
HIERARCHICAL HEXAHEDRAL ELEMENTS
FOR FLUID DYNAMIC SIMULATIONS USING
STABILIZED FINITE ELEMENT METHODS

By

Anil Kumar Karanam

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE, MECHANICAL ENGINEERING

Approved:

Prof. Kenneth. E. Jansen
Thesis Adviser

Rensselaer Polytechnic Institute
Troy, New York

December 2000
(For Graduation December 2000)

CONTENTS

LIST OF TABLES . iv

LIST OF FIGURES . v

ACKNOWLEDGMENT . i

ABSTRACT . ii

1. INTRODUCTION AND HISTORICAL REVIEW 1

2. MESH ENTITY BASED HIERARCHICAL BASIS 6

2.1 Abstract mesh data structure . 6

2.2 Finite element basis functions . 7

2.2.1 Parametric coordinate systems 9

2.2.2 Description of Shape Functions 10

2.2.3 Classical Approach . .. 11

2.2.4 Topology Based Approach 13

2.2.5 Blending functions 13

2.2.6 Entity level functions . .. 15

2.3 Chapter summary . 18

3. NUMERICAL SOLUTION OF THE NAVIER-STOKES EQUATIONS 19

3.1 Incompressible strong form . 20

3.2 Weak form – Finite element discretization 20

3.3 Generalized-� time integrator . .. 24

3.3.1 Generalized-� Method for the Navier-Stokes Equations 25

3.4 Diffusive flux computation . 31

3.4.1 Local, element-level reconstruction 31

3.5 Chapter summary . 33

4. PRE-PROCESSING HIGHER ORDER SIMULATIONS 34

4.1 Introduction 34

4.2 Topological mesh-model hierarchy 35

4.3 Boundary and Initial conditions. 36

4.3.1 Inheritance of boundary conditions 37

ii

4.3.2 Boundary and initial conditions for hierarchic basis 39

4.3.3 Periodic boundary conditions 41

4.4 Compact data structure . 41

4.5 Parallel communications . 44

4.5.1 Mesh partitioning 45

4.5.2 Communication 46

4.6 Chapter Summary . 53

5. NUMERICAL EXAMPLES: STEADY LAMINAR FLOW & CONCLUSIONS 54

5.1 Cost Comparison . 54

5.2 Kovasznay flow . 55

5.3 Flow over a backward-facing step . 59

5.4 Lid-driven cavity flow . 63

5.5 Conclusions . 66

REFERENCES . 68

iii

LIST OF TABLES

2.1 Local simplex-type coordinate systems . 10

5.1 Kovasznay relative cost comparison, extrapolating data to fictional meshes
which would achieve the same accuracy as cubic hexahedra (5� 5 points). . 58

5.2 Step flow mesh statistics . 60

5.3 Step flow simulation cost comparison . 61

5.4 Lid-driven cavity mesh statistics . 65

5.5 Lid-driven cavity normalized cost comparison 66

iv

LIST OF FIGURES

2.1 Figure Illustrating the numbering convention and the co-ordinate system
used for the hexahedra . 10

2.2 Shape function decomposition 14

2.3 Local Q-type vertex ordering and edge direction 15

4.1 Mesh elements illustrating the reversal of shape functions 42

4.2 Inertial Partitioning .. 46

4.3 Dual Based Partitioning 47

4.4 Overview of communication . 48

5.1 Kovasznay flow. Contours of fluid speed for cubic simulation on21�21 mesh 56

5.2 Kovasznay flow convergence study . 57

5.3 Step flow geometry and problem description 59

5.4 Step flow simulation characteristics: Mesh C,k = 3 62

5.5 Backward-facing step. Velocity and pressure plotted versusx2 at x1 = 7
andx1 = 15. Velocities atx1 = 15 were shifted for plotting. 62

5.6 Lid-driven cavity geometry and boundary conditions 63

5.7 Mesh of lid showing corner adaptivity . 64

5.8 Lid-driven cavity fluid speed contours: Mesh A,k = 3 and Mesh B,k = 2 . 65

5.9 Lid-driven Cavity flow. plots ofu1(x1 = 0; x2) andu2(x1; x2 = 0), (�)
linear on161� 161 mesh, (�) quadratic on41� 41 mesh and (+) cubic on
11� 11 mesh, () Ghiaet al.. 66

v

ACKNOWLEDGMENT

I would like to express my gratitude to my advisor, Prof. Kenneth Jansen who introduced

me to the challenging field of stabilized finite element methods. He was of great help

both as a thesis advisor and as a friend. I am also grateful to Dr. Chris Whiting who was

always ready to help me with my numerous questions and concerns.

I would like to acknowledge the Scientific Computation Research Center, which has

been an incredibly fruitful environment to work in. Not only the computer resources, but

also my fellow graduate students and research staff have greatly aided this work. These

interactions have enhanced this research, by helping me solve many technical difficulties

that have arisen during the course of the work. Special thanks are due to Dr. Farzin Shakib

of Acusim software, for providing access to his linear algebra package which was used in

all the simulations presented in this thesis.

Finally, I would like to thank my parents for all that they have provided me through-

out my educational experience, without which none of this work would have been possi-

ble.

Anil Kumar Karanam

i

ABSTRACT

Stabilized finite element methods have been shown to yield robust, accurate numerical

solutions to both the compressible and incompressible Navier-Stokes equations for lam-

inar and turbulent flows. This work presents the development and application of a mesh

entity based, hierarchical basis functions for hexahedral elements to a new stabilized fi-

nite element formulation, which is shown to yield high accuracy and more cost effective

simulations when compared with the traditional, linear basis methods. Some examples of

steady incompressible flow are provided that demonstrate this point.

ii

CHAPTER 1

INTRODUCTION AND HISTORICAL REVIEW

Computational fluid dynamics (CFD) has been rapidly gaining popularity over the past

several years for technological as well as scientific interests. For many problems of in-

dustrial interest, experimental techniques are extremely expensive or even impossible due

to the complex nature of the flow configuration. Analytical methods are often useful in

studying the basic physics involved in a certain flow problem, however, in many interest-

ing problems, these methods have limited direct applicability. The dramatic increase in

computational power over the past several years has led to a heightened interest in nu-

merical simulations as a cost effective method of providing additional flow information,

not readily available from experiments, for industrial applications, as well as a comple-

mentary tool in the investigation of the fundamental physics of turbulent flows, where

analytical solutions have so far been unattainable. It is not expected (or advocated), how-

ever, that numerical simulations replace theory or experiment, but that they be used in

conjunction with these other methods to provide a more complete understanding of the

physical problem at hand. Turbulence researchers are now able to use direct numerical

simulation (DNS) to study the basic physics of turbulent flows. Kimet al. [36] present an

application of DNS to channel flow, and Leet al. [38] present a DNS application to flow

over a backward-facing step. Both of these studies were conducted to gain new insight

into the physical mechanisms involved in turbulent flow.

As computational power grows, the need for more advanced numerical algorithms

also increases. There are many different techniques for constructing numerical solutions

of fluid flow problems, e.g. finite difference methods, finite volume methods, and finite

element methods, to name a few, and all have their strengths and weaknesses. Since the

goal of the present research lies in the development of methods which may ultimately be

used for large-scale applications of industrial interest, finite element methods have been

chosen, given their accuracy as well as their ability to approximate arbitrarily complex ge-

ometric configurations. The finite element method applied to fluid dynamics has reached

a level of maturity over the past two decades such that it is now being successfully ap-

1

2

plied to industrial strength problems including turbulent flows (for example, see Haworth

and Jansen [20] for an application to reciprocating IC engines). Due to its robustness

and proven accuracy, this numerical technique has been chosen for the foundation of the

present research.

Hierarchical basis functions for tetrahedral elements have been shown to be effec-

tive and accurate for complex flows in Whiting [58] The goal of the present work is to

extend the hierarchical basis functions for hexahedral elements, as a means of attaining

more accurate and cost-effective finite element simulations of complex flows. It is hoped

that this will enable simulations of fluid dynamical problems that are not presently feasi-

ble due to current cost restrictions. With these goals in mind, we have chosen a stabilized

finite element formulation based on the formulation of Tayloret al. [54] for incompress-

ible flows, that has been generalized to accommodate higher-order basis functions. This

formulation has been demonstrated to be robust and accurate for laminar as well as turbu-

lent flow simulations using linear basis functions. The new stabilized formulation builds

global conservation into the weak formulation that is lacking in many previous formula-

tions due to the presence of the stabilization of the continuity equation. This, combined

with the higher-order accuracy that stabilized methods have been shown to attain, has

influenced our selection of this formulation for constructing higher-order simulations.

