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Abstract

We have developed an approximate method for simulating the three-dimensional (3-D)

contact of soft biphasic tissues in diarthrodial joints under physiological loading. Input to the

method includes:  (i) kinematic information describing an in vitro joint articulation, measured

while the cartilage is deformed under physiological loads, (ii) geometric properties for the

relaxed (undeformed) cartilage layers, obtained for the analyses in this study via

stereophotogrammetry, and (iii) material parameters for the biphasic constitutive relations used

to represent cartilage. Solid models of the relaxed tissue layers are assembled in physiological

positions, resulting in a mathematical overlap of the cartilage layers. The overlap distribution is

quantified and converted via the biphasic governing equations into applied traction boundary

conditions for both the solid and fluid phases for each of the contacting layers. Linear, biphasic,

3-D, finite element analysis is performed using the contact boundary conditions derived for each

of the contacting layers. The method is found to produce results consistent with the continuity

requirements of biphasic contact. Comparison with results from independent, biphasic contact

analyses of axisymmetric problems shows that the method underestimates slightly the contact

area, leading to an overestimation of the total traction, but yields a good approximation to elastic

stress and solid phase displacement.
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Introduction

The soft cartilaginous layers in human diarthrodial joints are capable of supporting high

levels of mechanical load over decades, yet degenerative joint diseases still affect millions of

people every year. In order to contribute to the understanding of diseases such as osteoarthritis,

we must understand the mechanical response of the cartilage layers of both healthy and

pathological diarthrodial joints under physiological loading. While experimental investigations

are a key component, this understanding is often gained with the aide of mathematical models,

such as elastic, biphasic [1] or triphasic [2] theories, used to quantify the mechanics of soft

tissues through both analytical and numerical procedures. Much progress has been made in the

finite element analysis of soft tissues using the biphasic theory. Various finite element

formulations have been developed and implemented [3-10], including nonlinear contributions

such as large deformation, a viscoelastic solid phase and contact.  While applied to mostly

canonical or experimental configurations, all of these components contribute to increasingly

representative models of diarthrodial joints that can be used in computer-simulated or computer-

aided surgery, prosthetic design, or investigation of degenerative joint diseases. The present

study combines a number of contemporary research techniques, and a new approach for

approximating joint contact, to form a method of studying the mechanics of contacting tissue

layers in diarthrodial joints.

The mechanical behavior of diarthrodial joints is dictated by contact, as forces are

transmitted across the joint through the soft tissue layers, but analysis of three-dimensional,

multi-phase contact is complicated and computationally demanding. Most contact finite element

models have assumed elastic, rigid or viscoelastic material laws [11-15] or been restricted to

experimental configurations [16]. These models provide insight into the total stress in the tissues

but do not account for the biphasic nature of tissue. An exception is the recent axisymmetric

biphasic model of Donzelli et al. [10]. Commercial finite element packages have also been used

recently to model biphasic contact, producing reasonable results for axisymmetric cases,

although no further information is given about the implementation or computational cost [17,

18]. A major computational challenge remains to derive and perform full 3-D sliding contact of

biphasic layers. In an effort to reduce the computational cost, we present a method that

approximates soft tissue contact mechanics. The method reduces the problem of two biphasic

tissues contacting over an unknown area to two problems, each with prescribed traction
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distributions over a fixed area. This replaces the non-linearity of contact analysis with a

preprocessing step dependent on the geometry.

From the biphasic continuum theory and contact boundary conditions we derive the

necessary equations to compute contact traction distributions from measured tissue geometry and

kinematics. This method is implemented in a custom-designed, object oriented preprocessing

program to develop the necessary boundary condition input to our biphasic analysis finite

element code. Using example problems defined on canonical geometries, we test this method in

comparison to analytical and 2-D finite element contact solutions. Our goal is to determine if the

method is self-consistent, and how well it compares to biphasic contact analysis. We pose the

following specific questions regarding the analysis. (1) Is the required traction continuity

enforced when tissues are analyzed independently for a given joint? (2) Does the result compare

well with what we observe in contact analysis? (3) Are the results consistent with the kinematic

data used to generate the input? (4) Do the shear stresses and strains vanish in accordance with

our assumptions of frictionless contact? Specific results will address each of these questions, and

demonstrate the validity of the method for physiological joint geometries.

