drag are very weak functions of �� (which might be expected from the observation

that 30 points per wave length is adequate for second-order accurate methods), ii) a small

amplitude undulation is present in the �� � ���� case, iii) the presence of this undula-

tion for �� � ��� reflects the increasing difficulty the method faces as �� approaches 1,

iv) the �� � � case appears to start its transition from a steady separation to a saturated

unsteady flow much earlier than the other methods.

The last observation is somewhat counter-intuitive. One might expect the method

with the highest damping would be the last to leave a steady flow in favor of an unsteady

flow. The final two plots in Figure 3.2 shed some light on this mystery. They indicate that

the impulsive start can introduce a rather large, high-frequency unsteadiness to the flow.

Furthermore, these plots indicate the severe errors that may occur when using �� � ���

(trapezoidal rule) for this flow. The first of these two plots shows the time window in-

cluding the impulsive start. This plot clearly shows the strong damping characteristics of

the �� � � case, where the initial disturbance due to the impulsive start is damped out

within a couple of time steps. Also clear from this plot is that the initial disturbance is

almost completely preserved in the �� � � case, polluting the entire solution. Intermedi-

ate values of ��, annihilate this un-resolvable frequency in a manor predictable by their

proximity to the two extreme cases. It is conjectured that the physical instability leading

to limit cycle vortex shedding is in the well resolved and almost completely undamped

range for all chosen values of �� (� � �� � �). However, by taking less time to anni-
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Figure 3.2: Lift, fl, and drag, fd, forces on the cylinder for different time windows:
�� � ����, �� � ����, �� � ����, �� � ����, and –� – �� � ���
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hilate the highest, un-resolvable frequency, the lower values of �� actually pick up the

physical instability (which starts at extremely low values and grows exponentially before

saturating on the limit cycle) sooner. The higher values of �� are unable to pick up this

very low amplitude physical instability until they bring the un-resolvable frequency below

its level. This should not be misconstrued as an advocation of �� � ��� in all cases but it

does demonstrate the benefit in at least one case of having the ability to annihilate a large,

un-resolvable frequency rapidly. In simulations of practical interest, this ability must be

balanced by the fact that there often exist a continuous range of frequencies that one is

interested in resolving, rather than two, widely separated ones as shown here. In those

cases, higher values of �� are desirable to maintain the ability to accurately integrate

waves with significantly less then 30-60 time steps per period, which is often the case for

turbulence simulations.

The final plot in Figure 3.2 shows that the highest frequency can be excited even

without an impulsive start. In this case the flow was restarted from the �� � ��� solution

(at t� � ��� where no high frequencies were visibly present). However, the nonlinearities

inherent to the Navier-Stokes equations needed little time to build up energy in this high-

est frequency when the time integrator was switched to �� � ���, a time integrator that

is powerless to control these frequencies. This highest frequency mode does saturate in

amplitude, though, leaving a surprisingly accurate signal that can be recovered by filtering

this signal in time. This is again fortuitous to this case though, owing to the wide sepa-

ration of the frequencies causing little, if any, interaction. Again it must be stressed that

in the problems of interest, the continuous range of scales will suffer much greater con-

tamination due to the stronger interaction of waves of close proximity in frequency space.

In these cases the energy in the highest frequencies may also fail to saturate leading to a

breakdown of the solution technique. Clearly, some capacity to insure the annihilation of

un-resolvable waves is critical to maintain the fidelity of the well and marginally resolved

waves, thus the motivation for the design of the method with careful control through ��

and the advocacy for the availability and use of intermediate values.
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3.4 Application of the hierarchical basis to compressible flow

This section presents an application of the hierarchical basis described in the pre-

vious chapter to the compressible system of Navier-Stokes equations. The stabilized fi-

nite element formulation used here, which is the standard SUPG formulation (equivalent

to the Galerkin-Least Squares (GLS) formulation for linear basis functions, see Hauke

and Hughes [33]), differs from that introduced above for the incompressible equations,

but retains the desirable properties of stability and higher-order accuracy. In fact, the

formulation presented here for the compressible system of equations is applied to the

conservative form of the equations, and the additional terms terms introduced to restore

conservation to the incompressible formulation need not be added. This formulation has

also been more rigorously studied and analytically proven to be stable and higher-order

accurate for model problems (see Shakib and Hughes [62]). More details pertaining to

the formulation for the compressible equations may be found in Whiting et al. [76]. The

compressible formulation also differs in the way pressure is treated. Here the pressure is

solved as a thermodynamic quantity, (rather than a constraint equation), which is defined

through thermodynamic considerations and the energy equation (we assume an ideal gas

relationship, although this is not a necessary assumption). The pressure is therefore not

treated distinctly from the velocity as it is in the incompressible formulation, but rather,

all flow quantities are considered with a single weight space containing 5 variables (in-

cluding total energy).

3.4.1 Compressible Navier-Stokes equations

Consider the application of the mesh entity based hierarchical basis functions to the

time-dependent, compressible Navier-Stokes equations, written in conservative form as

U �t � F
adv
i�i � F diff

i�i � S (3.54)
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with the conservation variables given by

U �

����������
���������

U�

U�

U�

U�

U�

����������
���������

� �

����������
���������

�

u�

u�

u�

etot

����������
���������

(3.55)

and the advective and diffusive fluxes are defined as

F adv
i � uiU � p

����������
���������

�

��i

��i

��i

ui

����������
���������
� F diff

i �

����������
���������

�

��i

��i

��i

�ijuj � qi

����������
���������

(3.56)

The equations are closed through the introduction of constitutive relationships given by

�ij � ���Sij�u�� �

	
Skk�u��ij�� Sij�u� �

ui�j � uj�i
�

(3.57)

qi � ��T�i� etot � e�
uiui
�

� e � cvT (3.58)

The variables are: velocity ui, pressure p, density �, temperature T and total energy

etot. The constitutive laws relate the stress, �ij , to the deviatoric portion of the strain,

Sd
ij � Sij � �

�
Skk�ij , through a molecular viscosity, �. Similarly, the heat flux, qi, is

proportional to the gradient of temperature with the proportionality constant given by a

molecular conductivity, �. While the formulation is not limited to an ideal gas, p � �RT ,

and constant specific heats at constant pressure, cp, and at constant volume, cv, these as-

sumptions are also made here. Furthermore, since we are generally interested in low Mach

number flows where temperature variation is low, we have assumed a constant molecu-

lar viscosity and constant conductivity through a constant Prandtl number, although this

again is not a necessary simplification. Finally, S is a body force (or source) term.
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For the specification of the stabilized formulation for the compressible system of

equations, it is helpful to define the quasi-linear operator (with respect to some yet to be

defined variable vector Y ) related to (3.54) as

L � A�
�

�t
�Ai

�

�xi
� �

�xi
�Kij

�

�xj
� (3.59)

from which L can be naturally decomposed into time, advective, and diffusive portions

L � Lt �Ladv �Ldi� � (3.60)

Here Ai � F adv
i�Y is the ith Euler Jacobian matrix, Kij is the diffusivity matrix, defined

such that KijY �j � F diff
i , and A� � U

�Y is the change of variables metric. For a

complete description ofA�,Ai andKij , the reader is referred to Hauke [32]. Using this,

we can write (3.54) as simply LY � S.

The finite element spaces used for the compressible formulation are similar to those

introduced above for the incompressible equations with the exception that the solution

vector is now treated as a single vector of unknowns (pressure is not given its own space).

The solution space is now given by

S
k
h � fvjv��� t� � H����m� t � ��� T �� vjx��e � Pk��e�

m� v��� t� � �g on �gg� (3.61)

and the weight function space

W
k
h � fwjw��� t� � H����m� t � ��� T ��wjx��e � Pk��e�

m�w��� t� � � on �gg�
(3.62)

where Pk��e�
m is as defined before, and m � � representing our 5 unknown variables

(ui� p ,and T ).

To derive the weak form of (3.54), we proceed the same as for the incompressible

system by dotting the entire system from the left by a vector of weight functions, W �
W

k
h, and integrating over the spatial domain. Integration by parts is then performed on

the diffusive and advective terms to move the spatial derivatives onto the weight functions

(reducing the continuity requirements). Recall that for the incompressible formulation,
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the advective term was not integrated by parts. This process leads to the semi-discrete

SUPG weak form for the compressible equations (see Hauke and Hughes [33]): find

Y � Sk
h such that

Z


�
W �U �t �W �i � F adv

i �W �i � F diff
i

�
d�

�
Z
�

W � ��F adv
i � F diff

i

�
ni d� (3.63)

�

nelX
e��

Z
�e

L
T
advW � � �LY � S� d� � �

for allW �Wk
h. The first and second lines of (3.4.1) contain the Galerkin approximation

(interior and boundary) and the third line contains the SUPG stabilization. The boundary

integral term arises from the integration by parts and is only carried out over the portion

of the domain without essential boundary conditions. The use of the advective portion of

the operator,LT
adv, in the stabilization term could be replaced byLT to yield the full GLS

method. Doing so, however, would require that we reconstruct the second derivative of

the weight space (using the local reconstruction method for the diffusive flux), which is a

costly operation. It is also not clear that the GLS formulation is more accurate than SUPG

(theoretically, they have both been shown to be optimally accurate for model problems).

The stabilization parameter, � , is now a � � � matrix, and its extension to time-

dependent systems of equations is well documented in Shakib [61], Franca and Frey [22],

and Hughes and Mallet [40]. Based on efficiency considerations, we have chosen to use a

diagonal � similar to the one introduced by Hauke [32] for nearly incompressible flows,

given by

� � diag��c� �m� �m� �m� �e� (3.64)

where

�c �
jujhe�
�

min��� Reh� (3.65)
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�m � min

�

t

�
�

he�
��juj �

mk�h
e
��

�

��

�
(3.66)

�e � min

�

t

�cv
�

he�
��cvjuj �

mk�h
e
��

�

��

�
(3.67)

and

Reh �
�jujhe�
��

� mk � min��
	� �Ck�� (3.68)

Here hei are element length scales for continuity, momentum, and energy and 
t is the

time step; the other parameters have been defined above. This � has proven effective on

a variety of flows as shown by Hauke and Hughes [33], and is computationally efficient,

as it can be computed from existing solution variables. More advanced forms of � which

are not diagonal can be formed and are documented in Hauke and Hughes [33], however,

for low Mach number flows, they showed that the diagonal form given above performed

well.

Note that we have chosen to solve for Y instead of U . As discussed in Hauke and

Hughes [34, 33], U is often not the best choice of solution variables, particularly when

the flow is nearly incompressible. The computations performed herein employ pressure-

primitive variables, viz.

Y �

����������
���������

Y�

Y�

Y�

Y�

Y�

����������
���������

�

����������
���������

p

u�

u�

u�

T

����������
���������

(3.69)

By inspecting (3.56)-(3.58) it is clear that all quantities appearing in (3.4.1) may be easily

calculated from (3.69). The use of pressure-primitive variables also facilitates specifica-

tion of boundary conditions, as these are the variables most often constrained for nearly

incompressible applications.

Another reason we have chosen to use the pressure primitive variables is that they

are well behaved in the incompressible limit, i.e. the matrices in (3.59) are well behaved
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T � Tw� ui � �

T � Tw� ui � �x� � � x� � �
x�

x�

�H umax

Figure 3.3: Channel flow geometry and problem description

as the compressibility coefficients �P and �T approach zero. This makes it a simple

matter to construct a purely incompressible code from the above formulation providing a

uniform approach to compressible and incompressible flows as described by Hauke and

Hughes [34]: simply set �P � �T � � in the coefficient matrices. Experience has shown,

however, that the formulation presented in Section 3.2 based on the advective form of the

equations is far more accurate as well as much more efficient for an incompressible flow,

and is preferred for this type of simulation over the conservation variable formulation

presented here.

The generalized-� method is again used for the temporal discretization, yielding

a system of nonlinear algebraic equations which is solved in a predictor-multicorrector

format yielding successive linear problems. Subsequently, each linear problem is solved

using the Matrix-Free Generalized Minimal Residual (MF-GMRES) solution technique

with a block diagonal preconditioner developed by Johan et al. [48] or element-by-element

GMRES techniques. These linear algebra solvers have both proven to be effective for

compressible flows.

3.4.2 Example: compressible channel flow

This example is presented as a verification of the theoretical convergence results

for the SUPG formulation applied to the compressible equations. It demonstrates that

under some circumstances, results derived for model problems carry over to the nonlinear

systems of practical interest. Consider the fully developed, laminar, constant viscosity,

compressible flow between two flat plates, shown in Figure 3.3.

Assuming the viscosity to be independent of temperature de-couples the energy
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equation allowing a closed-form, analytical solution as follows:

u� � umax

�
��

�x�
H

���
� u� � u� � � (3.70)

T � Tw

�
� �

Pr �Ec

	


��

�x�
H

����
� p � po � ��ou

�
max

ReH

x�
H

(3.71)

where H is half the height of the channel, po is the pressure at x� � �, �o is the density at

x� � �, umax is the centerline velocity, Tw is the prescribed wall temperature, Pr � �

cp�

is the Prandtl number, ReH � umaxH
�

is the Reynolds number based on the channel half-

height, and �Ec � u�max
cpTw

is a modified Eckert number using the specific heat cp. This

solution holds for compressible or incompressible flow so long as the viscosity is assumed

constant and provides a good test case for a convergence study since the temperature field

is fourth order, enabling us to verify the convergence rate through k � 	.

We have chosen to simulate this flow assuming periodic boundary conditions in the

streamwise direction (implying fully-developed flow), in addition to T � Tw and u � �

at the upper and lower walls. The periodic boundary condition prescription is obtained by

forcing all variables on the outflow plane to be identical with those on the inflow plane.