Over the last two decades, stabilized finite element methods have grown in popular-

ity, especially for fluid dynamics applications. Starting with the SUPG method of Brooks

and Hughes [7] through the work of Hugheset al. [24] on the Galerkin/least squares

(GLS) method, and the streamline diffusion method (related to the SUPG method) of

Hansbo and Szepessy [19], a number of stabilized formulations have been proposed. Re-

cent work on variational multiscale methods of Hughes [22] and related work on residual-

free bubbles by Ru´sso [40] and Brezziet al. [6] have not only proposed new directions

for these methods, but have also begun to uncover the theoretical basis for their design.

Recent application of the variational multiscale method to large eddy simulation of turbu-

lence by Hugheset al. [26] has also proven extremely fruitful. A key feature of stabilized

methods is that they have been proven (for relevant model problems) to be stable and

to attain optimal convergence rates with respect to the interpolation error (see Franca

et al. [14], and Hugheset al. [24]). Johnson and Szepessy [33] have also carried out a

3

nonlinear analysis of the related streamline diffusion method for the Burgers equation.

This implies that as the polynomial order of the underlying finite element space is in-

creased, the error in the numerical solution is of the same order as the interpolation error.

This property is crucial to the effective use of higher-order basis functions.

Over the past several years, many research groups have applied higher-order dis-

cretization methods to fluid dynamics simulations in an effort to achieve highly accurate

simulations on unstructured grids. Sherwin and Karniadakis [50] developed aC0 con-

tinuous hierarchical basis based on a generalized tensor product using mixed-weight Ja-

cobi polynomials and applied it to a higher-order splitting scheme for the incompressible

Navier-Stokes equations in [52]. They presented numerical results to verify the conver-

gence properties of their method. For Euler flows, the discontinuous Galerkin method pro-

vides a straightforward way of constructing higher-order solutions (see Biswaset al. [5]

and also Devine [12]). Odenet al. [39] have recently successfully applied the discon-

tinuous Galerkin method to diffusion type problems using arbitrary polynomial order in

each element. Others have generalized spectral methods to unstructured grids to achieve

spectral accuracy without being restricted to regular domains (see Carpenter and Got-

tlieb [9] and Sherwin and Karniadakis [51]). All these methods, however, use the standard

Galerkin method for the spatial discretization. Most of these shortcomings have been ad-

dressed in [58]. This work attempts to replicate some of the results in that, to demonstrate

the effectiveness of higher order basis functions on hexahedral elements.

In the present work, the spatial discretization of the stabilized formulation for the

Navier-Stokes equations is carried out using a higher-order, hierarchical basis which is

C0 continuous between finite elements. The hierarchical basis used here is based on the

abstract mesh data structure of Beall and Shephard [2], where basis functions are asso-

ciated with the individual topological entities of the mesh. This type of basis construc-

tion was first introduced by Shephardet al. [49] (using the basis functions of Carnevali

et al. [8]) who considered the basis functions to be associated with the mesh entities in

a special way. Their mesh entity based hierarchical basis functions support non-uniform

k-refinement of meshes of arbitrary element type, e.g. tetrahedral, hexahedral, and pyra-

midal, by employing an explicit decomposition of shape functions into element blends (

discussed in greater detail in chapter 2), ensuring the correct element support and entity

4

level functions, giving the desired polynomial order on an entity. To gain this generality,

we have dispensed with the traditional finite element mesh data structures consisting of

only element nodal connectivity (see Hughes [21]) in favor of this more general and com-

plete topological adjacency mesh representation. To maintain efficiency on large-scale

problems, however, the abstract data structure is only currently used in the pre- and post-

processing stages of the simulation, and is therefore not read by the analysis code. A

compact data structure will be described that is simple to implement within existing finite

element codes, as it represents a relatively straightforward generalization of the traditional

data structures. Finally, note that we are usingk to refer to the polynomial order of the

finite element basis. This is in place of the more standard notation,p, which we reserve

for the pressure variable.

Another key aspect of the present research is the use of parallel computers to ef-

fectively speed up computations. Finite element calculations are extremely well suited to

parallel computing environments since much of the work is in computing element level

integrals, and performing sparse matrix-vector products which both parallelize well. Sev-

eral methods have been proposed which use parallel computers for finite element imple-

mentations, see, for example, Bastin [1], Johan and Hughes [30], Kennedyet al. [35],

Bey et al. [4], and Biswaset al. [5]. Many of these implementations rely on some high

level language, such as CM-Fortran (used by Johan and Hughes [30] as well as Kennedy

et al. [35]), where interprocessor communication patterns are actually constructed by

the compiler, requiring minimal coding effort, however performance is far from optimal

(Bastin [1] showed these methods can take up to 15% of total CPU time for communica-

tion as opposed to 3% using pre-processed data structures). The current implementation

is closely related to that used by Bastin [1], taking advantage of the MPI library for in-

terprocessor communication using “message passing”. The use of message passing for

these communications also enables the use of distributed computing environments which

are quickly gaining popularity. To enable rapid communication of all information lying

on partition boundaries during the analysis, the data structures necessary for parallel com-

munication are pre-processed. This pre-processed data structure contains all the informa-

tion necessary to carry out the interprocessor communication, which includes hierarchical

degree-of-freedom information associated with mesh entities (edges and faces) that lie on

5

the interprocessor boundary, as well as the linear vertex modes. Care has been taken to re-

duce communication cost by requiring that any pair of processors communicate no more

than once.

Numerical simulations of the Navier-Stokes equations (through cubic polynomial

order basis) will be presented that verify that nearly optimal convergence rates are ob-

served for problems where analytical results are available. The method will then be ap-

plied to more complex (though still laminar) flow simulations which demonstrate a clear

advantage of higher-order methods over the traditional, linear basis methods for the in-

compressible and compressible Navier-Stokes equations. For several of the numerical

simulations, a careful cost vs. accuracy study will be conducted to determine the cost-

effectiveness of the hierarchical basis. This study will consider the cost with respect

to various measures which will quantify where improvements can be made to make the

higher-order methods even more cost effective. The results presented will show that for

steady problems, cubic basis simulations can be much more cost effective than the stan-

dard linear-basis methods.

CHAPTER 2

MESH ENTITY BASED HIERARCHICAL BASIS

The hierarchical basis functions used in the present work are based on the constructions

of Shephardet al. [49] for specifying variablek-order meshes. These constructions are

based on the topological hierarchy of mesh entities (vertices, edges, faces, and regions)

which define the finite element mesh. Due to the restrictions of standard finite element

data structures consisting only of nodal coordinates and element connectivity, variable

k-order finite element meshes must rely on richer structures that allow the independent

assignment of polynomial order over the elements as noted by Demkowiczet al.[11].This

chapter presents a detailed discussion of the finite element basis used in the present work.

The description of a new compact mesh data structure that is used to maintain efficiency

for large-scale problems will be presented in Chapter 4.

2.1 Abstract mesh data structure

In order to define the finite element basis, we will first introduce the abstract mesh

data structure on which the element level basis will be defined (more detail on the mesh

data structure used in the present work may be found in the work of Beall and Shep-

hard [2]). The abstract mesh is represented by a data structure (mesh database) that

maintains a complete set of adjacency relationships between the various entities in the

finite element mesh, known as “mesh entities”. A mesh entity is defined as an individual

topological object that is used to define the domain and boundary of a traditional finite

element. These entities are of type: region, face, edge, and vertex. The first-order adja-

cencies between these mesh entities are as follows: a region is bounded by faces, a face

is bounded by edges, and an edge is bounded by vertices.

We will refer to the abstract mesh data structure, including the adjacency relation-

ships, asTM . This mesh database is complemented by a set of functions which support

general query operations such as first-order adjacencies (e.g. a function that returns the

eight vertices attached to a given hexahedral mesh region), allows arbitrary data to be

attached to mesh entities (or geometric model entities), and provides additional function-

6

7

ality. The mesh database is also a powerful tool for many other tasks relating to pre- and

post-processing higher-order simulations (e.g. boundary conditions and parallel process-

ing data structures rely heavily on the abstract mesh adjacency representation).

In addition to the mesh entity adjacencies (and their auxiliary functions), the mesh

database also maintains a unique relationship between the finite element mesh and the ge-

ometric model of the underlying physical domain. This geometric model is represented in

terms of “geometric model entities”, in analogy with mesh entities, and similar topologi-

cal adjacency information is stored. The relationship between mesh and model is known

as “classification” and defines the unique model entity that each mesh entity is classified

on (more details of mesh-model classification may be found in Beall and Shephard [2]).

