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Abstract  - The fluid viscosity term of the fluid phase constitutive equation and the interface1

boundary conditions between biphasic, solid and fluid domains have been incorporated into a2

mixed-penalty finite element formulation of the linear biphasic theory for hydrated soft tissue.  The3

finite element code can now model a single-phase viscous incompressible fluid, or a single-phase4

elastic solid, as limiting cases of a biphasic material.  Interface boundary conditions allow the5

solution of problems involving combinations of biphasic, fluid and solid regions.  To incorporate6

these conditions, the volume-weighted mixture velocity is introduced as a degree of freedom at7

interface nodes, so that the kinematic continuity conditions are satisfied by conventional finite8

element assembly techniques.  Results comparing our numerical method with an independent,9

analytic solution for the problem of Couette flow over rigid and deformable porous biphasic layers10

show that the finite element code accurately predicts the viscous fluid flows and deformation in the11

porous biphasic region.  Thus, the analysis can be used to model the interface between synovial12

fluid and articular cartilage in diarthrodial joints.  This is an important step toward modeling and13

understanding the mechanisms of joint lubrication and another step toward fully modeling the in14

vivo behavior of a diarthrodial joint.15

Keywords -- biphasic finite element formulation, fluid viscosity, material interface, Couette16

flow17
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INTRODUCTION1

The biomechanics of diarthrodial joints has been and continues to be of great interest to2

researchers.  It is believed that a better comprehension of the friction, lubrication and wear of3

diarthrodial joints will lead to a better understanding of the pathogenesis of osteoarthritis 7, 15, 18.4

The two materials common to all diarthrodial joints are articular cartilage (a porous, permeable,5

viscoelastic, multi-phase material) and synovial fluid (a non-Newtonian fluid) 17.  Thus, changes6

in the mechanical properties of articular cartilage or the rheological properties of synovial fluid may7

lead to increase friction and wear within the joints, leading to degenerative joint disorders, such as8

osteoarthritis 1.9

Since interstitial fluid flow plays an important role in the deformational behavior of articular10

cartilage, a realistic model of cartilage must incorporate the fluid component as a distinct phase of11

the system within the tissue.  Mow and co-workers 17 have developed a biphasic continuum model12

that can accurately represent the deformational behavior of hydrated soft tissue such as articular13

cartilage or meniscus in the human knee joint.  In order to solve the governing biphasic equations14

for realistic joint mechanics problems with complex geometry and boundary conditions, numerical15

methods, such as the finite element method, must be used.  Various finite element formulations of16

the biphasic theory have been developed corresponding to the linear biphasic theory 19, 20, 25, the17

nonlinear biphasic theory including strain-dependent permeability 21 and finite deformation18

theories 22, 23.  However, these formulations consider only the biphasic soft tissue and do not19

include the dynamic interaction between the articular cartilage and its surrounding fluid.20

Understanding the modes of diarthrodial joint lubrication requires an analysis incorporating21

both the soft tissues and the synovial fluid, including proper formulation of the boundary22

conditions at the interface between articular cartilage and synovial fluid.  In the context of the23

biphasic theory, Hou et al. 10 have derived the boundary conditions at the interface between a24

viscous fluid and a biphasic material.  In Hou's study, single-phase continua such as solid or fluid25
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are modeled as a mixture with only one phase.  Thus the interfacial conditions derived for the1

mixture theory are also applicable to the boundary between mixtures and single-phase continua.2

These boundary conditions are derived from balances of mass, momentum and energy and must be3

consistent with the imposed kinematic boundary conditions.  In addition, the imposed kinematic4

boundary conditions must reduce to the kinematic conditions in single phase continuum mechanics5

when mixtures reduce to single phase continua.6

While biphasic contact finite element formulations 6 and analytic contact solutions 3, 4 do7

exist, these do not account for fluid viscosity.  Few studies have used numerical investigations to8

understand the importance of synovial fluid in joint lubrication, for example 8, 9, 12, 24.  In the9

present study, both fluid viscosity and the boundary conditions at the cartilage-synovial fluid10

interface 10 will be incorporated into the mixed-penalty finite element formulation 19 of the linear11

biphasic theory.  This will be done by introducing a volume-weighted mixture velocity as a degree12

of freedom at the interface nodes.  With proper treatment of the constraints and the assembly of13

elements, the interface kinematic boundary conditions are satisfied exactly in the finite element14

solution.  We will then investigate problems that involve solid, fluid, and biphasic regions.15

