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Boundary layer mesh generation for
viscous flow simulations
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SUMMARY

Viscous flow problems exhibit boundary layers and free shear layers in which the solution gradients, normal
and tangential to the flow, differ by orders of magnitude. The generalized advaricing layers method is presented
here as a method of generating meshes suitable for capturing such flows. The method includes several
new technical advances allowing it to mesh complex geometric domains that cannot be handled by other
techniques. It is currently being used for simulations in the automotive industry. Copyright © 2000. John
Wiley & Somns, Ltd. '
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1. INTRODUCTION

Many physical problems exhibit relatively strong gradients inr certain’ local directions compared
to the other directions. Some examples of such situations are thermal and fluid boundary layers,
and non-linear solutions in domains with very thin sections. A minimum clement size along these
directions is necessary to capture the solution in these regions. Anisotropic meshes with small ele-
ment sizes in the directions of strong gradients and large sizes along the others leads to significant
savings in mesh size and solution costs.

High Reynolds number flyid flow simulations have boundary layers at the wall and-also free
shear layers not attached to any model boundary. The relative rates at which the solution vari-
ables change in boundary and'shear layers, normal and tangential to the flow, differ by orders of
magnitude in such problems. Use of properly aligned anisotropic meshes in these cases is essential.

A generalization of the advancing layers method.[1-4] is presented here for generating boundary
layer meshes. The method is designed to efficiently and reliably generate good quality anisotropic
tetrahedra near the boundary layer surfaces for arbitrarily complex non-manifold domains starting
from a surface mesh. The method has several improvements over the previous advancing layers
techniques. It is demonstrated that the common strategy of inflating the surface mesh as is to
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194 R. V. GARIMELLA AND M. S. SHEPHARD

form the boundary layer leads to invalid meshes for some non-manifold models and poor quality
elements at sharp corners in 2-manifold models. Various procedures are described to make the
boundary layer elements valid and- to ensure that the mesh is not self-intersecting. The improve-
ments incorporated into the method has enabled it to be used successfully to generate boundary
layer meshes for geometrically complex industrial models.

The rest of this paper is organized in the following manner. A review of the previous efforts
in anisotropic mesh generation is presented in Section 2. Definitions and notations are described
in Section 3. Section 4 presents an overview of the generalized advancing layers method used
here. Section 5 discusses point placement for boundary layer meshing of arbitrarily complex non-
manifold geometric domains. Section 6 describes techniques to enmsure that the boundary layer
elements generated will be valid while the creation of boundary layer elements is presented in
Section 7. Section 8 discusses the method used to guarantee that the boundary layer mesh is not
self-intersecting.

2. REVIEW OF MESH GENERATION FOR VISCOUS FLOW SIMULATIONS

Direct generation of unstructured anisotropic meshes has been attempted with both Delaunay
[5-8] and advancing front methods [9—11]. The Delaunay criterion itself will always define as
isotropic a mesh as possible for a given set of points within the space in which they are defined.
Therefore, efforts on generating anisotropic meshes using the Delaunay method have focused on
meshing in a transformed space using metrics which will yield an anisotropic mesh in the real
space.

Mavripilis [12] presented a method for anisotropic adaptation of triangular meshes constructing
a metric based on two independent stretch vectors at each point. Using this metric the local space
is mapped to a control surface in a transformed higher dimension space in which a Delaunay
triangulation is performed. :

Vallet et al. [13] have proposed a similar idea for the initial mesh generation process as well
as adaptation. George et al. [5, 6, 14] have generalized the ideas of generating anisotropic mesh
generation by the Delaunay method using metric specifications. Also, the metrics are modified
near viscous walls to keep the mesh as orthogonal to the wall as possible and maintain a certain
minimum distance of the first node from the wall.

Hassan. et al. [15] have used a modified advancing front method to generate anisotropic meshes
where a layer of elements is generated from a front using isotropic criteria and compressed to
the desired thickness. While this method worked well in 2D, it is prone to problems in 3D [16].
Hassan et al. [16] have also devised a variation of the advancing front method for boundary layer
mesh generation. In this method, the standard advancing front procedure is adapted to place new
vertices at the offsets required to generate anisotropic elements.

Marcum and Weatherill [17] have described an approach for unstructured grid generation for
viscous flows using iterative point insertion followed by local reconnection subject to a quality
criteria. The point distribution for the anisotropic mesh is generated along ‘normals’ to surfaces
according to user specifications or error estimates. The most interesting aspect of this work is that
they account for sharp ‘discontinuities’ at edges and vertices and generate points along additional
directions in such cases.

Most of the work in generating meshes for viscous flow simulations has been in the direction
of generating an anisotropic mesh next to surfaces wheire a boundary layer is expected and then
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filling the rest of the domain by an isotropic mesh generator. The advancing layers method starts
from a triangulation of the surfaces on which the boundary layer mesh must be grown. From each
surface node a direction is picked for placing the nodes of the anisotropic mesh. These nodes
are connected to form layers of prisms (if necessary, subdivided into tetrahedra) on top of each
surface triangle.

Lohner 3] described one of the early efforts for combining layers of anisotropic tetrahedronized
prisms grown on some model boundaries with an unstructured isotropic mesh generated by an
advancing front method in the rest of the domain. The procedure detects poorly shaped, improperly
sized and intersecting elements, and deletes them. A recent paper by Léhner [18] advocates the use
of anisotropic refinement of an isotropic mesh using the Delaunay criterion to generate boundary
layer meshes. )

Kallinderis et al. [2, 19] have developed a hybrid prismatic/tetrahedral mesh generator by en-
closing the body around which the flow is to be simulated with layers of prisms and then filling
the rest of the domain using a combination of octree and advancing front methods. The procedure
incorporates an algorithm to ensure that the interior nodes of the prisms are ‘visible’ from all the
relevant faces of the previous layer [2]. Included in this method is a procedure to automatically
recede and smoothly grade layers in confined regions of the model based on ray tracing methods
[19]. Sharov and Nakahashi [20] have described a similar method with some modifications for
generating better elements and for generating all tetrahedra.