Mesh-model classification is critical for the assignment of boundary conditions in a mesh-

independent manner and greatly simplifies the application of boundary conditions (see

Shephard [48]). As part of this work, a graphical user interface (GUI) was developed to

enable the assignment of boundary conditions directly to the geometric model entities,

which are subsequently inherited by the mesh entities based on their classification (there

are generallymanyfewer model entities than mesh entities). Boundary conditions for a

simulation are thus assigned without reference to a mesh, therefore, different meshes of

the same physical model may be used without re-assigning boundary condition attributes.

In practice, the mesh database is a library of C++ classes that define the various

mesh and model objects and have member functions that return the desired adjacency

information. The concepts introduced here can be illustrated by the simple example C++

code fragment given in Program 2.1.1. First, the geometric model,model.dmg , and the

mesh,mesh.sms , are loaded (it is presumed that the mesh is classified on this model).

Then all regions associated with this mesh are visited and the list of vertices attached to

the current region is retrieved. This vertex list may then be processed in any way, for

example, coordinates or ID numbers could be collected into an array.

2.2 Finite element basis functions

To proceed with the definition of the element level basis, we first precisely define

the finite element. The definition given here is similar to the standard finite element,

although additional information is also included. Given the topological description of the

8

Program 2.1.1Mesh database example

DiscreteModel *model = new DiscreteModel("model.dmg",0);

Mesh *mesh = MM_new(1,model);
M_load(mesh,"mesh.sms");

MRegion *region;
SimpleMeshRegionIter rIter = mesh->firstRegion();
while (rIter(region)) {

SPList<MVertex*> *vertices = region->vertices();
process list of vertices...

}

mesh along with its adjacency relationships,TM , we define:

Definition 2.1 The closure of a finite element, denoted�
e, of dimensionde, is defined as

�
e = fMde
e ;M

de
e fMde�1

j g; : : : ;Mde
e fM0

j gg; (2.1)

whereMde
e represents mesh entitye of dimensionde.

We have followed the notation of Beall and Shephard [2] for the mesh entity adjacencies

as

Mde
e fMdj

j g (2.2)

which is thejth mesh entity of dimensiondj, bounding mesh entitye of dimensionde. In

other words, a finite element is a mesh region along with its lower order bounding mesh

entities. For example, a hexahedral finite element has eight bounding vertices, twelve

bounding edges, six bounding faces, and one region. Additional information, such as the

direction a face (or edge) is used by a region (or face), is also maintained in the mesh

database, and there are functions that return this information.

To construct the discrete, finite element solution, we expand the continuous quan-

tities appearing in the weak form (given in the following chapter) in terms of aC0 con-

tinuous, piecewise polynomial basis defined on each element (as described below). We

9

define this element level basis with the aid of the piecewise polynomial space defined as:

Definition 2.2 Let Pk(�
e) be the piecewise polynomial space, complete to orderk, de-

fined on the finite element�
e.

The basis forPk(�
e) consists of functions,Na(�i); a = 1 : : : nes, contributed by the mesh

entities in�
e. Here,nes is the number of basis functions contributing to a given element’s

basis and equals the sum of the number of functions associated with each bounding en-

tity. The polynomial order assigned to each entity is used to compute the number of basis

functions it will contribute. The local coordinate system,�i, will be described below.

Although the polynomial order may be assigned independently to each mesh entity, it

should be noted that the order of complete polynomial representable by a given element’s

basis will be constrained by the minimum complete order assigned to any of the entities

in �
e, with the exception of vertex modes, which are linear, regardless of the basis order.

The direct assignment of the polynomial order to each mesh entity, however, enables a

straightforward extension to non-uniformk meshes and meshes of mixed-topology el-

ements, and may also be useful to resolve strong gradients in a pre-determined spatial

direction such as boundary layers where strong gradients occur in predictable directions.

2.2.1 Parametric coordinate systems

The basis functions are defined in terms of parametric coordinate systems,�̂i, asso-

ciated with the individual mesh entities, as well as,�i, the local coordinate of the element

that is using the function. Each edge, face, and region in the finite element mesh has

its own local coordinates. These coordinate systems need not be the same for all enti-

ties (of a given type) in the mesh, particularly when elements of different topologies are

present, which is in contrast to Lagrange basis functions, that are defined solely in terms

of a single element coordinate system. Since we will be dealing with meshes composed

entirely of hexahedral elements, we will concentrate the discussion on Q-type element

coordinate systems (e.g. quadrilaterals in 2D and hexahedra in 3D), more details on coor-

dinate systems useful for different types of element topologies can be found in Dey [13]

and also Shephardet al. [49]. Figure 2.2.1 shows the co-ordinate system of the template

hexahedral element.

10

Topology Parametric coordinates

Edge �1 � �̂1 � 1

Face �1 � �̂1; �̂2 � 1

Region �1 � �̂1; �̂2; �̂3 � 1

Table 2.1: Local simplex-type coordinate systems

2.2.2 Description of Shape Functions

Based on the local co-ordinate system described in section 2.2.1 we can define

hierarchic shape functions for the template element. Two independent methods exist for

generating identical shape functions for this type of element Both of these are based on the

Legendre polynomials. The first approach which we refer to asClassical[53] generates

these functions for a complete template element and each function completely defines the

shape function for a particular sub entity on the template element. The shape functions

η

ζ

ξ
2

3

56

7

Co-Ordinates of Points
(1) {-1, -1, -1}
(2) { 1, -1, -1}
(3) { 1, 1, -1}
(4) { -1, 1, -1}
(5) { -1, -1, 1}

(8) { - 1, 1, 1}

(6) { 1, -1, 1}

1

2

3

4

5

6

7

8

8

4

1

910

11 12

Edges Face
1,2,3,4 1
9,5,10,1 2
10,6,11,2 3
4,12,8,9 4
11,7,12,3 5
 8,7,6,5 6

(7) { 1, 1, 1}

Figure 2.1: Figure Illustrating the numbering convention and the co-ordinate system
used for the hexahedra

11

obtained by this method are described in detail in section 2.2.3. The other approach is the

topology based approach [49] which splits the shape functions into two parts anEntity

level functionwhich is associated only with the entity irrespective of its location in the

element and theelement blendwhich multiplies the previous function to generate the

complete function for the entity on the element. This strategy is completely discussed in

section 2.2.4.

Both these methods are introduced in some detail but the primary focus will be on

the second form, which has been implemented here.

2.2.3 Classical Approach

� Shape Functions for the Nodes these are eight in number are identical to the shape

functions for a 8 noded tri-linear hexahedron.

N1 =
1

8
(1� �)(1� �)(1� �) (2.3)

N2 =
1

8
(1 + �)(1� �)(1� �) (2.4)

N3 =
1

8
(1 + �)(1 + �)(1� �) (2.5)

N4 =
1

8
(1� �)(1 + �)(1� �) (2.6)

N5 =
1

8
(1� �)(1� �)(1 + �) (2.7)

N6 =
1

8
(1 + �)(1� �)(1 + �) (2.8)

N7 =
1

8
(1 + �)(1 + �)(1 + �) (2.9)

N8 =
1

8
(1� �)(1 + �)(1 + �) (2.10)

� Edge modes , there are 12(k-1) edge modes. The edge modes are all listed below

The superscript denotes the edge and the subscript give the mode number

N1;2
i�1 = 1=4�i(�)(1� �)(1� �) (2.11)

N2;3
i�1 = 1=4�i(�)(1 + �)(1� �) (2.12)

and so on: : :

12

The subscript i varies from 2 tok. The function�i() is defined as

�j(x) =
1p

2(2j � 1)
(Pj(x)� Pj�2(x)) (2.13)

wherePj(x) are theLegendre Polynomialsand can be generated usingBonnet’s

recursion formula.

P0(x) = 1 (2.14)

P1(x) = x (2.15)

P2(x) =
1

2
(3x2 � 1) (2.16)

(2.17)

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)� nPn�1(x) (2.18)

The Legendre Polynomials also satisfy another relationship,

(2n+ 1)Pn(x) = P
0

n+1(x)� P
0

n�1(x) (2.19)

This allows us to write

�
0

j(x) =

p
2j � 1p

2
Pj�1(x) (2.20)

� Face Modes, there are 3(k-2)(k-3) face modes the shape functions associated with

the face modes are as follows. The superscript denotes the face and the subscript

spans over the number of shapefunctions contributed by the face.

N (1;2;3;4)
m =

1

2
(1� �)�i(�)�j(�) (2.21)

i; j = 2; 3; 4; 5; : : : ; p� 2 (2.22)

i + j = 4; 5; : : : ; p (2.23)

The other face modes are similar and can be written down in the same pattern.

13

� Interior modes, there are (k-3)(k-4)(k-5)/6 for k � 6, these modes have not been

implemented in the present code as p greater than 5 was not used.