To do this requires that the linear portion of the pressure be interpreted as a body force,

i.e.,

p � po �B
x�
H
� (3.72)

Then the constant portion, po can be assumed periodic along with the other variables,

ui and T , which are independent of x�. The linear portion (B � ���ou�max
ReH

is a constant

coefficient) of the pressure is included in the formulation as a source term, which “drives”

the flow.

This problem is solved on three different meshes for k � � � � � 	. The L� error in the

temperature finite element solution (normalized by the L� norm of the analytical temper-

ature profile) vs� the number of elements in the x� direction and vs� the total number of

degrees of freedom are shown in Figure 3.4 . The first of the two plots shows that through
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k � 	 the finite element solution is converging at a slope of k��, as predicted by theory.

The second plot demonstrates the benefit of the higher-order solutions compared to the

linear solution for a fixed number of degrees of freedom. Note that due to the stabilization

term, even the coarse meshes benefit from the increased polynomial order. Of course, the

number of degrees of freedom in the system is only an indication of the total cost of solu-

tion, since degrees of freedom associated with k-refinement are typically more expensive

than those associated with h-refinement. More careful studies of the simulation cost for

higher-order elements will be given later for incompressible flows.
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Figure 3.4: Convergence of temperature profiles for channel flow

3.4.3 Example: vortex shedding behind a circular cylinder

The second example for the compressible formulation, is of the time dependent flow

about a circular cylinder at a Reynolds number of ��� (based on the cylinder diameter),

the geometry and boundary conditions are shown in Figure 3.5. A complete description

qx� � �� u� � u� � �

qx� � �� u� � u� � �

u � u�
T � T�
� � ��

qx � �
p � po

qn � �

u � �

x�

x�

Figure 3.5: Cylinder geometry and boundary conditions

of this compressible flow can be found in variety of references: Shakib et al.[63], Hauke
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and Hughes [34], Behr et al. [6]. We choose boundary conditions consistent with those

of Shakib et al.[63]. At a Reynolds number of ���, the features of this flow are similar

to the incompressible flow introduced above: the periodic shedding of vortices from the

cylinder creating a time varying lift determined by integrating the forces on the cylinder

surface. Since it is now a compressible flow, we have set the Mach number at infinity,

M� � ���, making the flow nearly incompressible. The physical dimensions leading to

such flow parameters may be questionable, a quick calculation yields a cylinder diameter

of D � ��� � ���� meters, quite small, however the simulations yield results that are

consistent with more physically realizable dimensions.

This simulation is used to show the increased accuracy in the prediction of the forces

on the cylinder gained from quadratic as opposed to linear basis functions. Particularly

the drag forces, which are dominated by the viscous forces on the cylinder, are much

better resolved by the quadratic solution, as can be seen in Figure 3.6. The drag from the

linear basis is observed to have a low frequency amplitude modulation which has been

eliminated in the quadratic solution. The force in the x� direction, or lift, is less sensitive

to an increase in the basis order due to the fact that it is largely dominated by the pressure

forces which can be interpolated well by the linear basis. A careful comparison of the cost

vs. accuracy for the compressible equations was not carried out. In fact, this flow was

simulated on the same mesh for the linear and quadratic simulations, hence, the quadratic

solution has many more degrees of freedom associated with it. It is only presented as an

initial application to a compressible flow. Careful comparisons of cost and accuracy will

be studied in the context of incompressible flow.

3.5 Diffusive flux computation

We would like to conclude the chapter with details of the computation of the diffu-

sive flux terms appearing in both stabilized finite element formulations presented above.

Both the incompressible and compressible systems of equations require this term, how-

ever it takes on slightly different forms in each case, and we will concentrate on the

incompressible version. Careful inspection of the weak form, (3.8), and in particular the

momentum residual equation, (3.9), reveals that it is necessary to calculate the second

derivative of the solution variable when evaluating the residual of the diffusive flux stabi-
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lization terms (for the incompressible equations)

qi � �ij�j � ��ui�j � uj�i��j (3.73)

While these terms are often neglected for linear basis calculations (with some justifica-

tion), their inclusion is vital to the accuracy of higher-order simulations (examples run

without these terms show a significant degradation of solution quality). It is possible to

evaluate these terms directly from the second derivatives of the basis functions, however

this involves the evaluation of the second derivative of the mapping if curved elements

are used, which is a costly operation. We opt instead for a more efficient method using

a local reconstruction of the diffusive flux terms based on an L� projection followed by

a re-interpolation. A procedure has also been developed for creating a global reconstruc-

tion of the diffusive flux which can be used for linear elements to provide more accurate

simulations at a negligible additional cost.

3.5.1 Local, element-level reconstruction

The local reconstruction technique provides a relatively straightforward method to

compute an approximation to the diffusive flux involving only element level data. This



55

technique is more cost effective than directly evaluating the second derivatives of the

basis functions which involves the second derivative of the geometric mapping for non-

straight-sided elements, since the inverse of the element-level projection matrix needs to

be computed only one time and stored, and may be used for all subsequent evaluations.

The general idea is to project the viscous stress field, �ij, (which may be computed

with the first derivatives of the basis) onto the element basis, then re-interpolate it with the

first derivative of the basis to form the diffusive flux field, i.e. qi � �ij�j. The projection

is constructed such that the L� error is minimized over each element independently, i.e.,

find ��ij � Sk
h such that

Z
�e

w ���ij � �
�h�k	
ij � dx � � (3.74)

for all w � Wk
h, where �

�h�k	
ij represents the current finite element approximation of

the stress field. It should be noted that each of the components in ��h�k	ij is projected

independently. Expanding the weight function in terms of the basis functions yields a

system of linear equations to be solved for the basis coefficients of ��ij , of the form

M �� ij � Rij (3.75)

where,

M � �Mab� �

Z
�e

NaNb dx� R � fRag �
Z
�e

Na�
�h�k	
ij dx (3.76)

This system is solved for the stress projection coefficients, �� ij � f��aijg, for each ele-

ment, which are then re-interpolated with the gradients of the basis functions to form an

approximation to qi as

qi �
nesX
a��

Na�j��
a
ij� (3.77)

The system of equations, 3.75, is inverted one time and stored, therefore the evaluation of

the projection coefficients involves a single integral evaluation, which is computed using

the same Gauss quadrature rule as the integration of the residual.
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The inclusion of this term is vital to the performance of higher-order methods, since

without it, the formulation no longer maintains its weighted residual character, i.e., con-

sistency is violated. The effect of not including this term is illustrated by means of the

simple example of incompressible Poiseuille (channel) flow between two infinite, parallel

plates. The exact solution is quadratic in velocity and linear in pressure, i.e. within the

finite element approximation space for quadratic elements. The applied boundary con-

ditions consist of setting the exact velocity profile at the inlet, x� � �, and setting the

pressure at the outflow, x� � ���, in addition to the no-slip condition at the upper and

lower walls. Figure 3.7 shows a comparison of the velocity and pressure profiles plotted

against the x� coordinate along the centerline of the channel. Since the velocity has no

x� dependence, it should remain equal to the centerline inlet velocity of ��� and the exact

pressure is linear in x�. This figure clearly shows the inability of the incomplete residual
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Figure 3.7: Centerline velocity and pressure with, � , and without, � , the recon-
structed diffusive flux.

method to obtain the exact solution, even though it is within the finite element space, and

large errors are incurred in both the pressure and velocity if the diffusive flux terms are

neglected. The situation illustrated here for this simple example is expected to be even

more severe for complicated flows.
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3.5.2 Global reconstruction (linear elements)

The use of the second derivatives in the stabilization residual terms has been shown

to yield much more accurate simulations for the higher-order methods (it is in fact nec-

essary to maintain a weighted residual formulation). These terms are often neglected for

linear basis computations since they rely on second derivatives of the solution, which are

zero when using the linear basis, however it will be shown that including them results in

increased accuracy at a negligible additional cost (more details as well as result for other

flows may be found in Jansen et al. [45]).

The local reconstruction will clearly not work for linear elements since there is no

way to approximate a higher-order quantity with a single linear element. To circumvent

this problem, a global reconstruction algorithm has been developed following the same

logic as in Section 3.5.1 for the local reconstruction. Here Qi � �ij�j is the diffusive flux

in the ith direction which must be reconstructed. The reconstructed diffusive flux is then

given in terms of the the element shape functions as

Qi �
nvX
A��

NA�j��
A
ij (3.78)

where ��Aij is the diffusive flux in the jth direction at global node A (the capital Qi is

to distinguish it from our locally reconstructed diffusive flux, qi). This quantity is not

defined in the usual finite element sense due to the discontinuous nature of the derivatives

of low-order piece-wise polynomials. It can, however, be reconstructed to be a continuous

variable using a global L� projection operator. The procedure is described as follows:

M �Qj � Rj (3.79)

M � �MAB�� Rj � fRAjg� �Qj � fQBjg (3.80)

MAB � I

Z


NANBd�� RAj �

Z


NAQj�U �x��d� (3.81)

where these matrices are computed in the usual finite element manner, assembling ele-
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ment level contributions to form the global counterparts. Since the solution procedures

for the Navier-Stokes equations involve successive iterations of solving a linearization

of the nonlinear problem, it is quite easy to lag the solution for QjA by one iteration.

Furthermore, it is usually sufficient to replace MAB by its lumped mass equivalent. We

prefer to use the special lumping described in Hughes [42].

The compressible channel flow considered above for the local reconstruction is con-

sidered here using linear elements and the global reconstruction technique. It should be

stressed that for linear elements the exact solution, which is quadratic velocity and linear

pressure, can not be exactly represented by the linear basis. However, use of the globally

reconstructed diffusive flux yields a much more accurate result as shown in Figure 3.8.

3.6 Chapter summary

This chapter introduced the stabilized finite element formulation for the incom-

pressible Navier-Stokes equations using mesh entity based hierarchical basis functions

for the spatial discretization. A second order accurate, implicit time integrator with user-

controllable numerical dissipation was introduced for integrating the equations in time,

and shown to have desirable characteristics for the flow behind a circular cylinder. The

implementation involves relatively few modifications to a highly efficient linear basis
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solver, allowing us to maintain efficiency for large-scale problems. To achieve this goal,

much of the computational effort has been transferred to the pre-processing stage of the

analysis, where the data structures are created and written to disk for high efficiency when

used by the flow solver. One key difference between linear and higher-order basis func-

tions is the treatment of the diffusive portion of the residual in the stabilization terms,

a problem unique to stabilized methods. New methods for dealing with this term were

presented for higher-order computations (local reconstruction) as well as for the linear ba-

sis (global reconstruction), and the increase in accuracy was demonstrated in both cases.

The next chapter will describe many implementational details that are encountered when

using hierarchical basis methods for fluid dynamics.



CHAPTER 4

HIGHER-ORDER SIMULATIONS IN A PARALLEL

COMPUTING ENVIRONMENT

The effective use of hierarchical basis functions for solving the Navier-Stokes equations

requires that considerations of efficiency be paramount in designing and implementing the

flow solver as well as the pre- and post-processing software. Since we are primarily inter-

ested in large-scale simulations of turbulent flows in complicated domains, the design of

these software tools must rely on advanced programming techniques and algorithms for

successfully implementing and using the basis functions described in Chapter 2. Care-

ful attention was paid to the design of the higher-order code using experience gained

from previous linear basis implementations wherever possible. The flow-solver imple-

mentation described in the present work requires relatively few modifications to a highly

optimized, parallel, linear element Navier-Stokes solver, enabling us to maintain this effi-

ciency for higher-order elements. Maintaining the basic structure (and thus, efficiency) of

the flow solver has its cost, though, placing much more of the design burden on the pre-

and post-processing software. It should be pointed out, however, that advanced optimiza-

tion techniques to improve the higher-order implementation have not been investigated

here, and it is expected that efficiency improvements can still be made. Modification of

the methodology described here may be required when non-uniform k-adaptivity is used,

as well as dynamic h-adaptivity. However, since the target problems for the present re-

search involve turbulent flows where long time integrations are necessary, it is expected

that adaptivity (h and k) will be accomplished at relatively large time intervals (not at

each time step), which will reduce the relative cost of pre-processing, which in this case

would be carried out after each modification to the basis or mesh.

Pre-processing the finite element data for numerical simulations of the Navier-

Stokes equations is becoming an increasingly more important stage of the analysis pro-

cess. The set up of boundary conditions and communication data structures should be

carried out during the pre-processing phase of the analysis, whenever possible, to ensure

efficient computations for large-scale simulations. In addition, hierarchical basis func-

60
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tions also need more advanced data structures than Lagrange basis functions, which are

also set up during pre-processing. A general methodology is put forth for geometry based

boundary condition specification, techniques for set up and use of compact data structures

for element level computations are presented, and the design of efficient parallel commu-

nication structures is described. Also presented in this chapter is a new methodology for

creating h-adaptive meshes for time dependent problems based on collecting error indi-

cators from time-averaged statistical quantities. This h-refinement is combined with the

uniform, higher-order k basis to produce highly accurate simulations.

4.1 Overview of parallel computing environment

A methodology has been developed, as mentioned above, wherein the actual com-

putational code uses compact data structures similar to the standard finite element data

structures (described below). To maintain the generality of the basis function construc-

tions, the full mesh data structure is used by the pre-processor (and post-processor). This

creates an efficient computational environment, without sacrificing the generality of the

mesh database, which is well suited for tasks such as setting up boundary conditions and

creating communication structures. The rich data structures are once again used for post-

processing. It must be admitted that this type of environment requires us to effectively

maintain two sets of data files, one containing the rich mesh database and another con-

taining the compact structures, however the efficiency gained is well worth this additional

cost. An overview of the methodology is illustrated in Figure 4.1.

