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ABSTRACT

Stabilized finite element methods have been shown to yield robust, accurate numerical
solutions to both the compressible and incompressible Navier-Stokes equations for lam-
inar and turbulent flows. This work presents an application of mesh entity based, hier-
archical basis functions to a new stabilized finite element formulation, which is shown
to yield high accuracy and more cost effective simulations when compared with the tra-
ditional, linear basis methods. The new formulation is then demonstrated numerically
to yield nearly optimal rates of convergence with respect to the interpolation error. A
second-order accurate, implicit time integrator with user-controllable numerical dissipa-
tion is presented for advancing the semidiscrete system of equations in time. This time
integrator is proven to be stable and second-order accurate for a linear model problem,
and demonstrated to have desirable characteristics on more complicated flows. A variety
of examples are provided that demonstrate that the most cost-effective simulations (in
terms of CPU time, memory, and disk storage) can be obtained using higher-order basis
functions when compared with the standard linear basis. The formulation has also been
successfully applied to unsteady flows, and several examples will be given. An applica-
tion to a direct numerical simulation (DNS) of aturbulent channel flow at Re, = 180 is
then presented to assess the usability of the hierarchical basis for a more complex turbu-
lent flow. Postprocessing techniques are also described for the effective visualization of

hierarchical solutions, as well as numerical evaluation of turbulent statistics.

viii



CHAPTER 1
INTRODUCTION AND HISTORICAL REVIEW

Computational fluid dynamics (CFD) has been rapidly gaining popularity over the past
several years for technological as well as scientific interests. For many problems of in-
dustrial interest, experimental technigues are extremely expensive or even impossible due
to the complex nature of the flow configuration. Analytical methods are often useful in
studying the basic physicsinvolved in a certain flow problem, however, in many interest-
ing problems, these methods have limited direct applicability. The dramatic increase in
computational power over the past several years has led to a heightened interest in nu-
merical simulations as a cost effective method of providing additional flow information,
not readily available from experiments, for industrial applications, as well as a comple-
mentary tool in the investigation of the fundamental physics of turbulent flows, where
analytical solutions have so far been unattainable. It is not expected (or advocated), how-
ever, that numerical simulations replace theory or experiment, but that they be used in
conjunction with these other methods to provide a more complete understanding of the
physical problem at hand. Turbulence researchers are now able to use direct numerical
simulation (DNS) to study the basic physics of turbulent flows. Kim et al. [55] present an
application of DNS to channel flow, and Le et al. [57] present a DNS application to flow
over a backward-facing step. Both of these studies were conducted to gain new insight
into the physical mechanismsinvolved in turbulent flow.

As computational power grows, the need for more advanced numerical algorithms
also increases. There are many different techniques for constructing numerical solutions
of fluid flow problems, e.g. finite difference methods, finite volume methods, and finite
element methods, to name a few, and al have their strengths and weaknesses. Since the
goal of the present research liesin the development of methods which may ultimately be
used for large-scale applications of industrial interest, finite element methods have been
chosen, given their accuracy aswell astheir ability to approximate arbitrarily complex ge-
ometric configurations. The finite element method applied to fluid dynamics has reached
a level of maturity over the past two decades such that it is now being successfully ap-



plied to industrial strength problemsincluding turbulent flows (for example, see Haworth
and Jansen [35] for an application to reciprocating IC engines). Due to its robustness
and proven accuracy, this numerical technigue has been chosen for the foundation of the
present research.

One of the goals of the present work is to use hierarchical basis functions as a
means to attain more accurate and cost-effective finite element simulations of complex
turbulent flows. It is hoped that this will enable simulations of fluid dynamical problems
that are not presently feasible due to current cost restrictions. With these goals in mind,
we have chosen a stabilized finite element formulation based on the formulation of Taylor
et al. [71] for incompressible flows, that has been generalized to accommodate higher-
order basis functions. This formulation has been demonstrated to be robust and accurate
for laminar as well as turbulent flow simulations using linear basis functions. The new
stabilized formulation builds global conservation into the weak formulation that islacking
in many previous formulations due to the presence of the stabilization of the continuity
equation. This, combined with the higher-order accuracy that stabilized methods have
been shown to attain, has influenced our selection of this formulation for constructing
higher-order smulations.

Over thelast two decades, stabilized finite el ement methods have grown in popular-
ity, especially for fluid dynamics applications. Starting with the SUPG method of Brooks
and Hughes [11] through the work of Hughes et al. [38] on the Galerkin/least squares
(GLS) method, and the streamline diffusion method (related to the SUPG method) of
Hansbo and Szepessy [30], a number of stabilized formulations have been proposed. Re-
cent work on variational multiscale methods of Hughes[36] and related work on residual -
free bubbles by Russo [59] and Brezzi et al. [10] have not only proposed new directions
for these methods, but have also begun to uncover the theoretical basis for their design.
Recent application of the variational multiscale method to large eddy simulation of turbu-
lence by Hughes et al. [41] has aso proven extremely fruitful. A key feature of stabilized
methods is that they have been proven (for relevant model problems) to be stable and
to attain optimal convergence rates with respect to the interpolation error (see Franca et
al. [22], and Hughes et al. [38]). Johnson and Szepessy [51] have also carried out a non-
linear analysis of the related streamline diffusion method for the Burgers equation. This



implies that as the polynomial order of the underlying finite element space is increased,
the error in the numerical solution is of the same order as the interpolation error. This
property is crucial to the effective use of higher-order basis functions.

Over the past several years, many research groups have applied higher-order dis-
cretization methods to fluid dynamics ssmulations in an effort to achieve highly accurate
simulations on unstructured grids. Sherwin and Karniadakis [67] developed a C° con-
tinuous hierarchical basis based on a generalized tensor product using mixed-weight Ja-
cobi polynomialsand applied it to a higher-order splitting scheme for the incompressible
Navier-Stokes equations in [69]. They presented numerical results to verify the conver-
gence properties of their method. For Euler flows, the discontinuous Galerkin method
provides a straightforward way of constructing higher-order solutions (see Biswas et
al. [8] and aso Devine [20]). Oden et al. [58] have recently successfully applied the
discontinuous Galerkin method to diffusion type problems using arbitrary polynomial or-
der in each element. Others have generalized spectral methods to unstructured grids to
achieve spectral accuracy without being restricted to regular domains (see Carpenter and
Gottlieb [13] and Sherwin and Karniadakis [68]). All these methods, however, use the
standard Galerkin method for the spatial discretization. The work of Bonhaus [9] uses
a higher-order basis stabilized method (SUPG) for fluid dynamics simulations, however
much of the emphasis was on 2-D problems, and compressible flows, and no turbulent
flows were considered. The work presented here attempts to remedy this situation, and to
quantify the potential benefit of using higher-order, stabilized finite element methods for
fluid dynamics simulations.

In the present work, the spatial discretization of the stabilized formulation for the
Navier-Stokes equations is carried out using a higher-order, hierarchical basis which is
C* continuous between finite elements. The hierarchical basis used here is based on the
abstract mesh data structure of Beall and Shephard [4], where basis functions are associ-
ated with the individual topological entities of the mesh. Thistype of basis construction
was first introduced by Shephard et al. [66] (using the basis functions of Carnevali et
al. [12]) who considered the basis functions to be associated with the mesh entitiesin a
special way. Their mesh entity based hierarchical basis functions support non-uniform
k-refinement of meshes of arbitrary element type, e.g. tetrahedral, hexahedral, and pyra-



midal, by employing an explicit decomposition of shape functions into element blends,
ensuring the correct element support and entity level functions, giving the desired poly-
nomial order on an entity. To gain this generality, we have dispensed with the traditional
finite element mesh data structures consisting of only element nodal connectivity (see
Hughes[42]) in favor of thismore general and complete topol ogical adjacency mesh rep-
resentation. To maintain efficiency on large-scale problems, however, the abstract data
structure is only currently used in the pre- and post-processing stages of the simulation,
and is therefore not read by the analysis code. A compact data structure will be described
that is simple to implement within existing finite element codes, as it represents a rela-
tively straightforward generalization of the traditional data structures. Finally, note that
we are using k to refer to the polynomial order of the finite element basis. Thisisin place
of the more standard notation, p, which we reserve for the pressure variable.

Since we are interested in time-accurate large-eddy (LES) and direct numerical
(DNS) simulations of turbulent flows (in addition to steady Reynolds averaged ssimula-
tions) and we are using higher-order spatial discretization technigques, a time integrator
of at least second order accuracy is deemed necessary. An implicit, second-order accu-
rate time integrator is introduced for advancing the system of equationsin time, coupled
with Newton’s method to solve the resulting nonlinear algebraic system in a predictor
multi-corrector format. This time integrator has built into it a user controllable amount
of numerical dissipation, which enables precise control over spurious, un-resolvable fre-
guenciesthat may appear during the solution procedure (varying from simulation to simu-
lation). After proving that the timeintegrator is second order accurate and unconditionally
stable for alinear model problem, we apply it to the problem of vortex shedding behind a
circular cylinder to study itstemporal resolution properties.

Another key aspect of the present research is the use of parallel computers to ef-
fectively speed up computations. Finite element calculations are extremely well suited to
parallel computing environments since much of the work is in computing element level
integrals, and performing sparse matrix-vector products which both parallelize well. Sev-
eral methods have been proposed which use parallel computers for finite element imple-
mentations, see, for example, Bastin [1], Johan and Hughes [47], Kennedy et al. [54],
Bey et al. [7], and Biswas et al. [8]. Many of these implementations rely on some high



level language, such as CM-Fortran (used by Johan and Hughes [47] as well as Kennedy
et al. [54]), where interprocessor communication patterns are actually constructed by
the compiler, requiring minimal coding effort, however performance is far from optimal
(Bastin [1] showed these methods can take up to 15% of total CPU time for communica-
tion as opposed to 3% using pre-processed data structures). The current implementation
is closely related to that used by Bastin [1], taking advantage of the MPI library for in-
terprocessor communication using “message passing”. The use of message passing for
these communications also enables the use of distributed computing environments which
are quickly gaining popularity. To enable rapid communication of all information lying
on partition boundaries during the analysis, the data structures necessary for parallel com-
munication are pre-processed. This pre-processed data structure contains all the informa-
tion necessary to carry out the interprocessor communication, which includes hierarchical
degree-of-freedom information associated with mesh entities (edges and faces) that lie on
the interprocessor boundary, aswell asthelinear vertex modes. Care has been takento re-
duce communication cost by requiring that any pair of processors communicate no more
than once.

Numerical simulations of the Navier-Stokes equations (through cubic polynomial
order basis) will be presented that verify that nearly optimal convergence rates are ob-
served for problemswhere analytical resultsare available, aswell asfor thelinear advection-
diffusion equation (through polynomial order 6). The method will then be applied to more
complex (though still laminar) flow simulations which demonstrate a clear advantage of
higher-order methods over the traditional, linear basis methodsfor theincompressible and
compressible Navier-Stokes equations. Finally, an application will be made to a turbulent
flow using direct numerical ssmulation (DNS). Although these turbulence results are still
in the preliminary phase, the results are promising. It will be shown that, in the cases
where a direct comparison is possible, the higher-order methods can provide the most
cost-effective solutionsin terms of both storage and computer time.

For severa of the numerical simulations, a careful cost vs. accuracy study will be
conducted to determine the cost-effectiveness of the hierarchical basis. This study will
consider the cost with respect to various measures (including direct CPU time) which

will quantify where improvements can be made to make the higher-order methods even



more cost effective. The results presented will show that for steady problems, cubic
basis simulations can be over four times more cost effective than the standard linear-basis
methods. Results will also be presented for unsteady simulations, however, a quantitative
comparison of the costs for these flows is difficult.

The work will be presented as follows. First, after providing necessary prelimi-
nary information relating to the abstract mesh data structures, Chapter 2 will describe
the mesh entity based hierarchical basis to be used in the present work. This chapter
will conclude with an application of the higher-order basis to the 2-D, linear advection-
diffusion equation using the SUPG finite element formul ation, and convergence rates will
be verified. Chapter 3 develops the stabilized finite element formulation that will be used
for incompressible flows, as well as the second order time integrator. Also presented in
this chapter will be an application of the basis to compressible flows, and some exam-
pleswill be provided. Several implementational aspectsrelating to the use of hierarchical
basis functions will be discussed in Chapter 4, and numerical examples will be givenin
Chapter 5. Next, Chapter 6 will present an initial application of the methods to a direct
numerical ssmulation of turbulence, and issues related to these types of simulations will
be discussed. Conclusions and future research directions will be given in Chapter 7, and

the contributions of the present research will be summarized.



CHAPTER 2
MESH ENTITY BASED HIERARCHICAL BASIS

The hierarchical basis functions used in the present work are based on the constructions
of Shephard et al. [66] for specifying variable k-order meshes. These constructions are
based on the topological hierarchy of mesh entities (vertices, edges, faces, and regions)
which define the finite element mesh. Due to the restrictions of standard finite el ement
data structures consisting only of nodal coordinates and element connectivity, variable
k-order finite element meshes must rely on richer structures that allow the independent
assignment of polynomial order over the elementsas noted by Demkowicz et al. [19]. The
set of basis functions used here has aso been shown to yield better-conditioned matrices
than other hierarchical bases for tetrahedral elements (see Carnevali et al. [12]). This
chapter presents a detailed discussion of the finite element basis used in the present work.
The description of a new compact mesh data structure that is used to maintain efficiency
for large-scale problemswill be presented in Chapter 4.

2.1 Abstract mesh data structure

In order to define the finite element basis, we will first introduce the abstract mesh
data structure on which the element level basis will be defined (more detail on the mesh
data structure used in the present work may be found in the work of Beall and Shep-
hard [4]). The abstract mesh is represented by a data structure (mesh database) that
maintains a complete set of adjacency relationships between the various entities in the
finite element mesh, known as “mesh entities’. A mesh entity is defined as an individual
topological object that is used to define the domain and boundary of a traditional finite
element. These entities are of type: region, face, edge, and vertex. The first-order adja
cencies between these mesh entities are as follows: aregion is bounded by faces, aface
is bounded by edges, and an edge is bounded by vertices.

We will refer to the abstract mesh data structure, including the adjacency relation-
ships, as T3,. This mesh database is complemented by a set of functions which support
general query operations such as first-order adjacencies (e.g. afunction that returns the



four vertices attached to a given tetrahedral mesh region), allows arbitrary data to be
attached to mesh entities (or geometric model entities), and provides additional function-
ality. The mesh database is also a powerful tool for many other tasks relating to pre- and
post-processing higher-order simulations (e.g. boundary conditions and parallel process-
ing data structures rely heavily on the abstract mesh adjacency representation).

In addition to the mesh entity adjacencies (and their auxiliary functions), the mesh
database al so maintains a unique rel ationship between the finite element mesh and the ge-
ometric model of the underlying physical domain. Thisgeometric model isrepresentedin
terms of “geometric model entities’, in analogy with mesh entities, and similar topologi-
cal adjacency information is stored. The relationship between mesh and model is known
as “classification” and defines the unique model entity that each mesh entity is classified
on (more details of mesh-model classification may be found in Beall and Shephard [4]).
Mesh-model classification iscritical for the assignment of boundary conditionsin amesh-
independent manner and greatly simplifies the application of boundary conditions (see
Shephard [65]). As part of thiswork, a graphical user interface (GUI) was developed to
enable the assignment of boundary conditions directly to the geometric model entities,
which are subsequently inherited by the mesh entities based on their classification (there
are generally many fewer model entities than mesh entities). Boundary conditions for a
simulation are thus assigned without reference to a mesh, therefore, different meshes of
the same physical model may be used without re-assigning boundary condition attributes.

In practice, the mesh database is a library of C++ classes that define the various
mesh and model objects and have member functions that return the desired adjacency
information. The concepts introduced here can be illustrated by the ssmple example C++
code fragment given in Program 2.1.1. First, the geometric model, nodel . dng, and the
mesh, nesh. sns, are loaded (it is presumed that the mesh is classified on this model).
Then all regions associated with this mesh are visited and the list of vertices attached to
the current region is retrieved. This vertex list may then be processed in any way, for
example, coordinates or ID numbers could be collected into an array.



Program 2.1.1 Mesh database example

Di scret eModel *nodel = new Di screteMdel ("nodel . dng", 0);

Mesh *nesh = MM new 1, nodel ) ;
M | oad( nmesh, "nesh. sns") ;

MRegi on *regi on;
Si mpl eMeshRegi onlter rliter = mesh->firstRegion();
while ( rliter(region) ) {
SPLi st <MVertex*> *vertices = region->vertices();
process list of vertices...

}

2.2 Finite dement basisfunctions

To proceed with the definition of the element level basis, we first precisely define
the finite element. The definition given here is similar to the standard finite element,
although additional information is also included. Given the topological description of the
mesh along with its adjacency relationships, 7', we define:

Definition 2.1 The closure of a finite element, denoted 2., of dimension d., is defined as
Qe = {M, M (M7}, ..., M{{M}}}, (2.1)

where M% represents mesh entity e of dimension d...

We have followed the notation of Beall and Shephard [4] for the mesh entity adjacencies

as
de d]
M { M} 2.2)

which is the 5™ mesh entity of dimension d;, bounding mesh entity e of dimension d..
In other words, a finite element is a mesh region along with its lower order bounding
mesh entities. For example, a tetrahedral finite element has four bounding vertices, six
bounding edges, four bounding faces, and one region. Additional information, such as

the direction aface (or edge) isused by aregion (or face), is also maintained in the mesh
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database, and there are functions that return this information.

To construct the discrete, finite element solution, we expand the continuous quan-
tities appearing in the weak form (given in the following chapter) in terms of a C° con-
tinuous, piecewise polynomial basis defined on each element (as described below). We

define this element level basis with the aid of the piecewise polynomial space defined as:

Definition 2.2 Let P,(£2.) be the piecewise polynomial space, complete to order £, de-
fined on the finite element Q..

Thebasisfor P (€2.) consistsof functions, N, (&;), a = 1...n.s, contributed by the mesh
entitiesin ... Here, n., isthe number of basis functions contributing to a given element’s
basis and equals the sum of the number of functions associated with each bounding en-
tity. The polynomial order assigned to each entity is used to compute the number of basis
functions it will contribute. The local coordinate system, &;, will be described below.
Although the polynomial order may be assigned independently to each mesh entity, it
should be noted that the order of complete polynomial representable by a given element’s
basis will be constrained by the minimum complete order assigned to any of the entities
in Q., with the exception of vertex modes, which are linear, regardless of the basis order.
The direct assignment of the polynomial order to each mesh entity, however, enables a
straightforward extension to non-uniform £ meshes and meshes of mixed-topology el-
ements, and may aso be useful to resolve strong gradients in a pre-determined spatial
direction such as boundary layers where strong gradients occur in predictable directions.

2.2.1 Parametric coordinate systems

The basis functions are defined in terms of parametric coordinate systems, &;, asso-
ciated with the individual mesh entities, aswell as, &;, thelocal coordinate of the element
that is using the function. Each edge, face, and region in the finite element mesh has its
own local coordinates. These coordinate systems need not be the same for all entities (of
agiven type) in the mesh, particularly when elements of different topologies are present,
which isin contrast to Lagrange basis functions, that are defined solely in terms of asin-
gle element coordinate system. Since we will be dealing mainly with meshes composed

entirely of tetrahedral elements, we will concentrate the discussion on “simplex” type co-



11

| Topology | Parametric coordinates |
Edge G.6=1-§
Face §1,6,5=1-§6 — &
Region | &, 6,8, 64=1-6-6—&

Table2.1: Local simplex-type coordinate systems

ordinate systems; more details on coordinate systems useful for different types of element
topologies can be found in Dey [21] and also Shephard et al. [66].

A general methodology has been developed by Shephard et al. [66] for the con-
struction of k-version finite element meshes, which is used in the present work. Each

basis function (for £ > 1) isdecomposed as

N(&) = p(&(&))) x p(&) (2.3)

where ¢ (&;) is ablending function of fixed polynomial order ensuring that N (¢;) has the
correct global support, go(fi(éj)) is an entity level function giving the desired polynomial
order on the entity, and &(éj) represents the mapping from entity, 5] to element, &;,
coordinates. This decomposition allows for the efficient implementation of non-uniform
k-order meshes as well as the use of meshes with mixed-topology elements. Since the
blending function depends only on the element coordinate, it may differ for topologically
different elements sharing the same mesh entity (which provides the correct polynomial
order behavior, regardless of the topology of the bounding element). The decomposition
of a shape function in terms of an entity level function and an element blend isillustrated
in Figure 2.1 for acubic basisfunction on atriangular element. In Figure 2.1, the element
blend is shown in the upper left, and the entity level function (specific to the mesh edge)
is shown on the upper right, their product is the resulting (cubic) shape function for the
triangular element and is shown on the bottom.

To evaluate a basis function for a given element, the entity level function must first
be mapped from the entity level coordinate (indicated by a hat) into the local coordi-
nate system of this element. For simplex type elements, the local coordinate systems are
shown in Table 2.1, where 0 < &, &; < 1. The subscripts on the parametric coordinates
indicate the local vertex where the coordinate takes on its maximal value, as given by the
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Element blend Entity function
&3
X
& £ &
51‘ E
(&) = —26& (&) =6—&
|
Mapping
Element basis 51(%]') =4
function &(&5) =&

N(&) = =266 x (& — &)

Figure 2.1: Shape function decomposition

vertex ordering in Figure 2.2. Also indicated in Figure 2.2 are the edge directions for
a simplex-type element, crucia to the basis function constructions and the development
of the compact data structures. For these parametric coordinates, the mapping from a
bounding entity (edge or face) to the element (region) is relatively straightforward, in-
volving only a possible sign change.