LINEAR BIPHASIC THEORY WITH VISCOUS FLUID16

In this study, viscosity is added to the fluid phase of the linear biphasic theory so that17

single phase continua can be treated as limiting cases in which the solid or fluid content is zero.18

The subchondral bone will be modeled as an elastic solid and the synovial fluid as a viscous fluid.19

In the linear biphasic model, the phases are assumed to be immiscible, incompressible and to20

undergo small deformations.  The governing differential equations of the linear biphasic model21

with a viscous, incompressible fluid for a material domain W having volume V with boundary22

G are (in tensor form) 17:23

— ◊f svs + f f v f( ) = 0 (1)24

— ◊ssss a + PPPP a = 0, a = s, f (2)25
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ssss s = -f s pI + Cseeee s (3)1

ssss f = -f f pI + Cf ˙ eeee    f (4)2

PPPP s = -PPPP f = K v f - v s( ) . (5)3

They correspond to the continuity equation for the mixture (1), momentum equations for each4

phase (2), constitutive equations (3),(4) and the diffusive drag force (5).  The superscripts 'f' and5

's' denote quantities associated with the fluid and solid phases respectively, fs and ff are volume6

fractions which sum to unity, v is the velocity vector, ssss is the Cauchy stress tensor, Ca are the7

fourth-rank tensors of material coefficients, PPPP is the diffusive momentum exchange between the8

two phases, p is the apparent pressure, eeee is the infinitesimal strain tensor, ˙ eeee     is the rate of9

deformation tensor and K is the diffusive drag coefficient 14:10

K =
f f 2

k
, (6)11

with k the tissue permeability constant.  Note that Cs has only two independent terms for the12

linear, isotropic solid phase, and Cf will have only the fluid viscosity term, mf, multiplying the rate13

of deformation, for the viscous, incompressible, Newtonian fluid considered here.  Boundary14

conditions on solid displacements, fluid velocities, solid traction and fluid traction are required on15

the surfaces G us

, G u f

, G s s

 and G s f

, respectively.  To complete the problem definition the16

appropriate initial conditions must also be specified; these will be specified in the context of each17

example problem.  From the above equations the finite element formulation of the linear biphasic18

theory with a viscous fluid can now be developed.19

FINITE ELEMENT FORMULATION20

Mixed-Penalty Formulation21

The mixed-penalty formulation of Spilker and Maxian 16, 19 for the linear biphasic theory22

is extended here to allow for viscosity in the fluid phase of the biphasic material.  Most details of23
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the formulation are omitted here since they are similar to the derivation without viscosity 5, 16, 19.1

In the mixed-penalty formulation, the continuity equation is replaced by the penalty form,2

— ◊ +( ) + =f f
b

s s f f p
v v 0 , (7)3

where b is a user-defined penalty number.  In the Galerkin weighted residual method, this penalty4

form of the continuity equation, the momentum equations and natural boundary conditions are then5

each multiplied by an appropriate weighting function, integrated over the domain, summed together6

and equated to zero7

wc — ◊ f svs + f f v f( ) +
p

b
È 

Î 
Í 

˘ 

˚ 
˙ dW

W
Ú +

w s — ◊ssss s + PPPP s( )dW
W
Ú + w f — ◊ssss f + PPPP f( )dW

W
Ú +

h
G s s

Ú
s

ssss sn - t s( )dG + h
G s f

Ú
f

ssss f n - t f( )dG = 0

. (8)8

Equations (3) through (6) are substituted into the weighted residual, Eq. (8), and the divergence9

theorem is applied to the terms containing derivatives of stress.  By proper manipulation the weak10

form of the weighted residual is obtained, after which the finite element discretization can be11

applied.  This weak form contains solid displacement, solid velocity, fluid velocity and pressure as12