Figure 4.1 highlights the key technologies that are involved in the entire simulation

process, and provides the “flow” of events that takes place. Software tools are enclosed

in rectangular boxes, inputs are enclosed in diamonds (inputs may be in the form of data

files or interactive user input as in the assignment of attributes to the geometric model),

and decision processes are shown in circles. Arrows are included to indicate the direction

of “flow”; bold lines indicate operations that may take place multiple times during a

simulation, while thin lines indicate an event which occurs only once. The user begins

with a geometric model and assigns various attributes in a Graphical User Interface (GUI)

to specific model entities (e.g. boundary and initial conditions). The pre-processor then

reads the output from the GUI as well as the classified mesh (and model), and associates
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Figure 4.1: Computing environment

the attributes with the individual mesh entities, collecting all data into the compact data

structure to be used in the analysis code. If mesh adaptivity is desired, statistics based

error indicators are collected during the solve, and used to adaptively refine the mesh

using SCOREC meshing tools (see de Cougney and Shephard [18]), generating a new

rich data structure and subsequently re-entering the pre-processor. If adaptivity is not

desired, the post-processing software is invoked and ultimately the data is visualized with

external, third-party software.
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4.2 Compact data structure

To maintain efficiency for large-scale fluid dynamics simulations, the rich mesh data

structure is used only in the pre-processing phase of the analysis. A compact data structure

has been designed which includes all information necessary for higher-order degrees of

freedom, while maintaining the simplicity of the traditional finite element data structures

which store only nodal (vertex) coordinates and element connectivity information. The

compact data structure stores the degree of freedom connectivity information and nodal

coordinates as well as information indicating the sign of each basis function. It should be

pointed out that if curved elements are used, the higher-order coefficients related to their

approximation may also be computed at this time. The compact data structure presented

here is also limited to cubic (and lower order) basis functions. For higher than cubic, an

additional data structure must be added which indicates which set of linearly independent

basis functions are being used for each mesh face (see Dey [21]).

The first step in the setup of the data structures is the assignment of global equation

numbers to all mesh entities. This is done by visiting each mesh entity, determining the

number of shape functions it contributes based on their polynomial order (as described in

Chapter 2), and assigning a unique equation number for each of these functions. Next, all

elements (regions) in the mesh are visited, and the equation numbers associated with its

bounding lower-order entities are collected, e.g a tetrahedral region may collect equation

numbers from 4 vertices, 6 edges, and 4 faces (and itself if k � 	). This procedure

is similar to that described by Hughes [42] for meshes of Lagrange elements where the

global node numbers associated with each finite element are stored in the data structure.

For hierarchical basis functions, additional information needs to be maintained (for k � �)

which emanates from the mapping from entity to element.

This connectivity information provides a complete description of the mapping be-

tween the element level computations and the global degrees of freedom (where the linear

equations are set up and solved). For hierarchical basis functions of degree 3 and higher,

some of the basis functions need to have their sign reversed since the mapping from the

entity to the element coordinate system introduces a sign change for some of the bound-

ing elements. The situation is illustrated by a simple example shown in Figure 4.2. In the

figure a 2-D situation is shown in which two mesh faces share a common edge; we will
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Figure 4.2: Mesh elements illustrating the reversal of shape functions

consider each face as an element (this generalizes to regions in 3-D). This figure shows the

element numbers in circles, as well as each local degree of freedom number with respect

to each of the elements. The edge is also shown along with its local coordinate system, ���,

which is directed as indicated by the arrow (note that the global direction of the edge is

determined by the vertex ordering stored in the mesh database). As described in Section

2.2.1, the local coordinates of the edge must be mapped to the coordinate system of each

bounding element in order to evaluate the function. With the data structure described

here, it is possible to evaluate a single set of element shape functions to be used for all

elements in the mesh. This enables the basis functions to be pre-computed and tabulated

for each quadrature point, as commonly done for Lagrange-type elements.

Returning to the example, suppose k � 	 has been set on the edge depicted in

Figure 4.2. It will therefore contribute two functions, one quadratic and one cubic, to the

local basis of each of the two bounding triangular elements (see Chapter 2), given by

N����i� � �������� (4.1)

N����i� � ������������ � ���� (4.2)

where the parametric coordinates for this edge are

��� and ��� � �� ��� (4.3)

and the subscripts on the basis functions refer to their respective polynomial orders. When
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the coordinates are mapped from the edge to the element coordinates, the problem be-

comes apparent, i.e.

Element 1:

�� � ���� �� � ��� (4.4)

Element 2:

�� � ���� �� � ��� (4.5)

and the basis functions become:

Quadratic:

N
��	
� � ������ (4.6)

N
��	
� � ������

� N ��	
� (4.7)

Cubic:

N
��	
� � ��������� � ��� (4.8)

N ��	
� � ��������� � ���

� �N ��	
� (4.9)

where the superscript indicates the element that the function is associated with. The cubic

function on element � is the negative of that on element �, while the quadratic function is

the same, regardless of the edge direction. This case generally occurs when an element

uses an edge in the opposite direction than the edge is defined. Since the cubic edge

function is different for each of the bounding elements, a single set of basis functions will

clearly not suffice to completely describe the basis. To overcome this difficulty, during

pre-processing the local degree of freedom numbers that correspond to shape functions
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that must be negated are flagged (e.g. there equation numbers are negated). This infor-

mation is then used in the flow solver to create the correct element basis functions from

the pre-computed table of element functions. For quadratic or linear basis, no functions

need to be negated, and the data structures may be used as they are. This also implies that

when using the hierarchical code with linear elements, no significant penalty is paid for

having the generality of higher-order basis functions in the same code.

In addition to element connectivity, finite element computations also rely on nodal

coordinates to compute a mapping from global to element coordinates, needed to evaluate

the Jacobian matrix, �i�j, (the reader unfamiliar with such topics should consult a text

on finite element analysis such as Hughes [42]). For straight-sided elements, a linear

mapping, involving only the vertices, to element coordinates is sufficient. To accomplish

this sub-parametric mapping within the hierarchical basis, we can simply use the vertex

functions, since they are linear regardless of the polynomial order of the basis, i.e.

xe �
nvX
a��

Naxea (4.10)

and the Jacobian can be formed by inverting

�x

��

e

�
nvX
a��

Na

��x
e
a (4.11)

to obtain ��
�x

e

. Here, nv is the number of vertices per element. In this case, only the

coordinates of the vertices need to be stored in the data structure. For meshes contain-

ing curved elements, additional information must be stored to compute these nonlinear

mappings. This is a detailed topic, and a thorough discussion may be found in the work

of Dey [21]. It suffices to say that no matter what technique is used to create the higher-

order mapping, the basis coefficients necessary to compute the mapping can be included

in the coordinate data structure, and the mappings in equations (4.10) and (4.11) will be

summed over nes, the number of element shape functions, rather than simply the number

of vertices, nv. All of the computations performed in the present work use a linear map-

ping, since in most cases considered, the geometries are well represented by straight-sided

elements.



67

4.3 Post-processing hierarchical solutions

4.3.1 Effective visualization of hierarchical solution data

Post-processing higher-order solutions presents some difficulty, since current visu-

alization packages typically require linear basis functions represented by element nodal

connectivity, with data associated with nodes. Since the solution coefficients of the hi-

erarchical basis are not simply the solution values at specific nodal points (as with the

Lagrange basis), additional work is needed to effectively visualize the hierarchical solu-

tion. The most straight-forward approach is to generate a refined “visualization” mesh,

evaluate the hierarchical solution at each of the new nodes, and generate new element

connectivity before using a standard, linear visualization package. The process is illus-

trated in Figure 4.3. Here there have been three new vertices created on each original

mesh edge, yielding a total of 16 new elements for each original element. Details of the

algorithm used to generate these visualizations are given in Appendix B.

V5

V2V1 V3

V4

E6

E4

E3E5

E2

E7

E1

F2

F1 F3

Figure 4.3: Mesh subdivision for post-processing, new mesh shown with �’s and
dotted edges, original mesh with solid edges

These concepts can be illustrated by means of a simple example. Consider Fig-

ure 4.3, which displays a single model face which originally had 3 triangular mesh faces

(F1-F3), 7 mesh edges (E1-E7), and 5 mesh vertices (V1-V5); each of the triangles will

be sub-divided into new elements and nodes, and the hierarchical solution will be evalu-

ated at each of the new nodes. In this case, the user has specified 3 refinement levels (i.e.

3 new vertices for each original mesh edge, Nvis � 	). This new mesh will be output to

the linear visualization package. The number of refinement levels necessary to achieve
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good results depends on the problem at hand. For coarse cubic meshes, typically 10 to 15

new nodes per edge are required in the visualization mesh, while more refined quadratic

meshes may require only 2 or 3 new nodes. To create a good visualization, the number of

subdivisions is successively increased until the resulting visualization no longer visibly

changes. This technique is currently used on 2-D model faces (of 3-D meshes), so the

time required to generate the visualizations is insignificant (even for a large number of

subdivisions, e.g. 10-15), since no search is required.

To emphasize the importance of this post-processing technique, we consider the

cubic simulation of a lid-driven cavity at Re � ��� on a very coarse mesh. This prob-

lem will be revisited in greater detail later. Figure 4.4 shows contours of fluid speed

for the cubic simulation on the � � �-element mesh along with three different levels of

post-processing refinements. These plots clearly show the strong advantage, in fact the

necessity, of visualizing the higher-order contributions of the solution, i.e. visualizing

only the linear modes seriously degrades the solution quality.

4.3.2 Line plots of hierarchical solutions

Line plots of solution quantities are obtained by evaluating the (higher-order) finite

element solution at a series of locations in the global coordinate system. This operation

involves a search through the elements to determine what element a given global point

lies in before the solution is evaluated. The search speed is improved by taking advantage

of the adjacency relationships that are available in the mesh data structure, after a point

is found (in an element), a pointer to that element is stored. If the next point lies within

the same element, it is immediately returned, if not, the point is sought in the neighboring

elements. While this approach can be costly for low polynomial order solutions where a

large number of elements are required, the burden is reduced with high-order solutions

due to the dramatic reduction in the number of elements necessary to attain solutions

of similar quality. More advanced search algorithms could be investigated to reduce the

burden for low polynomial order methods, containing more elements to search. All line

plots presented in the current thesis were generated using these techniques, and took very

little time to complete. The number of sampled points depends on the polynomial order,

e.g. linears sample approximately at the same spacing as the vertices, while higher-order
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(a) finite element mesh (b) original mesh

(c) 16 new elements per face (d) 100 new elements per face

Figure 4.4: Fluid speed for � � � lid driven cavity with successively refined visual-
ization meshes

simulations typically take several points per element to achieve acceptable results.

4.4 Application of boundary and initial conditions

Essential and natural boundary condition attributes may be quite complex for fluid

dynamics simulations, where the user may wish to set different boundary conditions on

different portions of the geometric model. In addition, periodic boundary conditions are

handled differently than other essential boundary conditions and pose additional difficul-

ties for parallel communication since periodic partners may lie on different processors.

There are several different ways in which boundary conditions may be set up and
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used by a finite element code. The classical approach is to define the boundary conditions

based on a pre-determined knowledge of where each vertex (or node) is physically located

in space, and this information is pre-processed. This procedure is cumbersome, since it

relies on a separate program for each new physical problem that is to be solved, possibly

even for each new mesh. The advantage of this approach, however, is that since the

boundary conditions are associated during pre-processing, there assignment in the flow

solver is extremely efficient. A second approach takes advantage of the geometric model

and mesh classification information. When boundary conditions are set, the geometric

model entity on which the mesh entity is classified is queried to determine if a boundary

condition has been specified. If so, the function is evaluated, the degrees of freedom are

constrained, and the corresponding basis coefficients are set to their appropriate values.

This method is more general (and also more costly) than the classical approach since all

spatial information for the mesh entities is contained in their classification information,

and boundary conditions are assigned with respect to the geometric model entities in a

mesh-independent manner. An additional constraint when using this method is that the

flow solver must maintain the mesh-model classification information, currently only used

by the pre-processor.

The method of boundary condition application presented here is a combination of

these two approaches. We propose to compute the boundary condition coefficients using

the pre-processor with the full mesh-model classification information. This enables us

to retain the generality of geometry based boundary condition specification and the ef-

ficiency of pre-processed boundary condition data structures. It also enables us to more

easily set boundary conditions on the higher-order modes attached to mesh edges and

faces.

Higher-order simulations using Lagrange basis functions enforce essential bound-

ary conditions in a relatively straightforward manner, as the basis coefficients correspond

to solution values at nodes, vis. the Lagrange interpolation equation Na��b� � �ab. Since

the solution coefficients with respect to the Hierarchical basis do not correspond to solu-

tion values at spatial locations, more work must be done to determine the coefficients to

impose as the boundary values. To accomplish this, we will interpolate the known Dirich-

let boundary function with the hierarchical basis by solving a linear system of equations
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for the unknown basis coefficients. Additionally, a unique set of interpolation points must

be chosen since there are no particular spatial locations associated with the higher-order

coefficients.

The element level interpolation may be constructed by solving a linear system of

equations for the coefficients on each element in the domain. Suppose we wish to specify

that ��xi� � g�xi� over some portion of the boundary, where ��xi� could be any of our

solution variables. (This process may be trivially generalized to include initial conditions,

in which case we seek an approximation over the entire domain, not just the boundary

face.) We can find the coefficients of an approximation to g�xi� (for each element, e) as

g�xi� � �ge�xi� �

nipX
a��

geaN
e
a (4.12)

where Ne
a are the basis functions for element e, gea are the unknown coefficients, and nip

is the number of interpolation points, which must equal nes, the number of element shape

functions. To find these coefficients, we require the approximation to interpolate the given

function, i.e.,

Mg � R (4.13)

M � �Mab� � N e
a��

int
b �� and R � �Rb� � g�x��intb �� (4.14)

where �intb is the bth interpolation point (in element e’s coordinates). This system of linear

equations is solved for the basis coefficients, gea, which are used when needed by the

analysis code to evaluate ��xi� (which is expanded in the same basis as �g�xi�). Since we

are using an element level interpolation (which only couples local degrees of freedom)

the resulting interpolation is not guaranteed to be continuous between elements. One

solution to this problem is to average the coefficients, which is done in the present work.