2.2.2 Blending functions
The blending function appearing in Equation 2.3, 1(&;), depends only on the ele-
ment, and ensures that each basis function has the correct global support (i.e. it must be

zero on lower order mesh entities it does not bound). For tetrahedral regions, the blends
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will be defined as (see Dey [21]):

P(&) = —28¢; (2.4)
Y(&i) = &im (2.5)

for the edges and faces, respectively. The subscripts are defined by the local vertex order-
ing in Figure 2.2, for example —2¢; &, isthe element blend for the edge between vertices
1 and 2. These choices of element blend are not the only possibility and additional ones
are exploredin Dey [21]. The blending functions are al so useful for meshes comprised of
multiple topology elements. Figure 2.1 shows the element blend and entity level function
for atriangular element. Here, the blend is given by (2.4) and the entity level function
(defined below) is o (€;) = & — & . Note that the mapping from edge (hat) coordinates to
element coordinates before is also described bel ow.

O

——Pp—o

© @

Edge

®
©,

@

Face

©
® @

Region

Figure2.2: Local smplex-type vertex ordering and edge direction
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2.2.3 Entity leve functions

The entity level function (in Equation 2.3), ¢(¢;) provides the desired polynomial
order for a given entity’s basis function. These functions can be comprised of any set of
hierarchical basis functions, and in general are of order (k — ¢), where ¢ is the order of
the blend, and % isthe desired order. The hierarchical basis functions used here are taken
from Carnevali et al. [12] and have been shown to yield better element level conditioning
than standard Legendre polynomials for tetrahedral regions. The entity level functions
are given by the following expressions (see also Dey [21]):

Edge (k > 2):

oé) = o (F ) (M) et 26)

m—+1

. ~1

o(E) = > > ()il + ) (O‘lj_ 1) (O;) (az; 1) (Of)

1 rar—1—j ~aa—1—1i

X 7. (m (o + ) —m (m = 1)/2) S| &2 (2.7)
WhereO[]_,OQ:l,...,k—Qanda1+042+043:k.
Region (k > 4):
p(&)=66&G(Ax BxC)
a;—1
_ X R Y ap —1 (671 (2m—|—5—z) cap—1—i
a= (™) (7) s
as—1 (28)
_ Lo =1\ (a2 (2n 43 —i)! car-1-
B‘%“( i )()Wf (& - 1)
az—1 . B R
C:‘ i!<a3i 1><i>(2a233@)§3 . (514-52—1)
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where ay, an, a3 = 1,... ,k —3anda; + as +as + a4 = kand adAsom =

041+042+O!3—3, n:a2+a3—2.

In these formulas, (‘;) represents the standard binomial coefficient, i.e. a itemstaken b at

atime, which can also be expressed as

a(a—1)---(a—b+1)

a ala)labil) - jfp >
(1) - "
1 iftb=0

To construct element matrices and residual vectors the discrete solution is expanded

in terms of these basis functions as

Tes

36 1) =D dalt)Na(&:) (2.10)

where ¢¢(;, t) is the finite element approximation of any variable (e.g. pressure or ve-
locity) on element e and ¢, (¢) are the desired coefficients with respect to the basis (since
we are using a semi-discrete formul ation, the coefficients depend on time). As mentioned
above, the number of basis functions contributed by each mesh entity depends on the
polynomial order assigned to the entity. When only C° continuity is desired, vertices
contribute one basis function (equivalent to the standard linear Lagrange basis function).
For an element level basis complete to order k, Table 2.2 provides the number of basis
functions contributed by each mesh entity type. From thistable, we can compute the total
number of shape functions contributed by atetrahedral element complete to order £ as

Nes = 4Ny + 6N + 40y + 0,
1 (2.11)
= 6(/c +1)(k+2)(k +3).

At this point we would like to point out some important differences between hier-
archical and Lagrange basis functions. The main difference is that the hierarchical basis
of order k isasubset of the basisof order k + 1, i.e. P,(Q,) C P.1(.). This property
greatly simplifies the generation of basis functions, and the varying of polynomial order.

Hierarchical and Lagrange basis functions also differ as follows:. for a given polynomial
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Vertex: n, =1 (k>1)
Edge: ne = (k—1) (k>2)
Face: ny=1(k—1)(k —2) (k > 3)
Region: | n, = ;(k — 1)(k —2)(k —3) | (k >4)

Table2.2: Number of contributed shape functions

order, say N, al functionsfor the Lagrange basisare of order IV, in contrast, theindividual
hierarchical basis functions will be of different order, however the complete polynomial
order isstill N. The polynomial order of each of the basis functionsfor each entity typeis
discussed in detail in Shephard et al. [66]. To get the total (global) number of basis func-
tions, n, (related to the total number of equationsto be solved), we sum over the number
of shape functions contributed by each mesh entity for all entitiesin the mesh. (Note that
for a Lagrange basis n, simply equals the number of “nodal points’ in the mesh.) An-
other key difference is that the hierarchical basis function coefficients do not correspond
to solution values at specific spatial locations (as they do for Lagrange elements), they
are actually related to higher-order moments of the solution (and its derivatives) on the
associated entity. This property makes many routine operations on finite element data
more difficult to carry out. For example, post-processing and collecting turbulence statis-
tics must rely on more advanced techniques when dealing with the higher-order basis
functions. More will be said about these topics later.

2.3 Application: Advection-Diffusion equation

This section presents an application of the basis functions described above to the
linear advection-diffusion equation, a simple model problem for the fluid flow equations
containing many of their numerical difficulties. This application provides a good testbed
for the hierarchical basis functions in the context of a well-understood linear problem.
The finite element formulation used for this equation is the SUPG (Streamwise Upwind
Petrov-Galerkin) method described in Franca and Frey [22]. The formulation will be
thoroughly described for the Navier-Stokes equations in Chapter 3. For more details on
the method, as well as the stability and convergence proofs, see Franca and Frey [22],
also see Whiting et al. [76]. The formulation presented was proven stable and higher-
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order accurate by Franca and Frey [22] which impliesthat as the polynomial order of the
basisis increased, the error in the finite element solution will converge at a rate equal to
theinterpolation error, or O(h*+1). Thisimportant property is verified numerically below
for polynomial order 1 through 6. An example will also be provided which shows the
application to an advection-dominated case.

Consider the homogeneous-Dirichlet boundary value problem for the steady, ad-

vection-diffusion equation where ¢ = ¢(z;) is sought such that

aidi—kdu=rf in Q, (212

p=g on T (2.13)

where (2 is the spatial domain of the problem and Iy is the portion of the boundary with
prescribed essential boundary conditions (denoted by ¢), a; are the Cartesian components
of a divergence-free advective velocity field, = (> 0) is the diffusion coefficient, and
f(z;) isaprescribed source term. Here and in what follows, the summation convention is
in effect on repeated indices and an inferior comma denotes differentiation with respect
to the variables following it.

2.3.1 Weak form

To proceed with the finite element discretization of (2.12), we first introduce the
finite element approximation spaces for the advection-diffusion equation. Recall that €2
represent the physical spatial domain of the problem. H' () represents the usual Sobolev
space of functions with square-integrable values and derivatives on €2. The domain 2
is discretized into n,; finite elements, 2., which may be identified with the regions (or
facesin 2 dimensional problems) in the mesh, 77, along with their lower order bounding

entities. With this, we can define the trial solution space as

Sy ={ol¢ € H'(Q), dlrca. € Pr(Q), o= gonT,}, (2.14)
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and the weight function space

W = {wlw € H'(Q), w|,eq, € Pe(Q),w=00onT,}, (2.15)

where P, (Q2.) (described in Section 2.2) is the piecewise polynomial space, complete to
order k > 1, and I, is the portion of the boundary where essential boundary conditions
are prescribed. Also note that ¢ represents the interpolation of the prescribed boundary
conditions, g, in the finite element basis.

The discrete system of equationsis derived by multiplying the original PDE (2.12),
the so-called strong form, by aweight function (which is a member of the weight space),
integrating over the physical domain, and performing integration by parts on the diffusive
terms to reduce the continuity requirements on the solution space. This results in what
is known as the standard Galerkin method applied to Equation (2.12). It is well known
that the Galerkin method is unstabl e for advection dominated problems (see, for example,
Brooks and Hughes [11]), so the weak form is modified. To the Galerkin term we add an
SUPG stabilization term acting only in the “upwind” direction as originally introduced
by Brooks and Hughes [11]. The weak form may then be stated as: find ¢**) € SF such
that

B(w®® gk = ™Ry k) ¢ yyk (2.16)
with
B(¢,w) = (w, aip;) + (wj, k¢ ;)
nei (2.17)
+ Z(aiw,ia T(a;ip; — Koi))a,
e=1
and
F(w) = (w, )+ Y _(r(aw), f). (2.18)
e=1

These equations show the Galerkin portion plus an SUPG stabilization parameter, —, mul-

tiplying the residua of the strong form of the differential operator times the advective
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portion of the operator acting on the weight space. Note that the boundary integral result-
ing from the integration by parts has been omitted, which implies only Dirichlet or zero
natural boundary conditions.

An important ingredient in these methods is the stabilization parameter, 7, which
appears in the weak form (2.16). The particular form of = we have chosen for the
advection-diffusion equations is defined based on considerations of the error analysis,

and is generalizable to higher polynomial order (see Franca et al.[23)]); it takes the form:

he
T(Pe) = Mﬁ(Pe)a (2.19)
pe = Melalhe (2.20)
2K
Pe if0< Pe<1,
{(Pe) = (2.21)
1 if Pe > 1
1
my = mln(g, 2C%), (2.22)
ST Rlwal® < Cillwgl?,  vw € WE. (2.23)
Qe €Ty

In the definition of 7, h,. represents a suitably chosen element diameter and C). is a con-
stant that depends on the polynomial order of the basis and represents a modification of
7 for higher-order elements. The existence of such a constant follows from standard in-
verse estimates (see Ciarlet [16]), however, since it appears in the formulation, we need
to have a numerical value for this constant. Some guidance as to how to choose this con-
stant for some polynomial orders is provided by Harari and Hughes [31], however the
results are somewhat limited. Our experience has shown, however, that the exact value
for this parameter is not critical to the performance of the higher-order methods. It has
been shown that the SUPG method with the stabilization parameter + defined above is
stable and converges at the same rate as the interpolation error for any polynomial order
basis (see Franca and Frey [23]), the convergence rate given by O (h*+1).

Thisis not the only possible definition of 7 and another definition will be provided
below in the context of the Navier-Stokes equations, where the situation is more com-
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plicated, thisis aso well documented in Shakib [61]. It is possible that the hierarchical
basis functions may be applied to the development of new stabilized methods based on
recent subgrid scale analysis (see Hughes [36] and related work on residual free bubbles
by Russo [59] and Brezzi et al.[10]). These new formulations may be used to explic-
itly solvefor the stabilization parameters based on local element level problems coupling
neighboring elements. The solutionsto the local problems may include higher-order poly-
nomialsin their basis, increasing the accuracy of thelocal problem. It is hoped that these
new methods will yield more accurate simulations while maintaining the same desirable
stability properties.

The weak formulation described above was implemented in Trellis, an object ori-
ented framework for the numerical solution of PDE’s by Beall and Shephard [5]. A
complete description of this numerical framework, and many more details on its use, can
be found in the work of Beall [3]. By using this framework, we are able to generate
numerical simulationsto the advection-diffusion equation by implementing (for the most
part) only the element level contributions to the weak form and information pertaining
to boundary condition specification. In this manner we can test the convergence of the
formulation through polynomial order 6 (Trellis uses the same hierarchical basis func-
tions described here). Details of the Trellis implementation for the advection-diffusion
equation are included in Appendix A. It should be emphasized that it takes a relatively
small amount of code (less than a total of 1000 lines) to implement the 2-D equation
and gain access to all of the features of the Trellis analysis framework. These features
include: hierarchical basis functions (through polynomial order 8), various linear solvers
and preconditioners, geometry based boundary condition specification, and other features
described in Beall [3]. Of particular importance to the present work is the ability to test
the convergence of the stabilized formulation for the advection-diffusion equation for
k = 1...6. Many other implementational features are also in place in Tréllis, e.g. nu-
merical integration of the element integrals and force vectors, which greatly reduce the
coding effort.



21

T2

I

¢ = sin(mzy)

Figure 2.3: Geometry for one-direction advection-diffusion problem

2.3.2 Advection-diffusion example: convergence study

Thefinite element formulation for the advection-diffusion equation was programmed
in Trellis as described in Appendix A. It should also be pointed out that for these sim-
ulations, the entire rich mesh data structure was used (as opposed to the compact data
structures to be introduced later). We have chosen to present an example with an exact
analytical solutionwhichisused to verify thetheoretical error estimates asthe polynomial
order of the basisisvaried (additional examples may befound in Whiting et al. [76]). The
geometry is described in Figure 2.3 where 0 < z; < 1, and the exact solution (readily
obtained using separation of variables) is given by

1 ma—m mi1x max 3
(x;) = m(e 2T M2 gin (Tipy ) (2.24)
where
1 F 1+ 4r%7?
iy = T (2.25)
K

Figure 2.4 illustrates the convergence to the exact solution for £ = 1...6 (and
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Ml

—24 -2 —16
log h
Figure 2.4: Normalized L? error vs. hfor k=1...6

x = 1.0) in terms of the normalized L? error (evaluated using numerical quadrature):

E?— fQ(¢ - ¢(h.k))2 dx
N [, ¢? du

(2.26)

The slopesof these curvesare givenin Table 2.3 and clearly obey the optimal convergence
results (or O(h**1)). The only slight exception is k& = 6, where the error is close to the
machine precision and therefore questionable. Note that, over the range of interest to
accuracy, the curves do not cross, indicating that even on coarse meshes there is great

advantage to using higher polynomial order.

symbol | slope
o 2.0

o 3.0

o 4.0

+ 5.0

X

*

5.8
6.6

OO WDN P&

Table 2.3: Convergenceratesfor one directional advection-diffusion
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¢ = 3 (cos(dmaz|—m) + 1)

A

¢ =0

Figure 2.5: Geometry for rotating field problem

2.3.3 Advection-diffusion example: Advection in arotating field

This problem illustrates an application to a problem with a large Peclet number
(advection dominated), with x = 1076, It is solved on afixed coarse mesh of 32 uniform
triangular elements (5 vertices acrossthe box) for £ = 1. ..6. The geometry and problem
parameters are shown in Figure 2.5, where the problem domainisgivenby —1/2 < z; <
1/2. Figure 2.6 presents line plots of ¢(z; = 0,25) for 0 < z, < 1/2. Symbolsfor the
various polynomial orders may be found in Table 2.3. Since « is small, the exact solution
is approximately given by the data along the internal line, rotated around the center of the
domain. This plot demonstratesthe ability of the high order simulationsto almost exactly
represent the solution, even with only two edges (3 vertices) across the profile.

2.4 Chapter summary

This chapter presented the hierarchical basisthat will be used for the fluid dynamics
simulations presented in the following chapters. The shape function decomposition in
terms of entity level function and element blend was discussed in detail, as was the use
of the abstract mesh data structure, on which the constructions are based. The chapter
concluded with an application of the hierarchical basis to the linear advection-diffusion
equation using the SUPG finite element formulation. We then verified the convergence

rate of the formulation through polynomial order 6, for a problem with aknown analytical
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Figure2.6: Lineplotsof pfor k=1...6

solution. An additional problem was also described to further demonstrate the accuracy
of the formulation. In the following chapters, the hierarchical basis will be used for
numerical simulations of both compressible and incompressible flow, and its accuracy
and cost effectiveness will be demonstrated.



CHAPTER 3
NUMERICAL SOLUTION OF THE NAVIER-STOKES

EQUATIONS

This chapter presents the finite element formulation for the Navier-Stokes equations. Al-
though the main thrust of thisresearch iswith incompressible flow, an application will be
made at the end of the chapter to the compressible system of equations. A semi-discrete
finite element formulation that has restored conservation properties is presented which
uses the hierarchical basis functions for the spatial discretization. Stabilized finite el-
ement formulations have been used by several researchers and have been shown to be
robust, accurate, and stable on a variety of examples from steady and unsteady laminar
flows to large eddy simulations (LES) and Reynolds averaged simulations of complex
turbulent flows (see, for example, Jansen [44], Jansen [43], Tezduyar et al. [73], Hughes
and Jansen [39], Bastin [1], and Taylor et al. [71]). The temporal discretization is based
on the generalized-a: method of Chung and Hulbert [15], generalized to first-order sys-
temsin Jansen et al. [46]. This new implicit time integrator is proven to be second-order
accurate (on linear model problems) and contains a user specified amount of numerical
dissipation.

Stabilized finite element methods have been proven to be stable and higher-order
accurate for alinear advective-diffusive system (the closest model problem to the Navier-
Stokes equations) in Hughes et al.[38], for the linearized incompressible Navier-Stokes
equationsin Francaand Frey [22], and for arepresentative nonlinear problem (the Burgers
equation) in Johnson and Szepessy [51]. The higher-order accuracy properties, aswell as
the robustness on complex flows has motivated our choice of finite element formulation.
We first present the strong form of the incompressible Navier-Stokes equations, followed
by a description of the semi-discrete, stabilized finite element formulation used to dis-
cretize the spatia portion of the associated weak form. The generalized-a method time
integrator is then introduced to integrate the system of ordinary differential equations re-
sulting from the spatial integration. Thistime integrator is proven stable and second order

accurate for a linear model problem. An example is presented to explore the character-
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istics of the time integrator in the context of a well understood flow. An application of
the hierarchical basis to the compressible Navier-Stokes equations is then given, and ex-
amples are presented to demonstrate the optimal convergence and application to a more
complicated flow. Finally, the chapter concludes with a discussion of the numerical eval-
uation of the diffusive flux terms that appear in the formulation, and methods will be

presented for use with both linear and higher-order basis functions.

3.1 Incompressible strong form

Consider the application of the mesh entity based hierarchical basis functions (de-
scribed in Chapter 2) to the time-dependent, incompressible Navier-Stokes equations.
First, consider the strong (or differential) form of the continuity and momentum equa-
tions written in the so-called advective form (see Gresho and Sani [29])

ui; =0 (3.1

I'Li + UjUs; 5 = —Dii + Tij,j + fz (32)

wherew; isthei' component of velocity, p the pressure divided by the density p (assumed

constant), f; the prescribed body force, and 7;; the viscous stress tensor given by:
Tij = V(Ui.j + Ujﬂ') (33)

where v = % is the kinematic viscosity, and the summation convention is used through-
out (sum on repeated indices). We have chosen to write the diffusive terms in the stress-
divergence form, which gives rise to a more meaningful set of natural boundary condi-
tions. This system of equations is supplemented with an appropriate set of prescribed
boundary conditionson I' = 0f). The incompressible Navier-Stokes equations can be
written in many equivalent forms (for the continuous system) which are not necessarily
equivalent when discretized. A complete description of the variousforms of the equations
and the strengths and weaknesses of each, as well as a complete discussion of boundary
conditions, are described in the book by Gresho and Sani [29].
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3.2 Weak form —Finite element discretization

Finite element methods are based on the weak form (or integral form) of the Navier-
Stokes equations (3.1) and (3.2) which is obtained by dotting the entire system from the
left by avector of weight functions and integrating over the spatial domain. The diffusive
term, pressure term, and continuity equation are all integrated by parts. The diffusiveterm
isintegrated by parts to reduce continuity requirements, otherwise we would have second
derivatives on our solution space. The pressure term is integrated by parts to provide
symmetry with the continuity equation which is integrated by parts to provide discrete
conservation of mass. The consequences of not integrating the pressure term by parts are
discussed in detail in Gresho and Sani [29] pages 449-450.

The finite element formulation is based on finite dimensional subspaces of the con-
tinuous weight and solution spaces. Recall that Q@ ¢ R" represents the closure of the
physical spatial domain, QUT", in N dimensions,; only N = 3 isconsidered. The boundary
is decomposed into portions with natural boundary conditions, I';,, and essential bound-
ary conditions, I'y, i.e, I' = T'; U T. In addition, H'($2) represents the usual Sobolev
space of functions with square-integrable values and derivatives on 2. Subsequently 2
is discretized into n,; finite elements, )., as defined above. With this, we can define the

discrete trial solution and weight spaces for the semi-discrete formulation as
Sy = {vlv(-,t) € HH(Q)",1 € [0,T),0|5eq, € Pr(Q)™, v(t) =gon Ty}, (34)

Wi = {w|w(-,t) € H'(Q)",t € [0, T], w],eq, € Pe(Q)™, w(-,t) =0onT,},
(3.5)

Py = {plp(-.t) € H'(Q),t € [0,T], e, € Pe(Qe)} (3.6)

where P, (2.) is as defined in Definition 2.2. Here, g represents an approximation to the
prescribed boundary condition in the finite element basis. Let us emphasize that the local
approximation space, P(f2.), is the same for both the velocity and pressure variables
(although thisis not necessary, it is computationally convenient, especially when working
with higher-order discretizations). This equal-order interpolation is possible due to the

stabilized nature of the formulation to be introduced bel ow, without which, attention must
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be paid to the Babuska-Brezzi condition. Note that here and throughout, we have omitted
the superscript A that isnormally included in the discrete representation of the continuous
variables, asin ugh’k), for notational simplicity. Where there is any chance of confusion,
the full notation is retained.