Methods

Linear Biphasic Theory with Contact Boundary Conditions

For this study, we use the linear biphasic theory to model cartilage as a continuum

consisting of incompressible solid and incompressible, inviscid fluid phases. The drag created by

the movement of the fluid through the solid matrix gives the tissue its viscoelastic properties. In

the following equations, the superscripts s and f refer to the solid and fluid phases, respectively.

The biphasic theory [1] imposes a continuity equation for the mixture,

f vi
f + svi

s( )
,i

= 0 , (1)

where φα is the solid or fluid content, vi
α are solid or fluid velocity components and the comma

(,) denotes spatial differentiation; momentum equations for each phase,

ij, j + Πi = 0 ,   = s, f , (2)

where Πi
α is a momentum exchange between phases and σα

ij are the Cauchy stress tensors; and

constitutive equations,
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ij
s = − s p ij + ij

E , (3)

ij
f = − f p ij, (4)

Π i
s = −Π i

f = p ,i
s + K vi

f − vi
s( ), (5)

where p is pressure and K is the diffusive drag coefficient, related to the tissue permeability, κ,

through K = ( f )2 / . For a linear elastic solid phase, the elastic part of the solid stress due to

deformation is

ij
E = Cijkl kl

s , (6)

where Cijkl is the material property tensor and εs
ij is the infinitesimal elastic strain tensor for the

solid phase,

ij
s =

1

2
ui, j

s + u j,i
s( ) ≡ u( i, j)

s . (7)

Here us
i are the solid phase displacement components and the parentheses in the subscript denote

the symmetric part of the deformation tensor.

Boundary and initial conditions on solid displacement, solid or fluid velocity, and solid

and fluid traction are required to complete the problem statement. Moreover, there are also

boundary conditions between two contacting biphasic bodies, denoted with superscripts A and B

[19]. In their frictionless form, these are [20]

vi
sAni

A + vi
sBni

B = 0, (8)

fAvi
fA + sAvi

sA( )ni
A + fBvi

fB + sBvi
sB( )ni

B = 0 , (9)

pA − pB = 0 , (10)

ij
EA

ni
Anj

A − ij
E B

ni
Bnj

B = 0 , (11)

with ni indicating the unit normal components on the contact surface. Physically, Eqs. (8)-(11)

represent two kinematic conditions, continuity of normal solid velocity and normal relative flow,

and two kinetic conditions, continuity of pressure and normal elastic traction.

Finite Element Formulations of the Biphasic Governing Equations

The governing equations can be manipulated to eliminate fluid velocity, and lead to a

mixed velocity-pressure (v-p) finite element formulation. Similar formulations have been used in

soil mechanics and biomechanics [3, 7, 21-23]; the version employed here was developed by

Almeida [8, 9, 24]. The field variables are solid displacement, and its time derivative, and
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pressure. Essential boundary conditions will be specified for these field variables, while total

traction and relative flow are the corresponding natural boundary conditions. For the 3-D

analyses, we use tetrahedral elements with a quadratic (10-node) interpolation of solid phase

displacement and a linear (4-node) interpolation for pressure.

To validate v-p analyses with penetration-based boundary conditions, results will be

compared against a mixed-penalty biphasic contact formulation [10] where the contact boundary

conditions are included in a weighted residual formation, with the kinetic contact conditions

enforced via Lagrange multipliers. This contact formulation is axisymmetric; so all validation

cases will be axisymmetric 3-D models.

Approximating Contact Traction from Penetration Data

Our method replaces nonlinear iterative 3-D contact analysis by linear biphasic analysis

of each of the contacting tissue layers using a prescribed traction that approximates the contact

traction. The following input data is required:  (i) joint kinematics, and the resultant force

producing those kinematics, at one or more physiological positions; (ii) geometry of the tissue

layers in an undeformed state; and (iii) material parameters for the biphasic soft tissues. We use

this data and the governing equations in a series of four steps to obtain the approximate traction

distribution. First the geometric models of the contacting layers are placed in a physiological

position and queried to determine the geometric overlap, or penetration, between the undeformed

tissues. Next this vector penetration field is split between the two contacting layers, then scaled

to represent a traction. Finally, the traction is divided between the solid and fluid phases of each

tissue.

