
Abstract - We describe a method to simulate cartilage contact
in diarthrodial joints such as the hip, knee and shoulder. The
method derives time-dependent contact boundary conditions
using kinematic, kinetic and geometric data that is collected
experimentally and utilized to define the finite element (FE)
analysis. The nonlinearity associated with contact is
approximated using a penetration-based method, thus
reducing the nonlinear problem to two linear ones, and greatly
reducing the computational resources necessary. The method is
applied to four shoulder models, allowing comparison of
results that may be related to joint degeneration are compared.
Keywords - Cartilage, finite element, shoulder, orthopaedic
biomechanics

I. INTRODUCTION

Biomechanics involving the application of mechanics to
the biological sciences has emerged as an critical branch of
biomedical engineering. Soft tissues fulfill a wide range of
functions in mammalian physiology. Soft tissue
biomechanics is rapidly informing the study of organs as
diverse as skin, brain, heart, tendons and cartilage.
Mechanical properties of the soft tissue play an important
role in function and determine the reaction of the tissue to
mechanical effects.

Articular cartilage is a thin layer of soft tissue that covers
the contacting portions of bones in diarthrodial joints, and
carries the high contact forces [1] occurring during daily
activities. Although it has remarkable durability, cartilage
may be damaged by trauma or inflammatory disease, or may
undergo progressive degeneration causing the clinical
syndrome of osteoarthritis (OA).

This paper describes a method to simulate the mechanical
response of cartilage to loading during physiological joint
motion*. Our objective is to contribute to the understanding
of mechanical factors in OA initiation, leading to the
development of improved implant materials and artificial
cartilage. We use kinematic data obtained experimentally
from visualization techniques like magnetic resonance
imaging (MRI) to derive time-dependent contact boundary
conditions. These boundary conditions are used, together
with a finite element (FE) analysis code, to simulate the
joint motion. As an illustration, the method is applied to
four physiological shoulder models.

II. GOVERNING EQUATIONS

The cartilage is modeled as biphasic, consisting of two
distinct phases, the solid matrix and the interstitial fluid that
fills the matrix. The interstitial fluid accounts for 70-80% of
the cartilage volume, and is an important factor in the load
bearing mechanism. Mow et al. [2] first considered the fluid
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phase when deriving the constitutive equations to form the
biphasic theory of cartilage. Physically, the drag created by
the movement of the fluid through the solid matrix gives the
tissue its viscoelastic properties (although intrinsic matrix
viscoelasticity can also be added [3]).

Assuming intrinsically incompressible phases, the
mixture continuity, and the momentum equations of each
phase are given by

∇ +( ) =• φ φf f s sv v 0,  (1)

∇ • σσσσα + ΠΠΠΠ α = 0,  α = s, f , (2)

where s and f denote the solid and fluid phase, respectively.
vs refers to the velocity, while φ is phase fraction, σσσσ stress

and ΠΠΠΠ  momentum exchange. Assuming an inviscid fluid

phase, the constitutive equations are given by

σσσσ s = −φ spI + σσσσE , (3)

σσσσ f = −φf pΙΙΙΙ , (4)

ΠΠ ΠΠs f s f sp K= − = ∇ + −( )φ v v , (5)

where p denotes the pressure and K  the diffusive drag
coefficient, which is related to permeability κκκκ  through

K = −( )φ f 2 1κκ , σσσσE is the elastic stress tensor of the solid

phase which, for a linear elastic material, can be written as

σσ εεE s= C: , (6)

where εεεεs is the strain tensor and C is the stiffness tensor.

The total stress, σσσσTot is the sum of the phase stresses, ie.,

σσ σσ σσ σσTot s f Ep= + = − +I . (7)

We manipulate (1-5) to eliminate the fluid terms, reducing
the problem to two governing equations:

∇ − =• ( )σσE pI 0 , (8)

∇ − ∇ =• ( )v s pκκ 0 , (9)

where v s and p are the primary field variables for the
problem. (Note that σσσσE is a function of vs.) The boundary

conditions for these governing equations are:

u s = u s on Γu , (10)

p = p on Γp , (11)

 Q n Q= − ∇ •κκ p on Γ , (12)

σσTot
tn• = t on Γ . (13)
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where  Γu, Γp, ΓQ  and Γt are the appropriate parts of the

boundary domain and n is the surface normal.