independent field variables.  To guarantee that all the integrals in the weak form remain finite, the13

solid and fluid velocities/displacements are assumed to be C0 continuous, while the pressure is14

allowed to be discontinuous between elements.15

The field variables are interpolated within the element in terms of a corresponding set of16

nodal values in the following form:17

u s = N sd es, v s = N sves , v f = N f vef , p = Npp
e , (9)18

where des, ves and vef are the nodal solid displacements, nodal solid velocities and nodal fluid19

velocities for a typical element ‘e’ and pe is the vector of coefficients of the the pressure20
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interpolation for an element.  In general, the interpolation functions used for the solid and fluid1

phases are the same, so we set Ns=Nf=N.  Since this is a Galerkin approximation, the2

interpolation used for the weighting functions are the same as those used for the field variables,3

with wes, wef and wec as arbitrary coefficients for element ‘e’.  For a finite element program, the4

stress and strain tensors are represented as vectors, and the corresponding fourth-rank tensors of5

material coefficients are represented as square matrices.  In this reduced index form, the matrix B6

will represent the symmetric gradient operation on the spatial interpolation, N, and the vector m7

will be the representation of the Kronecker delta.8

The element interpolations are substituted into the weak form of the weighted residual,9

producing the following set of matrix equations:10

wesT

wef T

wec T

Ï 

Ì 
Ô 

Ó 
Ô 

¸ 

˝ 
Ô 

˛ 
Ô e

Â
c -c 0

-c c + k ef 0

-f sa T -f f aT 0

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

ves

vef

0

Ï 

Ì 
Ô 

Ó 
Ô 

¸ 

˝ 
Ô 

˛ 
Ô 

+

wesT

wef T

wec T

Ï 

Ì 
Ô 

Ó 
Ô 

¸ 

˝ 
Ô 

˛ 
Ô e

Â
k es 0 -f sa

0 0 -f f a

0 0 1
b k p

È 

Î 

Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 

d es

0

p e

Ï 

Ì 
Ô 

Ó 
Ô 

¸ 

˝ 
Ô 

˛ 
Ô 

=
wesT

wef T

wec T

Ï 

Ì 
Ô 

Ó 
Ô 

¸ 

˝ 
Ô 

˛ 
Ô e

Â
f es

f ef

0

Ï 

Ì 
Ô 

Ó 
Ô 

¸ 

˝ 
Ô 

˛ 
Ô 

, (10)11

where the element submatrices are defined as:12

a = mB( )T
NpdW

W e

Ú (11)13

k ea = BT C
a

BdW, a = s, f
W e

Ú (12)14

c = KNT NdW
W e

Ú (13)15

k p = N p
TNpdW

W e

Ú , (14)16

and all other terms are as defined before.  The current formulation differs from the original mixed-17

penalty formulation 16 by the addition of the fluid stiffness term, kef.18

Because pressure is discontinuous between elements, the pressure coefficients, pe, can be19
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eliminated at the element level by using the last equation in matrix equation (10).  This produces the1

final set of matrix equations for the mixed-penalty formulation:2

wesT

wef T

Ï 
Ì 
Ô 

Ó Ô 

¸ 
˝ 
Ô 

˛ Ô 
b

f s2

A f sf f A

f sf f A f f 2

A

È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 

+
c -c

-c c + k ef

È 

Î 
Í 

˘ 

˚ 
˙ 

Ï 
Ì 
Ô 

Ó Ô 

¸ 
˝ 
Ô 

˛ Ô e
Â ves

vef

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

+

wesT

wef T

Ï 
Ì 
Ô 

Ó Ô 
¸ 
˝ 
Ô 

˛ Ô 
k es 0

0 0

È 

Î 
Í 

˘ 

˚ 
˙ 

e
Â d es

0

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

=
wesT

wef T

Ï 
Ì 
Ô 

Ó Ô 
¸ 
˝ 
Ô 

˛ Ô 
f es

f ef

Ï 
Ì 
Ó 

¸ 
˝ 
˛ e

Â
, (15)3

where A=akp
-1aT.4

The element matrices are then assembled into their respective global matrices by the5