Pirzadeh [4] describes a similar approach called the advancing layers method (ALM) for the
generation of anisotropic meshes for viscous flow calculations. The significant features of this
work are: (1) introduction of prism templates, (2) a non-iterative procedure for obtaining valid
diagonals for the prisms, (3) an iterative procedure for obtaining valid directions for placement of
points and (4) a procedure for avoiding interfererice between layers.

Connell and Braaten [1] described an implementation of the advancing layers procedure with
enhancements to deal with general domains. Their work discusses many of the fundamental issues
with mesh generation for viscous flow simulations using the advancing layers methods. The paper
details an algorithm to ensure that all prisms have a valid set of diagonals. Also, discussed is a
technique, for grading the boundary layer mesh to avoid exposing highly stretched faces to the
isotropic mesh generator when elements are deleted. They also discuss the interference of layers,
varying thickness boundary layers and resolution of wakes.

The advancing layers algorithms reviewed above posses the following complexities:

1. They cannot deal with general non-manifold situations.
2. They do not account for general interactions of the boundary layer mesh with adjacent

surfaces.

3. They may produce poor-quality meshes in the presence of sharp discontinuities in the surface
normals. ‘

4. They do not sufficiently address the issue of interaction of anisotropic faces of the boundary
layer mesh with the isotropic mesh. ‘

5. They do not provide assurance algorithm for non-interference of boundary layers.

The research described herein is a generalization of the advancing layers method mentioned
above corubined with an isotropic mesh generator based on a combination of advancing front and
Delaunay methods [21, 33]. It addresses many of the issues that arise for complex non-manifold
models enabling it to reliably mesh these domains.
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3. DEFINITIONS AND NOTATIONS

3.1. Geomerric model definitions and concepts

Geometric models may be 2-manifold or non-manifold. Informally, non-manifold models are gen-
eral combinations of solids, surfaces and wires [22, 23]. Geometric model entities are denoted here
by G¢, representing the ith geometric model entity of order d (d=0,1,2,3 for vertices, edges,
faces and regions, respectively).

The data structure used to represent the model in this work is based on the radial edge data
structure [23] which presents the idea of uses to represent how topological entities are used by
others in a non-manifold model. Every face in the model has two face uses, one on each side of
the face. An edge carries as many pairs of uses as there are pairs of face uses coming into it. A
vertex carries ‘as many uses as there are edge uses coming into it. The radial edge data structure
is more detailed than the minimum amount of information required to represent non-manifold
models. The representation can be reduced by fusing edge uses together to form a single ‘edge
use’ connected to two face uses. Similarly, vertex uses are condensed so that the minimum number
of uses are present at any vertex. Such a data structure is referred to as the minimal use data
structure [24]. '

3.2. Mesh definitions and concepts

The representation for the mesh [25-27] used here consists of mesh vertices, edges, faces and
regions (and if necessary, their uses). Mesh entities are denoted by M, referring to the ith mesh
entity of order d (d =0,1,2,3 for vertices, edges, faces and regions, respectively). Each entity in
the mesh has a unique classification with respect to the model.

Definition 3.1. Classification is the unique association of a mesh entity, ]\/[,fii, to a geometﬁc
model entity, G;Z’ (d; <dj;) to indicate that Ml-d" forms part or all of the discretization of Gj" but
not its boundary. The classification operator is denoted by T and Mid’ C G;i-’ is used to denote the

I , d
classification of M on G e

Definition 3.2. A mesh manifold is a set of mesh face uses around a vertex, connected by edge
uses, that locally separate the three-dimensional space into two halves.

Some examples of mesh face use manifolds are shown in Figure 1. In Figure 1(a), mesh
manifolds for a mesh vertex classified on a model face, M? " G3, are shown. In Figure 1(b),
mesh manifolds are shown for two vertices in a non-manifold model. In the figure, G} is an
embedded face’ making edge contact with two model faces G and G3. The local topology at
M? is non-manifold and two mesh manifolds exist at the vertex with respect to. just one side
of the model faces G2 and G3. At M}, only one mesh manifold exists in the model region
under consideration. The concept of mesh manifolds is used to conceptually reduce a complex
non-manifold boundary to a set of topologically simple 2-manifold boundaries.

8Embedded face — face with the same model region on both sides.
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(a) (b)

Figure 1. Examples of mesh face use manifolds.

4. OVERVIEW OF GENERALIZED ADVANCING LAYERS METHOD

The boundary layer meshing approach described here employs the advancing layers approach as
its basis and generalizes it for meshing arbitrarily complex non-manifold geometric domains with
good quality anisotropic clements near the surface. The technique is therefore referred to as the
generalized advancing layers method. Like the advancing layers method, the procedure takes an
input surface mesh, grows the anisotropic boundary layer mesh on it and then hands it over to the
isotropic mesher to finish meshing the domain. Nodes of the boundary layer mesh are placed on
curves (called growth curves) originating. from surface mesh nodes. These boundary layer nodes
are connected to form the anisotropic elements of the boundary layer mesh.