The stabilized formulation used in the present work is based on that described by
Taylor et al. [71] generalized to include the higher-order basisfunctions. Given the spaces
defined above, we first present the semi-discrete Galerkin finite element formulation ap-
plied to the weak form of (3.1) as:

Findu € S} and p € PJf such that

BG(wz’a(ﬁuiap) =0

Be(w;, q; ui,p) = /{wz (0 +wjuij — fi) +wij (=pdij + 7ij) — quipd
Q
(3.7)
+ / {w; (poin — Tin) + qup} ds
Ty

for al w € W} and ¢ € PF. The boundary integral term arises from the integration by
parts and is only carried out over the portion of the domain without essential boundary
conditions. Since all the weight coefficients are arbitrary, this gives us a separate equation
for each of the i components (and for each of the basis functions). The standard Galerkin
method is well known to be unstable for advection-dominated flows (see Brooks and
Hughes [11]) and in the diffusion dominated limit for equal-order interpolation of the
velocity and pressure, i.e. the BabuSka-Brezzi condition. Stabilized methods are well-
known to address both of theseissues (see Brooks and Hughes[11] and Hugheset al. [37],
respectively). To remedy both of these situations we add additional stabilization terms as
follows:
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Findu € S} and p € PJ such that

B(wi, ¢; u;, p) = Ba(w;, ¢; ui, p)
Nel

+ eZ: Qe{TM(ijz',j +qi)Li + Tew; juj i} de (38)

Nel

A _A A
+ E {’LUinui.j + Tiji.jukui.k} dZL'
Q
e=1 €

foral w € W} and ¢ € PF. We have used L£; to represent the residua of the it
momentum equation,

Li=t; +ujui;+pi — Tijj — fi (3.9)

The second line in the stabilized formulation, (3.8), represents the typical SUPG stabi-
lization added to the Galerkin formulation for the incompressible set of equations (see
Franca and Frey [22]). Thefirst term in the third line of (3.8) wasintroduced by Taylor et
al. [71] to overcome the lack of momentum conservation introduced as a consequence of
the momentum stabilization in the continuity equation. The second term on this line was
introduced to stabilize this new advective term. To see that this formulation conserves
momentum, set w = {1,0,0} and ¢ = u, in (3.8) which leaves only boundary terms if
we choose

which may be identified with a modified, conservation-restoring, advective velocity. This

term must itself be stabilized sinceit isan advectivetypeterm which will lead to advective
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instabilities. The stabilization parameters for continuity and momentum are defined as

™ — P
\/Cl/Atz =+ uigijuj + Cgl/zgijgij

(3.11)

1

T — ———— 3.12
© 87'Mtl‘(gij) ( )

and the stabilization of the new advective term is defined in direct analogy with the ad-

vective portion of 7, as

_r
A A
UiGijuj

(3.13)

Rl
Il

where ¢; and ¢, are defined based on considerations of the one-dimensional, linear
advection-diffusion equation using a linear finite element basis and ¢;; = & &k ; IS the
covariant metric tensor related to the mapping from global to element coordinates. It
should be noted that for tetrahedral elements, this mapping depends on the orientation
of the element, and therefore must be corrected to create an invariant element length-
scale by permuting the possible choices of orientation. This term may be identified with
the element length-scale, and is hence a mesh dependent parameter. These stabilization
parameters are related to those proposed by Shakib [61] and were also used (in aslightly
different form) by Taylor et al. [71]. The constant ¢, is a modification for higher-order
elements to obtain the correct order of convergence in the diffusive limit as required by
the use of the inverse estimates in the accuracy analysis of Franca and Frey [22]. There
IS some guidance as to how to select this parameter, however, experience has shown the
method to be relatively insensitive to its choice. Currently we use ¢, = 36, 60, 128 for
linear, quadratic, and cubic basis, respectively, for the modification, which has provided
good resultsin all cases presented. The parameter ¢; isrelated to the temporal portion of
the stabilization, and we have selected it to be 4 for most problems.

To derive adiscrete system of algebraic equations, the weight functionsw; and ¢, the
solution variables u; and p, and their time derivatives are expanded in terms of the finite
element basis functions (c.f. Equation 2.10). Gauss quadrature of the spatial integrals
results in a system of first-order, nonlinear differential-algebraic equations which can be
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written as
RA(’u,i,’di,p) :0, A= 1TL8 (314)

where we have assumed the coefficients of the weight functionsto be arbitrary, indicated
by the index A, and u;, u;, and p are vectors of the basis coefficients for the discrete
representations of these flow variables. The generalized-a. method described below is
used to solve this nonlinear system in a predictor corrector format utilizing Newton's
method.

3.3 Generalized-a timeintegrator

While several methods have been proposed for the integration of the Navier-Stokes
system (both semi-discrete as well as space-time), there has yet to emerge a clear favorite.
For example, space-time finite element methods where proposed and analyzed by Shakib
et al. [62, 63] and expanded and used extensively by Tezduyar et al. [74, 75, 49, 50].
Here, as the name implies, the weight and solution space are both given a temporal de-
pendence in addition to the usual spatial dependence. While these methods have yielded
very accurate results, the cost has only been justifiable on problems with a moving do-
main such asfree surface flows and/or deforming spatial domains that account for moving
solid boundaries. In these cases, the additional cost of space-time methodsis put to good
use by providing a consistent tracking of the moving boundary.

In cases where the boundary is not moving, semi-discrete methods remain in favor
(see Behr et al.[6]). Part of the attraction to semi-discrete methods is their long history
of use in computational solid dynamics. Many algorithms have been proposed, analyzed
and even designed to provide particular behaviors needed in particular conditions. Of
particular interest is the behavior of these algorithms in situations where a broad range
of temporal scales are present, such as the case of turbulent flows. In this case, the time
step is often chosen (out of necessity) such that certain frequencies are only marginally
resolved or perhaps even completely unresolved. Given the nonlinearities present in most
interesting engineering systems, it is of great importance to ensure that there is tempo-

ral damping for frequencies beyond the chosen resolution level. However, it is equally
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important that this damping not effect the frequencies within the chosen resolution level,
leading to a degradation of accuracy (see Jansen et al. [46]).

3.3.1 Analysisof Generalized-a Method

The system of nonlinear differential-algebraic equations resulting from the spatial
integration of the stabilized Navier-Stokes formulation is nonlinear, making it unwieldy
for analysis. Much insight into the properties of the time integrator may be gained by
studying the application to a simple, linear problem. As described in Hughes [42] the
linearized version of the nonlinear system can be un-coupled into many single degree of
freedom problems by diagonalizing the linear operator in terms of its orthogonal eigen-

vectors. This procedure results in the following model problem

g = Ay (3.15)

where ) isthe eigenval ue associated with the chosen mode.
We proceed to introduce the generalized-a method for integrating (3.15) from ¢, to

tr (.8 Ap =ty — 1)

Yntam = Ayn+af (3.16)

Ynt1 = Yn + Den + DY (Unt1 — Un) (3.17)
Untam = Yn + Cm(Yns1 — Un) (3.18)
Ynta; = Yn + f(Yni1 — Un) (3.19)

where o, oy and « are, at this point, free parameters. These four equations can be

rewritten in the form

a’ynJrl = byn7 or yn+1 - cyn (320)

where the solution vector at ¢,, isgiven by y,, = {v,,, Ay, }* (similarly for y,,,) and the
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amplification matrix c = a~'b is

[am — (ay —1)yA O — -|

1
T [ A am — 1+ apA(1 - 7)J 3.2

where A = AA; and d = «,,, — apyA. Itisfairly straightforward to show (see Hughes
[42]) that

Ynt1 = trace(e)y, — det(e)y,_1 (3.22)

If we further substitute a Taylor series expansion of ¥, ., and y,_; about y, in time we

find that second order accuracy can be obtained so long as

1
’y:§+am—af (3.23)

Thisisthe same result found by Chung and Hulbert [15] for a second order system.

Stability can be assessed by looking at the eigenvalues of ¢. To make our model
problem reflective of both advective and diffusive phenomenarequiresthat A be complex.
We are interested in proving stability for the left half of the complex plane since we will
assume positive diffusive coefficients in our fluid dynamics problems. Stability will be
attained so long as the modulus of each eigenvalue is less than or equal to one. The
expressions for the eigenvalues of (3.21) are too lengthy to express here. Instead we will
illustrate the stability constraints on «,,, and ¢ through the limiting values of A.

First consider the case when the time step is taken to be very small. Regardless of

thevalue of A\, A vanishes, and the eigenvalues of ¢ inthislimit are

. 1
Aliglo &= {1 -, 1} (3.24)

Qm

from which we may deduce that stability requires

(3.25)

NN

O >

We next consider the limit of an infinite time step for any eigenvalue in the left
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complex half plane (i.e A tending to complex infinity). The eigenvalues of ¢ in this limit
are

lim &= {ZLF2Om=ay) 1 (3.26)
Ap—o0 14+ 2(ay, — ay) af

from which we may deduce that stability also requires

(3.27)

NN

QU > Of 2

Again, thisis the same result obtained by Chung and Hulbert [15] for the second order
system. Since they had an additional eigenvalue (and an additional parameter in their
method) they had a third constraint that is not present here.

While having two parameters free in the method has a certain appeal, we recall that
our goal was to find a method with strict control of high frequency damping. Therefore it
is enlightening to express the two parameters «,, and a; in terms of the spectral radius of
an infinite time step or maximum absol ute value of the eigenvalue as A, tends to infinity,
what Chung and Hulbert referred to as p..,

Poo = lim max(&y, &) (3.28)
At—>oo

By requiring the p,, from each eigenvalue in (3.26) to take on the same value we can

express «,, and ay interms of p,, viz.

1 (3—ps 1
am:—<3 p), o (3.29)

2 \ 1+ po T 14 pe

thereby defining a second-order accurate family of methods with a specified high fre-
guency damping.

The importance of casting the parametersin thisway isthat one has precise control
over the damping of frequencies that are high relative to the resolution level. If p, is
chosen to be zero, the method is said to annihilate the highest frequency in one step (only
for a linear problem). This method has the same spectral stability as Gear’s two step
backward difference method [25]. If p., iS chosen to be one, then the highest frequency

(aswell as al others) are preserved (for the linear problem). This method corresponds to
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the midpoint rule which is equivalent to the trapezoidal rule for linear problems.

For linear problems with all frequencies resolved, the midpoint rule has the very
nice property of introducing no damping, regardiess of the time step. However, when the
eigenvalue )\ is purely imaginary (i.e. when the flow is convection dominated) with the
modulus equal to one, the eigenvalue lim, ., & = —1, which has the effect of causing
the solution to switch sign on each step. This behavior is clearly unacceptable. In these
cases it is important to have p,, strictly less than one so that high frequencies do not
spoil long term integrations. The example of vortex shedding from a circular cylinder
(presented below) will illustrate this effect.

3.3.2 Generalized-a Method for the Navier-Stokes Equations

In addition to the application of the time integrator to a nonlinear system, the ap-
plication of the generalized-a method to the Navier-Stokes equations introduces the diffi-
culty of integrating the pressure in time, which has no explicit temporal dependence. This
type of a system is technically referred to as a differential-algebraic equation (or DAE),
and the theory for integrating such systems is quite involved (see Gresho and Sani [29]).
The pressure here is not really integrated in time, it is just iterated to remain consistent
with the velocity which is integrated with the generalized-a method. A comprehensive
study of the many alternative methods for temporal integration of the DAE’'s and their
implications, though interesting, iswell beyond the scope of the present research. A more
complete discussion of such topics may be found in the work of Gresho and Sani [29].
The other primary difficulty in extending the work from the previous section to the full
Navier-Stokes equations is the nonlinearity that is introduced. We first recall from Sec-
tion 3.2 that, once spatially discretized, the momentum and continuity equations may be

written in the form:

RA(’U,Z'?’[LZ',p) :O, A= lns (330)
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which will be the starting point of the application. Note that this system can also be

PR

where R,, and R, represent the residuals of the momentum and continuity equations,

written as;

respectively (i.e. the portions of R multiplying w; and ¢, respectively), and we have
dropped the subscript A, related to the weight space, to clarify the presentation.

With these considerations in mind, application of the method introduced in Sec-
tion 3.3.1 yields the following set of equations describing the time integration algorithm.
Thefirst equation isthe nonlinear residual with the velocity and accel eration evaluated at
the intermediate time stepst,, ., and t,, y,, , respectively

R(un—l—afa un—l—amapn-i-l) =0 (332)
followed by the update equations relating the velocity to itstime derivative,
Up1 = Up + Aty +vA (un-l-l - un) (333)

and finally the equations that relate the temporal locations » and n + 1 to n + «,,, and
n—+aof

uTH»Ocm == un + O{m('l:l,TH,l — un) (334)

Upja; = Up + Of(Unp1 — Up) (3.35)

Here we have introduced R to be the vector of nodal values of the nonlinear residua in-
cluding both the continuity and momentum equations. The nonlinearities are best handled
by introducing a predictor-multicorrector algorithm similar to those proposed by Brooks
and Hughes [11]. By making a prediction of the solution and its time derivative at time
tni1, We start the algorithm. Since we will be making multiple corrections, we intro-
duce a superscript (inside parentheses) to represent the corrector iteration number. In this
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notation our predictor isinitialized with an iteration count of zero and is given by

Pl = pa (3.36)

ul? | = u, (3.37)
—1

al, =14, (3.39)
Y

where (3.36) and (3.37) predict that the solution will be the same asit was at the previous
time step and (3.38) is the time derivative at ¢, ; that is consistent with (3.33) (i.e. the
predictor that preserves second order accuracy). Other choices of predictors are aso
possible.

After making the prediction, the algorithm enters a loop of multi-corrector passes
with 7 initialized to zero. The first operation within the loop is the calculation of velocity

a t,.., and the acceleration at ¢, 1,

uﬁfiaf =u, + af(ugjfl) —Uy) (3.39)

= g 4 (Wl — ) (3.40)
These quantities enable the evaluation of R? (u"), . al) . pt))) which, for small 4,
can be expected to befar fromitsdesired value of 0. To find an improvement to the current
values of (3.39) and (3.40) we use a Newton type linearization of R") with respect to the
acceleration, ;, for both the momentum and continuity residuals which yields a matrix
problem to solve for the acceleration and pressure increments, given by

K9 ¢\ (A4, (R

. . l=-1" (3.41)
DO c® APSJ)A R

which is solved for each corrector pass and the solution is updated according to

at =4+ Aal, (3.42)
up Y =ully + A, (3.43)

pH =P+ Ap® (3.44)
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and i is incremented. The definition and numerical evaluation of the sub-matrices K¥,
G, DY and C"” isdiscussed below. If i < i, the algorithm returns to solve (3.41)
thusinitiating the next corrector pass. Otherwise, the solution at time step ¢,,, ; isupdated,
and the algorithm proceeds to the next time step. This completes the step from ¢, —
tn+1. If more time steps are required, n is incremented and the algorithm returns to
the prediction phase for the next step (i.e. (3.39) and (3.40)). The entire algorithm is
summarized in Algorithm 3.3.1.

The linear system of equations, (3.41), isdifficult, and special care should be taken
in setting up and solving it. The linear algebra solver of Shakib [64] (a highly optimized
linear algebra package for the incompressible Navier-Stokes equations) is used to solve
this linear system, after it is set up as described below. This linear solver is based on a
Generalized Minimum Residual (GMRES, see Shakib [61]) type solution method for the
velocity and a conjugate gradient projection method for the pressure.

The matrices appearing in (3.41) are the tangent matrices of the residual vectors

with respect to the acceleration and pressure at time,,, 1, and are defined as follows:

OR) (w4l o)

K ~ : (3.45)
Dy}
G ~ (vt f(i) +an Pui1) (3.46)
apn+1
; 8R(Z) /u’gzi)a 7u£f)oz ) 5;)
pli) o e () s - fam: Pt1) (3.47)
O,y
; aR(Z) ’u’gzi)a 71‘1’53)04 ) (Z)
C(Z) ~ c ( +ay +am pn-H) (348)

apgjd
The approximation symbols are used here to indicate that these matrices are only approx-
imations to the consistent tangent matrices (given on the right-hand-sides of Equations
(3.45)-(3.48)) which have been shown to yield better convergence, and are given in detail

below. Care should be taken in computing (3.45) through (3.48), e.g. the differentia-
tion in equation (3.45) givesrise to amass term Since ., yq,, isrelaed to u,, ., through
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Given solution at timet,,: u,,, u,, and p,

predict:
0
ugz-?—l = U,
a®, =114,
n—+ v
0
pgp)rl = Pn
correct:

fori =110 4,,4
(compute intermediate solution values)
Upihay = Un +ap(ull)

o, =ty + ap (@l —a,)

__un)

(solve linear system)

(K@ G@) Aﬁg)ﬂ :_<R£§)>
DO c¥) \ apl, RY

(update solution values)

~

. (i+1 . (i . (i
u£z+1) = ’u’gz—)i—l + Auélq

it+1 i . (i
ugzL) = ugz—)i-l + 'YAtAugzjd

i+1 ) 2
P =l + B0

end

Algorithm 3.3.1: Predictor-multi-corrector algorithm
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equation (3.33). Since we are differentiating with respect to u;’il , Wwe also need to use the

chainrule, i.e.

ORY)  oRY oull.  oRY oul)

m m n+am
Dinly  Oupl,, dull, iy, i), 620
ORY ORY
f @) - (7)
au’n+o¢f aunJram

which enables us to directly update our solutionto ¢, after the linear solve.

Following the standard finite element assembly process described in Hughes [42],
the matrices are formed by evaluating element level integrals (using numerical quadra-
ture). The matrices are given by

Qe

+ Nlak (/,LNJI-)vk + T]V[UkUmNJIim + fﬁkﬁmNme) (350)

a b a b
+ NGy 6y NGy + 7 NGy o Ny o)} dee

G = — / NN} (351)
Qe
ab __ a b
Dy = /Q Ng:N; (352
C% = —1y /Q NN, (3.53)

where, here, a,b = 1...n,, refer to the individual basis function contributions, the sub-
scriptsi, 7 = 1...3 areincluded to indicate the basis functions related to the momentum
equations (velocity degrees of freedom) and the subscript p indicates continuity equation
(pressure degrees of freedom). Here, indices enclosed in parentheses imply that no sum
should be carried out. Since, as mentioned above, we are interpolating velocity and pres-
sure with the same basis functions, the subscripts ¢ and ; are only used to indicate the

place of these terms in the resulting matrices. The terms we have chosen to include in



41

the tangent matrices given above are essentially formed from the frozen coefficient as-
sumption while differentiating the equations. Assumptions on these matrices also enable
the relationship, D = —G” which isadesirable symmetry property between the discrete
divergence and gradient operators (G and D, respectively). Gresho and Sani [29] provide
additional details pertaining to this symmetry.

3.3.3 Temporal accuracy: flow past a circular cylinder

Vortex shedding around acircular cylinder in an incompressible flow at a Reynolds
number of 100 (based on the cylinder diameter and inflow velocity) will provide an ap-
plication of the generalized-a. method to the relatively well understood flow. Since we
are primarily interested in studying the temporal accuracy, we have chosen to present re-
sults from the linear basis calculations; however the results for other polynomia order
simulations are similar. The problem geometry and boundary conditions are depicted in

Figure 3.1. In addition to the boundary conditions shown, we have imposed zero xs-

X2

Figure3.1: Cylinder geometry and boundary conditions

velocity and no tangential traction on the two z3 planes to simulate 2-D conditions with
our 3-D code. A complete description of this problem can be found in a variety of ref-
erences. Shakib et al.[63], Hauke and Hughes [34], and Behr et al. [6]. At a Reynolds
number of 100, the salient feature of this flow is the periodic shedding of vortices from
the cylinder creating time varying lift and drag forces determined by integrating the forces
on the cylinder surface. Thissingle, dominant frequency allows a convenient study of the
new time integrator.

In this context, we will study the effect of the high-frequency damping parameter,
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P, ON the lift and drag profiles. The flow is solved in time assuming the cylinder is
initially at rest, and isimmediately accelerated to a velocity of u, (often referred to asan
impulsive start). We have taken atime step of 0.1 (normalized by the cylinder diameter)
and for each time step, three Newton corrector passes are performed, insuring that the
normalized changein the velocity increment islessthan 5 x 10~ for each step. Thistime
step affords 60 steps per period of the lift force and 30 steps per period of the drag force,
which should be sufficient to completely resolve this frequency.

The first four plots in Figure 3.2 show the lift and drag forces (f; and f,;, respec-
tively) plotted against the non-dimensiona time, t*, for p,, = 0.0, 0.25, 0.5, and 0.75
for two different time windows (the one on the right being a zoomed view). From these
plots we make the following observations: 7) the period and amplitude of both thelift and
the drag are very weak functions of p., (which might be expected from the observation
that 30 points per wave length is adequate for second-order accurate methods), i7) asmall
amplitude undulation is present in the p,, = 0.75 case, iii) the presence of this undula-
tion for p,, > 0.5 reflects the increasing difficulty the method faces as p,, approaches 1,
iv) the p,, = 0 case appears to start its transition from a steady separation to a saturated
unsteady flow much earlier than the other methods.

The last observation is somewhat counter-intuitive. One might expect the method
with the highest damping would be the last to |eave a steady flow in favor of an unsteady
flow. Thefina two plotsin Figure 3.2 shed some light on this mystery. They indicate that
the impulsive start can introduce a rather large, high-frequency unsteadiness to the flow.
Furthermore, these plots indicate the severe errors that may occur when using p,, = 1.0
(trapezoidal rule) for this flow. The first of these two plots shows the time window in-
cluding the impulsive start. This plot clearly shows the strong damping characteristics of
the po, = 0 case, where the initia disturbance due to the impulsive start is damped out
within a couple of time steps. Also clear from this plot is that the initial disturbance is
almost completely preserved inthe p,, = 1 case, polluting the entire solution. Intermedi-
ate values of p,.,, annihilate this un-resolvable frequency in a manor predictable by their
proximity to the two extreme cases. It is conjectured that the physical instability leading
to limit cycle vortex shedding is in the well resolved and almost completely undamped
range for all chosen values of p, (0 < p., < 1). However, by taking less time to anni-
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Figure 3.2: Lift, f;, and drag, f,, forces on the cylinder for different time windows:
———= Poo = 0.00, —— poo = 0.25, -+ Poo = 0.50, —— po, = 0.75,and o —p,, = 1.0
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hilate the highest, un-resolvable frequency, the lower values of p,, actually pick up the
physical instability (which starts at extremely low values and grows exponentially before
saturating on the limit cycle) sooner. The higher values of p,, are unable to pick up this
very low amplitude physical instability until they bring the un-resolvable frequency below
itslevel. This should not be misconstrued as an advocation of p,, = 0.0 inal casesbut it
does demonstrate the benefit in at |east one case of having the ability to annihilate alarge,
un-resolvable frequency rapidly. In simulations of practical interest, this ability must be
balanced by the fact that there often exist a continuous range of frequencies that one is
interested in resolving, rather than two, widely separated ones as shown here. In those
cases, higher values of p., are desirable to maintain the ability to accurately integrate
waves with significantly less then 30-60 time steps per period, which is often the case for
turbulence simulations.