In the first step, the relaxed, undeformed tissue geometries are imported into a solid

modeling package (e.g., Parasolid, Shapes [25]), creating mathematical representations of the

tissues. Using kinematic data and modeler operations, the tissues are positioned in a known

physiological orientation. In this position, the in-vivo soft tissues are deformed and in contact.

However, in the as-yet-undeformed solid model, the tissue layers will interpenetrate. The

penetration at any location on the tissue surfaces can be quantified using the solid modeling

software.

The second step is to distribute the total penetration between the contacting tissues.

Assume that the traction is being calculated for the analysis of tissue A (Fig. 1); tissue B will be
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analyzed in a separate step. In this case, the total penetration vector, gTot, is measured in a

direction normal to the contact surface of tissue A. The local thickness of tissues A and B, hA and

hB, respectively, are also measured along this normal direction. Let   0 ≤ ≤ 1 be the part of the

total penetration that is associated with tissue A. Our analysis is based on the assumption that

penetration is locally equal to the total deformation of the layers, so the (solid) displacements of

layers A and B are given by:

ui
sA

= gi
A = gi

Tot , (12)

ui
sB

= gi
B = (1− )gi

Tot , (13)

ui
sA

+ ui
sB

= ui
s T

= gi
Tot . (14)

The parameter η will be evaluated from the continuity of traction on the contact surface,

Eq. (11). For convenience, consider an orthogonal tangent-normal coordinate system defined on

the loaded face of each layer, and denote the normal and tangential components of a vector with

subscripts n, t1 and t2, respectively. By construction, the only non-zero component of gA is the

normal component, gn
A. In biphasic contact, for constant φs, the variation of the pressure is

relatively uniform through the thickness, a fact observed both in numerical [26] and semi-

analytical studies [27]. Also, the first term in an asymptotic solution for pressure in biphasic

contact is not dependent on depth [28]. Thus, it is reasonable to assume that the normal elastic

strain is also uniform through the thickness and can be approximated as

nn
sA

=
hA

hA =
gn

A

hA , (15)

where δhA denotes the change in the local thickness of tissue due to deformation (Fig. 1). There

are no tangential components in the penetration vector. Although model curvature, or a gradient

in the penetration vector with position, could cause in-plane strains ( t1t1
, t2t2

, t1t 2
), we show in

Appendix I that the in-plane strains caused by these effects are negligibly small for in-vivo joint

geometries. Also, for frictionless contact, the shear stresses in tangent-normal coordinates are

zero. These assumptions are summarized as

t1t1

s = t 2t2

s = t1t2

s = 0         nt1

E = nt2

E = 0. (16)

Returning to the continuity of traction, we can now use the displacement field from the

penetration data, Eq. (12), and our simplifying assumptions, Eq. (16), to calculate normal strain,

Eq. (15), and then stress. Representing the solid phase of cartilage as transversely isotropic with
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the material axis normal to the tissue surface [29, 30], the material property matrix will have the

form

nn

t1t1

t2 t2

t1t 2

nt1

nt2

 

 

 
 
 
 

 

 
 
 
 

 

 

 
 
 
 

 

 
 
 
 

=

C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

nn

t1t1

t2t 2

t1t2

nt1

nt2

 

 

 
 
 
 

 

 
 
 
 

 

 

 
 
 
 

 

 
 
 
 

, (17)

where the terms in the matrix C are related to five material parameters and the predominant

material direction. Substituting these relations, the first term in Eq. (11) becomes

ij
EA

nin j = Cijkl
A

kl
s A

nin j ≈ C11
A

nn
s A

= C11
A gn

Tot

hA . (18)

The same calculations are performed for tissue B, using Eq. (13), and yield the following

expression for the second term in Eq. (11):

ij
EB

nin j = Cijkl
B

kl
s B

ninj ≈ C11
B

nn
sB

= C11
B (1− )gn

Tot

hB . (19)

Substituting Eqs. (18) and (19) into Eq. (11) and solving for η gives

=
1

1 +
C11

AhB

C11
BhA

 

 
  

 

 
  

, (20)

which indicates that the penetration is shared between the layers on the basis of the local

modulus and thickness of the contacting tissues (both of which may vary in-vivo). Note that for

an isotropic solid phase,

C11 = HA = 2 s + s( ), (21)

where HA is the aggregate modulus and µs and λs are the Lamé parameters of the solid phase.