Another approach is to assemble the data to global arrays and solve a global problem,

however the additional cost is not deemed worth the effort, as averaging has proven to

work well for all cases we have considered. For computations using the Lagrange basis,

the interpolation points are simply the nodal coordinates, and the matrix in (4.13) is the

identity matrix. The interpolation points used in the present work are taken from the
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work of Chen and Babus̆ka [14] where they derived an optimal set of interpolation points

for a tetrahedral region. The system of equations described above may be simplified

somewhat by statically condensing the coefficients since not all functions are coupled. In

practice, however, the interpolation is only computed during pre-processing, making the

time savings less significant.

The procedure described above for essential boundary conditions may also used

to set an initial condition in cases where the exact initial condition is relevant to the

simulation. However, experience has shown that in cases where such accuracy is not

necessary (as is usually the case), using the linear interpolation of the initial conditions is

sufficient to ensure convergence. The linear interpolation is obtained by simply setting all

higher-order coefficients equal to zero.

4.4.1 Periodic boundary conditions

The application of periodic boundary conditions poses additional difficulties in the

context of hierarchical basis functions since all mesh entities must be identical on periodic

planes (including edge and face directions). A general methodology has been developed

for the application of periodic boundary conditions. The data necessary to enforce peri-

odic boundary conditions can be contained in a single array which specifies the “periodic

master” of each mesh entity. When essential boundary conditions are set, periodic bound-

ary conditions are also set by copying the solution coefficients of the periodic masters to

their periodic slaves. This operation is simply an indirect address of the solution array

using the periodic boundary conditions array. The equations corresponding to the peri-

odic entities are eliminated from the system by using this array to zero the corresponding

residual components.

4.5 Parallel communications

Parallel computers have gained wide popularity in the finite element CFD commu-

nity due to the local nature of most of the work which can be trivially parallelized and

will be shown to yield nearly perfect scalability (���) on large problems. We present a

methodology for pre-processing the necessary data structures to be used in conjunction

with the MPI library of message passing routines. The method is designed based on the
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abstract mesh topology and easily handles dof ’s (degrees of freedom) associated with

mesh edges, faces, and regions, necessary for higher-order k simulations. The methods

presented herein are a straightforward generalization of the methods used by Bastin [1]

for linear basis computations.

To reduce the computational effort during the analysis phase, the structures speci-

fying the interprocessor communications are pre-processed. The domain-decomposition

technique is used, whereby the finite element mesh is physically decomposed into multi-

ple partitions (mesh partitioning software such as METIS [53] can be used), each of which

is assumed to be associated with a unique processor. Each processor then executes its own

copy of the analysis code, reading the pre-processed input data relating to its partition of

the mesh, as well as information relating to other processors it must communicate with.

This section describes the types of data that processors must communicate to each other

as well as the construction of these data structures.

As mentioned above, each processor maintains a complete collection of data rep-

resenting its portion of the finite element mesh and analysis information (e.g. bound-

ary conditions). This includes equation numbers and connectivity information as well

as boundary condition data for all nodes that are physically on the partition or its inter-

processor boundary. The finite elements are uniquely partitioned among the processors,

so each element will be found on only one processor. The other mesh entities (faces,

edges, and vertices) that contribute to the element level integrals, however, appear in mul-

tiple partitions if they are on an interprocessor boundary. Element level computations

are performed completely local to each processor and must be communicated only when

assembled to the global equations. In fact, only degrees of freedom associated with the

interprocessor boundary must be communicated, all others are assembled locally, on their

respective processor. The global assembly procedure involves the sending and receiving

of dof information between processors using MPI library functions to carry out these

tasks. Another case in which processors must exchange information is when periodic

boundary conditions are present with periodic partners residing on different processors.

These two types of communications will be described below.

The basic idea behind the parallel communication of finite element information can

be described with the aid of Figure 4.5. This first of the three figures 4.5(a) illustrates



74

2

3

1

(a) Composite mesh

2

3

1

(b) Type 1 communication: slaves send and
masters receive and add

2

3

1
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Figure 4.5: Parallel communication

the intersection of three processors and vertices on an interprocessor boundary. For sim-

plicity, only vertices are shown since edges and faces are handled the same way. The

element residuals associated with each of these vertices is first assembled from elements

on each of the bounding processors. After this local assembly, these values are sent in

the direction of the arrows to the values on the master processor and added. This is illus-
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trated in Figure 4.5(b), where the master vertices are shown as solid dots, and the slaves

as circles. The sending processor (referred to as the slave) then zeroes its residual values,

essentially removing this vertex from the slave processor’s system. In this manner, all

equations associated with entities on the interprocessor boundary are only solved by a

single processor, known as the entity’s master image. After these equations are solved,

the solution values are copied from the entity’s image on master processor to all of its

slave images as shown in Figure 4.5(c). The creation of the necessary data structures and

the execution of these tasks is described in the next section.

4.5.1 Implementation of parallel communication structures

For the processors to exchange the degree of freedom information during the com-

putation, each must maintain a data structure describing its communications. The MPI

routines MPI send and MPI recieve use this information to exchange data as described

below. The procedure is as follows:

1. Each processor first computes its element level residual vector and tangent matrix

values without any need for communication.

2. These element level contributions are assembled to global arrays (on processor)

using the traditional finite element assembly procedures (Hughes [42]).

3. An additional interprocessor assembly (described above) is then performed between

processors to account for dof ’s on the interprocessor boundary as shown in Fig-

ure 4.5(b).

4. Parallel communications are also carried out during the solution of the linear system

of equations. Before and after each sparse matrix-vector product, data must be

exchanged.

5. Finally, after each Newton iteration or time step, the solution values related to mesh

entities on the interprocessor boundary are copied to all of their images on each of

the adjacent processors (Figure 4.5(c)). This includes periodic boundaries.

Let us first define



76

Definition 4.1 A communication stage is defined as the process which involves all pro-

cessors making all their necessary communications. There are two types of communica-

tion stage. Type 1: residuals are added from the slaves to the masters, then zeroed on the

slave. Type 2: solution data is copied from the masters to the slaves

Each communication stage consists of each processor sending data to and receiving data

from each processor with which it must communicate (as determined by the partition).

The cases in which two processors will need to communicate have been described above

and we will denote by N i
P the number of processors with which processor i must commu-

nicate. Both types of communication stage require the same information and differ only

slightly. A single type 1 communication stage is necessary each time the element level

residual formation and local assembly is completed and a type 2 communication stage is

necessary each time the boundary conditions are set on the solution vector.

From the perspective of a single processor, say i, a communication stage may be

described as a sequence of tasks, defined as

Definition 4.2 A communication task (or a task for short), denoted Tij � j � � � � � N i
P , is

a communication between processors i and j in which data is exchanged. Ni
P represents

the total number of processors with which processor i must communicate.

To minimize the communication overhead, we require that two processors may commu-

nicate only one time during each communication stage. This forces us to designate one

of the processors in the task as master, and one as slave. This dictates which processor

will be master to each of the mesh entities on the interprocessor boundary. Since only

one communication can occur between any two processors, the set of tasks, T i
j , can be

represented as a directed graph, with vertices and edges of the graph representing pro-

cessors and communications, respectively. This directed graph indicates which processor

each mesh entity will be solved on, it therefore must yield a unique master for each mesh

entity. For example consider the communication between processors � and 	 in Fig-

ure 4.5(a). If the direction between these two processors was reversed, the vertex at the

intersection of all three processors would have no unique master. This requirement poses

the additional constraint that the graph be acyclic, i.e. contain no closed loops. A graph

of this type is commonly referred to as a Directed Acyclic Graph, or DAG, and there are
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many advanced techniques to generate a DAG from a graph (see Sedgewick [60]). The

procedure used here to create the directed graph is as follows:

1. Mesh partitioning software such as METIS [53] is used to assign each mesh region

to a unique partition.

2. Each mesh entity is visited and the processor ID number for each of its adjacent

regions is associated with the mesh entity (only once if multiple bounding regions

are in the same partition).

3. These processor adjacency sets (for each mesh entity) are used to create the partition

graph (no direction on graph edges yet).

After the graph is set up, a simple method is used to create a directed graph from the

undirected one. The direction associated with T i
j is set to point to the greater of i and j,

which is guaranteed to produce a DAG. A consistent graph having been created, it is a

simple matter to visit each mesh entity and associate the unique processor which is to be

its master.

To use MPI to carry out the communications described above, details of the data to

be exchange between processors i and j must be provided for each task, Tij . To this end,

T i
j has associated with it the following integer data:

tag: A unique tag associated with T i
j which distinguishes this send and receive for

the MPI functions.

type: Denotes whether this processor is master (� �) or slave (� �) in the current

communication. For a type 1 communication, a master calls MPI receive(...)

to receive and add the data, while a slave calls MPI send(...) to send the data.

In a type 2 communication, the slaves receive and copy and the masters send;

there is no need to zero anything.

partner: PID number of the partner processor involved in this task.

numSeg: Number of data segments to be sent or received (see below).

segData: For each of the numSeg data segments, the local dof numbers on the other

processor to send to or receive data from.
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Here a data segment is defined as a continuously numbered group of dof numbers pointing

to data such as residual or solution values. Each segment also contains its length and

starting index. In the beginning of execution of the analysis code, the segment data is

used in conjunction with the MPI TYPE HVECTOR(...) function to create new MPI

data types which are used during the communication stages. These data types are simply

masks that describe where information can be found on the various processors for each of

the segments in T i
j .
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Figure 4.6: Sample multiprocessor mesh and associated communication graph

4.5.2 Multiprocessor communication example

The above concepts can be clarified through a simple example. Consider the �-d

mesh shown in Figure 4.6(a) which is decomposed into four partitions. This mesh can

be considered as a single geometric face of a 	-d model. The bold encircled numbers

indicate processor ID numbers and the small numbers indicate local dof numbers on each

partition. For simplicity, only vertex numbers are shown, however, edges (if k 	 �) and
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faces (if k 	 	) also get dof numbers associated with them and are handled identically to

vertices. We also assume, for simplicity of discussion, that there are no periodic boundary

conditions applied to the geometric model. A consistent graph corresponding to this

mesh, created using the algorithm described above, is shown in Figure 4.6(b). Let us

consider only the tasks associated with processor �, T �
j , where j � �� 	� �, since N�

P �

	. T �
� involves a communication where processor � is master, and dof ’s 	, �, and � on

processor � are received and added to the contributions of dof ’s �, �, and �	, respectively,

on processor �. The other two tasks associated with processor �, T�
� and T �

� , are both

slave communications. Here, dof ’s � and � are sent to processor 	 (where they are added

to 5 and 3, respectively) and �� � are sent to processor � and added to �� �, then these

values are zeroed on processor �.

The Fortran90 code fragment given in Program 4.5.1 illustrates how these data

structures are used within the analysis code to carry out a type � communication stage. In

this program listing, global is a double precision vector to be operated on and ilwork

is the local work array which contains the integer data described above. It should be

emphasized that each processor uses its own unique ilwork array using common tag

numbers to match segments for processor pairs as described above.

4.5.3 Parallel scalability

To demonstrate the effectiveness of the parallel implementation, we will consider

the time dependent flow around a square cylinder at a Reynolds number of 100 (based on

the cylinder edge length). A more complete description of this problem will be presented

later. This flow was advanced in time (at a time step of 0.1) from an initial condition of a

shedding solution for 50 time steps with 2 Newton iterations per time step. The problem

was solved on 1, 2, 4, and 8 processors and the results are shown in Figure 4.7. This figure

shows the total solution time multiplied by the number of processors vs. the number of

processors, normalized by the time for the single processor simulation. It is clear from

the figure that the parallel implementation is nearly perfectly scalable (98%).

The cost of the parallel communication also depends, to some extent, on the poly-

nomial order of the basis. As some detailed timings show (see Chapter 5) the distribution

of cost between element level computation and linear solver, also has an effect on the
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Program 4.5.1 Type � communication stage
dimension global(nshg,n), temp(max), ilwork(nlwork)
...
numtask = ilwork(1)
do itask = 1, numtask
itag = ilwork (itkbeg + 1)
type = ilwork (itkbeg + 2)
partner = ilwork (itkbeg + 3)
numseg = ilwork (itkbeg + 4)
isgbeg = ilwork (itkbeg + 5)
if (type .EQ. 0) then
call MPI_SEND(global(isgbeg,1), 1,

& sevsegtype(itask,kdof),
& partner, itag,
& MPI_COMM_WORLD, ierr)

else
lfront = 0
do is = 1,numseg
lenseg = ilwork (itkbeg + 4 + 2*is)
lfront = lfront + lenseg

enddo
call MPI_RECV(temp(1), lfront*n, MPI_DOUBLE_PRECISION,

& partner, itag, MPI_COMM_WORLD,
& status, ierr)

itemp = 1
do idof = 1,n
do is = 1,numseg
isgbeg = ilwork (itkbeg + 3 + 2*is)
lenseg = ilwork (itkbeg + 4 + 2*is)
isgend = isgbeg + lenseg - 1
global(isgbeg:isgend,idof) =

& global(isgbeg:isgend,idof)
& + temp (itemp:itemp+lenseg-1)

itemp = itemp + lenseg
enddo

enddo
endif
itkbeg = itkbeg + 4 + 2 * numseg

enddo
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Figure 4.7: Parallel efficiency for vortex shedding problem. Time is the aggregate
time used by all processors.

parallel communications. For example, the cubic basis spends the majority of its time

computing and forming the tangent matrices, thus involving fewer communications. In

all cases, however, the cost of communication was less than 15% of the total simulation

time.