However, unlike other methods, the generalized advancing layers method allows multiple growth
curves (i.e. multiple sets of boundary layer nodes) to emanate from each surface node. Therefore,
the anisotropic mesh is not constrained to be an inflation of the surface triangles into triangular
prisms and their tetrahedronization. The flexibility of introducing multiple growth curves eliminates
the restriction that boundary layer prisms sharing a surface mesh edge or vertex must be joined
along their sides. The procedure incorporates techniques to fill the gaps between prisms caused by
multiple growth curves. This is important since failure to do so will expose the highly anisotropic
faces to the isotropic mesher. »

The basic steps of the generalized advancing layers method are as follows (refer Figure 2):

1. Growth curves are first determined at mesh vertices classified on model vertices.

2. If any of these growth curves lie partly or fully on a model edge, the boundary layer entities

(mesh vertices and edges) classified on the model edges are created.
3. Boundary layer mesh entities classified on model edges are incorporated into the model edge
discretization.
" 4. Growth curves are determined at mesh vertices classified on model edges (Figure 2(b)).

5. The growth curves that lie on model boundaries are smoothed, shrunk or pruned to avoid

crossover and self-intersection.

6. Growth curves on the model boundary are combined to form three types of abstract boundary

layer constructs—quads, transitions and blends. These constructs are tr1angulated resultmg in
boundary layer triangles classified on model faces.
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Mesh rest of domain
by isotropic mesher

‘ Fix Self Intersections ’———* ’

(g} (h)

Figure 2. Steps of boundary layer meshing: (a) surface mesh; (b) growth curves on model vertices and model
edges; (c) boundary retriangulation; (d) growth curves on model faces; (¢) prism creation; (f) blend creation;
(g) fixing self-intersection; (h) meshing remaining portion of domain by an isotropic mesher.

7. Boundary layer triangles lying on model faces are incorporated into the surface triangulation
(Figure 2(c)): '

8. Growth curves are determined at mesh vertices classified on model faces (Figure 2(d)).

9. These growth curves are smoothed, shrunk and pruned to ensure creation of valid elements.

10. Growth curves are connected up in the interior to form three more types of abstract boundary

" layer constructs—prisms, blends and transition elements (Figure 2(e) and 2(f)). The com-
ponent tetrahedra of these abstractions are directly created to form the solid elements of the
boundary layer mesh.

11. The inner boundary of the' boundary layer mesh is checked for self-intersection so as to
provide valid input to the isotropic mesher. Self intersections are fixed by local shrinking of
the layers locaily and then by deletion of elements, if necessary (Figure 2(g)).

12. The rest of the domain is meshed by the isotropic mesher (Figure 2(h)).

5. GROWTH CURVES

5.1. Introduction

Points in the boundary layer mesh are placed along boundary and interior growth curves while
respecting user-requested layer sizes. All nodes of an interior growth curve except the first are
classified in a region of the model. Interior growth curves are straight lines with present capabilities
of the mesher. All nodes of a boundary growth curve are classified on the boundary of the model.
Boundary growth curves may take an arbitrary shape defined by the surface that the nodes of the
growth curves are classified on.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 49:193-218
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G

(a) (b)

Figure 3. Need for multiple growth curves at non-manifold boundaries: (a) single growth curve along G,
(b) two growth curves along G|.

The quality of tetrahedra resulting from prisms in the advancing layers method is heavily influ-
enced by the deviation of the sides of the prism from the normal direction to the base triangle.
Therefore, nodes of growth curves growing from mesh vertices classified on model edges and
vertices are allowed to lie on the boundary if the normal direction of the growth curve is close
to the adjacent model surfaces and if the quality of the elements will be good with the nodes on
the boundary.

The generalized advancing layers method permits multiple growth curves to originate into a
single region from any mesh vertex classified on the model boundary. The number of growth
curves at any mesh vertex with respect to a model face use depends on the local mode! topology
and geometry. The topological requirement for multiple growth curves at a mesh vertex  with
respect to a single face use arises at some non-manifold boundaries. At these bouridaries, multiple
growth curves are necessary for generating a valid mesh.

Axiom 5.1. The minimum number of growth curves at any boundary mesh vertex required to
produce a topologically valid ‘mesh.is equal to the number of mesh manifolds at the vertex that
include at least one mesh face use classified on a model face with a boundary layer.

The above assertion can be casily demonstrated by the example shown in Figures 3(a) and 3(b).
Here, the embedded face G} is incident on vertex G along with two other faces, G5 and G2. It
is assumed that a boundary layer mesh is being grown on G5 and on both sides of G?. It can be
seen from Figure 3(a) that use of only one growth curve at M C G? and M T G! will lead to
intersection of some quads with G| or penetration of G?. Two growth curves at the vertex, one
for each mesh manifolds at the vertex is the minimum acceptable number. Also, the nodes of each
of these growth curves must lie within the respective mesh manifold (Figure 3(b)). Similarly, in
3D, interior edges may penetrate model faces if the minimum number of growth curves are not
present at each vertex.

At some mesh vertices, multiple growth curves may become necessary due to the geometry
of the model faces and the coarseness of their discretization. This is because creation of valid
prisms requires that the nodes of a growth curve at any mesh vertex be ‘visible’ from any mesh
face connected to the mesh vertex. Nodal visibility ensures that an element formed by connecting
the mesh face to the node has positive volume. If the .surface discretization is very coarse or the
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(a)

>

Figure 4. Mesh face use subsets in mesh manifolds: (a) all mesh faces share common growth curve; (b) two
convex edges, shown by curved double-headed arrows, in mesh manifold; (c) three convex edges in mesh
manifold; (d) only one convex edge in mesh manifold which is subdivided into two subsets.

model geometry itself changes enough, the normals of the mesh faces may vary so much that it
may not be possible to find a valid common node that is visible from all the faces (even with
methods described in References [4, 28]). Such impossible situations are the limit of the case
where the growth curve deviates greatly from the mesh face normal leading to large dihedral
angles in elements. Therefore, in general, it is desirable to have multiple growth curves at mesh
vertices where the normals of the connected mesh faces change too much.