The third step is to calculate the total normal traction acting on a tissue layer. Here we

make use of an observation originating from the axisymmetric 2-D biphasic contact code and

assume the distribution of total normal traction over the contact area to be linearly related to the

normal strain. Because the tissue is biphasic, this implies that the pressure at the contact surface

is also linearly related to the normal strain. This leads to the expression
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tTot = A gA

hA , (22)

where tTot is the vector of total traction and γA is a proportionality constant. Equation (22)

requires that the total traction vector be parallel to the penetration vector, and therefore normal to

the contact surface, consistent with the assumption of frictionless contact. Thus for any

component of the resultant force vector F applied on the joint, we can write

t i
Tot  dΓc

Γ c
∫ = A gi

A

hA dΓc =
Γ c
∫ Fi (23)

We calculate γA by requiring that the magnitude of the resultant force produced by the total

traction be equal to the force applied to the joint, |F|, This gives

A =
F

gi
Tot

hA
dΓc

Γ c
∫

 

 
  

 

 
  

2

i=1

3

∑
(24)

In the final step, the applied load must be partitioned between the solid and fluid phases [19], and

this partitioning cannot be determined experimentally. A load sharing parameter,   
s ≤ *≤1, is

defined over the contact surface as the percentage of the total traction that is carried by the solid

phase. A φ* value of 1 indicates that the load is fully supported by the solid phase, and a value of

φs that the load is supported by the pressure, in which case only a fraction equal to φs is carried

by the solid phase (Eq. (3)). The normal components of solid and fluid traction can be written as

ti
s ni = ij

s nin j = *
ij
Totninj (25)

ti
fni = ij

f nin j = 1− *( ) ij
Totnin j (26)

Using the constitutive relations, Eqs. (3) and (4), pressure can be related to the normal

components of total and elastic traction,

p = ij
Enin j − ij

Totnin j . (27)

Substituting Eqs. (27) and (3) into Eq. (25) gives the following expression for the partitioning

factor,

* = ij
s ninj

ij
Totninj

= s + f ij
Eninj

ij
Totnin j

 

 
  

 

 
  (28)

Incorporating expressions for the elastic traction, Eq. (18), and the total traction, Eq.(22), gives
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* = s + f C11
 

 
  

 

 
  (29)

The objective is to apply essential or natural boundary conditions to enforce this partitioning of

the traction. For the v-p formulation, this is achieved by specifying total traction, calculated from

Eq. (22), as a natural boundary condition, thus contributing to the applied load vector in the

biphasic finite element equations. Pressure is an essential condition on the same boundary,

leading to specified nodal values that are calculated using Eq. (27). Unlike contact analysis,

which requires nonlinear iteration to resolve the unknown contact area, this penetration-based

method generates applied traction loads for each layer in the preprocessing stage. After

preprocessing, the layers can be analyzed independently using 3-D biphasic analysis.

 As commonly done in finite element analysis, shape functions and the finite element

mesh are utilized to define the spatial distribution of overlap required to evaluate the integrals in

Eq. (24) numerically. Using γ, the distribution of total traction is determined from Eq. (22) and φ*

is calculated using Eq. (29), from which the pressure can be calculated. Knowing total traction

and pressure, the essential and natural boundary conditions can be specified in the zone of

contact.

It should be noted that the partitioning factor in our method is constant in time, whereas the

theoretical partitioning factor for contact of biphasic materials is time-dependent (i.e., equal to φs

at t=0+ and approaching unity for large time). However, we are not interested in analyses at either

one of these extremes. The time t=0+, while of potential mathematical interest, plays no role in

our analyses, which are intended to be performed for times of the order of seconds, and large

times are unrealistic for human motion. In addition, the contact area and penetration distribution

over that area do not change with time. We will extend our method in the future in order to use

more complete kinematics data to vary the partitioning factor, contact area, and penetration

distribution. In that case, the analysis can be applied to longer time ranges, and to the more

realistic moving contact problem.