2.2.4 Topology Based Approach

A general methodology has been developed by Shephardet al. [49] for the con-

struction ofk-version finite element meshes, which is used in the present work. Each

basis function (fork > 1) is decomposed as

N(�i) = '(�i(�̂j))� (�i) (2.24)

where (�i) is a blending function of fixed polynomial order ensuring thatN(�i) has the

correct global support,'(�i(�̂j)) is an entity level function giving the desired polynomial

order on the entity, and�i(�̂j) represents the mapping from entity,�̂j, to element,�i,

coordinates. This decomposition allows for the efficient implementation of non-uniform

k-order meshes as well as the use of meshes with mixed-topology elements. Since the

blending function depends only on the element coordinate, it may differ for topologically

different elements sharing the same mesh entity (which provides the correct polynomial

order behavior, regardless of the topology of the bounding element). The decomposition

of a shape function in terms of an entity level function and an element blend is illustrated

in Figure 2.2 for a cubic basis function on a triangular element. In Figure 2.2, the element

blend is shown in the upper left, and the entity level function (specific to the mesh edge)

is shown on the upper right, their product is the resulting (cubic) shape function for the

triangular element and is shown on the bottom.

2.2.5 Blending functions

The blending function appearing in Equation 2.24, (�i), depends only on the ele-

ment, and ensures that each basis function has the correct global support (i.e. it must be

zero on lower order mesh entities it does not bound). For hexahedral regions, the blends

14

Element blend Entity function

Element basis
function

Mapping

Figure 2.2: Shape function decomposition

will be defined as (see Dey [13]):

 =
1

8
(�2k � 1)(1� �l)(1� �m) (2.25)

 =
1

8
(�2l � 1)(�2m � 1)(1� �k) (2.26)

for the edges and faces, respectively. The subscripts are defined by the local vertex or-

dering in Figure 2.3, for example1
2
(�21 � 1) is the element blend for the edge between

vertices1 and2. And 1
4
(�21 � 1)(�22 � 1) is the element face blend for the face compris-

ing of vertices1; 2; 3; 4. These choices of element blend are not the only possibility and

additional ones are explored in Dey [13].

15

2.2.6 Entity level functions

The entity level function (in Equation 2.24),'(�̂i) provides the desired polynomial

order for a given entity’s basis function. These functions can be comprised of any set of

hierarchical basis functions, and in general are of order (k � q), whereq is the order of

the blend, andk is the desired order. The hierarchical basis functions used here are based

on standard Legendre polynomials. The entity level functions are given by the following

expressions (see also Dey [13]):

Edge (k � 2): There is only one shape function of a given polynomial order p.

Using the edge parameterization� 2 [�1; 1] and using theLegendrepolynomials,

we write

(
�2 � 1

2
)� =

r
2k � 1

2

Z �

�1

Pk�1(t)dt; k � 2 (2.27)

where

Pk is theLegendrepolynomial of orderk.

12

3 4

56

7 8

ε1

ε2

ε3

Figure 2.3: Local Q-type vertex ordering and edge direction

16

The term(�
2
�1
2

) is the edge blend and can be factored from the right hand side of

the previous equation.

Face (k � 4):

For a quadrilateral mesh face, there are a total of (k � 3) face functions that con-

tribute to shape functions of polynomial orderk. The face functions are obtained

as tensor product polynomials of one-dimensional edge functions. They are written

as follows

1

4
[�21 � 1][�22 � 1]� =

r
2�1 � 1

2

Z �1

�1

P�1�1(t)dt

r
2�2 � 1

2

Z �2

�1

P�2�1(t)dt

(2.28)

with

�1; �2 � 2 (2.29)

�1 + �2 = k (2.30)

andk � 4. The term1
4
[�21 � 1][�22 � 1] is the quadrilateral face blend and can be

factored from RHS of the above equation.

Region (k � 6):

For a hexahedral mesh region, there are a total of(k�4)(k�5)
2

shape functions of a

polynomial orderk, for k � 6. The entity functions for the region are derived

based on the tensor product polynomial basis using theLegendrepolynomials and

are given by

� = A(�1)� B(�2)� C(�3) (2.31)

A(�1) =

r
2�1 � 1

2

Z �1

�1

P�1�1(t)dt (2.32)

B(�2) =

r
2�2 � 1

2

Z �2

�1

P�2�1(t)dt (2.33)

C(�3) =

r
2�3 � 1

2

Z �3

�1

P�3�1(t)dt (2.34)

17

with

�1; �2; �3 � 2 (2.35)

�1 + �2 + �3 = k (2.36)

To construct element matrices and residual vectors the discrete solution is expanded

in terms of these basis functions as

�e(�i; t) =
nesX
a=1

�a(t)Na(�i) (2.37)

where�e(�i; t) is the finite element approximation of any variable (e.g. pressure or veloc-

ity) on elemente and�a(t) are the desired coefficients with respect to the basis (since we

are using a semi-discrete formulation, the coefficients depend on time).

At this point we would like to point out some important differences between hier-

archical and Lagrange basis functions. The main difference is that the hierarchical basis

of orderk is a subset of the basis of orderk + 1, i.e. Pk(�
e) � Pk+1(�
e). This property

greatly simplifies the generation of basis functions, and the varying of polynomial order.

Hierarchical and Lagrange basis functions also differ as follows: for a given polynomial

order, sayN , all functions for the Lagrange basis are of orderN , in contrast, the individual

hierarchical basis functions will be of different order, however the complete polynomial

order is stillN . The polynomial order of each of the basis functions for each entity type is

discussed in detail in Shephardet al. [49]. To get the total (global) number of basis func-

tions,ns (related to the total number of equations to be solved), we sum over the number

of shape functions contributed by each mesh entity for all entities in the mesh. (Note that

for a Lagrange basisns simply equals the number of “nodal points” in the mesh.) An-

other key difference is that the hierarchical basis function coefficients do not correspond

to solution values at specific spatial locations (as they do for Lagrange elements), they

are actually related to higher-order moments of the solution (and its derivatives) on the

associated entity. This property makes many routine operations on finite element data

more difficult to carry out. For example, post-processing must rely on more advanced

techniques when dealing with the higher-order basis functions.

18

2.3 Chapter summary

This chapter, the hierarchical basis that will be used for the fluid dynamics simula-

tions in this thesis, was presented. The shape function decomposition in terms of entity

level function and element blend was discussed in detail, as was the use of the abstract

mesh data structure, on which the constructions are based. In the following chapters, the

hierarchical basis will be used for numerical simulations of incompressible flow, and its

accuracy and cost effectiveness will be demonstrated.

CHAPTER 3

NUMERICAL SOLUTION OF THE NAVIER-STOKES

EQUATIONS

This chapter presents the finite element formulation for the Navier-Stokes equations. A

semi-discrete finite element formulation that has restored conservation properties is pre-

sented which uses the hierarchical basis functions for the spatial discretization. Stabilized

finite element formulations have been used by several researchers and have been shown

to be robust, accurate, and stable on a variety of examples from steady and unsteady lami-

nar flows to large eddy simulations (LES) and Reynolds averaged simulations of complex

turbulent flows (see, for example, Jansen [28], Jansen [27], Tezduyaret al. [55], Hughes

and Jansen [25], Bastin [1], and Tayloret al. [54]). The temporal discretization is based

on the generalized-� method of Chung and Hulbert [10], generalized to first-order sys-

tems in Jansenet al. [29]. This new implicit time integrator is proven to be second-order

accurate (on linear model problems) and contains a user specified amount of numerical

dissipation.

Stabilized finite element methods have been proven to be stable and higher-order

accurate for a linear advective-diffusive system (the closest model problem to the Navier-

Stokes equations) in Hugheset al.[24], for the linearized incompressible Navier-Stokes

equations in Franca and Frey [14], and for a representative nonlinear problem (the Burg-

ers equation) in Johnson and Szepessy [33]. The higher-order accuracy properties, as

well as the robustness on complex flows has motivated our choice of finite element for-

mulation. We first present the strong form of the incompressible Navier-Stokes equations,

followed by a description of the semi-discrete, stabilized finite element formulation used

to discretize the spatial portion of the associated weak form. The generalized-� method

time integrator is then introduced to integrate the system of ordinary differential equations

resulting from the spatial integration.

Finally, the chapter concludes with a discussion of the numerical evaluation of the

diffusive flux terms that appear in the formulation, and methods will be presented for use

with both linear and higher-order basis functions.

19

20

3.1 Incompressible strong form

Consider the application of the mesh entity based hierarchical basis functions (de-

scribed in Chapter 2) to the time-dependent, incompressible Navier-Stokes equations.