standard Boolean assembly operator.  Then, for arbitrary weighting functions, the assembled6

coefficients of the weighting functions must be nonzero and the mixed-penalty formulation of the7

linear biphasic theory with viscous fluid produces the following system of first order differential8

equations,9

Cv + Kd = F, (16)10

where C includes the penalty terms, diffusive drag and fluid viscosity, and K is the assembled11

counterpart of the block two-by-two element stiffness matrix.  The vectors d and v are the12

assembled degree of freedom vectors and F is the assembled force vector.  At the global level, the13

ordering of the degrees of freedom in d and v are different from the ordering at the element level.14

For computational efficiency when performing element integrals, the degrees of freedom at the15

element level are ordered as all solid degrees of freedom followed by all fluid degrees of freedom.16

At the global level, the degrees of freedom are ordered alternately as solid and fluid degrees of17

freedom for each node.18
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Solution of the System of Equations1

The system of equations in Eq. (16) is solved using finite difference techniques.  Given2

times tm+1 and tm separated by a time increment Dt=tm+1 – tm, the system of equations at time tm+1 is3

solved using the generalized trapezoidal family of first order finite difference rules 11.4

d m +1 = d m + Dtvm +w

vm +w = 1 -w( )vm + wvm +1, w Œ 0,1[ ] (17)5

Writing  Eq. (16) at t=tm+1 and substituting from Eq. (17) yields the following set of matrix6

equations to be solved at each time step:7

C K v F K d v+( ) = - + -( )( )+ +w wD Dt tm m m m1 1 1 . (18)8

Once a set of initial conditions is given, this set of equations can be solved recursively.  In our9

study, an unconditionally stable implicit rule (w ≥ 1/2) is used 21.10

Selection of Penalty Number11

The penalty term, b, is a user-defined number that should be large enough to enforce12

constraint conditions yet not so large that the solution of the governing equations become ill-13

conditioned.  Through earlier investigations on penalty formulations of the linear biphasic14

theory21, and extensions for a viscous fluid phase, we choose the penalty term according to the15

following guideline :16

b = ct0

ls + 2m s

f s + c
m f

f s , (19)17

where t0 is a reference time (e.g. ramp time), c is a computer-dependent parameter related to the18

accuracy of the numerical calculations (c is usually chosen in the range 107 to 109), l and m are the19

solid phase Lamé parameters and mf is the viscosity of the fluid.  Recognize that for parameters20

representative of articular cartilage, the second term above can be neglected.  It has been observed21

that variations in b by ±2 orders of magnitude have negligible affect on the solution.22
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In the limiting case of a single phase fluid, however, the penalty number is chosen1

according to the criteria established for penalty solutions of viscous incompressible flows 11:2

b = cm f , (20)3

where mf  and c are as described above.4

FINITE ELEMENT FORMULATION OF THE INTERFACE5

BOUNDARY CONDITIONS6

The development of the interface boundary conditions can be found in Hou et al. 10.  Since7

both the solid and fluid phases for the biphasic mixture are intrinsically incompressible, the jump8

condition for the mass across a surface of discontinuity is9

f svs + f f v f[ ][ ] ◊n = 0, (21)10

where [[()]] represents the jump in quantity (), n is the normal to the surface of discontinuity and11

the argument here is the volume-weighted mixture velocity.  In order to account for the viscous12

interactions at the interface, an additional kinematic boundary condition has to be imposed.  For13

viscous fluids, the "no-slip" condition at the fluid/solid interface must be specified.  Under14

ordinary circumstances, viscous fluids adhere to solid (non-porous) surfaces, such that15

lim
xÆ xs

v f (x) = vsurface(x s ), (22)16

where xs is the coordinate for the surface and vsurface is the velocity of the surface.  Since a single-17

phase material is treated as a special case of a biphasic medium, it is proposed that all kinematic18

boundary conditions at a surface of discontinuity within a biphasic material reduce, in the limiting19

case of ffÆ0 on one side of the surface and fsÆ0 on the other side, to the condition described in20