Examples

Problem Definition

We validate the penetration method for the short-time response of two canonical

problems whose geometry, Fig. 2, and properties resemble the glenohumeral joint in the human
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shoulder. The lower and upper tissues in each case are referred to as layers A and B,

respectively. The radii of curvature of the articular surface and the bone surface are denoted by

RAc and RAb, respectively, for the lower layer, and RBc and RBb for the upper layer. The thickness

of layers A and B at the axis of rotation are tA and tB. For case CT the thickness is constant, and

for case VT the thickness varies with radial position. The geometric parameter values for each

case are also shown in Fig. 2. Layers of rigid, impermeable bone support the cartilage layers and

an axially-directed force is applied to the upper layer through the bone. The first geometric

model consists of two tissues having the same thickness, but different radii of curvature; in the

second model, tissue A is 50% thicker than tissue B. Note that tissue thickness varies with

position from the axis of rotation. We quantify the congruency of contact as follows:

1

RBc

−
1

RAc

=
1

congruency
(30)

The first example (CT) is more congruent than the second (VT).

All tissue layers have a Young's modulus, E = 556 kPa, Poisson's ratio, ν = 0.05,

permeability, κ= 1.7×10-15 m4/Ns and solid content, φs = 0.25. To understand the influence of

variable material properties on the preprocessing calculations, the same cases were also run with

Young's modulus halved in layer B. A force of 75 N is applied to the rigid bone of the upper

layer over a linear 0.1 s ramp, then held constant for an additional 0.1 s.

Each configuration is analyzed first using the 2-D axisymmetric biphasic contact finite

element [10], from which the displacement of the upper rigid body at t=0.2s is computed. This

displacement value is then applied within the solid modeler to the upper layer of the 3-D solid

model, allowing it to rigidly penetrate the lower layer of the model. Preprocessing starts by

quantifying this penetration. After obtaining the total traction and the partitioning factor, φ*, as

described earlier, the corresponding 3-D analysis is run using a time step of ∆t=0.01s. Results are

compared with those obtained from the 2-D biphasic contact analyses.

Results

Results obtained for the normal component of elastic traction and the pressure in layers A

and B for cases CT and VT at t = 0.1 s are shown in Figs. 3a, where the moduli of layer A and B

are identical, and 3b, where the modulus of layer B is half that of layer A. These results confirm

that the penetration-based method satisfies traction and pressure continuity (see Eqs. (10) and

(11)) on the contacting surface. While not shown, similar results are obtained at other times. The



11

maximum deviation between corresponding values from layers A and B is approximately 1% for

the pressure.

Elastic traction distributions at the end of the ramp time for layer A in cases CT and VT

compare well with values from the axisymmetric contact analysis (Fig. 4.). As is evident in the

figure, the contact radius predicted by the penetration method can be significantly less than that

found by the contact analysis, depending on the congruity of the contacting layers (20% less for

case CT compared with 10% for case VT). As a result, solid traction, total traction (see Fig. 5),

and pressure are generally overestimated. While not explicitly shown here, note that our method

assumes a load sharing parameter, φ*, that is constant within the contact region, while the value

calculated by the biphasic contact analysis decreases toward the edge of contact. For example,

computed values of φ* at the center of the 3-D penetration model are about 15% less for case CT

and 10% less for case VT, compared with the axisymmetric biphasic contact solution.

Figure 6 compares the normal displacement predicted by the 3-D penetration analysis and

axisymmetric contact analysis along the contact surfaces for layers A and B at the end of the

ramp time. While only compressive loads are applied, note that that the penetration method

captures the positive displacements at the edge of contact.

While not explicitly shown here, we note that the surface shear stresses are negligibly

small compared with the normal traction components. Likewise, shear strains on the contact

surface are typically < 5% of the corresponding normal strains.

Discussion

In this study we developed a penetration-based method to approximate three-dimensional

biphasic contact and evaluated the method for axisymmetric contact problems for which an

independent contact method and solution are available. Validation requires acceptable

approximation of the contact continuity conditions and the subsequently calculated field

variables, such as tissue deformation, stress and strain. Our analyses show that the penetration

method provides a good approximation to the continuity requirements of contact. This remains

true if the contacting layers have non-uniform thickness and different material properties,

because the derived splitting parameter for penetration, η, accounts for variations in these

problem parameters.
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As predicted by the 2-D axisymmetric biphasic contact analysis, bulging of the convex

layer produces a larger contact area, and this effect depends on joint congruency. Our method

cannot capture this effect, and the error in estimating the contact area is larger for more

congruent geometries. Due to this underestimated contact area, the total normal traction is

overestimated in the penetration method compared to contact analysis, since total force is

prescribed. The error in the contact area also leads to the underestimation of the integral in the

denominator of Eq.(24). As a result, the proportionality constant that scales penetration to

traction, γ, is higher, and hence, in view of Eq.(29), φ* is smaller.