First, consider the strong (or differential) form of the continuity and momentum equa-

tions written in the advective form (see Gresho and Sani [18])

ui;i = 0 (3.1)

_ui + ujui;j = �p;i + �ij;j + fi (3.2)

whereui is theith component of velocity,p the pressure divided by the density� (assumed

constant),fi the prescribed body force, and�ij the viscous stress tensor given by:

�ij = �(ui;j + uj;i) (3.3)

where� = �

�
is the kinematic viscosity, and the summation convention is used through-

out (sum on repeated indices). We have chosen to write the diffusive terms in the stress-

divergence form, which gives rise to a more meaningful set of natural boundary condi-

tions. This system of equations is supplemented with an appropriate set of prescribed

boundary conditions on� = @
. The incompressible Navier-Stokes equations can be

written in many equivalent forms (for the continuous system) which are not necessarily

equivalent when discretized. A complete description of the various forms of the equations

and the strengths and weaknesses of each, as well as a complete discussion of boundary

conditions, are described in the book by Gresho and Sani [18].

3.2 Weak form – Finite element discretization

Finite element methods are based on the weak form (or integral form) of the Navier-

Stokes equations (3.1) and (3.2) which is obtained by dotting the entire system from the

left by a vector of weight functions and integrating over the spatial domain. The diffusive

term, pressure term, and continuity equation are all integrated by parts. The diffusive term

is integrated by parts to reduce continuity requirements, otherwise we would have second

derivatives on our solution space. The pressure term is integrated by parts to provide

21

symmetry with the continuity equation which is integrated by parts to provide discrete

conservation of mass. The consequences of not integrating the pressure term by parts are

discussed in detail in Gresho and Sani [18] pages 449–450.

The finite element formulation is based on finite dimensional subspaces of the con-

tinuous weight and solution spaces. Recall that�
 � RN represents the closure of the

physical spatial domain,
[�, inN dimensions; onlyN = 3 is considered. The boundary

is decomposed into portions with natural boundary conditions,�h, and essential bound-

ary conditions,�g, i.e.,� = �g [�h. In addition,H1(
) represents the usual Sobolev

space of functions with square-integrable values and derivatives on
. Subsequently

is discretized intonel finite elements,�
e, as defined above. With this, we can define the

discrete trial solution and weight spaces for the semi-discrete formulation as

S
k
h = fvjv(�; t) 2 H1(
)N ; t 2 [0; T]; vjx2�
e

2 Pk(�
e)
N ; v(�; t) = ĝ on �gg; (3.4)

W
k
h = fwjw(�; t) 2 H1(
)N ; t 2 [0; T];wjx2�
e

2 Pk(�
e)
N ;w(�; t) = 0 on �gg;

(3.5)

Pk
h = fpjp(�; t) 2 H1(
); t 2 [0; T]; pjx2�
e

2 Pk(�
e)g (3.6)

wherePk(�
e) is as defined in Definition 2.2. Here,ĝ represents an approximation to the

prescribed boundary condition in the finite element basis. Let us emphasize that the local

approximation space,Pk(�
e), is the same for both the velocity and pressure variables

(although this is not necessary, it is computationally convenient, especially when working

with higher-order discretizations). This equal-order interpolation is possible due to the

stabilized nature of the formulation to be introduced below, without which, attention must

be paid to the Babu˘ska-Brezzi condition. Note that here and throughout, we have omitted

the superscripth that is normally included in the discrete representation of the continuous

variables, as inu(h;k)i , for notational simplicity. Where there is any chance of confusion,

the full notation is retained.

The stabilized formulation used in the present work is based on that described by

Tayloret al.[54] generalized to include the higher-order basis functions. Given the spaces

defined above, we first present the semi-discrete Galerkin finite element formulation ap-

22

plied to the weak form of (3.1) as:

Findu 2 Sk
h andp 2 Pk

h such that

BG(wi; q; ui; p) = 0

BG(wi; q; ui; p) =

Z

fwi (_ui + ujui;j � fi) + wi;j (�p�ij + �ij)� q;iuigdx

+

Z
�h

fwi (p�in � �in) + qung ds
(3.7)

for all w 2Wk
h andq 2 Pk

h . The boundary integral term arises from the integration by

parts and is only carried out over the portion of the domain without essential boundary

conditions. Since all the weight coefficients are arbitrary, this gives us a separate equa-

tion for each of thei components (and for each of the basis functions). The standard

Galerkin method is well known to be unstable for advection-dominated flows (see Brooks

and Hughes [7]) and in the diffusion dominated limit for equal-order interpolation of the

velocity and pressure, i.e. the Babu˘ska-Brezzi condition. Stabilized methods are well-

known to address both of these issues (see Brooks and Hughes [7] and Hugheset al. [23],

respectively). To remedy both of these situations we add additional stabilization terms as

follows:

Findu 2 Sk
h andp 2 Pk

h such that

B(wi; q; ui; p) = 0

B(wi; q; ui; p) = BG(wi; q; ui; p)

+

nelX
e=1

Z
�
e

f�M(ujwi;j + q;i)Li + �Cwi;iuj;jg dx

+

nelX
e=1

Z
�
e

fwi

�
ujui;j + ��

�
ujwi;j

�
ukui;kg dx

(3.8)

for all w 2 Wk
h and q 2 Pk

h . We have usedLi to represent the residual of theith

23

momentum equation,

Li = _ui + ujui;j + p;i � �ij;j � fi (3.9)

The second line in the stabilized formulation, (3.8), represents the typical SUPG stabi-

lization added to the Galerkin formulation for the incompressible set of equations (see

Franca and Frey [14]). The first term in the third line of (3.8) was introduced by Taylor

et al. [54] to overcome the lack of momentum conservation introduced as a consequence

of the momentum stabilization in the continuity equation. The second term on this line

was introduced to stabilize this new advective term. To see that this formulation conserves

momentum, setw = f1; 0; 0g andq = u1 in (3.8) which leaves only boundary terms if

we choose

�
ui = ��MLi (3.10)

which may be identified with a modified, conservation-restoring, advective velocity. This

term must itself be stabilized since it is an advective type term which will lead to advective

instabilities. The stabilization parameters for continuity and momentum are defined as

�M =
�q

c1=�t
2 + uigijuj + c2�2gijgij

(3.11)

�C =
1

8�M tr(gij)
(3.12)

and the stabilization of the new advective term is defined in direct analogy with the ad-

vective portion of�M as

�� =
�q

�
uigij

�
uj

(3.13)

where c1 and c2 are defined based on considerations of the one-dimensional, linear

advection-diffusion equation using a linear finite element basis andgij = �k;i�k;j is the

covariant metric tensor related to the mapping from global to element coordinates. This

24

term may be identified with the element length-scale, and is hence a mesh dependent

parameter. These stabilization parameters are related to those proposed by Shakib [44]

and were also used (in a slightly different form) by Tayloret al. [54]. The constantc2

is a modification for higher-order elements to obtain the correct order of convergence in

the diffusive limit as required by the use of the inverse estimates in the accuracy analy-

sis of Franca and Frey [14]. There is some guidance as to how to select this parameter,

however, experience has shown the method to be relatively insensitive to its choice. Cur-

rently we usec2 = 36; 60; 128 for linear, quadratic, and cubic basis, respectively, for the

modification, which has provided good results in all cases presented. The parameterc1

is related to the temporal portion of the stabilization, and we have selected it to be4 for

most problems.

To derive a discrete system of algebraic equations, the weight functionswi andq, the

solution variablesui andp, and their time derivatives are expanded in terms of the finite

element basis functions (c.f. Equation 2.37). Gauss quadrature of the spatial integrals

results in a system of first-order, nonlinear differential-algebraic equations which can be

written as

RA(ui; _ui;p) = 0; A = 1 : : : ns (3.14)

where we have assumed the coefficients of the weight functions to be arbitrary, indicated

by the indexA, andui; _ui, andp are vectors of the basis coefficients for the discrete

representations of these flow variables. The generalized-� method described below is

used to solve this nonlinear system in a predictor corrector format utilizing Newton’s

method.

3.3 Generalized-� time integrator

While several methods have been proposed for the integration of the Navier-Stokes

system (both semi-discrete as well as space-time), there has yet to emerge a clear favorite.

For example, space-time finite element methods where proposed and analyzed by Shakib

et al. [45, 46] and expanded and used extensively by Tezduyaret al. [56, 57, 31, 32].

Here, as the name implies, the weight and solution space are both given a temporal de-

25

pendence in addition to the usual spatial dependence. While these methods have yielded

very accurate results, the cost has only been justifiable on problems with a moving do-

main such as free surface flows and/or deforming spatial domains that account for moving

solid boundaries. In these cases, the additional cost of space-time methods is put to good

use by providing a consistent tracking of the moving boundary.