Eq. (22).21

The following jump condition satisfies the above condition:22

˜ f svs + ˜ f f v f[ ][ ] ◊ tttt = 0, (23)23
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where ˜ f s  and ˜ f f  are the surface area fraction of the solid and fluid phases respectively, and tttt is1

any tangent vector of the surface.  Since the pore structure of articular cartilage is assumed to be2

isotropic, the area fractions can be shown to be equivalent to the volume fractions.  The jump3

condition in Eq. (23) is called a "pseudo-no-slip" boundary condition because it allows the solid4

and fluid phases to have different velocities at the interface.  Combining Eqns. (21),(23), a single5

vector equation for the volume-weighted mixture velocity is obtained:6

f svs + f f v f[ ][ ] = 0 . (24)7

We now consider the choice of element degrees of freedom that will facilitate the8

enforcement of the interface continuity conditions.  The nodal degrees of freedom for an element9

have been defined as containing first the solid degrees of freedom for all nodes in the element, then10

the fluid degrees of freedom.  The traditional assembly of these degrees of freedom along an11

interface would satisfy continuity of velocity, but would not satisfy the interface conditions12

between two dissimilar materials.  By equating the solid nodal velocities at the interface, the13

condition that the solid velocities be continuous across a discontinuity (interface) is properly14

satisfied.  However, the fluid velocity across a discontinuity need not be continuous, and thus the15

standard biphasic finite element analysis will impose an incorrect interface condition.  In what16

follows, we define a method for properly accounting for the interface boundary conditions.17

Figure 1 shows a section of a finite element mesh at an interface.  Some of the terms that18

will be used in the discussion that follows are defined in this figure.  Note that an interface element19

is an element that contains at least one interface node.20
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interface
boundary

non-interface
node

interface
node

non-interface
element

interface
element

1
Figure 1.  Portion of an arbitrary finite element mesh at an interface between two dissimilar2
materials.  An interface element is one which contains at least one interface node.  For the3
present formulation, we imploy a quadratic, six-node velocity interpolation and a linear,4
discontinuous pressure interpolation.  The pressure interpolation is not directly affected by5
our interface methodology, and is not shown.6

For purposes of this discussion the degrees of freedom for an element are reordered to7

contain the solid degrees of freedom for the first node, then the second, and so on, followed by a8

similar collection of the fluid degrees of freedom.  At a node, the solid or fluid degrees of freedom9

are ordered according to the basis vectors, either {x,y} or {r,z} for the two dimensional case.10

Thus, the degrees of freedom for node ‘a’ of element ‘e’ are11

va
e =

va
es

va
ef

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

. (25)12

In order to satisfy the kinematic jump condition in Eq. (24), the volume-weighted mixture13

velocity is introduced as a degree of freedom for nodes at an interface, replacing the fluid phase14

velocity degree of freedom.  The degrees of freedom at the interface nodes become15

va
e * =

va
es

f sva
es + f f va

ef

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

. (26)16
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The two sets of element degrees of freedom are related by the following transformation1

ve = Tve *, (27)2

where the transformation, T, is defined below.  The element matrices are constructed based on the3

original set of degrees of freedom, then transformed according to the above relation, yielding4

Q* = TTQT . (28)5

Here Q is an arbitrary original interface element matrix, Q* is the transformed element matrix6

expressed in terms of the new set of degrees of freedom, and T is defined as7

T =

T1
ss T1

sf

T2
ss T2

sf

O O

Tnen

ss Tnen

sf

T1
fs T1

ff

T2
fs T2

ff

O O

Tnen

fs Tnen

ff

È 

Î 

Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 

, (29)8

where the submatrices are the transformations for node ‘a’ ranging from 1 to the number of9

element nodes, nen, and the terms not listed are null.  For nodes that are not on the interface, the10

nodal degrees of freedom do not have to be transformed.  Thus, the submatrices on the main11

diagonal of T are identities and those off the diagonal are null for these nodes.  For interface12

nodes, the submatrices are obtained from the transformation of the old nodal degrees of freedom to13

the new.  The submatrices in the transformation will differ depending on whether the element14