III. FINITE ELEMENT MODEL

The problem domain (the physiological cartilage
geometry) is complex, hence the governing equations can be
solved only with a numerical technique such as the FE
method. The weak form of the FE method is derived by
using a weighted residual approach, multiplying (8), (9),
(12) and (13) by weighting functions, integrating the
resulting expressions over the discretized domain (FE mesh)
and summing them to obtain the total residual. The solution
is approximated with the same function space as the
weighting functions (Galerkin method) to produce a
symmetric first order differential algebraic system:
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where the superscript n denotes the nodal values of each
quantity, so that vsn and pn are the vectors containing nodal
values. Matrices A, B, and K originate from the solid-fluid
coupling, fluid stiffness and solid stiffness, respectively. Ft

and FQ are force vectors related to (12) and (13).
Equation (14) is solved in time with a finite-difference

method. We use a generalized trapezoidal approach, and
thus solid displacement is related to solid velocity by,

ui + 1
sn = ωvi +1

sn + (1 −ω)vi
sn( )∆t + ui

sn, (15)

where the subscript refers to the time-step number, ω  is a

time-integration parameter and ∆ t is the time-step size.

Substituting (15) into (14) gives the following linear system.
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First, the Dirichlet boundary conditions, (10) and (11) are
imposed on this system, noting that (15) can be used to
relate usn and vsn. The force vector is time-dependent, but
the coefficient matrix does not change with time. Hence, the
matrix is factored only once and the back/forward
substitutions are performed for each right hand side vector
at each time step. The solution at the current time step is
used to update the right hand side in preparation for the
solution of the next time step.

IV. PENETRATION METHOD

The mechanical behavior of diarthrodial joints is dictated
by contact, as forces are transmitted across the joint through
the soft tissue layers, but analysis of 3-D biphasic contact is
complicated and computationally demanding. In an effort to
identify a computationally efficient method, in advance of
full 3-D biphasic contact, we developed the penetration
method to approximate soft tissue contact mechanics. The
method reduces the problem of two biphasic tissues in
contact over an unknown area to two problems, each with
prescribed traction distributions over a pre-calculated (and
therefore known) contact area. This replaces the non-

linearity of contact analysis with a geometry-dependent
preprocessing step. The nature of the contact of cartilage
layers is characterized by how the load is split between the
solid and fluid phases in the contact region. From (7) it is
possible to write (in indical notation):

p n n n nij
E

i j ij
Tot

i j= −σ σ (17)

Equation (17) indicates that load splitting can be determined
if any two of the three stress/pressure quantities can be
calculated. The aim of the penetration method is to derive
these quantities, determine the contact area, and satisfy the
contact boundary conditions. In frictionless biphasic
contact, the pressure and normal elastic traction at the
contact interface should satisfy the following boundary
conditions:

pA − p B = 0, (18)
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Input data for the penetration method originates from in
v i v o  or in vitro joint experiments. The measurements
include deformed and undeformed geometry of the cartilage
layers, joint kinematics, and total joint loads. Since
subchondral bone has a high modulus relative to cartilage
we approximate it as a rigid body. Experimentally measured
joint kinematics can therefore be specified at the interface
between the subchondral bone and the articular cartilage
layers. Applying the physiological joint kinematics to the
initially undeformed cartilage models causes them to
overlap in their physiological position (Fig. 1). At each
contact point, we assume that the tissue deforms
perpendicular to the contact surface, and that the total
vector-valued  penetration,  gTot,  can be treated as the actual
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Fig 1. Penetrating undeformed models obtained from experimental data
(top). A cross sectional view through the models and definition of

quantities used in the penetration method at a contact point (bottom)



tissue deformation. At each contact point, we define a
tangent-normal coordinate system where the only nonzero
penetration component is the normal one denoted by the
subscript n. That way we can directly manipulate the
penetration magnitudes and write
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The portion of the penetration associated with each tissue
can be written as
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where the superscripts A and B identify quantities associated
with tissues A and B, respectively, and η is the splitting

parameter. Available FE [4] and analytical solutions [5]
suggest that the pressure is relatively uniform through the
thickness of the tissue. Hence, according to (9), we expect
the normal strain to be reasonably uniform and can be
approximated as

ε δnn
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Note that the tangential strains contribute negligibly to the
normal traction and are therefore neglected. In order to
satisfy (19), the splitting parameter is given as
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The penetration sharing between layers depends thus on HA

and HB, the layer aggregate moduli (originating from C.),
and hA and hB, the layer thicknesses, both of which may vary
in-vivo. Once the penetration is split, the quantity σE

ijninj

can be approximated using (23) and the tissue modulus.
The traction distribution is also equilibrated with the

experimentally measured total joint force. Considering the
load carrying mechanism of the tissue we assume that the
total traction is proportional to the normal elastic strain
which can be expressed as

σ γ γ εij
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where γΑ is the proportionality constant for layer A. The

total contact traction, integrated component-wise over the
contact surface, should be equal to the total force. Note that
the force direction is determined by the penetration
distribution, so we equate the magnitudes, i.e.
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Since |F | is known, γΑ  can be found and the quantity

σTot
ijninj computed. Together with σE

ijninj, the information

necessary to characterize the contact is thus known. The
above procedure is repeated for layer B and gives
independent boundary conditions for that layer. The
pressure boundary condition is calculated according to (17)
and applied during the FE analysis.