4.6 Statistics based error indicators for h-adaptive simulations

As pointed out in the Introduction, some level of h-refinement is necessary in con-

junction with the use of higher-order basis functions to achieve the most accurate and

cost effective simulations possible given certain cost restraints. Traditional methods of

error indication and estimation are not commonly used or easily applied to time depen-

dent simulations that often contain structures that evolve in time. If mesh adaptation is

carried out at each time step, much effort may be used creating a refined mesh for a flow

structure that is quickly convected from that portion of the mesh (i.e. the mesh refinement

must constantly follow the flow structures). However, many problems of scientific and

engineering interest contain regions of the flow that are statistically stationary, while the

instantaneous structures are rapidly varying in time. For example the turbulent flow in a



82

boundary layer has a well defined region where the flow is statistically steady, although

the turbulent eddies are constantly evolving. Attempting to resolve a turbulent flow of

this type based on an instantaneous flow state may not be the most efficient approach.

To remedy this situation, we introduce new error indicators based on time-averaged

statistical quantities. Based on this methodology, the error indicators are collected dur-

ing several hundred or thousand time steps, and evaluated. Based on these quantities,

the mesh is adaptively refined using SCOREC meshing tools (see de Cougney and Shep-

hard [18]). It should be noted that there is still no general theory to guide the use of these

new error indicators, though the preliminary results are promising. These new adaptive

refinement techniques are demonstrated below on the problem of vortex shedding behind

a square cylinder for uniform polynomial orders. This flow is well-suited for demonstrat-

ing the ideas since it has a long wake region with a periodic vortex street, which for a

small time window is rapidly varying, but is statistically steady over large time windows.

Several error indicators are proposed, and are given by the following expressions:

�

T

NX
n��

Z


w L�
i d� (4.15)
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n��
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n��
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�

T

NX
n��

p�
� (4.18)

Here, Li is the residual of the strong form of the Navier-Stokes equations using the con-

servation restoring advective velocity,
�
ui, i.e.

Li � �ui �
�
ujui�j � p�i � �ij�j � fi (4.19)

We have also used u�i and p� to represent the fluctuating portion of the velocity and pressure

field (similar to the quantities introduced for turbulence statistics). The sums in Equations

(4.15) through (4.18) indicate that these quantities are time-averaged by collecting them
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at each time step and averaging over the number of time steps. The adaptive procedure is

accomplished by running the time dependent simulation on a coarse mesh and collecting

these quantities. These time-averaged quantities are then visualized and combined to

yield an indication of where the mesh should be refined. Meshing tools available in the

SCOREC software system are then used to refine the mesh entities that are identified

based on the chosen error indicators.

4.7 Chapter summary

This chapter discussed several issues relevant to fluid dynamics computations using

hierarchical basis functions. It is clear from this chapter that we advocate the use of pre-

processed data structures for element level computations, boundary condition data, and

parallel communication, by using the rich mesh database to create these structures using

pre-processing software. This has allowed us to maintain the efficiency of a highly op-

timized linear basis Navier-Stokes solver. Post-processing hierarchical basis simulations

was also discussed in some detail, as it is more involved than visualizing simulations

based on the Lagrange basis. The techniques described in this chapter were all used to set

up and analyze the simulations presented in the following chapters.



CHAPTER 5

NUMERICAL EXAMPLES: STEADY AND UNSTEADY

LAMINAR FLOW

This chapter presents numerical simulations which are used to explore the methods intro-

duced in the previous chapters. The problems presented here will verify the convergence

rate of the finite element formulation and quantify the cost associated with various poly-

nomial order basis functions. This chapter will demonstrate the cost effectiveness of the

higher-order basis functions when compared with the linear basis. Also presented here

will be results for h-adaptive simulations based on time averaged statistics, for uniform

polynomial order simulations.

5.1 Kovasznay flow

The first simulation is used to verify the convergence rate of the finite element

formulation. It is well known that the interpolation error should converge at a rate of

hk��, where h is a suitable measure of the element size (see Johnson [52]). Since we are

simulating this flow on a structured, uniform grid, h is simply taken as the length of the

element in the x� or x� direction, (i.e. 
x�).

The Kovasznay flow may be identified with the incompressible flow some distance

downstream from a rectangular grid (see Kovasznay [56]) and has a closed form analytical

solution given by:

u� � �� e	x� cos���x�� (5.1)

u� �
�

��
e	x� sin���x�� (5.2)

with

� �
Re
�
�
r

Re�

�
� ��� (5.3)
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and we have taken Re � �� for the present study. The flow is considered on a rectangu-

lar domain of ��
�
� x� � � and ��

�
� x� � �

�
with the exact solution imposed as an

essential boundary condition at the inflow and upper and lower walls, while the pressure

was set to zero at the outflow. Since this is a non-trivial essential boundary condition, the

interpolation technique described in Section 4.4 is employed to determine the basis coef-

ficients on the boundary. Failure to correctly interpolate the boundary condition results in

sub-optimal convergence rates (particularly for the higher-order simulations). The qual-

itative behavior of the solution is depicted in Figure 5.1 which shows contours of fluid

speed for the cubic simulation on the ��� �� mesh.

3/2

-1/2

-1/2 1

Figure 5.1: Kovasznay flow. Contours of fluid speed for cubic simulation on ��� ��
mesh

A convergence study was performed for this flow to determine the accuracy of the

different polynomial order simulations as functions of the mesh size, 
x�, and the poly-

nomial order of the basis. Figures 5.2(a) and 5.2(b) show the log of the normalized L�

error in the velocity field versus log�
x�� and polynomial order, respectively. Here, the

L� error is computed numerically from the formula

E� �

R

eiei dxR


uiui dx

(5.4)
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Figure 5.2: Kovasznay flow convergence study

where

ei � ui � u�h�k	i (5.5)

represents the difference between the exact, ui, and finite element, u�h�k	i , solutions for the

velocity.

Figure 5.2(a) enables us to determine the rates of convergence of the different simu-

lations to be 1.6, 2.7, and 3.8 for the linear, quadratic, and cubic simulations, respectively.

These values compare well with the theoretical predictions for the interpolation error (i.e.

2, 3, and 4 for linear, quadratic and cubic). It is clear from Figure 5.2(a) that the constant

in the error estimate also greatly improves for the higher-order simulations, making the

higher-order basis most attractive even on the coarsest meshes. It should be noted that for

this flow, the cubic simulation is the closest to its predicted value, while the linear is the

most deficient. The under-performance of the linear and quadratic solutions may be due

to the severe penalty incurred by a method’s inability to capture maxima and minima of

the prescribed, essential boundary conditions. Figure 5.2(b) demonstrates the exponential

convergence of the method when 
x� is fixed and the polynomial order is increased.
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5.2 Flow over a backward-facing step

Consider a two-dimensional, incompressible flow over a backward-facing step at

Re � ���, based on the step height and the average inflow velocity. The geometry and

boundary conditions are similar to those used by Gartling [24]. The problem is specified

by a fully developed flow entering a confined channel which, at Re � ���, has been

demonstrated by numerous researchers to be steady and stable (see Gresho et al. [27]).

A complete description of the physical problem requires modeling the region upstream

of the step, and careful attention to the singularity that may develop at the step corner.

However, since the objective of this study was a comparison of various polynomial order

bases rather than a complete description of the physics, the standard step flow geometry

was simplified by excluding the region upstream of the step as described in Gartling [24].

This allows for a more accurate comparison with his benchmark results.

The geometry and boundary conditions are shown in Figure 5.3. The initial con-

dition consists of a parabolic (Poiseuille) velocity profile with the same mass flow-rate

as the inlet profile, imposed upon the entire channel. This initial condition is marched in

time using the backward Euler technique until the steady solution is reached, confirmed

in all cases by monitoring the changes in various flow quantities. The steady state is also

verified by steady shear stress on the channel walls.

ui � �

ui � �

ui � �

u� � ��x������ x��
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���
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Figure 5.3: Step flow geometry and problem description

Numerical solutions were obtained on a variety of uniform tetrahedral meshes for

several different polynomial orders. The mesh statistics are shown in Table 5.1 where

each successive mesh represents a uniform refinement of the previous mesh, with the

exception of mesh B. Here, 
x� and 
x� represent the element size in the x� and x�
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directions, respectively.

Mesh Vertices Edges Faces 
x� 
x�

A 405 1,044 640 0.250 0.250
B 847 2,286 1,440 0.167 0.167
C 2,211 6,210 4,000 0.100 0.100
D 8,421 24,420 16,000 0.050 0.050
E 32,841 96,840 64,000 0.025 0.025

Table 5.1: Step flow mesh statistics

There are three major factors that contribute to the cost of the finite element simu-

lations discussed here: right hand side (or residual) evaluation, left-hand-side (or tangent

and mass) formation, and linear algebra (involving matrix-vector products for iterative

solution techniques). The first two of these measures rely on the numerical integration

of element level quantities, and the dominant terms are in the left-hand-side calculation

(proportional to the number of integration points times the number of element basis func-

tions squared). The matrix-vector products are dominated by the fill pattern of the matrix.

The relative size of these different measures depends on the order of the basis being used

(as well as the problem). For example, the linear basis is dominated by the linear algebra,

since we are using relatively cheap integration rules. Also, the fine meshes needed for

linear basis computations lead to greater cost in solving the linear system (more Krylov

vectors are needed).

In Table 5.2, we are assuming that the cost is proportional to the number of elements

times the number of element shape functions squared times the number of quadrature

points, CI � nel � n�es � nint, and a “-” in the Cost column indicates that this simulation

is not included in the study. The cost measured in this way reflects the tangent matrix

formulation cost. The symbols in the far-right column indicate the meshes used in the

comparison study discussed below. These calculations are in terms of the face data and

face quadrature rules in an attempt to level the playing field for the 2-D comparison with

the 3-D code.

The basic character of this flow is well known. At Re � ���, there are two

separation regions, one starting at the step corner and continuing downstream approxi-

mately 12 step heights, and another on the upper wall of the channel occupying a region
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Mesh k ns nint CI������
1 405 3 -

A 2 1,449 6 -
3 3,133 12 768 �

1 847 3 -
B 2 3,133 6 -

3 6,859 12 -
1 2,211 3 -

C 2 8,421 6 864 �
3 18,631 12 -
1 8,421 3 -

D 2 32,841 6 -
3 73,261 12 -
1 32,841 3 1,728 �

E 2 129,681 6 -
3 290,521 12 -

Table 5.2: Step flow simulation cost comparison

from approximately 10 to 20 step heights downstream. These features are shown in Fig-

ures 5.4(a)- 5.4(d) which represent the fluid speed, pressure, vorticity, and velocity vectors

for the cubic simulation on mesh C. These figures are shown in the correct scale, how-

ever, only the first ten step heights of the channel are shown. Qualitatively, these figures

compare well with those presented in Gartling [24].

The contour plots look similar for all simulations making it difficult to quantify the

benefit of the higher-order methods. We will therefore compare line plots of various flow

quantities at different spatial locations. The first of these plots demonstrates that all of the

methods are converging to the benchmark result (with linear being the slight exception).

Figure 5.5(a) shows the (most refined) cubic, quadratic, and linear simulations on meshes

C, D, and E, respectively, as well as the benchmark result of Gartling [24]. For each

of these, the x�- and x�- velocities and pressure are shown at two locations along the

channel, x� � ��� and x� � ����, the same locations presented in Gartling [24], which

we have included on the velocity plots as a benchmark result. The cubic and quadratic are

able to exactly reproduce the benchmark simulation, while the linear, even on the most

refined grid, is still slightly off in the x�-velocity at the x� � ��� location. This isn’t

surprising, since the benchmark result is from a quadratic simulation with �� vertices
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(a) contours of fluid speed

(b) contours of pressure

(c) contours of vorticity

(d) velocity vectors

Figure 5.4: Step flow simulation characteristics: Mesh C, k � 	

across the channel, which is a higher resolution than our most refined linear simulation.

Figure 5.5(b) presents a comparison between the cubic simulation on mesh A, the

quadratic simulation on mesh C, and the linear on mesh E. These three simulations rep-

resent qualitatively similar results. Clearly, the only plots that visibly differ from the

benchmark result are the linear and cubic x� velocity at x� � ���, which is the most

sensitive quantity in the study. Although the quadratic basis simulation is slightly better,

here, the cubic and linear basis simulations appear identical. The symbols in the plots
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(b) Comparison of qualitatively similar solu-
tions (see Table 5.2 for symbols), : Gartling.

Figure 5.5: Backward-facing step. Velocity and pressure plotted versus x� at x� � �
and x� � ��. Velocities at x� � �� were shifted for plotting.

may be found in the right column of Table 5.2 which also shows the cost index for these

three simulations as ��� � ���, ��� � ���, and ���	 � ��� for the cubic, quadratic, and

linear simulations, respectively. From this, it is clear that the same accuracy can be ob-

tained with the cubic simulation for 40% the cost of the linear, while the quadratic costs

about half as much as the linear. These results are also in agreement with the results for

the Kovasznay flow using the L� error as a comparison measure.

A further study was carried out to determine the accuracy of the pressure for the

linear-basis method. Since traditional Galerkin methods must interpolate pressure one

order lower than the velocity, the pressure is necessarily one order less accurate. The

stabilized method does not suffer from this limitation. This is demonstrated by comparing

two linear-basis simulations to the most refined cubic simulation at the x� � � location.

The log of the L� error (defined as the maximum difference from the reference solution)

versus 
x� shows a slope of 2.1, which is slightly better than optimal for the meshes

considered; the L� error for the interpolation being O�h�� (see Johnson [52]). Quadratic

and cubic solutions are too close to the reference solution (the most refined cubic) to

obtain useful convergence data.
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Figure 5.6: log of L� error in pressure vs. log(
x�).