In cases where the boundary is not moving, semi-discrete methods remain in favor

(see Behret al.[3]). Part of the attraction to semi-discrete methods is their long history

of use in computational solid dynamics. Many algorithms have been proposed, analyzed

and even designed to provide particular behaviors needed in particular conditions. Of

particular interest is the behavior of these algorithms in situations where a broad range

of temporal scales are present, such as the case of turbulent flows. In this case, the time

step is often chosen (out of necessity) such that certain frequencies are only marginally

resolved or perhaps even completely unresolved. Given the nonlinearities present in most

interesting engineering systems, it is of great importance to ensure that there is tempo-

ral damping for frequencies beyond the chosen resolution level. However, it is equally

important that this damping not effect the frequencies within the chosen resolution level,

leading to a degradation of accuracy (see Jansenet al. [29] for a complete analysis of the

Generalized-� method).

3.3.1 Generalized-� Method for the Navier-Stokes Equations

In addition to the application of the time integrator to a nonlinear system, the ap-

plication of the generalized-� method to the Navier-Stokes equations introduces the diffi-

culty of integrating the pressure in time, which has no explicit temporal dependence. This

type of a system is technically referred to as a differential-algebraic equation (or DAE),

and the theory for integrating such systems is quite involved (see Gresho and Sani [18]).

The pressure here is not really integrated in time, it is just iterated to remain consistent

with the velocity which is integrated with the generalized-� method. A more complete

discussion of such topics may be found in the work of Gresho and Sani [18]. The other

primary difficulty in extending the work from the previous section to the full Navier-

Stokes equations is the nonlinearity that is introduced. We first recall from Section 3.2

that, once spatially discretized, the momentum and continuity equations may be written

26

in the form:

RA(ui; _ui;p) = 0; A = 1 : : : ns (3.15)

which will be the starting point of the application. Note that this system can also be

written as:

0
@Rm

Rc

1
A =

0
@0

0

1
A (3.16)

whereRm andRc represent the residuals of the momentum and continuity equations,

respectively.

With these considerations in mind, application of the method discussed in Jansen

et al. [29] yields the following set of equations describing the time integration algorithm.

The first equation is the nonlinear residual with the velocity and acceleration evaluated at

the intermediate time stepstn+�f andtn+�m , respectively

R(un+�f ; _un+�m ; pn+1) = 0 (3.17)

followed by the update equations relating the velocity to its time derivative,

un+1 = un +�t _un +
�t(_un+1 � _un) (3.18)

and finally the equations that relate the temporal locationsn andn + 1 to n + �m and

n+ �f

_un+�m = _un + �m(_un+1 � _un) (3.19)

un+�f = un + �f(un+1 � un) (3.20)

The nonlinearities are best handled by introducing a predictor-multicorrector algorithm

similar to those proposed by Brooks and Hughes [7]. By making a prediction of the

solution and its time derivative at timetn+1, we start the algorithm. Since we will be

making multiple corrections, we introduce a superscript (inside parentheses) to represent

27

the corrector iteration number. In this notation our predictor is initialized with an iteration

count of zero and is given by

p
(0)
n+1 = pn (3.21)

u
(0)
n+1 = un (3.22)

_u
(0)
n+1 =

 � 1

_un (3.23)

where (3.21) and (3.22) predict that the solution will be the same as it was at the previous

time step and (3.23) is the time derivative attn+1 that is consistent with (3.18) (i.e. the

predictor that preserves second order accuracy). Other choices of predictors are also

possible.

After making the prediction, the algorithm enters a loop of multi-corrector passes

with i initialized to zero. The first operation within the loop is the calculation of velocity

at tn+�f and the acceleration attn+�m

u
(i)
n+�f

= un + �f(u
(i�1)
n+1 � un) (3.24)

_u
(i)
n+�m = _un + �m(_u

(i�1)
n+1 � _un) (3.25)

These quantities enable the evaluation ofR(i)(u
(i)
n+�f

; _u
(i)
n+�m ; p

(i)
n+1) which, for smalli,

can be expected to be far from its desired value of0. To find an improvement to the current

values of (3.24) and (3.25) we use a Newton type linearization ofR(i) with respect to the

acceleration,_ui, for both the momentum and continuity residuals which yields a matrix

problem to solve for the acceleration and pressure increments, given by

0
@K(i) G(i)

D(i) C(i)

1
A
0
@� _u

(i)
n+1

�p
(i)
n+1

1
A = �

0
@R(i)

m

R(i)
c

1
A (3.26)

which is solved for each corrector pass and the solution is updated according to

_u
(i+1)
n+1 = _u

(i)
n+1 +� _u

(i)
n+1 (3.27)

u
(i+1)
n+1 = u

(i)
n+1 +
�t� _u

(i)
n+1 (3.28)

p
(i+1)
n+1 = p

(i)
n+1 +�p(i) (3.29)

28

andi is incremented. The definition and numerical evaluation of the sub-matricesK(i),

G(i),D(i), andC(i) is discussed below. Ifi < imax the algorithm returns to solve (3.26)

thus initiating the next corrector pass. Otherwise, the solution at time steptn+1 is updated,

and the algorithm proceeds to the next time step. This completes the step fromtn !
tn+1. If more time steps are required,n is incremented and the algorithm returns to

the prediction phase for the next step (i.e. (3.24) and (3.25)). The entire algorithm is

summarized in Algorithm 3.3.1.

The linear system of equations, (3.26), is difficult, and special care should be taken

in setting up and solving it. The linear algebra solver of Shakib [47] (a highly optimized

linear algebra package for the incompressible Navier-Stokes equations) is used to solve

this linear system, after it is set up as described below. This linear solver is based on

a Generalized Minimum Residual (GMRES, see Shakib [44]) type solution method for

the velocity and a conjugate gradient projection method for the pressure. The matrices

appearing in (3.26) are the tangent matrices of the residual vectors with respect to the

acceleration and pressure at timetn+1, and are defined as follows:

K(i) � @R(i)
m (u

(i)
n+�f

; _u
(i)
n+�m ; p

(i)
n+1)

@ _u
(i)
n+1

(3.30)

G(i) � @R(i)
m (u

(i)
n+�f ; _u

(i)
n+�m ; p

(i)
n+1)

@p
(i)
n+1

(3.31)

D(i) � @R(i)
c (u

(i)
n+�f ; _u

(i)
n+�m ; p

(i)
n+1)

@ _u
(i)
n+1

(3.32)

C(i) � @R(i)
c (u

(i)
n+�f

; _u
(i)
n+�m ; p

(i)
n+1)

@p
(i)
n+1

(3.33)

The approximation symbols are used here to indicate that these matrices are only

approximations to the consistent tangent matrices (given on the right-hand-sides of Equa-

tions (3.30)-(3.33)) which have been shown to yield better convergence, and are given in

detail below. Care should be taken in computing (3.30) through (3.33), e.g. the differenti-

29

Given solution at timetn: un, _un, andpn

predict:

u
(0)
n+1 = un

_u
(0)
n+1 =

 � 1

_un

p
(0)
n+1 = pn

correct:
for i = 1 to imax

(compute intermediate solution values)

u
(i)
n+�f = un + �f(u

(i�1)
n+1 � un)

_u
(i)
n+�m = _un + �m(_u

(i�1)
n+1 � _un)

(solve linear system)

�
K(i) G(i)

D(i) C(i)

�
� _u

(i)
n+1

�p
(i)
n+1

!
= �

�
R(i)

m

R(i)
c

�

(update solution values)

_u
(i+1)
n+1 = _u

(i)
n+1 +� _u

(i)
n+1

u
(i+1)
n+1 = u

(i)
n+1 +
�t� _u

(i)
n+1

p
(i+1)
n+1 = p

(i)
n+1 +�p(i)

end

Algorithm 3.3.1: Predictor-multi-corrector algorithm

30

ation in equation (3.30) gives rise to a mass term since_un+�m is related toun+�f through

equation (3.18). Since we are differentiating with respect to_u
(i)
n+1, we also need to use the

chain rule, i.e.

@R(i)
m

@ _u
(i)
n+1

=
@R(i)

m

@u
(i)
n+�f

@u(i)
n+�f

@ _u
(i)
n+1

+
@R(i)

m

@ _u
(i)
n+�m

@ _u
(i)
n+�m

@ _u
(i)
n+1

= �f
�t

@R(i)
m

@u
(i)
n+�f

+ �m
@R(i)

m

@ _u
(i)
n+�m

(3.34)

which enables us to directly update our solution totn+1 after the linear solve.