Normal elastic tractions from the penetration-based analysis compared well with the

biphasic contact analysis. According to Eq.(18), elastic traction depends only on the normal

strain value calculated from the penetration data and the aggregate modulus. Using Eq.(28), the

normal elastic traction can be expressed as a function of total traction and φ*,

ij
Enin j =

( * − s )
s ij

Tnin j . (31)

According to Eq.(31), if the elastic traction is estimated well, the effect of overestimated total

normal traction should be more or less canceled by the underestimated partitioning factor φ*.

This is the case for the error that we make in total normal traction and φ* calculations, since our

examples demonstrate that the estimatation of normal elastic traction is accurate. The accuracy of

the normal elastic traction is of great importance since it demonstrates the potential of the

penetration method to capture the essential phenomena of contact.

The displacement values from the 3-D penetration-based analysis compare relatively well

with the biphasic contact analysis, the deviation mainly caused by the bulging effect, which

cannot be exactly captured by the penetration method. Recall that our method assumes that the

penetration approximates the normal deformation of the contact surface, from which the applied

traction is eventually derived. The actual deformation is subsequently calculated in the 3-D

biphasic analysis. The displacement that the analysis returns, in general, is close to the

penetration data; this confirms the validity of the assumption that the penetration is equivalent to

the normal deformation. Note that the calculation of the normal strain in the preprocessing step,

and the calculation of η, which splits the penetration data between the layers, are also verified

with these results.
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Although not explicitly shown in this paper, we note that the shear strains and stresses are

found to be much smaller than the normal stresses and strains, consistent with frictionless contact

and the assumptions that we made in the derivation of the normal elastic traction.

Quantities such as the maximum principal stress and the maximum shear stress, and their

variations throughout the tissue layers, are significant when assessing the biomechanical aspects

of joint mechanics. In the current work we focused mainly on the capability of the penetration

method to simulate the biphasic contact conditions. Since we are using a validated 3-D finite

element formulation [8] it is clear that a good approximation of the contact traction will lead to

an accurate volumetric solution. Three dimensional stress and strain responses for the

axisymmetric problems presented here agree with the corresponding 2-D contact code, and we

are presently performing parametric studies that look at variations in stress to assess the

possibility of failure in physiological shoulder models.

The penetration-based method has been developed as an interim method, but it also has

the long range potential to provide good approximations while significantly reducing the

computational resources needed to analyze 3-D contact. Our experience in the present study

showed that, even compared to 2-D axisymmetric contact analysis, the penetration method

requires significantly less CPU time. The difference will be much more significant when

compared with 3-D contact analysis. In these analyses, our 3-D meshes have approximately

5000-6000 elements that take a CPU time of 30 minutes (including 20 time steps taken) on a

SUN UltraSparc 60 workstation.

Our method reduces the computational complexity of three-dimensional contact analysis

by replacing the nonlinear iterative process involving multiple contacting bodies with individual

3-D analyses of the contacting bodies under pre-calculated surface traction. The method has been

validated for canonical joint problems that are axisymmetric and can therefore be analyzed using

both 2-D axisymmetric biphasic contact methods and our 3-D penetration-based method.

Although our method is a linear (non iterative) approximation to the true contact problem, the

results show good agreement with biphasic contact analysis and give us confidence to carry

forward with physiological problems involving complex geometries. There are other

improvements to the method that are under development. They include extension to smoothly

traveling loads typical of joint motion, in contrast to the discrete positioning of joints used here,

and incorporation of tissue nonlinearities. We are also continuing the development of 3-D
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biphasic contact, which will provide the true standard against which we can evaluate the

penetration-based method.
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Appendix

Typical tissue layers in the musculoskeletal system have curved faces. Assigning a

displacement at each point that is normal to the surface, as done in the penetration method, will

cause a corresponding tangential displacement. Here we demonstrate that the associated

tangential strains are small compared to the normal strain and can be neglected in the elastic

traction calculation in the pre-processing step. In the case of a flat surface the analysis is similar.