The final plot in Figure 3.2 shows that the highest frequency can be excited even
without an impulsive start. In this case the flow was restarted from the p,, = 0.0 solution
(at t* = 200 where no high frequencies were visibly present). However, the nonlinearities
inherent to the Navier-Stokes equations needed little time to build up energy in this high-
est frequency when the time integrator was switched to p,, = 1.0, atime integrator that
is powerless to control these frequencies. This highest frequency mode does saturate in
amplitude, though, leaving asurprisingly accurate signal that can be recovered by filtering
thissignal in time. Thisis again fortuitous to this case though, owing to the wide sepa-
ration of the frequencies causing little, if any, interaction. Again it must be stressed that
in the problems of interest, the continuous range of scales will suffer much greater con-
tamination due to the stronger interaction of waves of close proximity in frequency space.
In these cases the energy in the highest frequencies may also fail to saturate leading to a
breakdown of the solution technique. Clearly, some capacity to insure the annihilation of
un-resolvable wavesis critical to maintain the fidelity of the well and marginally resolved
waves, thus the motivation for the design of the method with careful control through p..
and the advocacy for the availability and use of intermediate values.
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3.4 Application of the hierarchical basisto compressible flow

This section presents an application of the hierarchical basis described in the pre-
vious chapter to the compressible system of Navier-Stokes equations. The stabilized fi-
nite element formulation used here, which is the standard SUPG formulation (equivalent
to the Galerkin-Least Squares (GLS) formulation for linear basis functions, see Hauke
and Hughes [33)), differs from that introduced above for the incompressible equations,
but retains the desirable properties of stability and higher-order accuracy. In fact, the
formulation presented here for the compressible system of equations is applied to the
conservative form of the equations, and the additional terms terms introduced to restore
conservation to the incompressible formulation need not be added. This formulation has
also been more rigorously studied and analytically proven to be stable and higher-order
accurate for model problems (see Shakib and Hughes [62]). More details pertaining to
the formulation for the compressible equations may be found in Whiting et al. [76]. The
compressible formulation also differsin the way pressure is treated. Here the pressureis
solved as a thermodynamic quantity, (rather than a constraint equation), which is defined
through thermodynamic considerations and the energy equation (we assume an ideal gas
relationship, although thisis not a necessary assumption). The pressure is therefore not
treated distinctly from the velocity as it is in the incompressible formulation, but rather,
all flow quantities are considered with a single weight space containing 5 variables (in-
cluding total energy).

3.4.1 Compressible Navier-Stokes equations

Consider the application of the mesh entity based hierarchical basisfunctionsto the

time-dependent, compressible Navier-Stokes equations, written in conservative form as

U,+FY-F'=8 (3.54)
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(3.55)

(3.56)

The equations are closed through the introduction of constitutive relationships given by

1
Tij = 2u(Sij(u) — gskk(u)@j),

q; = —kKT, et = €+

U;Usg
2 )

Sij(u) =

e = c, T

Wij + Ui

; (3.57)

(3.58)

The variables are: velocity u;, pressure p, density p, temperature 7' and total energy

et 1he congtitutive laws relate the stress, 7;;, to the deviatoric portion of the strain,

Sgg- = Sij — %Skkézj, through a molecular viscosity, i Similarly, the heat flux, ¢, is

proportional to the gradient of temperature with the proportionality constant given by a

molecular conductivity, . While the formulation isnot limited to anidea gas, p = pRT,

and constant specific heats at constant pressure, ¢,, and at constant volume, ¢, these as-

sumptionsare also made here. Furthermore, sincewe are generally interestedinlow Mach

number flows where temperature variation is low, we have assumed a constant molecu-
lar viscosity and constant conductivity through a constant Prandtl number, although this

again is not a necessary simplification. Finaly, S isabody force (or source) term.
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For the specification of the stabilized formulation for the compressible system of
equations, it is helpful to define the quasi-linear operator (with respect to some yet to be
defined variable vector YY) related to (3.54) as

EEAOQ—FAia 0 0

5% o0, O (Kija—xj) (3.59)

from which £ can be naturally decomposed into time, advective, and diffusive portions
L =L+ Loy + Laisr (3.60)

Here A, = F‘:‘d{, isthe i Euler Jacobian matrix, K;; is the diffusivity matrix, defined
such that K;;Y ; = F{", and A, = U y is the change of variables metric. For a
complete description of A, A; and K;;, the reader isreferred to Hauke [32]. Using this,
we can write (3.54) assmply LY = S.

Thefinite element spaces used for the compressible formulation are similar to those
introduced above for the incompressible equations with the exception that the solution
vector isnow treated as a single vector of unknowns (pressure is not given its own space).

The solution space is now given by
S;CL = {’U|’U(',t) S HI(Q)mvt € [OvT]vv|az6Qe € Pk(Qe)mav('at) = g on Fg}v (361)
and the weight function space

Wi = {w|w(7t) € HI(Q)mvt € [OvT]7w|$€QE € Pk(Qe)mvw('vt) =0on Fg}a
(3.62)

where P, (£2.)™ is as defined before, and m = 5 representing our 5 unknown variables
(uj, p,andT).

To derive the weak form of (3.54), we proceed the same as for the incompressible
system by dotting the entire system from the left by a vector of weight functions, W &
WY, and integrating over the spatial domain. Integration by parts is then performed on
the diffusive and advective termsto move the spatial derivativesonto the weight functions
(reducing the continuity requirements). Recall that for the incompressible formulation,
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the advective term was not integrated by parts. This process leads to the semi-discrete
SUPG wesak form for the compressible equations (see Hauke and Hughes [33]): find
Y € S} suchthat

/ (W-U;,—W,;-F¥+W .- F')dQ
Q

— / W (—F* + F) n; dU (3.63)
r

Nel
+Z/Q LW T (LY —8)dQ=0
e=1 €

forall W € Wy. Thefirst and second lines of (3.4.1) contain the Galerkin approximation
(interior and boundary) and the third line contains the SUPG stabilization. The boundary
integral term arises from the integration by parts and is only carried out over the portion
of the domain without essential boundary conditions. The use of the advective portion of
the operator, £, , in the stabilization term could be replaced by £” toyield the full GLS
method. Doing so, however, would require that we reconstruct the second derivative of
the weight space (using the local reconstruction method for the diffusive flux), whichisa
costly operation. Itisalso not clear that the GL S formulation is more accurate than SUPG
(theoretically, they have both been shown to be optimally accurate for model problems).
The stabilization parameter, =, isnow a5 x 5 matrix, and its extension to time-
dependent systems of equationsiswell documented in Shakib [61], Francaand Frey [22],
and Hughes and Mallet [40]. Based on efficiency considerations, we have chosen to use a
diagonal = similar to the one introduced by Hauke [32] for nearly incompressible flows,

given by
T = diag(7., Tom, Tons Tims Te) (3.64)
where

|u|hi

.= “2h1 min(L, Re") (3.65)
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= min (B, 1o melhg)" (366)
" p 2plul’ Ap '
ro—min( B hs millg)” (367)
pey 2pcylul’ 4k
and
[

Here h{ are element length scales for continuity, momentum, and energy and A, is the
time step; the other parameters have been defined above. This + has proven effective on
avariety of flows as shown by Hauke and Hughes [33], and is computationally efficient,
as it can be computed from existing solution variables. More advanced forms of = which
are not diagonal can be formed and are documented in Hauke and Hughes [33], however,
for low Mach number flows, they showed that the diagonal form given above performed
well.

Note that we have chosen to solve for Y instead of U. Asdiscussed in Hauke and
Hughes [34, 33], U is often not the best choice of solution variables, particularly when
the flow is nearly incompressible. The computations performed herein employ pressure-

primitive variables, viz.

rYlw rp\
Y, Uy

Y=Y, p =4 u (3.69)
Y, u3
[ Y5 ) [ T )

By inspecting (3.56)-(3.58) it isclear that all quantities appearingin (3.4.1) may be easily
calculated from (3.69). The use of pressure-primitive variables also facilitates specifica
tion of boundary conditions, as these are the variables most often constrained for nearly
incompressible applications.

Another reason we have chosen to use the pressure primitive variables is that they

are well behaved in the incompressible limit, i.e. the matricesin (3.59) are well behaved
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Figure 3.3: Channel flow geometry and problem description

as the compressibility coefficients ap and (G approach zero. This makes it a smple
matter to construct a purely incompressible code from the above formulation providing a
uniform approach to compressible and incompressible flows as described by Hauke and
Hughes[34]: simply set ap = 1 = 0 in the coefficient matrices. Experience has shown,
however, that the formulation presented in Section 3.2 based on the advective form of the
equationsis far more accurate as well as much more efficient for an incompressible flow,
and is preferred for this type of simulation over the conservation variable formulation
presented here.

The generalized-o method is again used for the temporal discretization, yielding
a system of nonlinear algebraic equations which is solved in a predictor-multicorrector
format yielding successive linear problems. Subsequently, each linear problem is solved
using the Matrix-Free Generalized Minima Residual (MF-GMRES) solution technique
with ablock diagonal preconditioner devel oped by Johan et al. [48] or element-by-element
GMRES technigues. These linear algebra solvers have both proven to be effective for

compressible flows.

3.4.2 Example: compressible channel flow

This example is presented as a verification of the theoretical convergence results
for the SUPG formulation applied to the compressible equations. It demonstrates that
under some circumstances, results derived for model problems carry over to the nonlinear
systems of practical interest. Consider the fully developed, laminar, constant viscosity,
compressible flow between two flat plates, shown in Figure 3.3.

Assuming the viscosity to be independent of temperature de-couples the energy
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equation allowing a closed-form, analytical solution asfollows:

T 2
Ul = Upax [1 — (ﬁ) } , Uy = Uz = 0 (3.70)
Pr Ec T\ 4 2p,u2 . 1
T=1,|1 1-(-) , — p, — ZPolmax 1 371
T3 { G }] P=Po~ "pey H (371)

where H ishalf the height of the channel, p, isthe pressure at z; = 0, p, isthe density at
x1 = 0, umax 1S the centerline velocity, T, is the prescribed wall temperature, Pr = CPLK

is the Prandtl number, Rey = % is the Reynolds number based on the channel half-

height, and Ec = = is a modified Eckert number using the specific heat ¢,. This
solution holdsfor compressible or incompressible flow so long asthe viscosity is assumed
constant and provides agood test case for a convergence study since the temperature field
isfourth order, enabling usto verify the convergence rate through k& = 3.

We have chosen to simulate this flow assuming periodic boundary conditionsin the
streamwise direction (implying fully-developed flow), in additionto 7" = T,, and u = 0
at the upper and lower walls. The periodic boundary condition prescription is obtained by
forcing al variables on the outflow plane to be identical with those on the inflow plane.
To do this requires that the linear portion of the pressure be interpreted as a body force,

i.e.,

T
— po+ B 3.72
p=po+ B (3.72)

Then the constant portion, p, can be assumed periodic along with the other variables,
u; and T', which are independent of x;. The linear portion (B = —% is a constant
coefficient) of the pressureisincluded in the formulation as a source term, which “ drives’
the flow.

This problem is solved on three different meshesfor £ = 1. ..3. The L? error inthe
temperature finite element solution (normalized by the L? norm of the analytical temper-
ature profile) vs. the number of elements in the z, direction and vs. the total number of

degrees of freedom are shownin Figure 3.4 . Thefirst of the two plots shows that through
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k = 3 the finite element solution is converging at aslope of £ + 1, as predicted by theory.
The second plot demonstrates the benefit of the higher-order solutions compared to the
linear solution for afixed number of degrees of freedom. Note that due to the stabilization
term, even the coarse meshes benefit from the increased polynomial order. Of course, the
number of degrees of freedom in the system isonly anindication of the total cost of solu-
tion, since degrees of freedom associated with k-refinement are typically more expensive
than those associated with h-refinement. More careful studies of the simulation cost for

higher-order elements will be given later for incompressible flows.

Figure 3.4: Convergence of temperature profiles for channel flow

3.4.3 Example: vortex shedding behind acircular cylinder
The second examplefor the compressible formulation, isof the time dependent flow
about a circular cylinder at a Reynolds number of 100 (based on the cylinder diameter),

the geometry and boundary conditions are shown in Figure 3.5. A complete description

Qe =0, up =u3 =0

U= U G = G =
T:Too . Q’U,:O D= Do
P=Poc _,

1.

X1

QZ1:07U2:U/3:0

Figure 3.5: Cylinder geometry and boundary conditions

of this compressible flow can be found in variety of references. Shakib et al.[63], Hauke
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and Hughes [34], Behr et al. [6]. We choose boundary conditions consistent with those
of Shakib et al.[63]. At a Reynolds number of 100, the features of this flow are similar
to the incompressible flow introduced above: the periodic shedding of vortices from the
cylinder creating atime varying lift determined by integrating the forces on the cylinder
surface. Since it is now a compressible flow, we have set the Mach number at infinity,
M, = 0.2, making the flow nearly incompressible. The physical dimensions leading to
such flow parameters may be questionable, a quick calculation yields a cylinder diameter
of D = 1.5 x 10~ meters, quite small, however the simulations yield results that are
consistent with more physically realizable dimensions.

Thissimulationisused to show theincreased accuracy inthe prediction of theforces
on the cylinder gained from quadratic as opposed to linear basis functions. Particularly
the drag forces, which are dominated by the viscous forces on the cylinder, are much
better resolved by the quadratic solution, as can be seen in Figure 3.6. The drag from the
linear basis is observed to have a low frequency amplitude modulation which has been
eliminated in the quadratic solution. The force in the z, direction, or lift, isless sensitive
to anincrease in the basis order due to the fact that it islargely dominated by the pressure
forceswhich can beinterpolated well by thelinear basis. A careful comparison of the cost
vs. accuracy for the compressible equations was not carried out. In fact, this flow was
simulated on the same mesh for the linear and quadratic simulations, hence, the quadratic
solution has many more degrees of freedom associated with it. It isonly presented as an
initial application to a compressible flow. Careful comparisons of cost and accuracy will

be studied in the context of incompressible flow.

3.5 Diffusive flux computation

We would like to conclude the chapter with details of the computation of the diffu-
sive flux terms appearing in both stabilized finite element formulations presented above.
Both the incompressible and compressible systems of equations require this term, how-
ever it takes on dightly different forms in each case, and we will concentrate on the
incompressible version. Careful inspection of the weak form, (3.8), and in particular the
momentum residual equation, (3.9), reveals that it is necessary to calculate the second

derivative of the solution variable when evaluating the residual of the diffusive flux stabi-
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lization terms (for the incompressible equations)
q; = Tij,j = V(Ui.j + Ujﬂ').j (373)

While these terms are often neglected for linear basis calculations (with some justifica-
tion), their inclusion is vital to the accuracy of higher-order simulations (examples run
without these terms show a significant degradation of solution quality). It is possible to
evaluate these terms directly from the second derivatives of the basis functions, however
this involves the evaluation of the second derivative of the mapping if curved elements
are used, which is a costly operation. We opt instead for a more efficient method using
alocal reconstruction of the diffusive flux terms based on an L? projection followed by
are-interpolation. A procedure has also been developed for creating a global reconstruc-
tion of the diffusive flux which can be used for linear elements to provide more accurate
simulations at a negligible additional cost.

3.5.1 Local, eement-level reconstruction

The local reconstruction technique provides a relatively straightforward method to

compute an approximation to the diffusive flux involving only element level data. This
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technique is more cost effective than directly evaluating the second derivatives of the
basis functions which involves the second derivative of the geometric mapping for non-
straight-sided elements, since the inverse of the element-level projection matrix needs to
be computed only one time and stored, and may be used for all subsequent evaluations.

The general ideaisto project the viscous stress field, 7;;, (which may be computed
with thefirst derivativesof the basis) onto the element basis, then re-interpolate it with the
first derivative of the basis to form the diffusive flux field, i.e. ¢; = 7;; ;. The projection
is constructed such that the L? error is minimized over each element independently, i.e.,
find 7;; € S} suchthat

/ w (7 — 70y de =0 (3.74)
Q

for al w € W}, where 70 represents the current finite element approximation of

4]
the stress field. It should be noted that each of the components in Ti(;‘

independently. Expanding the weight function in terms of the basis functions yields a

*) is projected
system of linear equations to be solved for the basis coefficients of 7;;, of the form

M+; = Ry (3.75)
where,

M=[Myl={ N,Nyde, R={R,}= / N da (3.76)
Qe Qe

This system is solved for the stress projection coefficients, 7;; = {7{;}, for each ele-

ment, which are then re-interpolated with the gradients of the basis functions to form an

approximation to ¢; as

Nes

g =Y Nojih. (3.77)
a=1

The system of equations, 3.75, isinverted one time and stored, therefore the eval uation of
the projection coefficients involves a single integral evaluation, which is computed using
the same Gauss quadrature rule as the integration of the residual.
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Theinclusion of thistermisvital to the performance of higher-order methods, since
without it, the formulation no longer maintains its weighted residual character, i.e., con-
sistency isviolated. The effect of not including this term is illustrated by means of the
simple exampl e of incompressible Poiseuille (channel) flow between two infinite, parallel
plates. The exact solution is quadratic in velocity and linear in pressure, i.e. within the
finite element approximation space for quadratic elements. The applied boundary con-
ditions consist of setting the exact velocity profile at the inlet, z; = 0, and setting the
pressure at the outflow, z; = 1.0, in addition to the no-dlip condition at the upper and
lower walls. Figure 3.7 shows a comparison of the velocity and pressure profiles plotted
against the z; coordinate along the centerline of the channel. Since the velocity has no
x1 dependence, it should remain equal to the centerline inlet velocity of 1.5 and the exact

pressureislinear in x;. Thisfigure clearly shows the inability of the incomplete residual
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Figure 3.7: Centerline velocity and pressure with, o , and without, + , the recon-
structed diffusive flux.

method to obtain the exact solution, even though it is within the finite el ement space, and
large errors are incurred in both the pressure and velocity if the diffusive flux terms are
neglected. The situation illustrated here for this ssmple example is expected to be even

more severe for complicated flows.
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3.5.2 Global reconstruction (linear elements)

The use of the second derivativesin the stabilization residual terms has been shown
to yield much more accurate simulations for the higher-order methods (it is in fact nec-
essary to maintain a weighted residual formulation). These terms are often neglected for
linear basis computations since they rely on second derivatives of the solution, which are
zero when using the linear basis, however it will be shown that including them resultsin
increased accuracy at a negligible additional cost (more details as well as result for other
flows may be found in Jansen et al. [49]).

The local reconstruction will clearly not work for linear elements since there is no
way to approximate a higher-order quantity with a single linear element. To circumvent
this problem, a global reconstruction algorithm has been developed following the same
logic asin Section 3.5.1 for the local reconstruction. Here Q); = 7,5 ; isthe diffusive flux
in the 5™ direction which must be reconstructed. The reconstructed diffusive flux is then
given in terms of the the element shape functions as

Qi =Y Naji} (3.78)
A=1

where %Zg‘ is the diffusive flux in the ;" direction at global node A (the capital Q; is
to distinguish it from our locally reconstructed diffusive flux, ¢;). This quantity is not
defined in the usud finite element sense due to the discontinuous nature of the derivatives
of low-order piece-wise polynomials. It can, however, be reconstructed to be a continuous

variable using aglobal L? projection operator. The procedure is described as follows:

MQ); = R; (3.79)

M = [M 45); R; = {Ru4;}; Q; ={Qp;} (3.80)

MAB = I/ NANBdQ; RA]' = / NAQJ(U(w))dQ (381)
Q Q

where these matrices are computed in the usual finite element manner, assembling ele-
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Figure 3.8: Error in pressure variation over length of the channel. With residual
completion + , without residual completion o .

ment level contributions to form the global counterparts. Since the solution procedures
for the Navier-Stokes equations involve successive iterations of solving a linearization
of the nonlinear problem, it is quite easy to lag the solution for Q;, by one iteration.
Furthermore, it is usually sufficient to replace M 4 by its lumped mass equivalent. We
prefer to use the special lumping described in Hughes [42].

The compressible channel flow considered above for thelocal reconstructioniscon-
sidered here using linear elements and the global reconstruction technique. It should be
stressed that for linear elements the exact solution, which is quadratic velocity and linear
pressure, can not be exactly represented by the linear basis. However, use of the globally

reconstructed diffusive flux yields a much more accurate result as shown in Figure 3.8.

3.6 Chapter summary

This chapter introduced the stabilized finite element formulation for the incom-
pressible Navier-Stokes equations using mesh entity based hierarchical basis functions
for the spatial discretization. A second order accurate, implicit time integrator with user-
controllable numerical dissipation was introduced for integrating the equations in time,
and shown to have desirable characteristics for the flow behind a circular cylinder. The
implementation involves relatively few modifications to a highly efficient linear basis
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solver, allowing us to maintain efficiency for large-scale problems. To achieve this goal,
much of the computational effort has been transferred to the pre-processing stage of the
analysis, where the data structures are created and written to disk for high efficiency when
used by the flow solver. One key difference between linear and higher-order basis func-
tions is the treatment of the diffusive portion of the residual in the stabilization terms,
a problem unique to stabilized methods. New methods for dealing with this term were
presented for higher-order computations (local reconstruction) aswell asfor the linear ba-
sis (global reconstruction), and the increase in accuracy was demonstrated in both cases.
The next chapter will describe many implementational details that are encountered when

using hierarchical basis methods for fluid dynamics.