having a node on the interface is in a region of the continuum corresponding to a biphasic material,15

a single phase viscous fluid, or a single phase elastic solid.  If the element is in a biphasic region16

the matrices are17
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Ta
ss = I, Ta

sf = 0

Ta
fs =

-
f s

f f 0

0 -
f s

f f

È 

Î 

Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 
, Ta

ff =

1
f f 0

0
1

f f

È 

Î 

Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 

. (30)1

For a single phase fluid region no contribution comes from the solid terms.  In order to eliminate2

the solid contributions at fluid interface nodes all of the submatrices will be null except for the Tff3

terms, which will be identities.  For a single phase solid region the Tss terms will be identities, and4

the remainder will be null.  With the interface element matrices transformed, their contributions5

must be properly assembled into the global matrices and the appropriate constraints applied in order6

to satisfy the interface boundary conditions in Eq. (24), which includes the "pseudo-no-slip"7

condition.8

When transformed interface degrees of freedom from the local nodes of two different9

elements are assembled into their global positions, special considerations are still necessary.  For10

non-interface nodes on an interface element, or interface nodes between two dissimilar biphasic11

materials, the local contributions simply go to the corresponding global locations.  For an interface12

between a biphasic material and a single-phase fluid, the contributions still go to the standard13

locations, but note that the fluid node is contributing zeros to the global solid degree of freedom14

and the biphasic node contributes the weighted mixture velocity to the global fluid degree of15

freedom.  For an interface between solid and biphasic regions the solid velocities from each region16

are assembled together into the global interface degree of freedom to satisfy the continuity of the17

solid across the interface.  The volume-weighted mixture velocity degree of freedom from the18

biphasic element is also assembled into the global solid degree of freedom to satisfy the jump19

condition of Eq. (24).  This leaves the global fluid interface degree of freedom of this node with no20

contributions, thus this degree of freedom must be constrained to zero at the global level.  For a21

single-phase fluid and single-phase solid interface, the no-slip condition must be also be satisfied.22

The fluid degree of freedom from the fluid element and the solid degree of freedom from the solid23
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element are each assembled into the global solid degree of freedom.  By doing this, we equate the1

fluid velocity of the node on the fluid side of the interface with the solid velocity of the node on the2

solid side, thus satisfying the no-slip condition and the jump condition.  The global fluid interface3

degree of freedom of this node is left with no contributions from the element level and therefore4

must be constrained to zero.5

For single-phase fluid and single-phase solid, additional constraints are applied.  For a6

single-phase fluid, all solid degrees of freedom that are not prescribed or on an interface are7

constrained to zero (since there is no contribution of the solid phase in this region).  Similarly, the8

fluid degrees of freedom of a single-phase solid are also constrained to zero (since there is no9

contribution of the fluid phase in this region) with the exception of those that are prescribed or on10

an interface.  With the interface boundary conditions implemented in this fashion, the finite element11

code can model any combination of solid/fluid/biphasic material interfaces.12

EXAMPLE PROBLEMS AND RESULTS13

Couette Flow over a Rigid Porous-Permeable Layer14

The boundary conditions derived by Hou 10 have been used in that study to formulate the15

classical Taylor problem of Couette flow over a rigid, porous-permeable medium.  In this problem,16

the steady viscous fluid flowing over and inside the porous-permeable layer is sustained by the17

movement of the upper boundary of the fluid layer with a speed Vo , as illustrated in Figure 2.18

The porous layer is assumed to be rigid and stationary and thus the velocity and displacement of19

the porous layer are zero.  The moving plate and the porous layer are also assumed to be infinite in20

the x direction.21
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Rigid Porous Layer

x

y

0

Rigid Moving Plate

Fluid Channel

Rigid Wall

h1

h2-

Vo

1
Figure 2.  Schematic diagram of Couette flow over a porous-permeable layer.  The finite2
element model will contain only the fluid channel and rigid, porous layer.  Solid velocity is3
set to zero at all boundaries of the model.  Fluid velocity is prescribed to V0 at the top of the4
fluid channel, and zero at the bottom of the porous layer, and is unknown at the left and5
right edges.6