5.3 Lid-driven cavity flow

The next problem considered is the steady, two-dimensional and incompressible

flow inside a closed container driven by its lid. The lid slides to the right at unit velocity

across the top of the cavity, shearing the fluid and setting up a recirculation region. There

is a primary vortex in the center of the cavity and secondary eddies in the lower corners

(the number of these secondary eddies depends on the Reynolds number). For the present

study, we have chosen to consider Re � ��� (based on the lid velocity), for which there

exist well-established benchmark results to compare with (see Ghia et al. [26]). Since

the velocity is discontinuous at both upper corners, singularities will develop in the pres-

sure and stress fields, which must be controlled by the method. In addition, there are

singularities also in the lower corners, however, they are well resolved by the uniform

meshes.

The geometry and boundary conditions are illustrated in Figure 5.7. In addition to

the velocity constraints, the pressure field is constrained by setting its value at the single

vertex in the lower left corner of the cavity. Uniform meshes were used with equal spacing

in the x�� and x�� directions. To isolate the singularities in the upper corners, nested

local mesh adaptivity was used by subdividing the original corner elements. The number

of new corner elements was chosen such that the first point is 	������� ���� units from

the corner for each mesh. This distance dictates the extent to which the discontinuity

in the velocity field is resolved (i.e. how much fluid is “leaked” from the cavity) and is
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p � �

x�
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Figure 5.7: Lid-driven cavity geometry and boundary conditions

fixed at the given value for all simulations by changing the number of corner elements.

This procedure is crucial to obtaining identical solutions for the different polynomial

orders, since the actual mesh size varies dramatically between the least refined cubic and

most refined linear simulations. Figure 5.8 shows the ��� �� mesh along with the local

refinement in the upper right corner (the upper left corner is adapted the same way).

Figure 5.8: Mesh of lid showing corner adaptivity

The statistics for these meshes along with the polynomial orders used are shown in

Table 5.3. This data does not include the refinement in the upper corners, as this represents
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a small percentage of the total mesh.

Mesh Vertices k

A 11�11 3
B 21�21 2,3
C 41�41 1,2,3
D 81�81 1,2
E 161�161 1

Table 5.3: Lid-driven cavity mesh statistics

The basic solution characteristics of this flow are shown in Figures 5.9(a) - 5.9(d)

which display contours of fluid speed, pressure, and vorticity, as well as velocity vectors,

respectively. The plots shown here are the quadratic simulation on mesh C, however, all

converged simulations look identical. Figure 5.10(a) shows profiles of u��x�� x� � ��

and u��x� � �� x�� for the the most refined mesh for each polynomial order. Note that u�

was scaled by 0.5 to facilitate plotting. Also shown is the benchmark result of Ghia, et

al.[26] (one stray point was removed from their tabular data). The three plots are virtually

indistinguishable.

A cost comparison study similar to that for the backward-facing step was carried

out for the lid-driven cavity flow (see the velocity compared in Figure 5.10(b)). The simu-

lations, along with their cost index, matrix storage, and mesh size are shown in Table 5.4.

In this case, the linear simulation is approximately four times more costly than the cu-

bic and about twice as costly as the quadratic. Here we have also provided information

comparing the memory requirements and disk storage required for the simulations. The

“Matrix storage” column of Table 5.4 indicates the number of nonzero blocks for the

sparse storage of the tangent matrix (the dominant memory requirement), indicating that

the memory requirements for the cubic simulation are about one third of the linear, while

the quadratic is slightly better than the linear. The “Mesh size” column compares the

size in mega-bytes of the files that store both the compact data structure as well as the

complete mesh database (on the left and right of the /, respectively). This data indicates

that there is also a significant size advantage for the compact data structure for linear el-

ements, however, for cubic elements, the full mesh database is of comparable size (Beall

and Shephard [4] found similar results). The final column indicates the CPU time in sec-
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(a) contours of fluid speed (b) contours of pressure

(c) contours of vorticity (d) velocity vectors

Figure 5.9: Lid-driven cavity flow characteristics: Mesh D, k � �

onds to run this simulation for a total of 10 time steps. These timings indicate that our

cost index, CI , provides a good measure of the actual computing time. In fact, consid-

ering only CPU time, the cubic comes out almost 7 times faster than the linear, while

the quadratic is about twice as fast. Some of this may be due to the fact that the linear

algebraic system is much tougher to solve (using more than four times as many Krylov

vectors per solve) for the linears, due to the extremely fine meshes. In an attempt to level

the playing field, the linear and quadratic simulations were limited to 50 Krylov vectors
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Figure 5.10: Lid-driven cavity flow. Plots of u��x� � �� x�� and u��x�� x� � ��

per linear solve, and the convergence was not affected significantly for the 10 time steps

(the cubic had no problem reaching the desired linear solver tolerance of 0.1 within the

allotted 50 vectors). These timings are with the 50 Krylov vector limitation for the linear

and quadratic.

Mesh k CI������ Matrix Storage Mesh size (MB) CPU time (sec)
A 3 316.7 202,804 0.13/0.1 43.2 �

C 2 701.6 458,196 0.78/1.4 152.5 �
E 1 1,383.3 570,193 5.4/24.6 300.7 �

Table 5.4: Lid-driven cavity cost comparison

5.4 Vortex shedding behind a square cylinder

The simulation of the flow around a square cylinder at a Reynolds number of 100

(based on the cylinder edge length) is presented as an application of the hierarchical basis

to a laminar, time-dependent flow. This flow will also be used to illustrate the techniques

of mesh adaptivity based on statistical error indicators for different uniform polynomial

orders. Detailed studies (both numerical and experimental) of this flow have been carried

out by Davis and Moore [17], and more recently by Sohankar et al. [70].
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u2 = u3 = 0.0

u = u0 p = 0.0

u = 0.0

u2 = u3 = 0.0x1

x2

Figure 5.11: Boundary conditions for flow around a square cylinder

The geometry and boundary conditions for this flow problem are shown in Fig-

ure 5.11. The cylinder is centered at the origin, and has an edge length of 1. The distance

from the origin to the inflow is 10 units, and it is 25 units from the origin to the outflow

of the domain. The lateral walls are placed at x� � ���. In addition to the boundary

conditions shown in Figure 5.11, we have set the tangential traction and normal velocity

to zero on the x�-planes to simulate the two-dimensional flow. The key feature of this

flow (at Re � ���) is the development of a time-periodic vortex street in the wake of

the cylinder, similar to the more common flow about a circular cylinder. This flow, how-

ever, is considered a more difficult simulation due to the corners of the box which lead to

singularities in the flow field (see Gresho [28]).

The simulation is started from an initial flow field of a uniform velocity of ui �

u��i� and advanced in time using the generalized-� method time integrator introduced

in Section 3.3 with the high frequency damping parameter (��) set to ���. No detailed

study of the temporal accuracy vs. �� was carried out for this flow, since the main goal

of this simulation was to perform the h-adaptive calculations and compare the different

polynomial orders. The time step was set to 0.1, and 2 Newton iterations per time step

were performed.

Figures 5.12 through 5.14 show the results of the simulation, along with the h-

adaptive meshes. The flow quantity shown in each of the plots is a snapshot in time of

the flow vorticity at values of ���� � � �� ��� (at an increment of ���), ���� � � �� ��� (at

an increment of ���), ���, and ���. In addition to the vorticity, the mesh is shown for

each of the simulations. For k � � � � � 	, an initial coarse mesh was created and adaptively
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Initial Mesh

First refinement

Second refinement

Figure 5.12: Vortex shedding behind a square cylinder: k � �
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Initial Mesh

First refinement

Second refinement

Figure 5.13: Vortex shedding behind a square cylinder: k � �
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Initial Mesh

First refinement

Second refinement

Figure 5.14: Vortex shedding behind a square cylinder: k � 	
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refined based on the error indicators presented in Section 4.6. The data for the series of

meshes is presented in Table 5.5. This data includes the mesh information for the entire 3

dimensional mesh, causing the number of degrees of freedom to grow much more rapidly

for the higher-order simulations. Although there are only 2 vertices in the x�-direction,

there are additional faces and edges that all get higher-order degrees of freedom (but are

effectively wasted).

k Refinement level Vertices nsh Strouhal #

1 Initial 3658 3658 0.139
1 First 7442 7442 0.145
1 Second 21678 21678 0.146
2 Initial 952 5484 0.127
2 First 1988 11643 0.145
2 Second 4748 28161 0.147
3 Initial 346 5676 0.141
3 First 1032 17760 0.146
3 Second 3780 66600 0.147

Table 5.5: Vortex shedding from square simulation data

The drag and lift profiles are shown in Figures 5.15 through 5.17 for the k � � � � � 	

simulations as functions of the non-dimensional time, once the flow has fully developed

into its limit cycle. Shown here are profiles on the most refined mesh for each of these

polynomial orders. The convergence to the Strouhal number (St � fSd
u� where fS is

the shedding frequency and d is the edge length of the square) for each of the simulations

is also presented in Table 5.5. These values are in excellent agreement with that presented

in the work of Sohankar et al. [70] of �����, actually our values seem to be converging to

�����. It can also be observed from the drag profiles that there is a high-frequency oscilla-

tion present in the linear solution, and to a lesser extent in the quadratic. This is possibly

due to the extremely fine mesh in the near cylinder region for the linear mesh, requiring

more corrector passes to sufficiently resolve the flow at each time step. Experience has

shown that insufficient nonlinear convergence will lead to such high-frequency oscilla-

tions. An alternative approach would be to damp out these oscillations by decreasing the

value of ��, however this would also lead to a slight decrease in accuracy.
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Figure 5.15: Lift and drag profiles for k � �
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Figure 5.16: Lift and drag profiles for k � �



103

70 72 74 76 78 80 82 84 86 88 90
0.772

0.774

0.776

0.778

0.78

0.782

0.784

70 72 74 76 78 80 82 84 86 88 90
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

f l

f d

t�

Figure 5.17: Lift and drag profiles for k � 	

5.5 Chapter summary

The examples presented in this chapter serve to demonstrate the use of the stabilized

finite element formulation with hierarchical basis functions for both steady and unsteady

laminar flows. The near optimal convergence rate of the formulation was shown for a

problem with a closed form analytical solution, and the cost effectiveness of the higher-

order basis was demonstrated for the backward-facing step and the lid-driven cavity. This

cost effectiveness has shown the cubic basis to be over seven times cheaper than the

linear basis. Also presented in this chapter were simulations of an unsteady problem

using statistics based error indicators for creating h-refined meshes.



CHAPTER 6

TURBULENCE COMPUTATIONS

The purpose of this chapter is to provide an introduction to using hierarchical basis finite

elements to compute and analyze turbulent flows. The study of turbulent flows typically

involves the computation and analysis of statistical quantities derived from the primitive

flow variables. Many techniques for analyzing turbulent flow statistics, which work well

for linear elements, break down and must be modified when used with the hierarchical

basis. Techniques will be described in this chapter to analyze higher-order turbulence

simulations which are based on hierarchical basis formulations. Before describing these

techniques, a brief introduction to turbulence simulations will be given. The study of

turbulence using analytical, experimental, as well as numerical techniques is extremely

involved and the reader unfamiliar with the subject should consult a basic text such as

Tennekes and Lumley [72], which provides a good introduction to the field.

From a numerical analysis perspective, there are three distinct ways in which tur-

bulent flows can be studied, which essentially relate to how much of the turbulent motion

is intended to be resolved, and how much will be modeled. Reynolds averaged Navier-

Stokes, or RANS, simulations attempt to resolve only the average flow quantities, leaving

all turbulent fluctuations to be modeled. This approach is the most computationally effi-

cient and has proven successful for some steady flows, but has been quite disappointing

for unsteady and/or complex flows. RANS simulations have nonetheless become the

“workhorse” for industrial type problems (see Wilcox [77] for additional detail on RANS

calculations). Large eddy simulation, or LES, attempts to resolve the large eddies in

the flow (as the name implies), where most of the energy is known to exist, leaving the

subgrid-scale eddies to be modeled (see Jansen [44]). Since it is generally accepted that

the smallest eddies, where motion is converted to heat via viscous dissipation, behave

similarly for a wide range of flows, it is hoped that modeling only these smallest-scale

structures will provide more accurate simulations for a wider variety of flows. However,

since more of the flow structures are being resolved, as well as the temporal behavior of

the flow, these simulations are necessarily more costly to perform than RANS simulations.

104
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The most complete, and also the most costly, of the methods is direct numerical simula-

tion (DNS), where an attempt is made to resolve all scales of the turbulent flow (both

spatial and temporal). While DNS has proven fruitful for studying the basic physics of

turbulence (see Kim et al. [55] and Le et al. [57]), its application to flows of engineering

interest is expected to remain out of reach for at least the next several decades.

Simulations of turbulence based on the RANS approach can be analyzed much the

same way as laminar, steady flows, allowing the straightforward use of the hierarchical

basis function post-processing techniques discussed above. There are, however, expected

to be other complicating issues related to using higher-order methods to solve these com-

plicated systems of equations that are beyond the scope of this work. To carefully study

LES and DNS computations of turbulence, more work must be done to collect time-

averaged statistical quantities which can be compared with theoretical and experimental

results. This is in addition to the traditional types of visualization techniques that can be

applied to the instantaneous flow fields, but these only provide the qualitative behavior of

the flow at a given instant in time, and are difficult or impossible to compare directly with

experiments.

6.1 Basic relationships for turbulence simulations

Consider the flow quantities to be decomposed into time-averaged and fluctuating

components as (see Tennekes and Lumley [72]),

ui � ui � u�i (6.1)

p � p � p� (6.2)

where the barred quantities are the time-averaged, or mean flow properties, such that,

ui � lim
T��

�

T

Z t��T

t�

ui dt (6.3)

where T is the time over which the average is performed. In computations, this quantity

is commonly computed by performing a numerical average over N discrete time steps,
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i.e.

ui �
�

N

NX
k��

ui�tk� (6.4)

where ui�tk� is the flow quantity of interest at the kth time step. To gain insight into

the dynamics of turbulent flow, various quantities based on the decomposition in (6.1)

are collected during a simulation, and post-processed, to generate a statistical “picture”

of the turbulent flow-field. In addition to this temporal averaging, spatial averaging over

homogeneous directions is also used (for flows that have such character) to increase the

statistical sampling, allowing fewer time steps to achieve statistically steady behavior.