CHAPTER 4
HIGHER-ORDER SIMULATIONSIN A PARALLEL

COMPUTING ENVIRONMENT

The effective use of hierarchical basis functions for solving the Navier-Stokes equations
requiresthat considerations of efficiency be paramount in designing and implementing the
flow solver aswell asthe pre- and post-processing software. Since we are primarily inter-
ested in large-scale simulations of turbulent flows in complicated domains, the design of
these software tools must rely on advanced programming techniques and agorithms for
successfully implementing and using the basis functions described in Chapter 2. Care-
ful attention was paid to the design of the higher-order code using experience gained
from previous linear basis implementations wherever possible. The flow-solver imple-
mentation described in the present work requires relatively few modificationsto a highly
optimized, parallel, linear element Navier-Stokes solver, enabling us to maintain this effi-
ciency for higher-order elements. Maintaining the basic structure (and thus, efficiency) of
the flow solver has its cost, though, placing much more of the design burden on the pre-
and post-processing software. It should be pointed out, however, that advanced optimiza-
tion techniques to improve the higher-order implementation have not been investigated
here, and it is expected that efficiency improvements can still be made. Modification of
the methodol ogy described here may be required when non-uniform k-adaptivity is used,
as well as dynamic h-adaptivity. However, since the target problems for the present re-
search involve turbulent flows where long time integrations are necessary, it is expected
that adaptivity (h and k) will be accomplished at relatively large time intervals (not at
each time step), which will reduce the relative cost of pre-processing, which in this case
would be carried out after each modification to the basis or mesh.

Pre-processing the finite element data for numerical simulations of the Navier-
Stokes equations is becoming an increasingly more important stage of the analysis pro-
cess. The set up of boundary conditions and communication data structures should be
carried out during the pre-processing phase of the anaysis, whenever possible, to ensure

efficient computations for large-scale simulations. In addition, hierarchical basis func-

60
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tions al'so need more advanced data structures than Lagrange basis functions, which are
also set up during pre-processing. A general methodology is put forth for geometry based
boundary condition specification, techniquesfor set up and use of compact data structures
for element level computations are presented, and the design of efficient parallel commu-
nication structures is described. Also presented in this chapter is a new methodology for
creating h-adaptive meshes for time dependent problems based on collecting error indi-
cators from time-averaged statistical quantities. This h-refinement is combined with the

uniform, higher-order £ basis to produce highly accurate simulations.

4.1 Overview of parallel computing environment

A methodology has been developed, as mentioned above, wherein the actual com-
putational code uses compact data structures similar to the standard finite element data
structures (described below). To maintain the generality of the basis function construc-
tions, the full mesh data structure is used by the pre-processor (and post-processor). This
creates an efficient computational environment, without sacrificing the generality of the
mesh database, which iswell suited for tasks such as setting up boundary conditions and
creating communication structures. The rich data structures are once again used for post-
processing. It must be admitted that this type of environment requires us to effectively
maintain two sets of data files, one containing the rich mesh database and another con-
taining the compact structures, however the efficiency gained iswell worth this additional
cost. An overview of the methodology isillustrated in Figure 4.1.

Figure 4.1 highlights the key technologiesthat are involved in the entire simulation
process, and provides the “flow” of events that takes place. Software tools are enclosed
in rectangular boxes, inputs are enclosed in diamonds (inputs may be in the form of data
files or interactive user input as in the assignment of attributes to the geometric model),
and decision processes are shown in circles. Arrows are included to indicate the direction
of “flow”; bold lines indicate operations that may take place multiple times during a
simulation, while thin lines indicate an event which occurs only once. The user begins
with ageometric model and assigns various attributesin a Graphical User Interface (GUI)
to specific model entities (e.g. boundary and initial conditions). The pre-processor then

reads the output from the GUI as well as the classified mesh (and model), and associates
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Figure4.1: Computing environment

the attributes with the individual mesh entities, collecting all data into the compact data
structure to be used in the analysis code. If mesh adaptivity is desired, statistics based
error indicators are collected during the solve, and used to adaptively refine the mesh
using SCOREC meshing tools (see de Cougney and Shephard [18]), generating a new
rich data structure and subsequently re-entering the pre-processor. |If adaptivity is not
desired, the post-processing software isinvoked and ultimately the datais visualized with

external, third-party software.



63

4.2 Compact data structure

To maintain efficiency for large-scal e fluid dynamics simulations, the rich mesh data
structureisused only in the pre-processing phase of theanalysis. A compact datastructure
has been designed which includes all information necessary for higher-order degrees of
freedom, while maintaining the simplicity of the traditional finite element data structures
which store only nodal (vertex) coordinates and element connectivity information. The
compact data structure stores the degree of freedom connectivity information and nodal
coordinates as well asinformation indicating the sign of each basis function. It should be
pointed out that if curved elements are used, the higher-order coefficients related to their
approximation may also be computed at thistime. The compact data structure presented
here is also limited to cubic (and lower order) basis functions. For higher than cubic, an
additional data structure must be added which indicates which set of linearly independent
basis functions are being used for each mesh face (see Dey [21]).

Thefirst step in the setup of the data structures is the assignment of global equation
numbers to all mesh entities. Thisis done by visiting each mesh entity, determining the
number of shape functionsit contributes based on their polynomial order (as described in
Chapter 2), and assigning a unique equation number for each of these functions. Next, all
elements (regions) in the mesh are visited, and the equation numbers associated with its
bounding lower-order entities are collected, e.g atetrahedral region may collect equation
numbers from 4 vertices, 6 edges, and 4 faces (and itself if £ > 3). This procedure
is similar to that described by Hughes [42] for meshes of Lagrange elements where the
global node numbers associated with each finite element are stored in the data structure.
For hierarchical basisfunctions, additional information needsto be maintained (for £ > 2)
which emanates from the mapping from entity to element.

This connectivity information provides a complete description of the mapping be-
tween the element level computations and the global degrees of freedom (where thelinear
equations are set up and solved). For hierarchical basis functions of degree 3 and higher,
some of the basis functions need to have their sign reversed since the mapping from the
entity to the element coordinate system introduces a sign change for some of the bound-
ing elements. The situation isillustrated by a simple example shown in Figure 4.2. In the
figure a 2-D situation is shown in which two mesh faces share a common edge; we will



Figure4.2: Mesh elementsillustrating the reversal of shape functions

consider each face asan element (thisgeneralizesto regionsin 3-D). Thisfigure showsthe
element numbersin circles, aswell as each local degree of freedom number with respect
to each of the elements. The edgeis also shown along with itslocal coordinate system, &,
which is directed as indicated by the arrow (note that the global direction of the edge is
determined by the vertex ordering stored in the mesh database). As described in Section
2.2.1, thelocal coordinates of the edge must be mapped to the coordinate system of each
bounding element in order to evaluate the function. With the data structure described
here, it is possible to evaluate a single set of element shape functions to be used for all
elements in the mesh. This enables the basis functions to be pre-computed and tabul ated
for each quadrature point, as commonly done for Lagrange-type elements.

Returning to the example, suppose £ = 3 has been set on the edge depicted in
Figure 4.2. 1t will therefore contribute two functions, one quadratic and one cubic, to the
local basis of each of the two bounding triangular elements (see Chapter 2), given by

Ny(&) = —2616 (4.1)
N3(&) = —26162(62 — &) (4.2)

where the parametric coordinates for this edge are
& oand H=1-§ (4.3)

and the subscriptson the basisfunctionsrefer to their respective polynomial orders. When
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the coordinates are mapped from the edge to the element coordinates, the problem be-

comes apparent, i.e.

Element 1;
& =&, £y =&
Element 2:
G=&, &L=§&
and the basi s functions become;
Quadratic:
N = —26,6
NP = —26,¢,
= NV
Cubic:

N?El) = —25152(52 - fl)
NP = 26,61 (61 — &)
=N

(4.4

(4.5)

(4.6)

4.7)

(4.8)

(4.9)

where the superscript indicates the element that the function is associated with. The cubic

function on element 2 isthe negative of that on element 1, while the quadratic function is

the same, regardless of the edge direction. This case generally occurs when an element

uses an edge in the opposite direction than the edge is defined. Since the cubic edge

function isdifferent for each of the bounding elements, asingle set of basisfunctionswill

clearly not suffice to completely describe the basis. To overcome this difficulty, during

pre-processing the local degree of freedom numbers that correspond to shape functions
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that must be negated are flagged (e.g. there equation numbers are negated). Thisinfor-
mation is then used in the flow solver to create the correct element basis functions from
the pre-computed table of element functions. For quadratic or linear basis, no functions
need to be negated, and the data structures may be used asthey are. Thisalso impliesthat
when using the hierarchical code with linear elements, no significant penalty is paid for
having the generality of higher-order basis functionsin the same code.

In addition to element connectivity, finite element computations also rely on nodal
coordinates to compute a mapping from global to element coordinates, needed to evaluate
the Jacobian matrix, &; ;, (the reader unfamiliar with such topics should consult a text
on finite element analysis such as Hughes [42]). For straight-sided elements, a linear
mapping, involving only the vertices, to element coordinatesis sufficient. To accomplish
this sub-parametric mapping within the hierarchical basis, we can simply use the vertex
functions, since they are linear regardiess of the polynomial order of the basis, i.e.

Ny

2 =3 N'af (4.10)

a=1

and the Jacobian can be formed by inverting
8—'7}8—5”:]\” x! (4.11)
8€ N a=1 ,€ ‘ -

to obtain %e. Here, n, is the number of vertices per element. In this case, only the
coordinates of the vertices need to be stored in the data structure. For meshes contain-
ing curved elements, additional information must be stored to compute these nonlinear
mappings. Thisis adetailed topic, and a thorough discussion may be found in the work
of Dey [21]. It suffices to say that no matter what technique is used to create the higher-
order mapping, the basis coefficients necessary to compute the mapping can be included
in the coordinate data structure, and the mappings in equations (4.10) and (4.11) will be
summed over n,,, the number of element shape functions, rather than simply the number
of vertices, n,. All of the computations performed in the present work use a linear map-
ping, sincein most cases considered, the geometries are well represented by straight-sided

elements.
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4.3 Post-processing hierarchical solutions
4.3.1 Effectivevisualization of hierarchical solution data

Post-processing higher-order solutions presents some difficulty, since current visu-
alization packages typically require linear basis functions represented by element nodal
connectivity, with data associated with nodes. Since the solution coefficients of the hi-
erarchical basis are not simply the solution values at specific nodal points (as with the
Lagrange basis), additional work is needed to effectively visualize the hierarchical solu-
tion. The most straight-forward approach is to generate a refined “visualization” mesh,
evaluate the hierarchical solution at each of the new nodes, and generate new element
connectivity before using a standard, linear visualization package. The processisillus-
trated in Figure 4.3. Here there have been three new vertices created on each original
mesh edge, yielding a total of 16 new elements for each original element. Details of the
algorithm used to generate these visualizations are given in Appendix B.

Figure 4.3: Mesh subdivision for post-processing, new mesh shown with x’s and
dotted edges, original mesh with solid edges

These concepts can be illustrated by means of a simple example. Consider Fig-
ure 4.3, which displays a single model face which originally had 3 triangular mesh faces
(F1-F3), 7 mesh edges (E1-E7), and 5 mesh vertices (V1-V5); each of the triangles will
be sub-divided into new elements and nodes, and the hierarchical solution will be evalu-
ated at each of the new nodes. In this case, the user has specified 3 refinement levels (i.e.
3 new vertices for each original mesh edge, N,;; = 3). This new mesh will be output to
the linear visualization package. The number of refinement levels necessary to achieve
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good results depends on the problem at hand. For coarse cubic meshes, typically 10 to 15
new nodes per edge are required in the visualization mesh, while more refined quadratic
meshes may require only 2 or 3 new nodes. To create a good visualization, the number of
subdivisions is successively increased until the resulting visualization no longer visibly
changes. This technique is currently used on 2-D model faces (of 3-D meshes), so the
time required to generate the visualizations is insignificant (even for a large number of
subdivisions, e.g. 10-15), since no search is required.

To emphasize the importance of this post-processing technique, we consider the
cubic simulation of a lid-driven cavity at Re = 400 on a very coarse mesh. This prob-
lem will be revisited in greater detail later. Figure 4.4 shows contours of fluid speed
for the cubic simulation on the 5 x 5-element mesh along with three different levels of
post-processing refinements. These plots clearly show the strong advantage, in fact the
necessity, of visualizing the higher-order contributions of the solution, i.e. visualizing

only the linear modes seriously degrades the solution quality.

4.3.2 Lineplotsof hierarchical solutions

Line plots of solution quantities are obtained by evaluating the (higher-order) finite
element solution at a series of locations in the global coordinate system. This operation
involves a search through the elements to determine what element a given global point
liesin before the solution is evaluated. The search speed isimproved by taking advantage
of the adjacency relationships that are available in the mesh data structure, after a point
isfound (in an element), a pointer to that element is stored. If the next point lies within
the same element, it isimmediately returned, if not, the point is sought in the neighboring
elements. While this approach can be costly for low polynomial order solutions where a
large number of elements are required, the burden is reduced with high-order solutions
due to the dramatic reduction in the number of elements necessary to attain solutions
of similar quality. More advanced search algorithms could be investigated to reduce the
burden for low polynomial order methods, containing more elements to search. All line
plots presented in the current thesis were generated using these techniques, and took very
little time to complete. The number of sampled points depends on the polynomial order,
e.g. linears sample approximately at the same spacing as the vertices, while higher-order
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(a) finite element mesh (b) original mesh

h= a = =1l

(c) 16 new elements per face (d) 100 new elements per face

Figure 4.4: Fluid speed for 5 x 5 lid driven cavity with successively refined visual-
ization meshes

simulationstypically take several points per element to achieve acceptable results.

4.4 Application of boundary and initial conditions

Essential and natural boundary condition attributes may be quite complex for fluid
dynamics simulations, where the user may wish to set different boundary conditions on
different portions of the geometric model. In addition, periodic boundary conditions are
handled differently than other essential boundary conditions and pose additional difficul-
tiesfor parallel communication since periodic partners may lie on different processors.

There are several different ways in which boundary conditions may be set up and
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used by afinite element code. The classical approach isto define the boundary conditions
based on a pre-determined knowledge of where each vertex (or node) is physically located
in space, and this information is pre-processed. This procedure is cumbersome, since it
relies on a separate program for each new physical problem that is to be solved, possibly
even for each new mesh. The advantage of this approach, however, is that since the
boundary conditions are associated during pre-processing, there assignment in the flow
solver is extremely efficient. A second approach takes advantage of the geometric model
and mesh classification information. When boundary conditions are set, the geometric
model entity on which the mesh entity is classified is queried to determine if a boundary
condition has been specified. If so, the function is evaluated, the degrees of freedom are
constrained, and the corresponding basis coefficients are set to their appropriate values.
This method is more general (and also more costly) than the classical approach since all
gpatia information for the mesh entities is contained in their classification information,
and boundary conditions are assigned with respect to the geometric model entitiesin a
mesh-independent manner. An additional constraint when using this method is that the
flow solver must maintain the mesh-model classification information, currently only used
by the pre-processor.

The method of boundary condition application presented here is a combination of
these two approaches. We propose to compute the boundary condition coefficients using
the pre-processor with the full mesh-model classification information. This enables us
to retain the generality of geometry based boundary condition specification and the ef-
ficiency of pre-processed boundary condition data structures. It also enables us to more
easily set boundary conditions on the higher-order modes attached to mesh edges and
faces.

Higher-order simulations using Lagrange basis functions enforce essential bound-
ary conditionsin arelatively straightforward manner, as the basi s coefficients correspond
to solution values at nodes, vis. the Lagrange interpolation equation N, (&,) = d4. Since
the solution coefficients with respect to the Hierarchical basis do not correspond to solu-
tion values at spatial locations, more work must be done to determine the coefficients to
impose as the boundary values. To accomplish this, we will interpolate the known Dirich-

let boundary function with the hierarchical basis by solving a linear system of equations
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for the unknown basis coefficients. Additionally, aunique set of interpolation points must
be chosen since there are no particular spatial locations associated with the higher-order
coefficients.

The element level interpolation may be constructed by solving a linear system of
equationsfor the coefficients on each element in the domain. Suppose we wish to specify
that ¢(z;) = g(x;) over some portion of the boundary, where ¢(x;) could be any of our
solution variables. (This process may betrivialy generalized to include initial conditions,
in which case we seek an approximation over the entire domain, not just the boundary
face.) We can find the coefficients of an approximation to ¢(z;) (for each element, ¢) as

Nip

g(x:) = § (1) = > geNg (4.12)

where N¢ are the basis functions for element e, ¢¢ are the unknown coefficients, and n;,
isthe number of interpolation points, which must equal n.,, the number of element shape
functions. To find these coefficients, we require the approximation to interpol ate the given
function, i.e.,

Mg=R (4.13)
M = [Mz) = N; (&), and R=[R,] = g(z(&")) (4.14)

where ¢/ isthe b™ interpolation point (in element e’s coordinates). This system of linear
equations is solved for the basis coefficients, g¢, which are used when needed by the
analysis code to evaluate ¢(x;) (which is expanded in the same basis as j(z;)). Since we
are using an element level interpolation (which only couples local degrees of freedom)
the resulting interpolation is not guaranteed to be continuous between elements. One
solution to this problem is to average the coefficients, which is done in the present work.
Another approach is to assemble the data to global arrays and solve a global problem,
however the additional cost is not deemed worth the effort, as averaging has proven to
work well for all cases we have considered. For computations using the Lagrange basis,
the interpolation points are simply the nodal coordinates, and the matrix in (4.13) is the

identity matrix. The interpolation points used in the present work are taken from the
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work of Chen and Babuska[14] where they derived an optimal set of interpolation points
for a tetrahedral region. The system of equations described above may be ssimplified
somewhat by statically condensing the coefficients since not all functions are coupled. In
practice, however, the interpolation is only computed during pre-processing, making the
time savings less significant.

The procedure described above for essential boundary conditions may also used
to set an initial condition in cases where the exact initial condition is relevant to the
simulation. However, experience has shown that in cases where such accuracy is not
necessary (asisusualy the case), using the linear interpolation of theinitial conditionsis
sufficient to ensure convergence. The linear interpolation is obtained by simply setting all

higher-order coefficients equal to zero.

4.4.1 Periodic boundary conditions

The application of periodic boundary conditions poses additional difficultiesin the
context of hierarchical basisfunctionssince all mesh entities must be identical on periodic
planes (including edge and face directions). A general methodology has been devel oped
for the application of periodic boundary conditions. The data necessary to enforce peri-
odic boundary conditions can be contained in a single array which specifies the “periodic
master” of each mesh entity. When essential boundary conditions are set, periodic bound-
ary conditions are also set by copying the solution coefficients of the periodic masters to
their periodic slaves. This operation is simply an indirect address of the solution array
using the periodic boundary conditions array. The equations corresponding to the peri-
odic entities are eliminated from the system by using this array to zero the corresponding
residual components.

45 Paralldd communications

Parallel computers have gained wide popularity in the finite element CFD commu-
nity due to the local nature of most of the work which can be trivially parallelized and
will be shown to yield nearly perfect scalability (98%) on large problems. We present a
methodology for pre-processing the necessary data structures to be used in conjunction

with the MPI library of message passing routines. The method is designed based on the
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abstract mesh topology and easily handles dof’s (degrees of freedom) associated with
mesh edges, faces, and regions, necessary for higher-order £ simulations. The methods
presented herein are a straightforward generalization of the methods used by Bastin [1]
for linear basis computations.

To reduce the computational effort during the analysis phase, the structures speci-
fying the interprocessor communications are pre-processed. The domain-decomposition
technique is used, whereby the finite element mesh is physically decomposed into multi-
ple partitions (mesh partitioning software such as METIS [53] can be used), each of which
isassumed to be associated with a unigque processor. Each processor then executesitsown
copy of the analysis code, reading the pre-processed input data relating to its partition of
the mesh, as well as information relating to other processors it must communicate with.
This section describes the types of data that processors must communicate to each other
aswell as the construction of these data structures.

As mentioned above, each processor maintains a complete collection of data rep-
resenting its portion of the finite element mesh and analysis information (e.g. bound-
ary conditions). This includes equation numbers and connectivity information as well
as boundary condition data for all nodes that are physically on the partition or its inter-
processor boundary. The finite elements are uniquely partitioned among the processors,
so each element will be found on only one processor. The other mesh entities (faces,
edges, and vertices) that contribute to the element level integrals, however, appear in mul-
tiple partitions if they are on an interprocessor boundary. Element level computations
are performed completely local to each processor and must be communicated only when
assembled to the global equations. In fact, only degrees of freedom associated with the
interprocessor boundary must be communicated, all others are assembled locally, on their
respective processor. The global assembly procedure involves the sending and receiving
of dof information between processors using MPI library functions to carry out these
tasks. Another case in which processors must exchange information is when periodic
boundary conditions are present with periodic partners residing on different processors.
These two types of communications will be described bel ow.

The basic idea behind the parallel communication of finite element information can
be described with the aid of Figure 4.5. This first of the three figures 4.5(a) illustrates
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Figure4.5: Parallel communication

the intersection of three processors and vertices on an interprocessor boundary. For sim-

plicity, only vertices are shown since edges and faces are handled the same way. The

element residuals associated with each of these verticesisfirst assembled from elements

on each of the bounding processors. After this local assembly, these values are sent in

the direction of the arrows to the values on the master processor and added. Thisisillus-
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trated in Figure 4.5(b), where the master vertices are shown as solid dots, and the slaves
ascircles. The sending processor (referred to as the slave) then zeroesitsresidual values,
essentially removing this vertex from the slave processor’s system. In this manner, all
equations associated with entities on the interprocessor boundary are only solved by a
single processor, known as the entity’s master image. After these equations are solved,
the solution values are copied from the entity’s image on master processor to all of its
slave images as shown in Figure 4.5(c). The creation of the necessary data structures and

the execution of these tasks is described in the next section.