In keeping with the necessity of creating a valid mesh and desirability of creating well-shaped
prisms, mesh manifolds are first found at each vertex and these are then divided up into subsets
of mesh face uses. Each of these subsets of mesh face uses then share a common growth curve
to be used in their prisms. The procedures to find these subsets works with face/side pairs in the
mesh instead of requiring face uses to be represented. '

The determination of subsets of mesh face useés in a mesh manifold sharing a common growth
curve is based on the dihedral angle between pairs of mesh face uses. Figure 4 shows some
examples of mesh face use subsets. In Figure 4(a), the mesh face uses (shown shaded) form a
single subset sharing one growth curve. In Figures 4(b) and 4(c) some pairs of mesh face uses
have a large dihedral angle between them and therefore they are split up into multiple face use
sets. In Figure 4(d), the mesh face uses are split up into two subsets since there is only one pair
of face uses with a large dihedral angle and using only one growth curve for this manifold will
result in flat elements.

5.2. Calculation of growth curves

Growth curves from mesh vertices classified on model vertices and model edges are first attempted
to-be -grown -as-boundary growth curves: In doing se, the growth curves must respect topological
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Figure 5. Methods of specifying boundary layers: (a) geometric variation of layer thickness; (b) exponential
variation of layer thickness; (c) adaptively varying boundary layer thickness; (d) prescribed variation in
boundary layer thickness; (¢) prescribed variation of boundary layer thickness and number of layers.

compatibility of the mesh with the model and estimated geometric validity of mesh. If creating
a boundary growth curve violates any of these requirements, the growth curve is grown into the
interior. '

In computing growth curves, it is assumed that all nodes of the growth curves except the
first have a single classification on the lowest order model entity possible. For example, when
constructing. a growth curve from a mesh vertex classified on a model vertex, the lowest order
model entity that can carry the growth curve is a connected model edge. Since model edges and
faces may be curved, a straight line approximation of the growth curve (obtained from an average
normal of the given mesh face uses) is used to find locations on the model entity close to the
initial positions of the nodes.

An extensive set of checks is performed to ensure that the computed growth curve satisfies
validity and quality requirements of the mesh. Checks are performed to ensure that future con-
nections (mesh edges and faces) between the growth curve and any adjacent boundary growth
curves will not violate topological compatibility. Also, dihedral angles of future elements resulting
from the growth curve are estimated to ensure element quality. If two growth curves from a mesh
vertex in a non-manifold modei lie on the same model face, they are checked to see if they are
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coincident and merged. If not, they are checked to ensure that boundary layer quads to be formed
with them will not intersect each other. In case of intersection, the growth curve is not created
and the other growth curve is used instead.

5.3. Node spacing along the growth curves

Node spacing for growth curves may be specified in one of three ways—geometric, exponential
or adaptive. In the geometric method, the first layer thickness, the number of layers and the total
thickness of the boundary layer mesh are prescribed. Using this, the thickness of the individual
layers is calculated to grow by geometric progression (Figure 5(a)).

For exponential growth, only the first layer thickness and number of layers is specified for
calculation of the node spacing (Figure 5(b)). The growth of the layer thicknesses is exponential.

In the adaptive method of boundary layer thickness specification, the first layer thickness #,
and the number of layers, n, are specified. The growth of the boundary layer thickness is still
geometric but the layer thickness growth factor » is calculated to ensure a smooth gradation of
the boundary layer mesh into the isotropic mesh (Figure 5(c)). This is done by assuming the last
layer thickness to be « times the isotropic mesh size, 0.5 <a<1.0.

The attribute specification system used for prescribing boundary layer mesh parameters allows
spatial variation of all the variables, #, 7 and » while maintaining the geometric growth rate of
layer thicknesses (Figure 5(d)). Figure 5(e) shows the boundary layers when the boundary layer
thickness and the number of layers both vary on a model entity.

6. ENSURING ELEMENT VALIDITY

Invalidity of elements in the generalized advancing layers method occurs due to invisibility of
growth curve nodes from a mesh face and due to crossover of growth curves (Figure 6(a)). The
former is dealt with during growth curve creation and the latter is dealt with after the creation of
all growth curves. Growth curve crossover is addressed here by smoothing, shrinking and pruning
applied in that order.

In the smoothing step (Figure 6(b)), a weighted Laplacian smoothing procedure is applied to
growth curves to eliminate crossover. It is the preferred method of eliminating crossover since
it respects the original spacing of nodes along the growth curves. Although smoothing distorts
previously well shaped elements, it also corrects crossover in many cases and evens out shape
and size -variations in the boundary layer mesh. Smoothing of interior growth curves is done
by reorienting each growth curve to the average of its adjacent growth curves. Smoothing of
boundary growth curves is done by a modified procedure that accounts for their general shape. In
this procedure, straight line approximations of the growth curve and its adjacent boundary growth
curves are used for computing a smoothed direction and closest point searches done to locate the
nodes of the growth curve onto the model boundary. Multiple passes of smoothing are used over
each entity and over all the entities. :