In exact biphasic contact, the solution has a run-time
dependency on the geometry and modulus of the contacting
layers. As shown, the penetration method converts this run-
time solution dependency to a preprocessing dependency,
and replaces intrinsically iterative biphasic contact analysis
with non-iterative biphasic analysis of the individual layers.
Although an approximation, the results of the penetration
method have been shown in canonical contact problems [6]
to satisfy (18) and (19), consistent with the requirements of
biphasic contact.

V. SHOULDER EXAMPLE

OA consists of generally progressive loss of cartilage
accompanied by repair and remodeling. In most cases, OA
develops without any known cause, a condition referred as
primary OA. Secondary OA, on the other hand, develops as
a result of infection, injury or due to hereditary, metabolic,
or developmental effects [7]. Pathological conditions
leading to joint incongruity and asymmetric loading, such as
fracture, surgical procedure, or disease, are listed among the
causes of secondary OA. In addition, incongruity,
asymmetric and nonuniform loading patterns can occur
naturally in the joint without any pathological condition. To
demonstrate this, we analyze four cadaveric, physiologically
healthy shoulder joints using the penetration-based analysis.
These joints are considered geometrically normal in terms
of the thickness and congruity of their cartilage layers.

Typical shoulder joint tissue layers are shown in the top
portion of Fig. 1. The larger tissue, humeral cartilage, covers
the proximal end of the humerus bone. The smaller tissue,
the glenoid, is attached to the scapula. Geometry, material
properties, and joint kinematic data for these shoulder joints
have been provided by the Orthopaedic Research
Laboratory at Columbia University [8]. Solid models are
formed from this geometrical data using the software
Parasolid. The kinematic data corresponds to a coronal arm
elevation motion from an angle of 30˚ to 150˚.

Using the penetration method, we derive moving contact
boundary conditions at discrete elevation angles and
interpolate through these over time to capture the smooth,
time-dependent motion. The full range of motion takes place
in 0.3 seconds, which is within physiological limits.

VI. RESULTS

Penetration-based analysis showed similarities and
differences in the mechanical response of the four normal
shoulders. Two quantities, maximum tensile stress on the
contact surface and maximum shear stress at the cartilage
bone interface, are thought by some investigators to be
related to cartilage damage. Our results indicate that both of
these stress quantities behave similarly, hence our
observations are applicable to both stress components. The
analyses showed that glenoid cartilage experiences
generally higher stresses than the humeral cartilage. The
physiological locations of the high stresses on the glenoid at
three elevation angles are given in Table 1. There is no
regular pattern in high stress locations in the glenoid. We



observed that the glenoid of model 3, which experiences the
lowest stresses, possesses a more symmetrical loading
pattern. The glenoid of model 1 is loaded asymmetrically
and thus experiences high stresses.

The maximum tensile stress on the contact face of each of
the four humeral tissues is shown in Fig. 2 at an elevation
angle of 70˚. The stress patterns give insight about the
contact of the humeral cartilage with the glenoid cartilage.
We notice that the asymmetry of the contact imprint on the
humerus of model 1 is consistent with the load patterns we
observed in the glenoid of the same joint. Similarly the load
distribution is relatively uniform on the humerus of model 3
as expected. The shape and location of the contact imprint
varies although the joints are in the same anatomical
position.

VII. SUMMARY AND CONCLUDING REMARKS
In this work we described a method for simulation of

cartilage layers in contact based on the processing of
experimental data and the FE method. The method is
computationally efficient compared with full 3-D FE contact
analysis, and can be extended to account for large
deformations, known to occur in vivo. In general, numerical
joint simulation is an integral part of joint evaluation.

TABLE 1.
HIGH STRESS REGIONS ON THE GLENOID AT DIFFERENT CORONAL ARM ELEVATION

ANGLES. S: SUPERIOR, I : INFERIOR, A : ANTERIOR, P : POSTERIOR.

Model 30˚ 70˚ 110˚
1 S, I, A S, I, A S, P
2 S, P S, P S, I
3 I,P S,I,P I,A,P
4 I S, A I, A

 (1) (2)

  

(3) (4)

      
Fig. 2. Maximum tensile stress (kPa) at the contact surface of the

humeral tissue in the four shoulders at 70˚ arm elevation.

Quantities that are difficult to measure experimentally can
be obtained in a numerical simulation. For example, stress at
the bone-tissue interface is such a quantity, and may have
clinical significance with respect to cartilage failure.

In the present study, the method is used to analyze four
normal adult cadaveric shoulder joints during coronal arm
elevation. Our analyses indicate that each joint has a unique
loading pattern. Different levels of asymmetric loading are
observed in three models, while the fourth is more
symmetric. We also obtained some quantitative values of
the stress level likely to occur in the shoulder joint.

The penetration method can be especially powerful when
used with nondestructive imaging techniques such as MRI.
In that case patient specific data can be analyzed towards
identifying high stress locations and evaluating the
mechanical risk factors in the joint.
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