45.1 Implementation of parallel communication structures

For the processors to exchange the degree of freedom information during the com-
putation, each must maintain a data structure describing its communications. The MPI
routines MPI_send and MPI_recieve use this information to exchange data as described

below. The procedureis asfollows:

1. Each processor first computes its element level residual vector and tangent matrix

values without any need for communication.

2. These element level contributions are assembled to global arrays (on processor)

using the traditional finite element assembly procedures (Hughes [42]).

3. Anadditional interprocessor assembly (described above) isthen performed between
processors to account for dof’s on the interprocessor boundary as shown in Fig-
ure 4.5(b).

4. Parallel communicationsare aso carried out during the solution of the linear system
of equations. Before and after each sparse matrix-vector product, data must be
exchanged.

5. Finally, after each Newton iteration or time step, the solution values related to mesh
entities on the interprocessor boundary are copied to all of their images on each of

the adjacent processors (Figure 4.5(c)). Thisincludes periodic boundaries.

Let usfirst define
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Definition 4.1 A communication stage is defined as the process which involves all pro-
cessors making all their necessary communications. There are two types of communica-
tion stage. Type 1: residuals are added from the slaves to the masters, then zeroed on the

dave. Type 2: solution data is copied from the mastersto the slaves

Each communication stage consists of each processor sending data to and receiving data
from each processor with which it must communicate (as determined by the partition).
The cases in which two processors will need to communicate have been described above
and we will denote by Vi the number of processors with which processor i must commu-
nicate. Both types of communication stage require the same information and differ only
dightly. A single type 1 communication stage is necessary each time the element level
residual formation and local assembly is completed and a type 2 communication stage is
necessary each time the boundary conditions are set on the solution vector.

From the perspective of a single processor, say ¢, a communication stage may be
described as a sequence of tasks, defined as

Definition 4.2 Acommunication task (or atask for short), denoted 77, j = 1... Nj, is
a communication between processors: and j in which data is exchanged. N% represents

the total number of processors with which processor : must communicate.

To minimize the communication overhead, we require that two processors may commu-
nicate only one time during each communication stage. This forces us to designate one
of the processors in the task as master, and one as slave. This dictates which processor
will be master to each of the mesh entities on the interprocessor boundary. Since only
one communication can occur between any two processors, the set of tasks, T; can be
represented as a directed graph, with vertices and edges of the graph representing pro-
cessors and communications, respectively. This directed graph indicates which processor
each mesh entity will be solved on, it therefore must yield a unique master for each mesh
entity. For example consider the communication between processors 1 and 3 in Fig-
ure 4.5(a). If the direction between these two processors was reversed, the vertex at the
intersection of all three processors would have no unigue master. This requirement poses
the additional constraint that the graph be acyclic, i.e. contain no closed loops. A graph

of thistype is commonly referred to as a Directed Acyclic Graph, or DAG, and there are
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many advanced techniques to generate a DAG from a graph (see Sedgewick [60]). The
procedure used here to create the directed graph is as follows:

1. Mesh partitioning software such as METIS [53] is used to assign each mesh region

to aunique partition.

2. Each mesh entity is visited and the processor ID number for each of its adjacent
regions is associated with the mesh entity (only once if multiple bounding regions

are in the same partition).

3. These processor adjacency sets (for each mesh entity) are used to create the partition
graph (no direction on graph edges yet).

After the graph is set up, a ssmple method is used to create a directed graph from the
undirected one. The direction associated with T; is set to point to the greater of 7 and 7,
which is guaranteed to produce a DAG. A consistent graph having been created, it isa
simple matter to visit each mesh entity and associate the unique processor which isto be
its master.

To use MPI to carry out the communications described above, details of the datato
be exchange between processors i and ;7 must be provided for each task, T; To thisend,
T; has associated with it the following integer data:

tag: A unigue tag associated with T; which distinguishes this send and receive for
the MPI functions.

type: Denotes whether this processor is master (= 1) or slave (= 0) in the current
communication. For atype 1 communication, a master calls MPI_receive(...)
to receive and add the data, while a dlave calls MPI_send(...) to send the data.
In atype 2 communication, the slaves receive and copy and the masters send;
there is no need to zero anything.

partner: PID number of the partner processor involved in this task.
numSeg: Number of data segmentsto be sent or received (see below).

segData: For each of the numSeg data segments, the local dof numbers on the other
processor to send to or receive data from.
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Here adata segment is defined as a continuously numbered group of dof numbers pointing
to data such as residual or solution values. Each segment also contains its length and
starting index. In the beginning of execution of the analysis code, the segment data is
used in conjunction with the MPI_TYPE_HVECTOR(...) function to create new MPI
data types which are used during the communication stages. These data types are simply
masks that describe where information can be found on the various processors for each of

the segmentsin 7.

7 8 13 12 1
6 5 4/18 9 1

D/ /| ® ()

( )

2 3|

7 6 5/17 6 5
1 2 3 4
4 5 6 7 A
1 2 1 2 3 4 3
(a) Mesh (b) Graph

Figure 4.6: Sample multiprocessor mesh and associated communication graph

4.5.2 Multiprocessor communication example

The above concepts can be clarified through a simple example. Consider the 2-d
mesh shown in Figure 4.6(a) which is decomposed into four partitions. This mesh can
be considered as a single geometric face of a 3-d model. The bold encircled numbers
indicate processor |D numbers and the small numbersindicate local dof numberson each
partition. For simplicity, only vertex numbers are shown, however, edges (if £ > 2) and
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faces (if £ > 3) also get dof numbers associated with them and are handled identically to
vertices. We also assume, for simplicity of discussion, that there are no periodic boundary
conditions applied to the geometric model. A consistent graph corresponding to this
mesh, created using the algorithm described above, is shown in Figure 4.6(b). Let us
consider only the tasks associated with processor 2, T]?, where j = 1,3,4, since N3 =
3. T? involves a communication where processor 2 is master, and dof’s 3, 4, and 9 on
processor 1 are received and added to the contributions of dof's7, 8, and 13, respectively,
on processor 2. The other two tasks associated with processor 2, 77 and T, are both
slave communications. Here, dof's 7 and 1 are sent to processor 3 (where they are added
to 5 and 3, respectively) and 1 — 4 are sent to processor 4 and added to 5 — 8, then these
values are zeroed on processor 2.

The Fortran90 code fragment given in Program 4.5.1 illustrates how these data
structures are used within the analysis code to carry out atype 1 communication stage. In
thisprogram listing, gl obal isadouble precision vector to be operated onandi | wor k
is the local work array which contains the integer data described above. It should be
emphasized that each processor uses its own unique i | wor k array using common tag
numbers to match segments for processor pairs as described above.

45.3 Paralle scalability

To demonstrate the effectiveness of the parallel implementation, we will consider
the time dependent flow around a square cylinder at a Reynolds number of 100 (based on
the cylinder edge length). A more complete description of this problem will be presented
later. Thisflow was advanced in time (at atime step of 0.1) from an initial condition of a
shedding solution for 50 time steps with 2 Newton iterations per time step. The problem
was solvedon 1, 2, 4, and 8 processors and the results are shown in Figure 4.7. Thisfigure
shows the total solution time multiplied by the number of processors vs. the number of
processors, normalized by the time for the single processor simulation. It is clear from
the figure that the parallel implementation is nearly perfectly scalable (98%).

The cost of the parallel communication also depends, to some extent, on the poly-
nomial order of the basis. As some detailed timings show (see Chapter 5) the distribution
of cost between element level computation and linear solver, aso has an effect on the
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Program 4.5.1 Type 1 communication stage

Ro Ro Ro

di mensi on gl obal (nshg, n), tenp(max), il work(nlwork)
nunt ask = ilwork(1)
do itask = 1, nuntask

Itag = ilwork (itkbeg + 1)

type = ilwork (itkbeg + 2)

partner = ilwork (itkbeg + 3)

nunseg = ilwork (itkbeg + 4)

isgbeg = ilwork (itkbeg + 5)

if (type .EQ 0) then
cal I MPI _SEND( gl obal (isgbeg, 1), 1,
sevsegt ype(itask, kdof),

partner, i tag,
MPI _COVM WORLD, ierr)
el se
[front =0
do is = 1, nunseg
lenseg = ilwork (itkbeg + 4 + 2*is)
[front = Ifront + |lenseg
enddo
call MPI _RECV(tenp(l), Ifront*n, MPI_DOUBLE PRECI SI ON
partner, itag, VPl _ COVM WORLD.
status, ierr)
itemp = 1
do idof = 1,n
do is = 1, nunseg
isgbeg = ilwork (itkbeg + 3 + 2*is)
lenseg = ilwork (itkbeg + 4 + 2*is)
i sgend = isgheg + lenseg - 1
gl obal (i sgbeg:isgend,idof) =
gl obal (i sghbeg: i sgend, i dof)
+ tenp (itenp:itenp+l enseg-1)
itenp = itenp + |l enseg
enddo
enddo
endi f

itkbeg = itkbeg + 4 + 2 * nunseg
enddo
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Figure 4.7. Parallel efficiency for vortex shedding problem. Timeis the aggregate
time used by all processors.

parallel communications. For example, the cubic basis spends the majority of its time
computing and forming the tangent matrices, thus involving fewer communications. In
all cases, however, the cost of communication was less than 15% of the total simulation

time.

4.6 Statisticsbased error indicatorsfor h-adaptive ssmulations

As pointed out in the Introduction, some level of h-refinement is necessary in con-
junction with the use of higher-order basis functions to achieve the most accurate and
cost effective simulations possible given certain cost restraints. Traditional methods of
error indication and estimation are not commonly used or easily applied to time depen-
dent simulations that often contain structures that evolve in time. If mesh adaptation is
carried out at each time step, much effort may be used creating a refined mesh for aflow
structure that is quickly convected from that portion of the mesh (i.e. the mesh refinement
must constantly follow the flow structures). However, many problems of scientific and
engineering interest contain regions of the flow that are statistically stationary, while the

instantaneous structures are rapidly varying in time. For example the turbulent flow in a
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boundary layer has a well defined region where the flow is statistically steady, although
the turbulent eddies are constantly evolving. Attempting to resolve a turbulent flow of
this type based on an instantaneous flow state may not be the most efficient approach.

To remedy this situation, we introduce new error indicators based on time-averaged
statistical quantities. Based on this methodology, the error indicators are collected dur-
ing several hundred or thousand time steps, and evaluated. Based on these quantities,
the mesh is adaptively refined using SCOREC meshing tools (see de Cougney and Shep-
hard [18]). It should be noted that thereis still no general theory to guide the use of these
new error indicators, though the preliminary results are promising. These new adaptive
refinement techniques are demonstrated below on the problem of vortex shedding behind
asquare cylinder for uniform polynomial orders. Thisflow iswell-suited for demonstrat-
ing the ideas since it has a long wake region with a periodic vortex street, which for a
small time window israpidly varying, but is statistically steady over large time windows.

Several error indicators are proposed, and are given by the following expressions:

N
1 _
TZ /Q wl? d (4.15)
n=1
1 N
TZ /Q wg?; d (4.16)
n=1
1 N
72“'3 (4.17)
n=1
1 N
= S (4.18)
n=1

Here, £; isthe residual of the strong form of the Navier-Stokes equations using the con-
servation restoring advective velocity, ﬁi ,i.e

. A
ﬁi = U; + U;U;, 5 + Pi— Tijj — fz (419)

We have al so used «; and p' to represent the fluctuating portion of the velocity and pressure
field (similar to the quantitiesintroduced for turbulence statistics). The sumsin Equations
(4.15) through (4.18) indicate that these quantities are time-averaged by collecting them
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at each time step and averaging over the number of time steps. The adaptive procedureis
accomplished by running the time dependent simulation on a coarse mesh and collecting
these quantities. These time-averaged quantities are then visualized and combined to
yield an indication of where the mesh should be refined. Meshing tools available in the
SCOREC software system are then used to refine the mesh entities that are identified
based on the chosen error indicators.

4.7 Chapter summary

This chapter discussed several issuesrelevant to fluid dynamics computations using
hierarchical basis functions. It is clear from this chapter that we advocate the use of pre-
processed data structures for element level computations, boundary condition data, and
parallel communication, by using the rich mesh database to create these structures using
pre-processing software. This has alowed us to maintain the efficiency of a highly op-
timized linear basis Navier-Stokes solver. Post-processing hierarchical basis simulations
was also discussed in some detail, as it is more involved than visualizing simulations
based on the Lagrange basis. The techniques described in this chapter were all used to set
up and analyze the simulations presented in the following chapters.



CHAPTER S
NUMERICAL EXAMPLES: STEADY AND UNSTEADY

LAMINAR FLOW

This chapter presents numerical simulationswhich are used to explore the methods intro-
duced in the previous chapters. The problems presented here will verify the convergence
rate of the finite element formulation and quantify the cost associated with various poly-
nomial order basis functions. This chapter will demonstrate the cost effectiveness of the
higher-order basis functions when compared with the linear basis. Also presented here
will be results for h-adaptive simulations based on time averaged statistics, for uniform

polynomial order ssmulations.

5.1 Kovasznay flow

The first simulation is used to verify the convergence rate of the finite element
formulation. It is well known that the interpolation error should converge at a rate of
hk+1, where h is a suitable measure of the element size (see Johnson [52]). Since we are
simulating this flow on a structured, uniform grid, ~ is ssmply taken as the length of the
element inthe z; or x, direction, (i.e. Azy).

The Kovasznay flow may be identified with the incompressible flow some distance
downstream from arectangular grid (see Kovasznay [56]) and has aclosed form analytical

solution given by:

uy = 1 — e cos(2mx,) (5.1
= oM sin(amr,) 52
Uy = 27Te sin(27xs .
with
R R
A:;— Te2+47r2 (5.3)
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and we have taken Re = 40 for the present study. The flow is considered on a rectangu-
lar domain of —2 < 2; < 1and —1 < z, < 2 with the exact solution imposed as an
essential boundary condition at the inflow and upper and lower walls, while the pressure
was set to zero at the outflow. Since thisisanon-trivial essential boundary condition, the
interpol ation technique described in Section 4.4 is employed to determine the basis coef-
ficients on the boundary. Failure to correctly interpolate the boundary condition resultsin
sub-optimal convergence rates (particularly for the higher-order simulations). The qual-
itative behavior of the solution is depicted in Figure 5.1 which shows contours of fluid
speed for the cubic simulation on the 21 x 21 mesh.

312

-2

-1/2 1

Figure5.1: Kovasznay flow. Contours of fluid speed for cubic ssimulation on 21 x 21
mesh

A convergence study was performed for this flow to determine the accuracy of the
different polynomial order simulations as functions of the mesh size, Az, and the poly-
nomial order of the basis. Figures 5.2(a) and 5.2(b) show the log of the normalized L2
error in the velocity field versus log(Ax; ) and polynomial order, respectively. Here, the

L? error is computed numerically from the formula

B fQ e;e; dx

E? =
Jo wiv; dx

(5.4)



86

60 |

log(E) E L
L . \\\\ 4 log(E) 4|

80 |

-100 |

n n n n n
24 28 32 36 1 2 3
log(h) polynomial order

(a) log of L2 error vs. log(Azy). -+ -k = (b) log of L2 error vs. k
1, ——:k=2,and - k = 3.

Figure5.2: Kovasznay flow convergence study

where

e; = u; — ul™ (5.5)

(h

represents the difference between the exact, «;, and finite element, u, k) , solutionsfor the
velocity.

Figure 5.2(a) enables usto determine the rates of convergence of the different ssmu-
lationsto be 1.6, 2.7, and 3.8 for the linear, quadratic, and cubic simulations, respectively.
These values compare well with the theoretical predictionsfor the interpolation error (i.e.
2, 3, and 4 for linear, quadratic and cubic). It is clear from Figure 5.2(a) that the constant
in the error estimate also greatly improves for the higher-order simulations, making the
higher-order basis most attractive even on the coarsest meshes. It should be noted that for
this flow, the cubic simulation is the closest to its predicted value, while the linear is the
most deficient. The under-performance of the linear and quadratic solutions may be due
to the severe penalty incurred by a method's inability to capture maxima and minima of
the prescribed, essential boundary conditions. Figure 5.2(b) demonstrates the exponential

convergence of the method when Az, isfixed and the polynomial order isincreased.
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5.2 Flow over a backward-facing step

Consider a two-dimensional, incompressible flow over a backward-facing step at
Re = 800, based on the step height and the average inflow velocity. The geometry and
boundary conditions are similar to those used by Gartling [24]. The problem is specified
by a fully developed flow entering a confined channel which, at Re = 800, has been
demonstrated by numerous researchers to be steady and stable (see Gresho et al. [27]).
A complete description of the physical problem requires modeling the region upstream
of the step, and careful attention to the singularity that may develop at the step corner.
However, since the objective of this study was a comparison of various polynomial order
bases rather than a complete description of the physics, the standard step flow geometry
was simplified by excluding the region upstream of the step as described in Gartling [24].
Thisalowsfor a more accurate comparison with his benchmark results.

The geometry and boundary conditions are shown in Figure 5.3. The initial con-
dition consists of a parabolic (Poiseuille) velocity profile with the same mass flow-rate
asthe inlet profile, imposed upon the entire channel. Thisinitial condition is marched in
time using the backward Euler technique until the steady solution is reached, confirmed
in all cases by monitoring the changes in various flow quantities. The steady state is also

verified by steady shear stress on the channel walls.

10 7

T

Figure5.3: Step flow geometry and problem description

Numerical solutions were obtained on a variety of uniform tetrahedral meshes for
severa different polynomial orders. The mesh statistics are shown in Table 5.1 where
each successive mesh represents a uniform refinement of the previous mesh, with the

exception of mesh B. Here, Az; and Az, represent the element size in the z; and z-
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directions, respectively.

| Mesh | Vertices | Edges | Faces | Az | Ay |
405 1,044 | 640 0.250 | 0.250
847 2,286 | 1,440 | 0.167 | 0.167
2,211 6,210 | 4,000 | 0.100 | 0.100
8,421 24,420 | 16,000 | 0.050 | 0.050
32,841 | 96,840 | 64,000 | 0.025 | 0.025

m| 9| 0| >

Table5.1: Step flow mesh statistics

There are three major factors that contribute to the cost of the finite element simu-
lations discussed here: right hand side (or residual) evaluation, left-hand-side (or tangent
and mass) formation, and linear algebra (involving matrix-vector products for iterative
solution techniques). The first two of these measures rely on the numerical integration
of element level quantities, and the dominant terms are in the left-hand-side calculation
(proportional to the number of integration points times the number of element basis func-
tions squared). The matrix-vector products are dominated by thefill pattern of the matrix.
The relative size of these different measures depends on the order of the basis being used
(aswell asthe problem). For example, the linear basis is dominated by the linear algebra,
since we are using relatively cheap integration rules. Also, the fine meshes needed for
linear basis computations lead to greater cost in solving the linear system (more Krylov
vectors are needed).

In Table 5.2, we are assuming that the cost is proportional to the number of elements
times the number of element shape functions squared times the number of quadrature
points, C; = ny X n2, X ng,, and a“-" in the Cost column indicates that this simulation
is not included in the study. The cost measured in this way reflects the tangent matrix
formulation cost. The symbols in the far-right column indicate the meshes used in the
comparison study discussed below. These calculations are in terms of the face data and
face quadrature rules in an attempt to level the playing field for the 2-D comparison with
the 3-D code.

The basic character of this flow is well known. At Re = 800, there are two
separation regions, one starting at the step corner and continuing downstream approxi-
mately 12 step heights, and another on the upper wall of the channel occupying a region
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Mesh | & Ng Nint O[(X103)
1 405 3 -
A 2| 1,449 6 -
3| 3133 | 12 768 +
1 847 3 -
B 2| 3133 6 -
3| 6,859 12 -
1| 2211 3 -
C 2| 8421 6 864 o
3] 18631 | 12 -
1| 8421 3 -
D 2] 32841 | 6 -
3| 73,261 | 12 -
1| 32841 | 3 1,728 *
E 21129681 | 6 -
31290521 | 12 -

Table 5.2: Step flow simulation cost comparison

from approximately 10 to 20 step heights downstream. These features are shown in Fig-
ures 5.4(a)- 5.4(d) which represent the fluid speed, pressure, vorticity, and velocity vectors
for the cubic simulation on mesh C. These figures are shown in the correct scale, how-
ever, only the first ten step heights of the channel are shown. Qualitatively, these figures
compare well with those presented in Gartling [24].

The contour plotslook similar for all simulations making it difficult to quantify the
benefit of the higher-order methods. We will therefore compare line plots of various flow
quantities at different spatial locations. Thefirst of these plots demonstratesthat all of the
methods are converging to the benchmark result (with linear being the slight exception).
Figure 5.5(a) showsthe (most refined) cubic, quadratic, and linear simulations on meshes
C, D, and E, respectively, as well as the benchmark result of Gartling [24]. For each
of these, the ;- and x,- velocities and pressure are shown at two locations along the
channel, x; = 7.0 and z; = 15.0, the same locations presented in Gartling [24], which
we have included on the vel ocity plots as abenchmark result. The cubic and quadratic are
able to exactly reproduce the benchmark simulation, while the linear, even on the most
refined grid, is still dightly off in the x,-velocity at the ; = 7.0 location. This isn't

surprising, since the benchmark result is from a quadratic simulation with 41 vertices
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(a) contours of fluid speed

T TS TS

(b) contours of pressure

-

(c) contours of vorticity

(d) velocity vectors

Figure5.4: Step flow simulation characteristics: Mesh C, k£ =3

across the channel, which is a higher resolution than our most refined linear simulation.
Figure 5.5(b) presents a comparison between the cubic simulation on mesh A, the
guadratic simulation on mesh C, and the linear on mesh E. These three simulations rep-
resent qualitatively similar results. Clearly, the only plots that visibly differ from the
benchmark result are the linear and cubic x, velocity at z; = 7.0, which is the most
sensitive quantity in the study. Although the quadratic basis smulation is sightly better,
here, the cubic and linear basis simulations appear identical. The symbols in the plots
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Figure5.5: Backward-facing step. Velocity and pressure plotted versusz at z; = 7
and x; = 15. Velocitiesat z; = 15 were shifted for plotting.

may be found in the right column of Table 5.2 which also shows the cost index for these
three simulations as 7.7 x 10°, 8.6 x 10°, and 1.73 x 10° for the cubic, quadratic, and
linear simulations, respectively. From this, it is clear that the same accuracy can be ob-
tained with the cubic simulation for 40% the cost of the linear, while the quadratic costs
about half as much as the linear. These results are also in agreement with the results for
the Kovasznay flow using the L? error as a comparison measure.