Several quantities are of particular interest, starting with the mean quantities themselves

and properties derived from the mean quantities such as wall forces, followed by the

turbulence intensities such as the root-mean-square velocity,

urms
i �

q
u��i	u

�

�i	 (6.5)

(no sum on i) and pressure. Also of interest is the total shear stress,

�u�iu�j � �ij (6.6)

which is composed of the Reynolds stress (from the fluctuating velocity components) and

the viscous stress (from the mean flow quantities). The total shear stress for incompress-

ible turbulent channel flow can be shown analytically to be linear across the channel, and

this characteristic is used to indicate that a flow is indeed statistically steady. Finally,

the superscript � indicates a non-dimensional quantity scaled by the wall variables; e.g.

x�� � x�u�
�, and the friction velocity is defined such that u�� � ��w
�� where �w is the

shear stress at the wall (see Tennekes and Lumley [72]).

6.2 Computation of turbulence statistics

As pointed out above, to gain insight into the dynamics of a turbulent flow, statistical

quantities are typically used which are generated by collecting several quantities during

the flow simulation. Collecting time-averaged statistics is not as simple as it might seem,
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however. It turns out that the direct method of simply collecting running sums of the

quantities, does not always achieve the best results, since the nodal velocity and stress

fields that are collected are not necessarily conservative. A method will be presented to

reproduce conservative statistics for linear elements, in addition to the standard method

which will be used for hierarchical simulations.

To compute the statistics of the turbulent flow from the numerical simulation, the

following quantities are collected during the simulation:

ui and p mean flow properties (6.7)

uiuj first-order velocity correlations (6.8)

p� first-order pressure correlations (6.9)

�ij total stress (including pressure) (6.10)

In the flow solver, after the completion of each time step, the quantities in (6.7)-(6.10)

(without the bars) are added to running sums, and then divided by the number of time-

steps during post-processing to form the time-averages (barred quantities). For example,

the Reynolds stress and r.m.s. velocity may be recovered from uiuj and ui by computing

u�iu
�

j � uiuj � uiuj (6.11)

which is easily derived from (6.1). The numerical evaluation of (6.7) through (6.10),

however, is quite different for linear and higher-order basis simulations.

Some flows, in particular the channel flow considered here, also exhibit spatial di-

rections in which the turbulence is known to be homogeneous. This property allows for

additional averaging in these directions, which serves to increase the statistical sample

for the averaged quantities, and decreases the number of time steps necessary to achieve

a statistically stationary flow. For example, the channel flow problem presented below

is averaged over the span-wise and stream-wise directions, in addition to time. This is

accomplished as a post-processing operation. Other flows also exhibit homogeneous di-

rections, e.g. a flat plate boundary layer has a single homogeneous direction (span-wise).
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6.2.1 Collecting turbulence statistics

The main difficulty in collecting statistics for hierarchical basis coefficients is that

the basis coefficients do not directly correspond to solution values at specific spatial loca-

tions. Therefore, simply collecting and averaging the coefficients will work for the mean

flow properties, but will fail for the second (and higher) order statistics. To correct for

this problem, the statistical quantities given above are evaluated and collected, instead, at

the element interpolation points. The first step in post-processing is then to use the in-

terpolation algorithm described in Section 4.4 to recover the correct time-averaged basis

coefficients for the collected quantities. For example, the velocity correlation coefficients

are found such that

uiuj �
nesX
a��

caijNa (6.12)

where caij represent the basis coefficients of the time-averaged field, and Na are the usual

basis functions. When using the linear basis, we can simply collect the statistics at the

vertices, however a more accurate approach will be described below for use with linear

elements.

After solving for the caij , spatial averaging over homogeneous directions must be

accomplished. This is done by creating a structured, two-dimensional sampling grid cor-

responding to the homogeneous plane. The hierarchical solution is then evaluated at each

of the points in the structured grid (using the same search algorithm used to make line

plots), and the values are collected and averaged to a single point on a line in the non-

homogeneous direction.

6.2.2 Conservative statistics using linear elements

Straightforward evaluation of (6.7)-(6.10) may result in non-conservative nodal

fields, causing the statistics to be less accurate than is possible. To remedy this prob-

lem, we introduce a method to compute nodal statistics that have the conservation prop-

erties restored. The procedure is a generalization of that described by Hughes [42] on

page 107, which describes a post-processing technique for calculating consistent bound-

ary flux. This method is also used for computing the boundary flux for all simulations



109

presented in this work. The conservative approach to collecting turbulent statistics, how-

ever, does not work for hierarchical basis function, due to the fact that techniques are used

for inverting the projection matrices that rely on nodal quadrature which breaks down for

hierarchical elements. A potential remedy to this problem is to project the hierarchical

basis quantities onto a Lagrange basis for the purposes of collecting the statistics, since

Lagrange basis coefficients correspond directly to solution values.

The basic idea is to project the conservative fields to the nodes to recover the conser-

vative nodal velocities and stresses. This involves using the element level residuals from

the momentum and continuity equation in a special way to recover these conservative

quantities. From a conservation analysis, we have, for any vertex (node),

ma � �na � ua� for a � � � � � nn (6.13)

and

nnX
a��

ma � ��
nnX
a��

�na � � (6.14)

where ma is the mass flux out of element a, �na is the outward “normal” from element a,

for the given node, and nn is the number of elements incident on the node. The normal

here is defined as the average of normals from the faces adjacent to the node. Unfortu-

nately, there is no single velocityuwhich satisfiesma � �na �u. To remedy this situation,

we project, i.e., find u such that

min
u�RN

��na � u�ma���na � u�ma� (6.15)

which yields the matrix problem

Mu � R (6.16)
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where

M � �na �n
T
a (6.17)

R � �nama (6.18)

andma is the residual of the continuity equation associated with the node and element a.

If M is rank deficient, due to the location of the bounding elements, we add �u � u�h�k	��
to the min function in (6.15), hence

M �M � �I (6.19)

R� R � �u�h�k	 (6.20)

where � � � if M is full rank, and � � tr�M� if M is rank deficient. Similar relation-

ships may be derived from the residuals of the momentum equation and used to compute

the second order statistical quantities in a conservative manner, however details will not

be given here.

For linear elements, span-wise and stream-wise averaging (for the channel flow) is

accomplished using the known structure of the mesh (i� j� k structured numbering) to sum

the contributions along these directions, then divide by the number of points included in

the sum. This collapses the statistical average to a single line in the non-homogeneous

direction (x� for the channel).

6.3 Turbulent channel flow at Re� � ��� (DNS)

This example presents an initial application of the hierarchical basis functions to a

direct numerical simulation of turbulent channel flow at a Reynolds number of ��� based

on the friction velocity (u� ) and the channel half-width, �, and a Reynolds number of

2800 based on a mean bulk velocity of Um � ���. This flow was studied for polynomial

orders k � � � � � 	 on three different meshes which were selected to give similar resolution

for each of the three basis orders. It should be emphasized that the results presented in

this section only provide the initial applications of the method to turbulent flows, and

more research is needed to fully realize the potential of the higher-order methods. The
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shortcomings of the present simulation will be described below as they are encountered.

Turbulent channel flow has been studied extensively by many researchers using

theoretical, experimental, and numerical methods and is typically used as a test problem

for new numerical techniques. Direct numerical simulations were carried out by Kim

et al. [55] who demonstrated (perhaps for the first time) that turbulent flows could be

successfully simulated and statistics collected and analyzed. Their study also enabled the

collection of turbulence statistics that were not able to be seen in the experimental results

alone.

The flow is considered in a channel with dimensions ��, �, and �
	� in the x�, x�,

and x� directions, respectively. These physical dimensions were used by Kim et al. [55]

and were shown to be sufficient to ensure that the flow was statistically uncorrelated in the

periodic directions. The boundary conditions were set such that the upper and lower walls

were no-slip, and the x� and x� planes were treated as periodic. The flow is driven by a

body force which is adjusted dynamically to maintain the mass-flux through the inflow

plane at the value appropriate for a Reynolds number of 2800. The meshes used for each

polynomial order are described in Table 6.1 where Nxi represents the number of vertices

in the ith direction and 
�x
�
� represents the placement of the first vertex from the wall

in the near wall layer in wall coordinates (indicated by the � superscript). The vertex

placement was then graded exponentially in the x� direction from this initial spacing.

Polynomial order Nx� �Nx� �Nx� 
�x
�
�

1 		� ��� 		 1.0
2 ��� 		� �� 2.0
3 �� ��� � 4.0

Table 6.1: Turbulent channel flow meshes

Simulations were carried out using the above mesh configurations and polynomial

orders. Each simulation (k � � � � � 	) was run from an initial condition given by Poiseuille

flow (parabolic) with random perturbations of about ��� of the maximum centerline ve-

locity at a time step of ���. This initial flow was advanced in time for several thousand

time steps, until the flow was determined to have reached a statistically steady state as

indicated by a linear profile of the total shear stress across the channel (Reynolds stress

plus viscous stress,�u��u�����
Re��u�
�x�). The flows were then advanced for an addi-
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tional two thousand time steps and turbulent statistics were collected and post-processed

as described in Section 6.2. The structured sub-sampling mesh for the quadratic and cubic

simulations, respectively, contain 		�		�		 and �������� points. These values were

sufficient to produce good results for the r.m.s. quantities, and adding additional points

had no visible effect.

For the results shown here, two Newton corrector passes per time step were used

for the linear and quadratic simulations while three passes were needed for the cubic to

resolve the flow. The qualitative nature of the flow can be seen in Figure 6.1, which shows

velocity contours for the instantaneous flow field for the two periodic planes. All of the

contour plots show 10 equi-spaced contours between the maximum and minimum values.

Also shown in each of these plots is the finite element mesh on the x� � x� plane. From

these figures, it is clear that the qualitative nature of the flow is similarly resolved for all

of the simulations. More quantitative comparisons must rely on the statistical properties

of the computed turbulence.

Figure 6.2 shows plots of the total shear stress across the channel, normalized by

the wall shear stress. It is clear from this plot that all of the simulations have reached their

statistically steady state, as indicated by a linear total shear stress distribution across the

channel. The turbulence intensities are shown in Figure 6.3. Figure 6.3(a) shows the root-

mean-square velocity normalized by the friction velocity (u� ) for k � � � � � 	. This plot

displays the basic statistical features of the turbulent flow, and they are qualitatively sim-

ilar to the results presented by Kim et al. [55]. Figure 6.3(b) shows the root-mean-square

pressure, normalized by u�� . The r.m.s. pressure for the cubic simulation is considerably

higher than that observed for the quadratic and linear.

An additional quantity of interest in the turbulent channel flow is the mean flow

velocity, which may be compared to theoretical results for the near wall region, and the

log layer (see Tennekes and Lumley [72] for more details). Figure 6.4(a) shows plots of

the time averaged x�-velocity profiles in wall coordinates. This plot indicates that the

cubic solution is clearly the closest to the theoretical result in both the inner and outer re-

gions, however it is still quite far from the expected profile. These profiles are normalized

by the calculated friction velocities and the resulting profiles are relatively far from the

expected ones. Figure 6.4(b) presents the same results normalized by the experimental
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Figure 6.1: Channel flow: instantaneous velocity contours and mesh on x��x� plane
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Figure 6.2: Channel flow: Reynolds and viscous stress. � : linear, � : quadratic, and
�: cubic
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Figure 6.3: Channel flow: turbulence intensities. � : linear, � : quadratic, and �:
cubic

u� �
p
�����, which are much closer to the matched solution. The discrepancy most

likely results from the inability of the method to accurately resolve the near wall struc-

tures on the relatively coarse meshes used here (Kim et al. used ��� � ��� � ��� grid

points in x�, x�, and x�, respectively, using a spectral method). The mean flow velocity

can be integrated to yield the bulk mean velocity, defined as

Um �
�

�

Z �

��

u�d
�x�
�

�
(6.21)

which is shown in Table 6.2, normalized by the calculated u� . When normalized by the
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Figure 6.4: Channel flow: wall velocity. � : linear, � : quadratic, and �: cubic. Solid
line shows theoretical results for wall and log layers
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Figure 6.5: Instantaneous total drag force on channel walls. � : linear, � : quadratic,
and �: cubic. Solid line shows theoretical results for wall and log layers

experimental u� , we obtain 15.82, 15.93, and 15.74, which are all in good agreement with

the value of 15.63 presented by Kim et al. [55], the cubic simulation being best.

Figure 6.5 shows the instantaneous (integrated) drag force on the walls of the chan-

nel plotted versus the time step. These profiles can be time averaged to find the average

wall shear stress and compared to the expected values. The values obtained for the time

averaged coefficient of friction, Cf � �w
�
��U
�
m, are included in Table 6.2. The calcu-

lations of Kim et al. [55] produced a value of Cf � ����� ����, giving an error of 17%,

21%, and 28% for the cubic, quadratic, and linear simulations, respectively. It can be
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Polynomial order Um Cf

1 18.40 ����� ����

2 17.57 ����� ����

3 17.18 ����� ����

Table 6.2: Mean flow properties

observed from this figure that the cubic simulations appear to have a high-frequency os-

cillation in the force profiles. This is possibly due to the fact that the consistent calculation

of the boundary flux only currently uses the linear modes.

6.4 Chapter summary

The results presented in this chapter represent an initial effort towards studying tur-

bulent flows using hierarchical basis functions, and are not intended to provide a complete

study. Before the full potential of the hierarchical basis can be realized, more effort must

be dedicated to this area of research. For example the methods of collecting conservative

statistics must be generalized for the hierarchical basis, methods of calculating the bound-

ary flux must be more carefully studied, and mesh refinement studies should be carried

out. Based on the findings in the present work, the hierarchical basis should be pursued as

a means to attain more cost effective simulations of turbulence, as they have been shown

to provide for the simpler laminar flows.