Following the standard finite element assembly process described in Hughes [21],

the matrices are formed by evaluating element level integrals (using numerical quadra-

ture). The matrices are given by

Kab
ij =

Z
�
e

f�mNa
i N

b
j + �f
�t[�ukN

a
i N

b
j;k

+Na
i;k(�N

b
j;k + �MukumN

b
j;m + ��LkLmN

b
j;m)

+ �Na
(i);(j)N

b
(j);(i) + �CN

a
(i);(i)N

b
(j);(j)]g dx

(3.35)

Gab
p = �

Z
�
e

Na
i;iN

b
p (3.36)

Dab
i =

Z
�
e

Na
p;iN

b
p (3.37)

Cab = ��M
Z
�
e

Na
p;iN

b
p;i (3.38)

where, here,a; b = 1 : : : nes refer to the individual basis function contributions, the sub-

scriptsi; j = 1 : : : 3 are included to indicate the basis functions related to the momentum

equations (velocity degrees of freedom) and the subscriptp indicates continuity equation

(pressure degrees of freedom). Here, indices enclosed in parentheses imply that no sum

should be carried out. Since, as mentioned above, we are interpolating velocity and pres-

sure with the same basis functions, the subscriptsi andj are only used to indicate the

31

place of these terms in the resulting matrices. The terms we have chosen to include in

the tangent matrices given above are essentially formed from the frozen coefficient as-

sumption while differentiating the equations. Assumptions on these matrices also enable

the relationship,D = �GT which is a desirable symmetry property between the discrete

divergence and gradient operators (G andD, respectively). Gresho and Sani [18] provide

additional details pertaining to this symmetry.

3.4 Diffusive flux computation

We would like to conclude the chapter with details of the computation of the diffu-

sive flux terms appearing in the stabilized finite element formulation presented above.

Careful inspection of the weak form, (3.8), and in particular the momentum residual

equation, (3.9), reveals that it is necessary to calculate the second derivative of the so-

lution variable when evaluating the residual of the diffusive flux stabilization terms (for

the incompressible equations)

qi � �ij;j = �(ui;j + uj;i);j (3.39)

While these terms are often neglected for linear basis calculations (with some justifica-

tion), their inclusion is vital to the accuracy of higher-order simulations (examples run

without these terms show a significant degradation of solution quality). It is possible to

evaluate these terms directly from the second derivatives of the basis functions, however

this involves the evaluation of the second derivative of the mapping if curved elements

are used, which is a costly operation. We opt instead for a more efficient method using a

local reconstruction of the diffusive flux terms based on anL2 projection followed by a

re-interpolation.

3.4.1 Local, element-level reconstruction

The local reconstruction technique provides a relatively straightforward method to

compute an approximation to the diffusive flux involving only element level data. This

technique is more cost effective than directly evaluating the second derivatives of the

basis functions which involves the second derivative of the geometric mapping for non-

32

straight-sided elements, since the inverse of the element-level projection matrix needs to

be computed only one time and stored, and may be used for all subsequent evaluations.

The general idea is to project the viscous stress field,�ij, (which may be computed

with the first derivatives of the basis) onto the element basis, then re-interpolate it with the

first derivative of the basis to form the diffusive flux field, i.e.qi � �ij;j. The projection

is constructed such that theL2 error is minimized over each element independently, i.e.,

find �̂ij 2 Sk
h such that

Z
�
e

w (�̂ij � �
(h;k)
ij) dx = 0 (3.40)

for all w 2 Wk
h, where� (h;k)ij represents the current finite element approximation of

the stress field. It should be noted that each of the components in�
(h;k)
ij is projected

independently. Expanding the weight function in terms of the basis functions yields a

system of linear equations to be solved for the basis coefficients of�̂ij, of the form

M�̂ ij = Rij (3.41)

where,

M = [Mab] =

Z
�
e

NaNb dx; R = fRag =

Z
�
e

Na�
(h;k)
ij dx (3.42)

This system is solved for the stress projection coefficients,�̂ ij = f�̂aijg, for each ele-

ment, which are then re-interpolated with the gradients of the basis functions to form an

approximation toqi as

qi =
nesX
a=1

Na;j �̂
a
ij: (3.43)

The system of equations, 3.41, is inverted one time and stored, therefore the evaluation of

the projection coefficients involves a single integral evaluation, which is computed using

the same Gauss quadrature rule as the integration of the residual.

The inclusion of this term is vital to the performance of higher-order methods, since

without it, the formulation no longer maintains its weighted residual character, i.e., con-

33

sistency is violated.

3.5 Chapter summary

This chapter introduced the stabilized finite element formulation for the incom-

pressible Navier-Stokes equations using mesh entity based hierarchical basis functions

for the spatial discretization. The implementation involves relatively few modifications

to a highly efficient linear basis solver, allowing us to maintain efficiency for large-scale

problems. To achieve this goal, much of the computational effort has been transferred to

the pre-processing stage of the analysis, where the data structures are created and written

to disk for high efficiency when used by the flow solver. One key difference between lin-

ear and higher-order basis functions is the treatment of the diffusive portion of the residual

in the stabilization terms, a problem unique to stabilized methods. A method for dealing

with this term was presented for higher-order computations (local reconstruction). The

next chapter will describe many implementational details that are encountered when using

hierarchical basis methods for fluid dynamics.

CHAPTER 4

PRE-PROCESSING HIGHER ORDER SIMULATIONS

4.1 Introduction

Large scale finite element simulations require boundary condition information, par-

allel communication data structures, and higher order degree-of-freedom information to

be preprocessed for rapid retrieval during the computation phase of the analysis. This is

critical for achieving near perfect scalability and short turnaround times. Although this is

not always possible, (e.g. dynamic mesh adaptivity during computation will require data

structure modification during simulations), when it is, it represents a substantial decrease

in computation time. Many large scale computations of laminar and turbulent flows, do

meet the requirements for preprocessed data structures, and the additional speed gained

is often a necessity to acquire a solution in a reasonable time-frame.

The preprocessing method described here is based on recent developments in ab-

stract mesh representation and classification against a geometric model. Mesh-model

classification (see Beall and Shephard [2]) provides a connection between the finite ele-

ment mesh, which may be varied over the course of several analysis runs, and the geomet-

ric model of the physical domain, which remains fixed. Given this relationship, boundary

condition attributes are associated with the geometric model the topological description

of the problem domain, rather than the finite element mesh, thus enabling a more intuitive

approach to their application [48]. The finite element mesh then inherits boundary condi-

tion attributes from the geometric model . The preprocessor interacts with the geometric

model, as well as the finite element mesh, to pre-compute the element degree-of-freedom

(dof) connectivity information (including information necessary for higher order compu-

tations), boundary condition arrays, and parallel communication data structures.

Essential and natural boundary condition attributes may be quite complex for fluid

dynamics simulations and require substantial preprocessing for accurate specification. In

addition, periodic boundary conditions are handled differently than other essential bound-

ary conditions and pose additional difficulties. A method is presented for application of

general sets of boundary conditions to the geometric model, which are conferred to the fi-

34

35

nite element mesh during preprocessing. Classical finite element procedures traditionally

associate boundary conditions directly with the nodal degrees of freedom which requires

that the boundary conditions be set up for each mesh, even when the geometric model is

unchanged. In addition, higher-order computations rely heavily on the additional topol-

ogy of the mesh (e.g. mesh edges and faces), information which is not readily accessible

from the classical data structures. To address these issues, the boundary conditions are

instead applied directly to the geometric model (no mesh even needs to exist at this stage)

and the preprocessor reads the model and the mesh and associates the model information

with the mesh. By preprocessing boundary condition information, the analysis code has

no need to make expensive geometric model queries and therefore, can rapidly constrain

the requireddofs.

The increasing complexity of fluid dynamic simulations has lead to the heavy use

of parallel computers. While the solvers themselves can be trivially parallelized and have

been shown to yield near perfect scaling on large problems , a non trivial, extensive effort

goes into the preprocessing of these parallel data structures and communication traces

which make the parallelism almost transparent to the solver.

In this chapter we attempt to address the most critical aspects required for prepro-

cessing higher order simulations. First we introduce the idea of topological mesh model

hierarchy. Then we discuss the concepts used in applying boundary and initial conditions

efficiently. At this point we also present the compact data structure which holds all the

higher order information and is provided as input for the solver code. Following that, we

briefly describe the additions and modifications required for parallel processing.