A further study was carried out to determine the accuracy of the pressure for the
linear-basis method. Since traditional Galerkin methods must interpolate pressure one
order lower than the velocity, the pressure is necessarily one order less accurate. The
stabilized method does not suffer from thislimitation. Thisis demonstrated by comparing
two linear-basis simulations to the most refined cubic simulation at the z; = 7 location.
Thelog of the L error (defined as the maximum difference from the reference solution)
versus Az, shows a slope of 2.1, which is dlightly better than optimal for the meshes
considered; the L> error for the interpolation being O(h?) (see Johnson [52]). Quadratic
and cubic solutions are too close to the reference solution (the most refined cubic) to

obtain useful convergence data.
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Figure5.6: logof L error in pressurevs. log(Ax,).

5.3 Lid-driven cavity flow

The next problem considered is the steady, two-dimensional and incompressible
flow inside a closed container driven by itslid. Thelid slides to the right at unit velocity
across the top of the cavity, shearing the fluid and setting up a recirculation region. There
isaprimary vortex in the center of the cavity and secondary eddies in the lower corners
(the number of these secondary eddies depends on the Reynolds number). For the present
study, we have chosen to consider Re = 400 (based on the lid velocity), for which there
exist well-established benchmark results to compare with (see Ghia et al. [26]). Since
the velocity is discontinuous at both upper corners, singularities will develop in the pres-
sure and stress fields, which must be controlled by the method. In addition, there are
singularities also in the lower corners, however, they are well resolved by the uniform
meshes.

The geometry and boundary conditions are illustrated in Figure 5.7. In addition to
the velocity constraints, the pressure field is constrained by setting its value at the single
vertex inthelower left corner of the cavity. Uniform mesheswere used with equal spacing
in the z;— and z,— directions. To isolate the singularities in the upper corners, nested
local mesh adaptivity was used by subdividing the original corner elements. The number
of new corner elements was chosen such that the first point is3.90625 x 10~* units from
the corner for each mesh. This distance dictates the extent to which the discontinuity

in the velocity field is resolved (i.e. how much fluid is “leaked” from the cavity) and is
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w; = 0j1

u1:0 L2 ul:0

x1

®

Figure5.7: Lid-driven cavity geometry and boundary conditions

fixed at the given value for all ssmulations by changing the number of corner elements.
This procedure is crucia to obtaining identical solutions for the different polynomial
orders, since the actual mesh size varies dramatically between the least refined cubic and
most refined linear simulations. Figure 5.8 shows the 21 x 21 mesh along with the local
refinement in the upper right corner (the upper |eft corner is adapted the same way).

Figure5.8: Mesh of lid showing corner adaptivity

The statistics for these meshes along with the polynomial orders used are shown in

Table5.3. Thisdatadoes not include the refinement in the upper corners, asthisrepresents
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asmall percentage of the total mesh.

| Mesh | Vertices | k|

A 11x11 3
B 21x21 2,3
C 41x41 | 1,23
D 81x81 1,2
E | 161x161 1

Table5.3: Lid-driven cavity mesh statistics

The basic solution characteristics of this flow are shown in Figures 5.9(a) - 5.9(d)
which display contours of fluid speed, pressure, and vorticity, as well as velocity vectors,
respectively. The plots shown here are the quadratic ssimulation on mesh C, however, all
converged simulations look identical. Figure 5.10(a) shows profiles of us (1,22 = 0)
and u;(z, = 0, z5) for the the most refined mesh for each polynomial order. Note that u,
was scaled by 0.5 to facilitate plotting. Also shown is the benchmark result of Ghia, et
al.[26] (one stray point was removed from their tabular data). The three plotsare virtualy
indistinguishable.

A cost comparison study similar to that for the backward-facing step was carried
out for thelid-driven cavity flow (see the velocity compared in Figure 5.10(b)). The ssimu-
lations, along with their cost index, matrix storage, and mesh size are shown in Table 5.4.
In this case, the linear simulation is approximately four times more costly than the cu-
bic and about twice as costly as the quadratic. Here we have aso provided information
comparing the memory requirements and disk storage required for the simulations. The
“Matrix storage” column of Table 5.4 indicates the number of nonzero blocks for the
gparse storage of the tangent matrix (the dominant memory requirement), indicating that
the memory requirements for the cubic simulation are about one third of the linear, while
the quadratic is dlightly better than the linear. The “Mesh size” column compares the
size in mega-bytes of the files that store both the compact data structure as well as the
complete mesh database (on the left and right of the /, respectively). This data indicates
that there is also a significant size advantage for the compact data structure for linear el-
ements, however, for cubic elements, the full mesh database is of comparable size (Beall

and Shephard [4] found similar results). The final column indicates the CPU time in sec-
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E |
(&) contours of fluid speed (b) contours of pressure
i !
(c) contours of vorticity (d) velocity vectors

Figure5.9: Lid-driven cavity flow characteristics: Mesh D, k = 2

onds to run this simulation for a total of 10 time steps. These timings indicate that our
cost index, C7, provides a good measure of the actual computing time. In fact, consid-
ering only CPU time, the cubic comes out almost 7 times faster than the linear, while
the quadratic is about twice as fast. Some of this may be due to the fact that the linear
algebraic system is much tougher to solve (using more than four times as many Krylov
vectors per solve) for the linears, due to the extremely fine meshes. In an attempt to level
the playing field, the linear and quadratic simulations were limited to 50 Krylov vectors
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Figure5.10: Lid-driven cavity flow. Plots of u;(z; = 0, z5) and uz(z1, 22 = 0)

per linear solve, and the convergence was not affected significantly for the 10 time steps
(the cubic had no problem reaching the desired linear solver tolerance of 0.1 within the

allotted 50 vectors). These timings are with the 50 Krylov vector limitation for the linear

and quadratic.
Mesh | k | C;(x10%) | Matrix Storage | Mesh size (MB) | CPU time (sec)
A 3 316.7 202,804 0.13/0.1 43.2
C 2 701.6 458,196 0.78/1.4 152.5
E 1| 1,383.3 570,193 5.4/24.6 300.7

Table5.4: Lid-driven cavity cost comparison

5.4 Vortex shedding behind a square cylinder

The simulation of the flow around a square cylinder at a Reynolds number of 100
(based on the cylinder edge length) is presented as an application of the hierarchical basis
to alaminar, time-dependent flow. Thisflow will aso be used to illustrate the techniques
of mesh adaptivity based on statistical error indicators for different uniform polynomial
orders. Detailed studies (both numerical and experimental) of this flow have been carried
out by Davis and Moore [17], and more recently by Sohankar et al. [70].
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u,=u;=0.0

u=u, — |:|<> p=10.0

u=0.0

X1 U,= Uy = 0.0

Figure5.11: Boundary conditionsfor flow around a square cylinder

The geometry and boundary conditions for this flow problem are shown in Fig-
ure 5.11. The cylinder is centered at the origin, and has an edge length of 1. The distance
from the origin to the inflow is 10 units, and it is 25 units from the origin to the outflow
of the domain. The lateral walls are placed at > = +10. In addition to the boundary
conditions shown in Figure 5.11, we have set the tangential traction and normal velocity
to zero on the x3-planes to simulate the two-dimensional flow. The key feature of this
flow (at Re = 100) is the development of a time-periodic vortex street in the wake of
the cylinder, similar to the more common flow about a circular cylinder. This flow, how-
ever, is considered amore difficult simulation due to the corners of the box which lead to
singularitiesin the flow field (see Gresho [28]).

The simulation is started from an initial flow field of a uniform velocity of u; =
uso0;1 and advanced in time using the generalized-a method time integrator introduced
in Section 3.3 with the high frequency damping parameter (p.,) set to 0.5. No detailed
study of the temporal accuracy vs. p,, was carried out for this flow, since the main goal
of this ssimulation was to perform the h-adaptive calculations and compare the different
polynomial orders. The time step was set to 0.1, and 2 Newton iterations per time step
were performed.

Figures 5.12 through 5.14 show the results of the simulation, along with the h-
adaptive meshes. The flow guantity shown in each of the plots is a snapshot in time of
the flow vorticity at values of +0.1... £ 1.0 (at an increment of 0.1), £1.0... + 7.5 (at
an increment of 0.5), =10, and £15. In addition to the vorticity, the mesh is shown for
each of thesimulations. For £ = 1. .. 3, aninitial coarse mesh was created and adaptively
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Initial Mesh

First refinement

Second refinement

Figure5.13: Vortex shedding behind a squarecylinder: £ = 2
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Initial Mesh

First refinement

Second refinement

Figure5.14: Vortex shedding behind a squarecylinder: £ =3
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refined based on the error indicators presented in Section 4.6. The data for the series of
meshesis presented in Table 5.5. This data includes the mesh information for the entire 3
dimensional mesh, causing the number of degrees of freedom to grow much more rapidly
for the higher-order ssimulations. Although there are only 2 vertices in the z3-direction,
there are additional faces and edges that all get higher-order degrees of freedom (but are
effectively wasted).

| k | Refinement level | Vertices| n,, | Strouhal # |

1 Initial 3658 | 3658 0.139
1 First 7442 | 7442 0.145
1 Second 21678 | 21678 0.146
2 Initial 952 5484 0.127
2 First 1988 | 11643 0.145
2 Second 4748 | 28161 0.147
3 Initial 346 5676 0.141
3 First 1032 | 17760 0.146
3 Second 3780 | 66600 0.147

Table5.5: Vortex shedding from square simulation data

The drag and lift profiles are shown in Figures 5.15 through 5.17 for the k. = 1...3
simulations as functions of the non-dimensional time, once the flow has fully developed
into its limit cycle. Shown here are profiles on the most refined mesh for each of these
polynomial orders. The convergence to the Strouhal number (St = fsd/u, where fs is
the shedding frequency and d is the edge length of the square) for each of the simulations
isalso presented in Table 5.5. These values arein excellent agreement with that presented
in the work of Sohankar et al. [70] of 0.146, actually our values seem to be converging to
0.147. 1t can a so be observed from the drag profilesthat there is a high-frequency oscilla-
tion present in the linear solution, and to a lesser extent in the quadratic. Thisis possibly
due to the extremely fine mesh in the near cylinder region for the linear mesh, requiring
more corrector passes to sufficiently resolve the flow at each time step. Experience has
shown that insufficient nonlinear convergence will lead to such high-frequency oscilla-
tions. An alternative approach would be to damp out these oscillations by decreasing the

value of p.,, however thiswould also lead to a slight decrease in accuracy.
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Figure5.17: Lift and drag profilesfor &k = 3

5.5 Chapter summary

The exampl es presented in this chapter serveto demonstrate the use of the stabilized
finite element formulation with hierarchical basis functions for both steady and unsteady
laminar flows. The near optimal convergence rate of the formulation was shown for a
problem with a closed form analytical solution, and the cost effectiveness of the higher-
order basis was demonstrated for the backward-facing step and the lid-driven cavity. This
cost effectiveness has shown the cubic basis to be over seven times cheaper than the
linear basis. Also presented in this chapter were simulations of an unsteady problem
using statistics based error indicators for creating h-refined meshes.



CHAPTERG6
TURBULENCE COMPUTATIONS

The purpose of this chapter isto provide an introduction to using hierarchical basisfinite
elements to compute and analyze turbulent flows. The study of turbulent flows typically
involves the computation and analysis of statistical quantities derived from the primitive
flow variables. Many techniques for analyzing turbulent flow statistics, which work well
for linear elements, break down and must be modified when used with the hierarchical
basis. Techniques will be described in this chapter to analyze higher-order turbulence
simulations which are based on hierarchical basis formulations. Before describing these
techniques, a brief introduction to turbulence simulations will be given. The study of
turbulence using analytical, experimental, as well as numerical techniques is extremely
involved and the reader unfamiliar with the subject should consult a basic text such as
Tennekes and Lumley [72], which provides a good introduction to the field.

From a numerical analysis perspective, there are three distinct ways in which tur-
bulent flows can be studied, which essentially relate to how much of the turbulent motion
is intended to be resolved, and how much will be modeled. Reynolds averaged Navier-
Stokes, or RANS, simulations attempt to resolve only the average flow quantities, leaving
all turbulent fluctuations to be modeled. This approach is the most computationally effi-
cient and has proven successful for some steady flows, but has been quite disappointing
for unsteady and/or complex flows. RANS simulations have nonetheless become the
“workhorse” for industrial type problems (see Wilcox [77] for additional detail on RANS
calculations). Large eddy simulation, or LES, attempts to resolve the large eddies in
the flow (as the name implies), where most of the energy is known to exist, leaving the
subgrid-scale eddies to be modeled (see Jansen [44]). Sinceit is generally accepted that
the smallest eddies, where motion is converted to heat via viscous dissipation, behave
similarly for a wide range of flows, it is hoped that modeling only these smallest-scale
structures will provide more accurate simulations for awider variety of flows. However,
since more of the flow structures are being resolved, as well as the temporal behavior of
theflow, these simulationsare necessarily more costly to perform than RANS simulations.

104
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The most complete, and also the most costly, of the methods is direct numerical simula-
tion (DNS), where an attempt is made to resolve all scales of the turbulent flow (both
gpatial and temporal). While DNS has proven fruitful for studying the basic physics of
turbulence (see Kim et al. [55] and Le et al. [57]), its application to flows of engineering
interest is expected to remain out of reach for at least the next several decades.
Simulations of turbulence based on the RANS approach can be analyzed much the
same way as laminar, steady flows, allowing the straightforward use of the hierarchical
basis function post-processing techniques discussed above. There are, however, expected
to be other complicating issues related to using higher-order methods to solve these com-
plicated systems of equations that are beyond the scope of thiswork. To carefully study
LES and DNS computations of turbulence, more work must be done to collect time-
averaged statistical quantities which can be compared with theoretical and experimental
results. Thisisin addition to the traditional types of visualization techniques that can be
applied to the instantaneous flow fields, but these only provide the qualitative behavior of
the flow at agiveninstant in time, and are difficult or impossible to compare directly with

experiments.

6.1 Basicrelationshipsfor turbulence ssmulations

Consider the flow quantities to be decomposed into time-averaged and fluctuating
components as (see Tennekes and Lumley [72]),

p=p+p (6.2)
where the barred quantities are the time-averaged, or mean flow properties, such that,

1 to+T
to

T—o00

where T" is the time over which the average is performed. In computations, this quantity

is commonly computed by performing a numerical average over N discrete time steps,
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N
u; = % Z u;i(tr) (6.4)
k=1
where u;(t;) is the flow quantity of interest at the k" time step. To gain insight into
the dynamics of turbulent flow, various quantities based on the decomposition in (6.1)
are collected during a ssmulation, and post-processed, to generate a statistical “picture”
of the turbulent flow-field. In addition to this temporal averaging, spatial averaging over
homogeneous directions is also used (for flows that have such character) to increase the
statistical sampling, allowing fewer time steps to achieve statistically steady behavior.
Severa quantities are of particular interest, starting with the mean quantities themselves
and properties derived from the mean quantities such as wall forces, followed by the

turbulence intensities such as the root-mean-square velocity,

up™ =\ Jupyup (6.5)
(no sum on ¢) and pressure. Also of interest isthe total shear stress,
—u;u; + Ty (6.6)

which is composed of the Reynolds stress (from the fluctuating vel ocity components) and
the viscous stress (from the mean flow quantities). The total shear stress for incompress-
ible turbulent channel flow can be shown analytically to be linear across the channel, and
this characteristic is used to indicate that a flow is indeed statistically steady. Finally,
the superscript + indicates a non-dimensiona quantity scaled by the wall variables; e.g.
z{ = z1u, /v, and the friction velocity is defined such that u?> = (r,,/p) where 7, isthe
shear stress at the wall (see Tennekesand Lumley [72]).

6.2 Computation of turbulence statistics

As pointed out above, to gain insight into the dynamics of aturbulent flow, statistical
guantities are typically used which are generated by collecting several quantities during

the flow simulation. Collecting time-averaged statisticsis not as simple as it might seem,
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however. It turns out that the direct method of simply collecting running sums of the
guantities, does not always achieve the best results, since the nodal velocity and stress
fields that are collected are not necessarily conservative. A method will be presented to
reproduce conservative statistics for linear elements, in addition to the standard method
which will be used for hierarchical simulations.

To compute the statistics of the turbulent flow from the numerical simulation, the

following quantities are collected during the simulation:

u; and p  mean flow properties (6.7)
u;u;  first-order velocity correlations (6.8)

p?  first-order pressure correlations (6.9)

G;; total stress(including pressure) (6.10)

In the flow solver, after the completion of each time step, the quantities in (6.7)-(6.10)
(without the bars) are added to running sums, and then divided by the number of time-
steps during post-processing to form the time-averages (barred quantities). For example,

the Reynolds stress and r.m.s. velocity may be recovered from w;z; and @; by computing

which is easily derived from (6.1). The numerical evaluation of (6.7) through (6.10),
however, is quite different for linear and higher-order basis simulations.

Some flows, in particular the channel flow considered here, also exhibit spatial di-
rections in which the turbulence is known to be homogeneous. This property allows for
additional averaging in these directions, which serves to increase the statistical sample
for the averaged quantities, and decreases the number of time steps necessary to achieve
a statistically stationary flow. For example, the channel flow problem presented below
is averaged over the span-wise and stream-wise directions, in addition to time. Thisis
accomplished as a post-processing operation. Other flows also exhibit homogeneous di-

rections, e.g. aflat plate boundary layer has a single homogeneous direction (span-wise).
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6.2.1 Collecting turbulence statistics

The main difficulty in collecting statistics for hierarchical basis coefficients is that
the basis coefficients do not directly correspond to solution values at specific spatial loca
tions. Therefore, simply collecting and averaging the coefficients will work for the mean
flow properties, but will fail for the second (and higher) order statistics. To correct for
this problem, the statistical quantities given above are evaluated and collected, instead, at
the element interpolation points. The first step in post-processing is then to use the in-
terpolation algorithm described in Section 4.4 to recover the correct time-averaged basis
coefficients for the collected quantities. For example, the velocity correlation coefficients
are found such that

Nes

u = Y N, (6.12)
a=1

where ¢f; represent the basis coefficients of the time-averaged field, and N, are the usua
basis functions. When using the linear basis, we can simply collect the statistics at the
vertices, however a more accurate approach will be described below for use with linear
elements.

After solving for the cf;, spatial averaging over homogeneous directions must be
accomplished. Thisisdone by creating a structured, two-dimensional sampling grid cor-
responding to the homogeneous plane. The hierarchical solution isthen evaluated at each
of the points in the structured grid (using the same search algorithm used to make line
plots), and the values are collected and averaged to a single point on aline in the non-

homogeneous direction.

6.2.2 Conservative statisticsusing linear elements

Straightforward evaluation of (6.7)-(6.10) may result in non-conservative nodal
fields, causing the statistics to be less accurate than is possible. To remedy this prob-
lem, we introduce a method to compute nodal statistics that have the conservation prop-
erties restored. The procedure is a generalization of that described by Hughes [42] on
page 107, which describes a post-processing technique for calculating consistent bound-
ary flux. This method is also used for computing the boundary flux for all simulations
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presented in thiswork. The conservative approach to collecting turbulent statistics, how-
ever, does not work for hierarchical basisfunction, dueto the fact that techniques are used
for inverting the projection matrices that rely on nodal quadrature which breaks down for
hierarchical elements. A potential remedy to this problem is to project the hierarchical
basis quantities onto a Lagrange basis for the purposes of collecting the statistics, since
Lagrange basi s coefficients correspond directly to solution values.

Thebasic ideaisto project the conservative fields to the nodesto recover the conser-
vative nodal velocities and stresses. Thisinvolves using the element level residuals from
the momentum and continuity equation in a special way to recover these conservative

guantities. From a conservation analysis, we have, for any vertex (node),
m, =N, U, fora=1...n, (6.13)

and

Y m,=0 > f,=0 (6.14)

where m,, isthe mass flux out of element a, i, isthe outward “normal” from e ement a,
for the given node, and n,, is the number of elements incident on the node. The normal
here is defined as the average of normals from the faces adjacent to the node. Unfortu-
nately, thereisno single velocity u which satisfiesm, = n, - u. To remedy this situation,
we project, i.e., find w such that

min (R, - u —m,) (N, -u —m,) (6.15)
UeRrN

which yields the matrix problem

Mu=R (6.16)
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where

M =n,n’ (6.17)
R =n,m, (6.18)

and m, istheresidual of the continuity equation associated with the node and element a.
If M isrank deficient, due to the location of the bounding elements, we add (u - u("*))?
to the min function in (6.15), hence

M «— M +oI (6.19)
R+ R+ ou™ (6.20)

where o = 0 if M isfull rank, and o = tr(M ) if M isrank deficient. Similar relation-
ships may be derived from the residuals of the momentum equation and used to compute
the second order statistical quantities in a conservative manner, however details will not
be given here.

For linear elements, span-wise and stream-wise averaging (for the channel flow) is
accomplished using the known structure of the mesh (7, 7, k& structured numbering) to sum
the contributions along these directions, then divide by the number of pointsincluded in
the sum. This collapses the statistical average to a single line in the non-homogeneous
direction (x5 for the channel).