CHAPTER 7

DISCUSSION AND CONCLUSIONS

A stabilized finite element method using a hierarchical basis has been applied to the in-

compressible and compressible Navier-Stokes equations. The implementation is general,

allowing three-dimensional simulations on arbitrary, unstructured meshes to be carried

out on parallel computers. The stabilized formulation that was introduced has been modi-

fied from traditional stabilized formulations to build conservation of momentum back into

the discrete solution, in a weak sense, which is typically lacking in formulations based

on the advective form of the Navier-Stokes equations. This new formulation has been

shown to yield accurate and robust simulations on a variety of problems using both linear

and hierarchical basis function alike. Additionally, a new second-order accurate, implicit

time integrator has been introduced to advance the semi-discrete weak form in time. This

time integrator has been proven to be second-order accurate as well as to have desirable

stability properties for a linear model problem. This time integrator has the additional

asset of a user controllable amount of numerical dissipation which has been shown to be

necessary for damping un-resolvable scales that may appear in a numerical solution.

In addition to the development and implementation of the stabilized formulation

and generalized-� method time integrator, significant work has been done to provide a

general framework for studying higher-order basis functions for efficient, large-scale fi-

nite element simulations of the Navier-Stokes equations. This has been accomplished by

basing the pre- and post-processing on a rich, abstract mesh data structure and the use of

a compact, streamlined data structure in the analysis code. This enables us to dramati-

cally reduce the memory and computational cost of the rich database, while maintaining

its desirable attributes for pre- and post- processing. Techniques have also been devel-

oped for parallel processing that enable the communication buffers to be pre-processed

and effectively used within the analysis code, and have been shown to yield nearly perfect

scalability (98%) for 1 through 8 processors.

The hierarchical basis described in this thesis has been shown to attain near opti-

mal rates of convergence with respect to the interpolation error for both the compress-
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ible (channel) and incompressible (Kovasznay) flows, as well as for the linear advection-

diffusion equation. These convergence studies are a key step in validating the use of the

new stabilized formulations. Not only do they ensure correct implementations, but they

also validate the higher-order accuracy property of the formulations. Using the hierarchi-

cal basis functions, careful cost vs. accuracy studies have been carried out to assess the

relative benefits of using higher-order basis functions for stabilized finite element formu-

lations. These studies have been motivated by the desire to simulate more complicated

physics problems, where traditional linear elements require too many grid points for cur-

rent computers. It has been shown here for the first time, through several, relatively simple

examples, that for steady problems the cubic basis functions can be up to 7 times more

cost effective than linear, while the quadratic basis is up to twice as cost effective. This

indicates that the higher-order basis functions may provide a means to attain simulations

of physical problems unattainable with linear elements due to computational limitations.

Preliminary application of the methods discussed here to turbulent flows have also

been accomplished. A direct numerical simulation (DNS) of turbulent flow in a channel

at a Reynolds number of 180 (based on the friction velocity) has been performed and the

statistics have been collected and analyzed. New methods to collect and analyze these

time averaged turbulence statistics have been developed for use with hierarchical basis

functions, which behave differently than Lagrange basis functions. This simulation has

been carried out for polynomial orders 1 through 3 on meshes with comparable numbers

of degrees of freedom. While the preliminary results look promising, it is still too early

to make any conclusive remarks. Currently, the development of new filters is underway

to enable large eddy simulation (LES) of turbulent flows making special use of the hi-

erarchical nature of the basis. It is expected that this technology will provide more cost

effective LES studies of turbulence as well.

To fully realize the advantage of higher-order basis functions, it is clear that some

level of h-refinement will also be necessary to achieve optimal results. Since we are

mainly interested in dynamical problems where the solution is changing in time, tradi-

tional methods of adaptive h-refinement are not necessarily the most cost effective. New

methods of indicating the error based on time-averaged statistical quantities have been

developed and tested on a simple problem to demonstrate the ideas. Currently, heuristic
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reasoning is used in conjunction with the error indicators to adaptively refine the mesh,

but it has been shown to provide effective h-adaptivity on the problem of vortex shedding

behind a square cylinder which has a stationary wake-type structure when viewed from

a statistical standpoint. It is hoped that these methods can be further developed in future

work, as well as coupled with more rigorous mathematical analysis.

There are, however, limitations of the present research. It is hoped that they may

be addressed in future work, to further enhance the benefit of the hierarchical basis. The

present formulation is limited to uniform polynomial order. Although the formulation is

not theoretically limited to cubic basis, the current implementation must be slightly gen-

eralized if higher than cubic basis functions are desired. At a minimum, a face-based data

structure must be added to indicate which shape functions are active on each mesh face.

This is not the only problem with higher polynomial order. Efficient symmetric Gauss in-

tegration formulas only exist for tetrahedral regions to a high enough order to integrate the

cubic basis. To go with k greater than 3 requires the use of inefficient degenerate quadra-

ture rules, which are much more expensive. Some of this cost may be reduced when the

method is extended to hexahedral elements, which can use efficient tensor-product inte-

gration formulas to any order. The current implementation is also limited to straight-sided

elements using a linear mapping to element coordinates.

There are many ways in which the research in the present thesis may be extended

and built upon. Although the formulation presented is completely general, the present

implementation only allows for tetrahedral meshes and uniform polynomial order. Based

on our experience with the excellent properties of hexahedral elements with linear basis

functions (for relatively uniform flow configurations which allow hexahedral meshes),

the extension to hierarchical hexahedral meshes is likely to provide even better results.

This, in conjunction with non-uniform polynomial order will allow meshes for relatively

simple configurations such as boundary layers to be more effectively simulated by using

a lower polynomial order in the streamwise and span-wise directions while maintaining

higher-order for the wall normal direction, where the flow gradients are highest. This type

of polynomial order grading is less likely possible for meshes comprised of tetrahedral

elements due to the fact that they are often poorly aligned with surfaces.

Theoretical issues related to the present research also need to be addressed in future
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work. Although the stability of the new (conservation restoring) formulation is relatively

straightforward to show, a full convergence proof has yet to be completed. Based on the

convergence proofs for closely related stabilized formulations (such as the SUPG formu-

lation without the conservation restoring terms) as well as the numerical demonstration

of higher-order accuracy presented here for the Kovasznay flow, it is strongly expected

that the new formulation may also be rigorously shown to be higher-order accurate. The

development of improved inverse estimates used in the design of the stabilization matrix,

� , are also needed to perhaps further increase the accuracy of the higher-order methods.

Large eddy and direct numerical simulation of turbulent flows present special prob-

lems for higher-order basis functions, which have only partially been addressed in the

present work. The procedures that are used for computing the dynamic model coefficients,

crucial to the performance of LES, are computed in part by averaging over homogeneous

directions in the flow. This type of operation is difficult for hierarchical basis functions

since the basis coefficients do not directly correspond to solution values at nodes, as they

do for the Lagrange basis. Some preliminary methods have been developed to circum-

vent these problems and provide adequate results, but further research is necessary to

most effectively study turbulent flows. This involves extending the consistent calculation

of time-averaged statistics to hierarchical basis functions. New filters that take advantage

of the hierarchical nature of the basis should also be developed and implemented. This

may be achieved, for example, by forming an element based filter from the difference

between the cubic and linear solutions.
The design of new stabilized methods that explicitly take advantage of the hierar-

chical basis should also be explored. These new stabilized methods should build on recent

research on multilevel finite element methods and their connection with large eddy simu-

lations of turbulent flows. The hierarchical basis may be used in these new formulations to

represent the sub-grid, or “un-resolvable”, scales in the turbulent flow field. This may be

accomplished by modeling these “un-resolvable” scales by cubic and higher polynomials

and representing the resolvable scales by the linear and quadratic portions of the basis.

The hierarchical basis is unique for such applications due to the subset property between

successive polynomial orders. These new methods are currently under investigation, and

are expected to yield much more accurate results than the current techniques for large

eddy simulations.



APPENDIX A

ADVECTION-DIFFUSION EQUATION: TRELLIS

IMPLEMENTATION

To implement a new equation within Trellis requires that we derive a new analysis class

from the FEAnalysis base class (defined in the Trellis library), we call this class

ADAnalysis, and its definition is as follows:

class ADAnalysis : public FEAnalysis {
public:

ADAnalysis(AttCase *theCase);
Field<ScalarDof> *scalarField();
Field<DofVector> *diffusiveFluxField();
SGModel *getModel() { return gModel; }
virtual ˜ADAnalysis();

protected:
virtual StiffnessContributor

*makeElement(MFace &meshFace);
virtual DiscreteSystem *system() const = 0;
virtual void setup();

virtual void doSource(GFace *gf, AttributeTensorOr0 *at);
virtual void doFlux(GEdge *ge, AttributeTensorOr1 *at);
virtual void doPrescribedScalar(GEdge *ge,

AttributeTensorOr0 *at);

Field<ScalarDof> *ScalarField;
Field<DofVector> *DiffusiveFluxField;

}

The member functions defined here carry out necessary tasks for FE analysis that

are specific to the advection-diffusion equation. Essential boundary conditions are set

up using the function doPrescribedScalar and the boundary integral (and natural

boundary conditions) are implemented with the function doFlux. Finally, the function

doSource implements the source term (if one is present). This class contains several
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public data members, to return the results of the simulation, and the private mem-

bers ScalarField and DiffusiveFluxField. The concept of a field is defined

in detail in Beall and Shephard [4]. A field consists of a collection of interpolations

over the finite element mesh and represents the unknown function we are solving for.

DiffusiveFluxField is used to store the local reconstruction of the diffusive flux.

The core of the work, however, is accomplished by the makeElement member

function which is responsible for creating the appropriate system contributors. Its defini-

tion is given as follows:

StiffnessContributor *ADAnalysis::makeElement(MFace
&meshFace)

{
Interpolation2d<ScalarDof> *interp;

// create a new interpolation for this
// mesh face (element)
interp = ScalarField->createInterpolation(&meshFace);

// create (then return) a new stiffness contributor for
// this element
StiffnessContributor *e = new ADSC2d(interp);
return e;

}

There are two key lines here, first,

interp = ScalarField->createInterpolation(&meshFace);

which creates a new interpolation within the field ScalarField, and second,

StiffnessContributor *e = new ADSC2d(interp);

which defines a new StiffnessContributor for representing the element level

weak form. This stiffness contributor for the advection-diffusion equation is known as

ADSC2d (the 2-D version) and its class definition takes the form:
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class ADSC2d : public Stiffness2d {
public:

ADSC2d(Interpolation2d<ScalarDof> *interp) ;

// residual contributor
void r(VectorAssembler *a, int order);

// tangent contributor
void du0(MatrixAssembler *a);

// time contributor
void du1(MatrixAssembler *a);

// compute tangent, residual, and mass at an
// integration point
ForceVector residual(const SPoint2 &pt);
ElementMatrix tangent(const SPoint2 &pt);
ElementMatrix mass(const SPoint2 &pt);

protected:
Interpolation2d<ScalarDof> *Interp;

private:
AttributeTensorOr0 *velocity[2];
double diffusivity;
Stabilization tau;

};

These class members define all the computations that are necessary for the local compu-

tation of the weak form. The first three functions r, du0, and du1 are responsible for

setting up the integration rule for element quadrature for the residual, tangent, and mass

terms, respectively. Then, the integrator (defined in the Trellis library) calls, respectively,

residual, tangent, and mass to evaluate the integrand.



APPENDIX B

VISUALIZATION OF HIERARCHICAL SOLUTION DATA

The tools available in the SCOREC mesh database (see Beall [2]) greatly simplify the

process of creating this “visualization” mesh. Operations such as looping over all mesh

entities classified on a given model entity, and attaching data to mesh entities are used.

The entire procedure is outlined in the following algorithm (written as pseudo-C++ code),

given a single model face to be visualized with nVis new nodes on each original mesh

edge,

// get the template for a triangle
TriMesh tri(nVis);

// loop over classified mesh faces
EDListIter<MFace> fIter = gface->firstMeshFace(mesh);
MFace *face;
while (face = fIter.next()){

// vertex modes (3 vertices per triangle)
for (j = 0; j < 3; j++) {
MVertex *vertex = face->vertex(j);
double *q = solution( vertex );
add ( q );

}

// edge modes (3 edges per triangle)
for (k = 0; k < 3; k++) {
MEdge *edge = face->edge(j);

// add new nodes along this edge
for (j = 0; j < tri.num_per_edge(); j++) {
double *q = solution( face, tri.xi(i) );
add ( q );

}
}

// add new nodes on the face
for (j = 0; j < tri.num_per_face(); j++) {
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double *q = solution( face, tri.xi(i) );
add ( q );

}
}

This algorithm illustrates the key concepts in the implementation of the local re-

finement. TriMesh is a C++ class that provides the uniform mesh of a triangle (nodal

coordinates and element connectivity), which is used for each of the mesh faces, and is

shown in Figure B.1 for the case nVis� 	. The function “solution” returns the hierar-

Figure B.1: Trianglular face mesh template

chical solution evaluated at the desired local coordinate for the given mesh entity, and

“add” adds the new solution values to our global visualization data structure. The num-

ber of new nodes that are added to each mesh edge and face depend on the user-entered

parameter nVis, and are returned by the TriMesh member functions num per edge

and num per face, respectively.

The new global mesh is output to the visualization package, and consists of nodal

coordinates and element connectivity for the new mesh. Note that the “add” function

must determine whether or not a node has already been added, so as not to add it multiple
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times, an operation that is conveniently carried out with the mesh database tools to attach

data to an existing mesh entity. Before new data is added, the entity is simply checked to

see if the data is already there.
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