Consider a distribution of penetration vectors that is normal to a surface of curvature R,

Fig A1. For simplicity let R be constant. Considering a small angle, denoted as δθ, a line

segment of length d takes the length d' after the penetration field g deforms the surface. It is clear

that d=Rδθ and the cosine law gives

d' 2 = (R − g)2 + (R − g − g)2 − 2(R − g)(R − g − g)cos( ). (A.1)

For a small angle δθ

1 − cos( ) ≈
( )2

2
. (A.2)

Using this equation and neglecting higher order terms, Eq. (A.1) can be rearranged to the

following form:

d' ≈ R (1−
g

R
)2 − (1−

g

R
) g +

1

R2 (
g

)2 . (A.3)

The tangential strain corresponding to this length change is

=
d' −d

d
. (A.4)

Substituting Eq. (A.3) into Eq. (A.4) and arranging terms gives
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=
R (1−

g

R
)2 − (1−

g

R
) g +

1

R2
(

g
)2 − R

R
. (A.5)

The second term in the square root is of lower order and is neglected. The third term in the

square root indicates (the square of) the change of penetration value per unit distance covered on

the curved surface. For a paraboloidal penetration distribution with maximum value gmax over a

circle of radius Ro, the maximum value that this quantity can take will be equal to 2gmax/Ro. In

our example problems, gmax and Ro are O(0.1mm) and O(10mm), respectively, so that this term is

O(0.0001mm) and can be neglected compared to the first term, which is O(1). With these

considerations, Eq. (A.5) simplifies to

≈ −
g

R
. (A.6)

Recall that in the analysis the magnitude of the normal strain is given as

n =
g

h
, (A.7)

where h is the local thickness of the tissue. As a result, we can say

n

= O(
h

R
). (A.8)

For a typical glenoid cartilage this quantity is around O(0.1). For a typical humeral head cartilage

and for our example geometries it is even smaller.

The result for a flat surface can be derived from Eq.(A.5) by letting R→∞. In this case,

the term δg becomes significant while other terms vanish. Again, using a paraboloidal

distribution it can be shown that

n

= O(
hgmax

R0
2 ) , (A.9)

which is O(0.001) for our example problems. For physiological problems the ratio can have a

higher order but is still negligible. The contribution of these in-plane strains to normal elastic

traction on the surface is further diminished since they multiply smaller material properties for

both isotropic and transversely isotropic material properties of typical soft tissue.
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Figure Captions

Figure 1:  Definition of penetration quantities for the analysis of tissue A. The total

penetration measured along the surface normal of tissue A is denoted as gTot. To analyze A, the

thicknesses of both tissues, denoted as hA and hB, are also measured along this surface normal.

Figure 2:  Problem definition and geometry for the 2-D biphasic contact and 3-D

penetration-based analyses. Cartilage layers (dark gray) are attached to rigid bone (light gray). A

force is applied along the axis of symmetry. The centerline thickness of layer A and layer B, and

radii of curvature are defined. The geometry shown is for case VT. The corresponding geometric

parameters for cases CT and VT are given in millimeters in the table.

Figure 3:  Comparison of normal elastic traction and pressure on layers A and B obtained

from penetration and contact analysis for both case CT and VT plotted as a function of the

distance (radius) from the axis at t=0.1 s. Contacting pairs have the same Young's moduli (3a) or

layer B has half the Young's modulus of layer A (3b).

Figure 4:  Normal elastic traction on layer A of case CT obtained from penetration and

contact analysis plotted as a function of the distance (radius) from the axis at t=0.1 s. at t=0.1 s.

Figure 5:  Total normal traction on layer A of case VT obtained from penetration and

contact analysis plotted as a function of the distance (radius) from the axis at t=0.1 s.

Figure 6:  Axial displacement on layers A and B of case CT obtained from penetration

and contact analysis plotted as a function of the distance (radius) from the axis at t=0.1 s.

Figure A1:  The penetration distribution assigned to a curved surface, where g denotes

the varying penetration field and R is the radius of curvature. Line segment of length d takes the

length d’ after penetration is applied.
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Figure 1
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Case RAc RAb RBc RBb tA tB congruency

CT 26 26 25 25 1.0 1.0 650

VT 26 34 23 26 1.5 1.0 200

Figure 2
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Figure 3a Moduli of tissues A and B are the same.
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Figure 3b Modulus of tissue B is half the modulus of tissue A.
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Figure A1