6.3 Turbulent channel flow at Re, = 180 (DNS)

This example presents an initial application of the hierarchical basis functionsto a
direct numerical ssmulation of turbulent channel flow at a Reynolds number of 180 based
on the friction velocity (u,) and the channel half-width, §, and a Reynolds number of
2800 based on a mean bulk velocity of U,,, = 1.0. This flow was studied for polynomial
ordersk = 1...3 onthreedifferent mesheswhich were selected to give similar resolution
for each of the three basis orders. It should be emphasized that the results presented in
this section only provide the initial applications of the method to turbulent flows, and
more research is needed to fully realize the potential of the higher-order methods. The
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shortcomings of the present simulation will be described below as they are encountered.

Turbulent channel flow has been studied extensively by many researchers using
theoretical, experimental, and numerical methods and is typically used as a test problem
for new numerical techniques. Direct numerical simulations were carried out by Kim
et al. [55] who demonstrated (perhaps for the first time) that turbulent flows could be
successfully simulated and statistics collected and analyzed. Their study also enabled the
collection of turbulence statistics that were not able to be seen in the experimental results
alone.

The flow is considered in a channel with dimensions 4, 2, and 4/37 in the z;, -,
and z; directions, respectively. These physical dimensions were used by Kim et al. [55]
and were shown to be sufficient to ensure that the flow was statistically uncorrelated in the
periodic directions. The boundary conditionswere set such that the upper and lower walls
were no-dlip, and the x; and x5 planes were treated as periodic. The flow is driven by a
body force which is adjusted dynamically to maintain the mass-flux through the inflow
plane at the value appropriate for a Reynolds number of 2800. The meshes used for each
polynomial order are described in Table 6.1 where N, represents the number of vertices
in the ™ direction and A, x5 represents the placement of the first vertex from the wall
in the near wall layer in wall coordinates (indicated by the + superscript). The vertex

placement was then graded exponentially in the z, direction from thisinitia spacing.

[ Polynomial order | N,, x N,, x N, | Ayz] |

1 33 X 65 x 33 1.0
2 17 x 33 x 17 2.0
3 9x17x9 4.0

Table6.1; Turbulent channel flow meshes

Simulations were carried out using the above mesh configurations and polynomial
orders. Each simulation (k = 1...3) wasrunfromaninitial condition given by Poiseuille
flow (parabolic) with random perturbations of about 10% of the maximum centerline ve-
locity at atime step of 0.1. Thisinitial flow was advanced in time for several thousand
time steps, until the flow was determined to have reached a statistically steady state as
indicated by a linear profile of the total shear stress across the channel (Reynolds stress
plusviscous stress, —uu, + (1/Re)0, /0x2). The flowswere then advanced for an addi-
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tional two thousand time steps and turbulent statistics were collected and post-processed
asdescribed in Section 6.2. The structured sub-sampling mesh for the quadratic and cubic
simulations, respectively, contain 33 x 33 x 33 and 65 x 17 x 65 points. These valueswere
sufficient to produce good results for the r.m.s. quantities, and adding additional points
had no visible effect.

For the results shown here, two Newton corrector passes per time step were used
for the linear and quadratic simulations while three passes were needed for the cubic to
resolve the flow. The qualitative nature of the flow can be seen in Figure 6.1, which shows
velocity contours for the instantaneous flow field for the two periodic planes. All of the
contour plots show 10 equi-spaced contours between the maximum and minimum values.
Also shown in each of these plotsis the finite element mesh on the z; — x5 plane. From
these figures, it is clear that the qualitative nature of the flow is similarly resolved for all
of the simulations. More quantitative comparisons must rely on the statistical properties
of the computed turbulence.

Figure 6.2 shows plots of the total shear stress across the channel, normalized by
thewall shear stress. Itisclear from thisplot that all of the simulations have reached their
statistically steady state, as indicated by a linear total shear stress distribution across the
channel. Theturbulenceintensitiesare shown in Figure 6.3. Figure 6.3(a) showsthe root-
mean-square velocity normalized by the friction velocity (u,) for k = 1...3. Thisplot
displaysthe basic statistical features of the turbulent flow, and they are qualitatively sim-
ilar to the results presented by Kim et al. [55]. Figure 6.3(b) shows the root-mean-square
pressure, normalized by «2. The r.m.s. pressure for the cubic simulation is considerably
higher than that observed for the quadratic and linear.

An additional quantity of interest in the turbulent channel flow is the mean flow
velocity, which may be compared to theoretical results for the near wall region, and the
log layer (see Tennekes and Lumley [72] for more details). Figure 6.4(a) shows plots of
the time averaged x;-velocity profiles in wall coordinates. This plot indicates that the
cubic solution is clearly the closest to the theoretical result in both the inner and outer re-
gions, however itistill quite far from the expected profile. These profiles are normalized
by the calculated friction velocities and the resulting profiles are relatively far from the
expected ones. Figure 6.4(b) presents the same results normalized by the experimental



113

— 15 plane

instantaneousvelocity contour sand mesh on x;

Figure6.1: Channel flow:
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Figure6.2: Channel flow: Reynoldsand viscousstress. + : linear, o : quadratic, and
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Figure 6.3: Channel flow: turbulence intensities. + : linear, o : quadratic, and x:
cubic

u, = 1/0.004, which are much closer to the matched solution. The discrepancy most
likely results from the inability of the method to accurately resolve the near wall struc-
tures on the relatively coarse meshes used here (Kim et al. used 192 x 129 x 160 grid
pointsin x, zo, and x3, respectively, using a spectral method). The mean flow velocity
can be integrated to yield the bulk mean velocity, defined as

U, = %/11 ad (%) (6.21)

which is shown in Table 6.2, normalized by the calculated «,. When normalized by the
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Figure6.4. Channel flow: wall velocity. + : linear, o : quadratic, and *: cubic. Solid
line showstheoretical results for wall and log layers

time-step
Figure6.5: Instantaneoustotal drag force on channel walls. + : linear, o : quadratic,
and *: cubic. Solid line showstheoretical resultsfor wall and log layers
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experimental «.,, we obtain 15.82, 15.93, and 15.74, which are all in good agreement with
the value of 15.63 presented by Kim et al. [55], the cubic simulation being best.
Figure 6.5 shows the instantaneous (integrated) drag force on the walls of the chan-

nel plotted versus the time step. These profiles can be time averaged to find the average

wall shear stress and compared to the expected values. The values obtained for the time

averaged coefficient of friction, Cy = 7,,/1/2p

U2, areincluded in Table 6.2. The calcu-

lations of Kim et al. [55] produced avalue of C; = 8.18 x 10~*, giving an error of 17%,

21%, and 28% for the cubic, quadratic, and linear simulations, respectively. It can be
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| Polynomial order | U, | Cy |
1 18.40 | 5.91 x 10~
2 1757 | 6.48 x 1073
3 17.18 | 6.78 x 1073

Table6.2: Mean flow properties

observed from this figure that the cubic simulations appear to have a high-frequency os-
cillationintheforce profiles. Thisispossibly dueto the fact that the consistent cal culation

of the boundary flux only currently uses the linear modes.

6.4 Chapter summary

The results presented in this chapter represent an initial effort towards studying tur-
bulent flows using hierarchical basisfunctions, and are not intended to provide acomplete
study. Before the full potential of the hierarchical basis can be realized, more effort must
be dedicated to this area of research. For example the methods of collecting conservative
statistics must be generalized for the hierarchical basis, methods of cal culating the bound-
ary flux must be more carefully studied, and mesh refinement studies should be carried
out. Based on the findingsin the present work, the hierarchical basis should be pursued as
ameans to attain more cost effective simulations of turbulence, as they have been shown

to provide for the ssmpler laminar flows.



CHAPTER 7
DISCUSSION AND CONCLUSIONS

A stabilized finite element method using a hierarchical basis has been applied to the in-
compressible and compressible Navier-Stokes equations. The implementation is general,
allowing three-dimensional simulations on arbitrary, unstructured meshes to be carried
out on parallel computers. The stabilized formulation that wasintroduced has been modi-
fied from traditional stabilized formulationsto build conservation of momentum back into
the discrete solution, in a weak sense, which is typically lacking in formulations based
on the advective form of the Navier-Stokes equations. This new formulation has been
shown to yield accurate and robust simulations on a variety of problems using both linear
and hierarchical basisfunction alike. Additionally, a new second-order accurate, implicit
time integrator has been introduced to advance the semi-discrete weak formintime. This
time integrator has been proven to be second-order accurate as well as to have desirable
stability properties for a linear model problem. This time integrator has the additional
asset of a user controllable amount of numerical dissipation which has been shown to be
necessary for damping un-resolvabl e scales that may appear in a numerical solution.

In addition to the development and implementation of the stabilized formulation
and generalized-oa method time integrator, significant work has been done to provide a
genera framework for studying higher-order basis functions for efficient, large-scale fi-
nite element simulations of the Navier-Stokes equations. This has been accomplished by
basing the pre- and post-processing on arich, abstract mesh data structure and the use of
a compact, streamlined data structure in the analysis code. This enables us to dramati-
cally reduce the memory and computational cost of the rich database, while maintaining
its desirable attributes for pre- and post- processing. Techniques have aso been devel-
oped for parallel processing that enable the communication buffers to be pre-processed
and effectively used within the analysis code, and have been shown to yield nearly perfect
scalability (98%) for 1 through 8 processors.

The hierarchical basis described in this thesis has been shown to attain near opti-
mal rates of convergence with respect to the interpolation error for both the compress-
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ible (channel) and incompressible (Kovasznay) flows, as well as for the linear advection-
diffusion equation. These convergence studies are a key step in validating the use of the
new stabilized formulations. Not only do they ensure correct implementations, but they
also validate the higher-order accuracy property of the formulations. Using the hierarchi-
cal basis functions, careful cost vs. accuracy studies have been carried out to assess the
relative benefits of using higher-order basis functions for stabilized finite element formu-
lations. These studies have been motivated by the desire to simulate more complicated
physics problems, where traditional linear el ements require too many grid points for cur-
rent computers. It has been shown here for thefirst time, through severa, relatively simple
examples, that for steady problems the cubic basis functions can be up to 7 times more
cost effective than linear, while the quadratic basis is up to twice as cost effective. This
indicates that the higher-order basis functions may provide a meansto attain simulations
of physical problems unattainable with linear elements due to computational limitations.

Preliminary application of the methods discussed here to turbulent flows have also
been accomplished. A direct numerical simulation (DNS) of turbulent flow in a channel
at aReynolds number of 180 (based on the friction velocity) has been performed and the
statistics have been collected and analyzed. New methods to collect and analyze these
time averaged turbulence statistics have been developed for use with hierarchical basis
functions, which behave differently than Lagrange basis functions. This simulation has
been carried out for polynomial orders 1 through 3 on meshes with comparable numbers
of degrees of freedom. While the preliminary results look promising, it is till too early
to make any conclusive remarks. Currently, the development of new filters is underway
to enable large eddy ssimulation (LES) of turbulent flows making specia use of the hi-
erarchical nature of the basis. It is expected that this technology will provide more cost
effective LES studies of turbulence as well.

To fully realize the advantage of higher-order basis functions, it is clear that some
level of h-refinement will also be necessary to achieve optimal results. Since we are
mainly interested in dynamical problems where the solution is changing in time, tradi-
tional methods of adaptive h-refinement are not necessarily the most cost effective. New
methods of indicating the error based on time-averaged statistical quantities have been
developed and tested on a simple problem to demonstrate the ideas. Currently, heuristic
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reasoning is used in conjunction with the error indicators to adaptively refine the mesh,
but it has been shown to provide effective h-adaptivity on the problem of vortex shedding
behind a square cylinder which has a stationary wake-type structure when viewed from
a statistical standpoint. It is hoped that these methods can be further developed in future
work, aswell as coupled with more rigorous mathematical analysis.

There are, however, limitations of the present research. It is hoped that they may
be addressed in future work, to further enhance the benefit of the hierarchical basis. The
present formulation is limited to uniform polynomial order. Although the formulation is
not theoretically limited to cubic basis, the current implementation must be slightly gen-
eralized if higher than cubic basisfunctionsare desired. At aminimum, aface-based data
structure must be added to indicate which shape functions are active on each mesh face.
Thisis not the only problem with higher polynomial order. Efficient symmetric Gaussin-
tegration formulas only exist for tetrahedral regionsto a high enough order to integrate the
cubic basis. To go with £ greater than 3 requires the use of inefficient degenerate quadra-
ture rules, which are much more expensive. Some of this cost may be reduced when the
method is extended to hexahedral elements, which can use efficient tensor-product inte-
gration formulasto any order. The current implementationis also limited to straight-sided
elements using alinear mapping to element coordinates.

There are many ways in which the research in the present thesis may be extended
and built upon. Although the formulation presented is completely general, the present
implementation only allows for tetrahedral meshes and uniform polynomial order. Based
on our experience with the excellent properties of hexahedral elements with linear basis
functions (for relatively uniform flow configurations which allow hexahedral meshes),
the extension to hierarchical hexahedral meshes is likely to provide even better results.
This, in conjunction with non-uniform polynomial order will allow meshesfor relatively
simple configurations such as boundary layers to be more effectively simulated by using
alower polynomial order in the streamwise and span-wise directions while maintaining
higher-order for the wall normal direction, where the flow gradients are highest. Thistype
of polynomial order grading is less likely possible for meshes comprised of tetrahedral
elements due to the fact that they are often poorly aligned with surfaces.

Theoretical issuesrelated to the present research also need to be addressed in future
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work. Although the stability of the new (conservation restoring) formulation is relatively
straightforward to show, a full convergence proof has yet to be completed. Based on the
convergence proofs for closely related stabilized formulations (such as the SUPG formu-
lation without the conservation restoring terms) as well as the numerical demonstration
of higher-order accuracy presented here for the Kovasznay flow, it is strongly expected
that the new formulation may also be rigorously shown to be higher-order accurate. The
development of improved inverse estimates used in the design of the stabilization matrix,
T, are a'so needed to perhaps further increase the accuracy of the higher-order methods.
Large eddy and direct numerical simulation of turbulent flows present special prob-
lems for higher-order basis functions, which have only partialy been addressed in the
present work. The proceduresthat are used for computing the dynamic model coefficients,
crucial to the performance of LES, are computed in part by averaging over homogeneous
directions in the flow. This type of operation is difficult for hierarchical basis functions
since the basis coefficients do not directly correspond to solution values at nodes, as they
do for the Lagrange basis. Some preliminary methods have been developed to circum-
vent these problems and provide adequate results, but further research is necessary to
most effectively study turbulent flows. Thisinvolves extending the consistent calculation
of time-averaged statistics to hierarchical basis functions. New filters that take advantage
of the hierarchical nature of the basis should also be developed and implemented. This
may be achieved, for example, by forming an element based filter from the difference

between the cubic and linear solutions.
The design of new stabilized methods that explicitly take advantage of the hierar-

chical basis should also be explored. These new stabilized methods should build on recent
research on multilevel finite element methods and their connection with large eddy simu-
lations of turbulent flows. The hierarchical basis may be used in these new formulationsto
represent the sub-grid, or “un-resolvable’, scales in the turbulent flow field. This may be
accomplished by modeling these “ un-resolvable” scales by cubic and higher polynomials
and representing the resolvable scales by the linear and quadratic portions of the basis.
The hierarchical basisis unique for such applications due to the subset property between
successive polynomial orders. These new methods are currently under investigation, and
are expected to yield much more accurate results than the current techniques for large
eddy simulations.



APPENDIX A
ADVECTION-DIFFUSION EQUATION: TRELLIS

IMPLEMENTATION

To implement a new equation within Trellis requires that we derive a new analysis class
from the FEAnal ysi s base class (defined in the Trellis library), we cal this class

ADAnal ysi s, and its definition is as follows:

cl ass ADAnal ysis : public FEAnalysis {
publi c:

ADAnal ysi s(Att Case *t heCase);

Fi el d<Scal ar Dof > *scal arFi el d();

Fi el d<Dof Vect or> *di f f usi veFl uxFi el d() ;
SGvbdel *get Model () { return ghbdel; }
virtual ~ADAnal ysis();

pr ot ect ed:

virtual StiffnessContributor

*makeEl enent (MFace &nreshFace);
virtual D screteSystem*systen() const = O;
virtual void setup();

virtual void doSource(Grace *gf, AttributeTensorOr0 *at);

virtual void doFl ux(Gedge *ge, AttributeTensorOrl *at);

virtual void doPrescribedScal ar (GEdge *ge,
AttributeTensorOr0 *at);

Fi el d<Scal ar Dof > *Scal ar Fi el d;
Fi el d<Dof Vect or> *Di f f usi veFl uxFi el d;

The member functions defined here carry out necessary tasks for FE analysis that

are specific to the advection-diffusion equation. Essential boundary conditions are set

up using the function doPr escri bedScal ar and the boundary integral (and natural

boundary conditions) are implemented with the function doFl ux. Finally, the function
doSour ce implements the source term (if one is present). This class contains several
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publ i ¢ data members, to return the results of the ssimulation, and the pri vat e mem-
bers Scal ar Fi el d and Di f f usi veFl uxFi el d. The concept of a field is defined
in detail in Beall and Shephard [4]. A field consists of a collection of interpolations
over the finite element mesh and represents the unknown function we are solving for.
Di f fusi veFl uxFi el disused to store thelocal reconstruction of the diffusive flux.

The core of the work, however, is accomplished by the makeEl enent member
function which is responsible for creating the appropriate system contributors. Its defini-
tionisgiven asfollows:

StiffnessContributor *ADAnal ysis:: nakeEl enent (MFace

&mreshFace)

{

| nt er pol ati on2d<Scal ar Dof > *i nt er p;

/'l create a new interpolation for this

/'l mesh face (el ement)

interp = Scal ar Fi el d->cr eat el nt er pol ati on( &eshFace);

/1l create (then return) a new stiffness contributor for

/'l this el ement

StiffnessContributor *e = new ADSC2d(i nterp);

return e;
}

There are two key lines here, first,

interp = Scal arFi el d->cr eat el nt er pol ati on( &eshFace);

which creates a new interpolation within the field Scal ar Fi el d, and second,

StiffnessContributor *e = new ADSC2d(i nterp);

which defines a new Sti f f nessContri but or for representing the element level
weak form. This stiffness contributor for the advection-diffusion equation is known as
ADSC2d (the 2-D version) and its class definition takes the form:
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cl ass ADSC2d : public Stiffness2d {
publi c:
ADSC2d( | nt er pol ati on2d<Scal ar Dof > *i nterp) ;

/'l residual contributor
void r(VectorAssenbler *a, int order);

/| tangent contri butor
void duO(Matri xAssenbl er *a);

// tinme contributor
voi d dul(Matri xAssenbl er *a);

/'l compute tangent, residual, and mass at an
/1l integration point

For ceVect or residual (const SPoint2 &pt);

El ement Matri x tangent (const SPoi nt2 &pt);

El ement Matri x mass(const SPoint2 &pt);

pr ot ect ed:
| nt er pol ati on2d<Scal ar Dof > *| nt er p;

private:
AttributeTensorOr0 *vel ocity[2];
doubl e di ffusivity;
Stabilization tau;

}

These class members define al the computations that are necessary for the local compu-
tation of the weak form. The first three functionsr, duO, and dul are responsible for
setting up the integration rule for element quadrature for the residual, tangent, and mass
terms, respectively. Then, the integrator (defined in the Trellislibrary) calls, respectively,
resi dual ,t angent , and mass to evaluate the integrand.



APPENDIX B
VISUALIZATION OF HIERARCHICAL SOLUTION DATA

The tools available in the SCOREC mesh database (see Bedll [2]) greatly simplify the
process of creating this “visualization” mesh. Operations such as looping over all mesh
entities classified on a given model entity, and attaching data to mesh entities are used.
The entire procedureis outlined in the following algorithm (written as pseudo-C++ code),
given a single model face to be visualized with nVi s new nodes on each original mesh
edge,

/1l get the tenplate for a triangle
Tri Mesh tri(nVis);

/'l 1 oop over classified nmesh faces

EDLi stlter<Mrace> flter = gface->firstMeshFace(nesh);
Mrace *face;

while (face = flter.next()){

/'l vertex nodes (3 vertices per triangle)
for (j =0; j <3; j++) {
MVertex *vertex = face->vertex(j);
double *gq = solution( vertex );
add ( q );

}

/'l edge nodes (3 edges per triangle)
for (k = 0; k < 3; k++) {
MEdge *edge = face->edge(j);

/'l add new nodes al ong this edge
for (Jj =0; j <tri.numper_edge(); j++) {
double *gq = solution( face, tri.xi(i) );
add ( q );
}
}

// add new nodes on the face
for (j =0; J < tri.numper_face(); j++) {
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double *gq = solution( face, tri.xi(i) );
add ( q);

}
}

This algorithm illustrates the key concepts in the implementation of the local re-
finement. Tri Mesh isa C++ class that provides the uniform mesh of atriangle (nodal
coordinates and element connectivity), which is used for each of the mesh faces, and is

shown in Figure B.1 for the case nVi s= 3. The function “solution” returns the hierar-

A

&2

Y

&1

FigureB.1: Trianglular face mesh template

chical solution evaluated at the desired local coordinate for the given mesh entity, and
“add” adds the new solution values to our global visualization data structure. The num-
ber of new nodes that are added to each mesh edge and face depend on the user-entered
parameter nVi s, and are returned by the Tr i Mesh member functions numper _edge
and numper _f ace, respectively.

The new global mesh is output to the visualization package, and consists of nodal
coordinates and element connectivity for the new mesh. Note that the “add” function
must determine whether or not a node has already been added, so as not to add it multiple
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times, an operation that is conveniently carried out with the mesh database tools to attach
data to an existing mesh entity. Before new datais added, the entity is simply checked to
seeif the datais already there.
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