The shrinking procedure is based on the principle that crossover often occurs because the bound-
ary layer is too thick relative to the curvature of the model face or the acuteness of the angle
between model/mesh faces. Therefore, the shrinking process locally reduces the thickness of the
boundary layers if it will make the affected elements valid (Figure 6(c){i]). This is accomplished
by progressively reducing the node spacing of the boundary and interior growth curves which are
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() {a) ] (@) 1111

Figure 6. Fixing growth curve crossover in 2D mesh: (a) invalid mesh; (b) mesh fixed by

smoothing; (¢c) [i] mesh fixed by shrinking, [ii] neighbouring growth curves recursively shrunk

for smooth gradation; (d) [i] mesh fixed by pruning, [ii] neighbouring growth curves recursively
pruned and the. steps bridged by transition elements.

connected to invalid quads and prisms, respectively. The reduction in the height of the growth
‘curve is always accompanied by a recursive adjustment of neighbouring growth curve heights to
ensure a smooth gradation of boundary layer thickness (Figure 6(c)[ii]). Also, shrinking does not
allow previously valid elements to become invalid. Multiple passes of the shrinking procedure are
carried out on the boundary layer mesh to maximize the possibility of the fixing invalid elements.
Shrinking growth curves on the boundary is similar to the interior shrinking with the modifications
required to deal with the boundary.

If neither smoothing nor shrinking can fix the invalid elements, the growth curves of affected
elements are pruned, i.e. some of their nodes are deleted. The process of pruning growth curves
climinates as many nodes as necessary starting from the top of the growth curve (Figure 6(d)[i]).
As with shrinking, adjacent growth curves are also recursively pruned so that adjacent growth
curves are allowed to differ by only one node (Figure 6(d)[ii]). This is done to prevent large
steps in the boundary layer mesh which can affect mesh quality and gradation. At the end of the
pruning procedure, the boundary layer mesh has no invalid elements.

The validity of boundary layer quadrilaterals is checked by a series of tests performed in real
and parametricY spaces. First, the individual triangles of the boundary layer quad are checked in
real space for zero areall . Then adjacent triangles are checked in real space to see if the dihedral
angle along their common edge is greater than an assumed tolerance o (taken to be 90°). This is
to measure if the discretization of the surface is excessively distorted. Finally, as a conservative

9IThe parametric space is obtained from the geometric modeller.
INote that negative area does not have any meaning for triangles on a general surface in 3-space.
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measure the lateral edges of the boundary layer quad are checked for intersection in parametric
space to verify that the growth curves are not crossed over.

The validity of boundary layer prisms, solid transition elements and blends is done by checking
the validity of all its component tetrahedra, i.e. all tetrahedra are checked to ensure that the worst
dihedral angle is less than some angle, . While minimum element validity is satisfied if a <=, o
is taken to be less than that value ( — 7/30) in the interest of creating elements of good quality.

7. ELEMENT CREATION

The primary construct in the creation of the boundary layer mesh is the triangular prism formed by -
connecting the nodes of three growth curves from the vertices of a mesh face. Other constructs are
boundary layer transitions and blends. Any of these constructs may abut a model face and modify™
the surface triangulation. The equivalent constructs in the surface triangulation are boundary layer
quads, blend triangles and transition triangles. All of these constructs are abstract mechanisms for
generating the triangles and tetrahedra of the boundary layer mesh.

7.1. Triangulation of boundary layer quads

Boundary layer quads are formed by connecting nodes of adjacent growth curves rot originating
from the same mesh vertex. In converting these boundary layer quads to triangles the choice of
the diagonal is dictated by the future validity of the connected prisms. For reasons discussed in
prism tetrahedronization (Section 7.5 below), the diagonal is made so that it connects node / of
the growth curve at the mesh vertex with a lower identifying number (vertex ID) to node [ + 1
of the growth curve at the other vertex. If one of the growth curves has more nodes than the
other, transition triangles are formed on top of the quads. The procedure incorporates well-defined
- checks to deduce the classification of entities and to ensure the correct orientation of mesh edges
and faces is present.

7.2. Creation of boundary layer transition triangles

Transition triangles are formed atop boundary layer quads with a level difference (difference in
the number of nodes) between the two growth curves. This is done by simply connecting the top
node of the growth curve with fewer nodes with nodes of the other growth curve which are at a
higher level. Note that the mesh vertex with the lower ID may have the growth curve with more
nodes and therefore, the diagonal edge of the transition triangle may go in an opposite direction
to the diagonals of the boundary layer quad. '

7.3. Creation of boimdary layer blend triangles

Creation of boundary layer blend triangles is similar to the creation of boundary layer ‘quads.
The difference is that boundary layer blend triangles establish connections between nodes of two
growth curves originating from the same mesh vertex. The first layer of a blend triangle is made
up of a single triangular mesh face and the rest of the layers contain triangulated quads as in the
case of the boundary layer quad. The direction of the diagonal for the quads in a boundary layer
triangle is arbitrary and may be based . solely on the quality of the triangles.
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(e) (£)

Figure 7. Model face retriangulation by local mesh modifications: (a) initial surface mesh; (b)

surface mesh with boundary layer elements overlayed; (c) insertion of outermost boundary layer

vertices into surface mesh; (d) recovery of outermost boundary layer edges by edge swapping

and edge collapsing; (e) deletion of surface mesh triangles overlapping the boundary layer mesh;
(f) incorporation of boundary layer mesh into surface mesh.

7.4. Model face retriangulation

When the boundary layer mesh interacts with a model face, the boundary layer triangulation must
be incorporated into the appropriate portion of the face triangulation. The approach adopted here
uses local mesh modification operators combined with checks for the smoothness of the surface
discretization. This is done to avoid meshing by an advancing front method for highly distorted
parameterizations since they may give incorrect results for checks for intersection of the front.