The analytical solution of this problem states that the fluid flux depends on the following7

flow and geometric parameters 10:8

d =
m a

h2
2K

, x =
h1

h2

, h =
f f 2

m f

m a , (31)9

where d is a measure of viscous drag of the outside fluid relative to the diffusive drag of interstitial10

fluid within the porous medium, x is the thickness ratio of the viscous fluid layer relative to the11

porous solid layer and h defines a weighted viscosity ratio; mf is the viscosity of the fluid in the12

channel and ma is the apparent viscosity of the fluid in the porous layer.  For low values of d (<13

0.02), the amount of fluid flow in the porous layer is small and the boundary layer that develops at14

the surface will be narrow.  Therefore, for purposes of validating the finite element code the15

combination of material parameters chosen will be such that d is not too small.16

In this problem, the rigid porous layer will be modeled as a biphasic material (ff=0.8) with17

high elastic modulus (ls=1.0 GPa, ms=3.0 GPa); the viscous fluid will be modeled as a limiting18

case of a biphasic material (ff=1) with a viscosity of 1.0Ns/m2 (the viscosity of synovial fluid 13).19

The solid velocity is set to zero on the entire boundary, while fluid velocity is prescribed across the20

top of the fluid layer (y=h1), unknown at the left and right edges and zero at the bottom (y=-h2).21
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This problem assumes the porous layer and the plate to be infinite in length, therefore the length to1

height ratio for the geometry must be large.  Since the solid displacement is assumed to be zero,2

only the height of the single-phase fluid layer is taken into account in determining the length-to-3

height ratio.  The results show that this is a valid representation of the infinite length.4

A finite element mesh manually graded toward the interface is used, and has been5

determined to produce converged solutions.  Figure 3 shows the normalized fluid flux, f f vx
f / V0 ,6

versus the dimensionless coordinate y
h2

 for the problem of Couette flow over a rigid porous solid7

with x = 0.25, h = 1.0 and d = 0.1.  The results obtained for this problem show excellent8

agreement with the analytical solutions.  Since the solid degrees of freedom in the porous solid are9

not constrained to zero in the finite element mesh, solid displacements are also obtained from the10

analysis.  These calculated displacements, however, are negligible, in agreement with the11

assumption that the material is rigid.12
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Figure 3.  Finite element solution (symbols) and analytical solution (line) of the fluid flux14
profile in the fluid channel and in the rigid porous layer (corresponding to Figure 2) with h15
= 1 and d = 0.1.16

Figure 4 show the finite element analyses and analytical solutions for two other cases.17

Though the material parameters for these cases may not model any particular material, the results18
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are instructive in that they show that the finite element code is valid for a wide range of parameters.1

The first case, with h=16.0 and d=0.1, shows that even for a large continuous change in fluid flux2

across the interface, the finite element code will give excellent results.  The case with h=1.0 and3

d=0.02 is more representative of what will be encountered with flow over and within a biphasic4

soft tissue.5
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Figure 4.  Finite element solution (symbols) and analytical solution (line) of the fluid flux7
profile in the fluid channel and in the rigid porous layer (corresponding to Figure 2) for two8
different cases.9

Couette Flow over a Deformable Biphasic Layer10

Using the boundary conditions derived by Hou, the analytical solution for Couette flow11

over a deformable biphasic medium has been developed 2.  An example of a deformable biphasic12

medium would be articular cartilage.  Typical values of d for normal cartilage are in the range of13

10 104 5- -- .  For such small values of d, the amount of fluid flow in the biphasic layer will be very14

small for the present problem and the boundary layer that develops near the surface will be15

extremely narrow.  As a result, the code will be validated using a value of d=0.1.16

The schematic diagram of this flow problem is the same as that in Figure 2 with the rigid17

porous layer now being deformable.  The single-phase viscous fluid is given a viscosity of18
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1.0Ns/m2 (the viscosity of synovial fluid 13).  For this example the porous deformable media will1

be modeled as a biphasic material with the material parameters chosen so that d=0.1 and h=1.02