Given a model edge and a model face on which growth curves from mesh vertices of the model
edge lie, the following steps are carried out to create and incorporate the boundary layer mesh
into the surface mesh triangulation (Figure 7):

1. Boundary layer quads and triangles classified on the the model face are created (Figure 7(b).

2. Each boundary layer mésh entity that formis the outer periphery of the boundary layer mesh
faces classified on the model face is incorporated into the surface mesh by the edge recovery
procedure ([29]).

If the edge cannot be recovered one or both growth curves of the appropriate quad are
deleted and replaced with an interior growth curve(s). This has the -effect of peeling the
boundary layer away from the adjacent wall in the neighbourhood.

At the end of the recovery process, the periphery of the set of boundary layer faces matches
the outer boundary of a set of faces in the underlying surface mesh (Figures 7(c) and 7(d)).
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Figure 8. The two templates for prism tetrahedronization with node ID-based diagonal choice.

3. Mesh faces of the existing surface triangulation overlapping the boundary layer mesh faces
are deleted (Figure 7(e)).

4. The boundary layer faces are incorporated into the surface mesh in place of the deleted
elements (Figure 7(f)).

7.5. Creation of boundary layer prisms

The bulk of the elements in the boundary layer mesh are comprised of tetrahedronized layers of
boundary layer prisms. Boundary layer prisms are grown on mesh face uses by connecting three
suitable growth curves at the vertices of the face. The tetrahedronization of each boundary layer
prism in a layer gives rise to three tetrahedra.

The tetrahedronization of triangular prisms depends on the diagonals on its lateral faces. There
are eight possible combinations of diagonals for the lateral faces of a prism of which only six can
be tetrahedronized without additional point insertions. The six templates can be further reduced
to two by permutation of the prism faces as shown in Figure 8. Therefore, care must be taken
to only assign -diagonal directions such that all prisms can be tetrahedronized. This is done by
a algorithm based on numbering of the surface mesh vertices. Given a surface mesh with any
arbitrary assignment of unique numbers (IDs) for the mesh vertices, the IDs of vertices of a face
in either clockwise or counterclockwise direction cannot be strictly increasing or strictly decreasing.
Therefore, the diagonal of a boundary layer quad is always created between the lower node of the
growth -curve whose base vertex (in the surface mesh) has a lower ID to the upper node of the
growth curve whose base vertex has a higher ID (shown in Figure 8). '

7.6. Creation of transition tetrahedra

When the growth curves of a mesh face forming a prism have different number of nodes, a step (or
a level difference) is formed in the boundary layer mesh exposing stretched faces to the isotropic
mesh generator. This difference may come from user-requested variations in the number of nodes
or due to pruning of growth curves. To avoid leaving highly stretched faces of the step exposed to
the volume mesher, transition tetrahedra are created to bridge the one or more levels of difference
in growth curves (see Figure 9). Atop a prism with one level difference between its component
growth curves, there may be one or two transition tetrahedra depending on whether one or two
growth. curves have fewer nodes than the others. If the level difference between the growth curves
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Figure 9. Transition elements: (a) one level type T transition layer; (b) one level
type II transition layer; (c¢) multi-layer type [ transition layers; (d) multi type I transi-
tion layers; (e) multi-level type IVI transition layers.

(a) (b)

Figure 10. Transitioning of boundary layers at model edge: (a) boundary layer without elimination of exposed
faces; (b) boundary layer with elimination of exposed faces by transitioning.

is more than one, layers of transition elements are created on top of the prism. One-level transition
elements are better shaped than multiple-level one although the creation of either is preferable to
leaving the stretched faces exposed. This is the reason why recursive pruning procedures are in
place to create a one-level difference between growth curves as much as possible. The idea of a
one-level transition element is similar to the procedure used in the work of Connell and Braaten
[1] to phase out the boundary layer at some edges. ‘

Transition elements are also useful in situations where the boundary layer mesh ends abruptly

at a sharp corner. To prevent the isotropic volume mesher from seeing the stretched faces of the
ad

boundary layer mesh, the number of nodes along the sharp comer edge are reduced to zero and

the boundary layer transitioned out from the edge (as described in Reference [1]). This is shown
in Figure 10.

7.7. Creation of boundary layer blend polyhedra

The introduction of multiple growth curves at mesh vertices due to surface mesh geometry intro-
duces gaps between adjacent prisms. These gaps are made up of highly stretched faces present on
the sides of prisms. If left as they are, the highly anisotropic faces of the gaps cause problems for

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 49:193-218



208 R. V. GARIMELLA AND M. S. SHEPHARD

Boundary layer Boundary layer
fixed blend variable blend

Boundary layer
blend triangle

(a) (b) ()
Boundary layer vertex| Boundary layer blen
blend cavity on model face

@ (e)

Figure 11. Boundary layer blend elements.

the isotropic volume mesher. Therefore, the concept of blend meshes is introduced in the gener-
alized advancing layers procedure to fill the gaps between prisms while maintaining a good mesh
gradation in the boundary layer mesh.

- Consider a situation in two dimensions where there are two growth curves at a model vertex
representing a convex corner (Figures 12(a) and 12(b)). The gap in the two-dimensional boundary
layer mesh formed at this vertex must be filled by blend triangles (Figure 12(c)). Also, to maintain
a good mesh gradation on this outer surface, additional growth curves may have to be introduced
at a mesh vertex in between the growth curves used by the standard boundary layer elements as
shown in Figure 12(d). The number of additional growth curves required at a mesh vertex can be
calculated using local information and the assumption that the outer faces of the blends must be
nearly isotropic.