(ls=0.1 MPa, ms=0.3 MPa, fs=0.2, k=1.6¥10-9m4/Ns and ma=0.64Ns/m2).  These properties are3

well within the norms for human articular cartilage 17.  The boundary conditions for this problem4

are as before, with the exception that the solid velocities are now unknown on the left and right5

edges of the model.  Since the solid is deformable and the height of the biphasic layer is greater6

than the fluid layer, the height of the biphasic layer is used in determining the length-to-height ratio7

of the geometry.  A ratio of 10:1 for the length to biphasic layer height is used to produce the8

results in Figures 5 and 6.9
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Figure 5.  Finite element solution (symbols) and analytical solution (line) of the normalized11
fluid flux profile in the fluid channel and in porous medium with h = 1.0 and d = 0.1.12
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Figure 6.  Finite element solution (symbols) and analytical solution (line) of the normalized2
solid displacement profile of the deformable porous medium with h = 1.0 and d = 0.1.3

Figures 5 and 6 show the results obtain for the Couette flow over a deformable porous-4

permeable medium.  Figure 5 shows the normalized velocity profile, f f vx
f / V0 , in the fluid channel5

and in the biphasic medium.  Figure 6 show the normalized solid displacement profile of the6

deformable biphasic material.  In this problem the normalized displacement is defined as the solid7

displacement divided by the height of the deformable biphasic material, ds/h2.  The finite element8

solution for both the fluid flux and solid displacement agree with the analytical solution.9

SUMMARY AND CONCLUDING REMARKS10

The fluid viscosity and interface boundary conditions have been added to the mixed-penalty11

formulation of the linear biphasic theory for soft tissue and have been implemented into the finite12

element code.  The purpose of adding viscosity to the fluid phase is to be able to model a single-13

phase, viscous fluid as a limiting case of a biphasic material.  The addition of interface boundary14

conditions allows us to model problems involving viscous incompressible fluids, elastic solids,15

and biphasic materials, such as would be found in a diarthrodial joint.  A volume-weighted mixture16

velocity is introduced as a nodal degree of freedom for nodes on an interface.  With proper17
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treatment of the constraints and of the assembly of elements, the interface kinematic boundary1

conditions set forth by Hou 10 are satisfied exactly in the finite element solution.2

The finite element code can now model any combination of interfaces involving viscous3

incompressible fluids, elastic solids and biphasic materials.  This is a first step toward modeling4

the mechanisms of joint lubrication.  Consideration should now be given to solving problems5

representative of diarthrodial joint lubrication.  For example, the problem of two opposing biphasic6

layers separated by a layer of viscous incompressible synovial fluid is fundamental to the7

understanding of joint lubrication.  The finite element program can be used to solve this problem8

up to the time when the biphasic tissues come into contact, after which the biphasic contact9

approach of Donzelli and Spilker 6 must be used.10
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FIGURE LEGENDS1

Figure 1.  Portion of a finite element mesh at an interface between two dissimilar materials.2
An interface element is one which contains at least one interface node.3

4
Figure 2.  Schematic diagram of Couette flow over a porous-permeable layer.  The finite5
element model will contain only the fluid channel and rigid, porous layer.  Solid velocity is6
set to zero at all boundaries of the model.  Fluid velocity is prescribed to V0 at the top of the7
fluid channel, and zero at the bottom of the porous layer, and is unknown at the left and8
right edges.9

10
Figure 3.  Finite element solution (symbols) and analytical solution (line) of the fluid flux11
profile in the fluid channel and in the rigid porous layer (corresponding to Figure 2) with h12
= 1 and d = 0.1.13

14
Figure 4.  Finite element solution (symbols) and analytical solution (line) of the fluid flux15
profile in the fluid channel and in the rigid porous layer (corresponding to Figure 2) for two16
different cases.17

18
Figure 5.  Finite element solution (symbols) and analytical solution (line) of the normalized19
fluid flux profile in the fluid channel and in porous medium with h = 1.0 and d = 0.1.20

21
Figure 6.  Finite element solution (symbols) and analytical solution (line) of the normalized22
solid displacement profile of the deformable porous medium with h = 1.0 and d = 0.1.23

24
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