In three dimensions, gaps between prisms may occur at model faces, edges and vertices. At
model edges, the dihedral angle between two model faces connected to the model edge may be
constant or vary continuously. If the dihedral angle is constant, then the same number of growth
curves are created at each mesh vertex classified on the model edge. Such blend mesh with a
fixed topology along a model edge is referred to as a fixed blend (Figure 11(b)). If the dihedral
angie varies ailong the modei edge then there may be more growih curves at some mesh vertices

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 49:193-218



BOUNDARY LAYER MESH GENERATION 209

(@ (o) © @

Figure 12. Two-dimensional illustration of the need for blends and multiple growth curves within

blends: (a) boundary layer mesh on two surfaces with convex corner; (b) gap between the

corners shown in greater detail; (¢) blend mesh directly bridging the two existing growth curves;
(d) blend mesh with introduction of additional growth curve.

than others. In this case the topology of the blend mesh must also change along the model edge
resulting in variable blends (Figure 11(c)).

Gaps between the various boundary layer constructs at model vertices are more general since an
arbitrary number of prisms and blends can contribute to them (Figure 11(e)). However, since their
anisotropy is much lesser than edge blends, it is proposed that vertex blends will be created using
general mesh generation techniques. Also, blends may also occur:at model faces wherever multiple
growth curves are present but they can be dealt with similarly (Figure 11(e)). Blend meshes are
not yet present in the current implementation but will be introduced as described above.

8. FIXING BOUNDARY LAYER INTERSECTIONS

When boundary layer elements are generated on model faces that are too close they may overlap
and the polyhedral cavity that remains to be meshed may self-intersect. These seif-intersections
must be fixed before handing the mesh over to the volume mesh generator.

After creation of the boundary layer elements, mesh faces that have fewer regions connected
to them than necessary are considered to be exposed to the isotropic mesher. Exposed faces
may be faces of the boundary layer mesh or faces on model faces. Exposed faces are checked
for intersection with other exposed faces in the neighbourhood. If an intersection is found, its
connected prisms are shrunk to fix the intersection if the connected elements are valid in the new
configuration. Also, a recursive adjustment procedure is applied to the heights of other growth
curves in the neighbourhood. Intersections that cannot be fixed after multiple shrinking iterations
are fixed by pruning of growth curves. If the pruning step creates level differences between growth
curves, transition elements are created to bridge the step. The process of fixing boundary layer
run-in is illustrated in Figure 13 using a 2D example. Correction of self intersections is done after
element creation since detection of exposed faces is simpler and the checks for self-intersections
can be more localized. The intersection checks are further localized with the help of an octree.

9. BOUNDARY LAYER MESHING RESULTS

9.1. Example meshes for general models

The generalized advancing layers method described here has been used extensively to generate
boundary layer meshes for thermal management simulations of complex automobile configurations
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Figure 13. Iterative procedure for fixing boundary layer intersections—2D example.

Figure 14. Boundary layer mesh for under-carriage of car: (a) complete boundary layer mesh on all surfaces
of car; (b) cut away of boundary layer mesh revealing under-the-hood detail; (c) zoom in of front end of
under-carriage; (d) zoom in of réar end of car. ‘
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with complete under-the-hood and under-carriage detail. The boundary layer mesh on the under-
body of one such vehicle™ is shown in Figure 14(a) with part of the boundary layer cut away to
show the complexity of the surface. The model is a non-manifold model with 11 model regions and
1236 model faces of which 71 are embedded faces. In the mesh shown here, the boundary layer
thickness was increased by 2 orders of magnitude for clarity of visualization. The boundary layer
mesh and the full solid mesh have 1.7 and 3.1 million tetrahedra, respectively. The aspect ratio
(i.e. the longest edge length to shortest height ratio) of elements in the first layer are approximately
2500 on the most coarsely refined surfaces of the automobile. Figure 14(b) shows a close-up of
the surface mesh and boundary layer mesh under the hood and near the front wheels while Figure
14(c) shows the under-carriage at the rear. The largest meshes generated for these types of models
have been of the order of 4.5 million elements.

The next example shows the use of the boundary layer mesh in simulations of flow in blood ves-
sels for surgical planning [30]. Figure 15(a) shows the model' of the arteries while Figure 15(b)
shows a zoom-in of the surface mesh. Figures 15(¢) and 15(d) display various cuts through the
mesh showing the boundary layer and volume mesh inside the arteries (650000 tetrahedra in the
boundary layer, 800000 total). The total boundary layer thickness is determined adaptively in
the mesh based on the surface mesh size.

The example shown next is a model of the space shuttle with centre tank and booster rockets.
Figure 16(a) shows the geometric model (without the boundaries of the enclosing domain). Shown
in Figures 16(b), 16(c) and 16(d) are the retriangulated surface mesh on the symmetry plane, a
cut-way of the boundary layer mesh and a close-up of the boundary layers showing the element
anisotropy. The boundary layer mesh in this model has 810000 elements while the complete mesh
has 1 million elements. With the requested surface mesh sizes aspect ratio of the boundary layer
elements is of the order of 20000.

9.2. Validation

9.2.1. Laminar flow over flat plate. Figure 17(a) shows a schematic for simulation of laminar flow
of an incompressible viscous fluid over a semi-infinite flat plate. The flow at the inlet is uniform
(Re=10000) in the direction of the x-axis. The domain starts ahead of the plate to capture the
flow characteristics around the singular point at the leading edge of the plate. The expected solution
in the domain-is shown in Figure 17(b) [31]. The boundary layer has a first layer thickness of
max(3x107%,0.00015/x), total boundary layer thickness of max(0.006,0.052/%) and 20 layers
of elements. The boundary layer mesh and a zoom-in of the mesh around the singular point is
shown in Figure 18. The solution obtained for this problem is shown in Figure 19. Figure 19(a)(i)
shows the constant u-velocity contours on the front face while Figure 19(a)(ii) shows a zoom-in
of the domain near the singularity. In Figure 19(c) a close-up of the outflow boundary along with
u-velocity profile at x=1.0 is shown and is in good agreement to the expected profile. The results
of the simulation have been validated using the similarity solution {31] (see [32] for detailed
results).

9.2.2. Turbulent flow in sharply expanding pipe. The schematic for the simuiation of turbulent
flow in a sharply expanding pipe is shown in Figure 20(a). Fluid enters the narrow pipe which

**Courtesy: Simmetrix Inc.
Tt Courtesy: Dr. Charles Taylor, Assistant Professor, Department of Surgery and Department of Mechanical Engineering,
Stanford University. - .
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Figure 15. Boundary layer mesh for simulation of flow in blood vessels: (a) geometric model;
(b) zoom in of surface mesh in the encircled region; (¢);(d) cross-sections showing the boundary
layer and isotropic meshes.

is connected to a large pipe without transition. In addition to the boundary layers on the pipe
walls, a free shear layer is expected in the flow leaving the walls at the junction of the two
pipes and reattaching to the walls of the large pipe further downstream. A recirculation region is
expected behind the shear layers as shown in the figure. A schematic of a vertical cross-section of
the geometric model is shown in Figure 20(b). Since the generalized advancing layers can build
boundary layer meshes only on model boundaries, an artificial surface is defined in the larger pipe
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Figure 16. Boundary layer mesh for space shuttle: (a) model geometry; (b) retriangulated surface mesh;
(c) cut away of boundary layer mesh; (d) close-up of boundary layer showing anisotropic elements.

based on an estimate of the shear layer path. The large pipe in the geometric model is only a
third of the required length and the mesh that is generated in this part is stretched to match the
original domain definition. This is done to keep the size of the mesh low and make use of the
inherent anisotropy of the whole solution.

The surface mesh and the streamwise velocity contours are shown in Figure 21. Boundary layer
elements are created on walls of the small pipe, on both sides of the shear layer surface and on
the wall of the large pipe downstream of the reattachment point. The boundary layer thickness
and number of nodes are different on the various model faces (and on each side of the shear layer
face). The thickness and number of the layers also vary as a function of the x coordinate. The

1

boundary layer mesh has 1.6 million elements.

9.3. Timing statistics

The generalized advancing layers method has been observed to produce elements at an average rate
of 1000 elements per second or 3.6 million elements an hour on SUN Ultra Sparc 2 workstation.
The maximum obtained rate of mesh generation is 2200 tetrahedra per second. The growth rate of
the algorithm with respect to the number of surface triangles and the number of Jayers has been
observed to be O(N logN') as expected due to the use of a search tree to resolve intersections [32].
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Figure 17. Schematic diagrams of set-up for simulation of laminar flow over flat plate: (a)
schematic description of domain and important boundary conditions; (b) schematic diagram of
geometric model (not to scale).
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Figure 18. Close-up views of boundary layer mesh for laminar flow over flat plate simulation.
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Figure 19. u-velocity contours and profile for laminar flow over flat plate: (a) u-velocity contours; (b) close-up
view at singular point; (¢) profile of u-velocity at outflow.
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Figure 20. Schematic diagram of expanding pipe model: (a) problem domain;
(b) geometric model cross-section.
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Figure 21. Cut view of mesh and streamwise velocity contours for simulation of flow in expanding pipe.

10. CLOSING REMARKS AND FUTURE WORK

10.1. Concluding remark;s

The generalized advancing layers method has been presented as a way of generating anisotropic
tetrahedral meshes for capturing viscous flows. The method, is designed for reliable generation
of valid, good-quality meshes for arbitrarily complex non-manifold geometric models. It includes
several technical advances to be able to handle complex domains. It provides control and flexibility
in the creation of meshes suitable for fluid flow simulations.

The Generalized Advancing Layers Method creates valid meshes for general models by:

N

Ensuring that a minimum number of growth curves are present at non-manifold interfaces.
Guaranteeing all elements in the mesh are geometrically valid.

Ensuring that the boundary layer mesh is topologically compatible with the geometric model.
Using a robust procedure for surface retriangulation avoiding the use of the parametric space.
Using a guaranteed algorithm for resolving intersections of boundary layers.

The quality (mesh gradation, element dihedral angles) of the mesh is controlled in a compre-
hensive manner as listed below:

B

Multiple growth curves to allow better-shaped prisms at sharp corners.
Smoothing of growth curves to improve the overall quality of boundary layer elements.
Recursive adjustment of growth curve heights for better mesh gradation and quality.

. Recursive pruning of growth curves to maintain one-level difference minimizing the use of

multi-level transition elements.

Incorporation of boundary layer mesh into adjacent surface triangulation allowing prisms to
remain close to their optimal shape: .

Transition and blend elements to shield the isotropic mesher from highly anisotrepic faces.
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Results have been presented to demonstrate the capability of the mesh generator to mesh complex
non-manifold models. Results of two classical problems in fluid mechanics were presented to
demonstrate the suitability of the mesh for viscous flow simulations and its ability to capture the
solution accurately. The generalized advancing layers method has successfully generated meshes
of the order of 3—4 million elements for other large complex geometric models and is currently
being used for simulations on real automobile configurations in industry.
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