4.2 Topological mesh-model hierarchy

Finite element meshs have traditionally been described in terms of nodal coordi-

nates and element connectivity. This representation has been dispensed in favor of a richer

topological data structure [2]. This data structure or database, described in section 2.1

maintains information related to all mesh entities, vertices, edges, faces, and regions as

well as adjacency relationships between them. The geometric model may be similarly de-

fined in terms of model entities of the same type. Theith mesh entity of dimensiondi will

be denoted byMdi
i similarly Gdi

i for a model entity. For linear basis computations this

36

information is clearly more than necessary, however, preprocessing higher-order compu-

tations requires this . We have therefore confined the use of the entire mesh data structure

to the preprocessing stage, and only the traditional finite element structures (co-ordinates

and connectivity generalized to support higher orderdof information) are used within the

analysis code. This means that the traditional structures are created during preprocessing,

and written to disk to be read by the analysis code. This rich topological data structure

is identical to the traditional format, with the exception that information on higher order

degress of freedom is included.

Central to the method of preprocessing described here is the idea of the classifi-

cation of the finite element mesh on the geometric model. Not only is the preprocessor

designed around this concept but every stage in the preprocessor makes extensive use of

the cross referencing capability provided by this idea.

Mesh-model classification defines the relationship between the finite element mesh

and the physical domain (geometric model) on which the problem is to be solved and is

key to the development of geometry based boundary condition specification. Beall and

Shephard [2] definemesh classification against the geometric domainas the unique as-

sociation of a mesh entity of dimensiondi,M
di
i to a geometric model entity of dimension

dj, G
dj
j wheredi � dj, denotedMdi

i @ G
dj
j . The classification symbol@ indicates that

the left-hand entity is classified on the right-hand entity.

For example a mesh vertex can be classified on a model vertex, model edge, model

face or model region. Where as a mesh edge cannot be classified on model vertex (an

entity of lower order than itself), similarly mesh faces cannot be classified on model

edges or vertices and mesh regions can be classified only on model regions. This unique

classification can be used to transfer the desired boundary condition information from the

model entities to the mesh entities that are classified on them. In the remainder of the

document geometric model entities are referred as model entities and the finite element

mesh entities are referred to as mesh entities.

4.3 Boundary and Initial conditions

A central part of the finite element formulation is the accurate specification of

boundary conditions, which help define the physical problem being solved. Furthermore

37

initial conditions affect the time it takes to reach a steady solution, when that is the goal

or strongly influence the solution when solving unsteady problems.

When solving differential equations, generally we have 3 kinds of boundary con-

ditions. First there are essential or Dirichlet boundary conditions, which constrain the

solution variables, on specified sections of the boundary. Secondly there are natural or

Neumann boundary conditions, which constrain the fluxes (which are dependent on the

derivatives) of the variables. The third type of boundary condition involves periodicity in

which case the solution repeates itself after a certain spatial interval, in a given direction.

We can take advantage of this fact by equating the solution variables at the ends of the

periodic spatial interval. This periodic interval can be either a translation, rotation or both.

For Navier-Stokes equations essential boundary conditions can be applied to all of

the solution variables, pressure, three components of velocity and temperature. There

are two specific ways of specifying velocity essential boundary conditions. The first one

constrains one component of velocity while leaving the other components free. This will

be referred to asonecomponentboundary conditions. The velocity components in the

plane perpendicular to this vector are free. The second way completely specifies the

complete velocity vector, thus all components are constrained. This will be referred to

as threecomponentboundary conditions. When only two components are prescribed,

this can be done with the application of two one component conditions. Finally natural

boundary conditions are applied in the form of mass or heat fluxes, traction on surfaces

and pressure specified over a surface in a weak or integral sense.

4.3.1 Inheritance of boundary conditions

The ability to transfer boundary condition data attached to a topological model,

to the finite element mesh is one of the most important attributes of this preprocessing

method. This capability is made possible by the mesh-model hierarchy discussed in sec-

tion 4.2.

While the mesh-model classification saves us from having to set boundary condi-

tions on individual mesh entities, for complicated models even the model entities could

run into the hundreds. To address this problem we introduce the concept ofboundary

condition inheritance. This allows for the boundary conditions to be set on the highest

38

possible model entities (usually faces). The preprocessor uses a predefined set of rules

to inherit the boundary condition attributes from the faces to the other lower order enti-

ties (edges and vertices). Setting boundary conditions on model faces is usually all that

is required , but occasionally the user might need to specify boundary conditions on a

small number of edges and vertices to correct for any known conditions of conflict of the

inheritance.

The task of transferring the boundary condition values from model to mesh entities

is performed by using the classification information provided by the mesh data structure.

For instance if a particular value of pressure is set on a model face, the preprocessor it-

erates over all the mesh entities classified on this model face and applies the pressure

boundary condition to them. There is no scope for any sort of conflict since each mesh

entity is uniquely classified on a single model entity. On the other hand the transfer of

information from the model faces (on the boundary conditions were actually specified) to

the lower model entities (edges and vertices) is usually more involved. In the topological

geometric model, edges are formed by the intersection of 2 model faces and vertices are

defined at locations where at least two model edges meet. When deriving boundary con-

ditions from multiple neighbors there could both resolvable and unresolvable conflicts.

For instance when two different directions are specified for theonecomponentvelocity

on 2 neighboring faces of a model edge, both directions are preserved and 2 components

are constrained instead of one. Where as, if the conflict occurs in the magnitudes only,

then the result is unpredictable and it is suggested that velocity boundary condition be

explicitly set on the edge overriding any possible inheritance.

The following general methodology is used to implement the boundary condition

inheritance from higher order to lower order model entities. The preprocessor iterates

over all the model entities, faces followed by edges and finally vertices. For each entity,

if any boundary condition attribute is explicitly specified, that value is given precedence

and used as it is (usually the case for model faces). When nothing is explicitly specified

on an entity, the boundary condition attributes are derived from the higher order entities

intersecting to create it. All the immediate higher order entities in contact with the current

one are visited and the value of the attribute in the current entity is derived as a combi-

nation of all the surrounding higher entities. For instance a model edge will derive its

39

boundary condition data from the model faces intersecting to create the edge. Similarly a

vertex will derive its information from the model edges co-incident on it.

The above described method ofboundary condition inheritance can be applied

to both essential and periodic class of boundary conditions. It should be noted that the

natural boundary conditions are defined only for model faces and are not derived for edges

and vertices since they do not make physical sense for edges and vertices on which the

formulation does not evaluate boundary integrals.

4.3.2 Boundary and initial conditions for hierarchic basis

The boundary condition co-efficients are calculated at the preprocessing stage where

the rich mesh model classification structure is available and then the evaluated values are

written out in the traditional form and can be efficiently applied at the solver stage. This

also enables us to set boundary conditions on the higher order modes attached to mesh

edges and faces.

Higher order basis functions using Lagrange basis functions enforce essential bound-

ary conditions in a relatively straight forward manner, as the basis coefficients correspond

to solution values at nodes ,vis. the Lagrange interpolation equationNa(�b) = �ab. Since

the solution coefficients with respect to the hierarchical basis do not correspond to solu-

tion values at spatial locations, work must be done to determine the coefficients on the

boundaries. To accomplish this, we interpolate the known Dirichlet boundary function

with the hierarchical basis by solving a linear system of equations for the unknown basis

coefficients. Additionally, a unique set of interpolation points must be chosen since there

are no particular spatial locations associated with the higher-order coefficients.

The element level interpolation may be constructed by solving a linear system of

equations for the coefficients on each element in the domain. Suppose we wish to specify

that�(xi) = g(xi) over some portion of the boundary, where�(xi) could be any of our

solution variables. (note that this process may be extended to include initial conditions, in

which case we seek an approximation over the entire domain, not just the boundary face.)

We can find the coefficients of an approximation tog(xi) (for each element,e) as

g(xi) � ĝe(xi) =

nipX
a=1

geaN
e
a(xi) (4.1)

40

whereN e
a are the basis functions for elemente, gea are the unknown coefficients, andnip

is the number of interpolation points, which must equalnes, the number of element shape

functions.Equation (4.1) can be expressed in the following matrix system.

Mg = R (4.2)

M = [Mab] = N e
a(�

int
b); and R = [Rb] = g(x(�intb)) (4.3)

where�intb is thebth interpolation point (in elemente’s coordinates). This system of linear

equations is solved for the basis coefficients,gea, which are used when needed by the

analysis code to evaluate�(xi) (which is expanded in the same basis asĝ(xi)). Since we

are using an element level interpolation (which only couples local degrees of freedom)

the resulting interpolation is not guaranteed to be continuous between elements. One

solution to this problem is to average the coefficients, which is done in the present work.

Another approach is to assemble the data to global arrays and solve a global problem,

however the additional cost is not deemed worth the effort, as averaging has proven to

work well for all cases we have considered. For computations using the Lagrange basis,

the interpolation points are simply the nodal coordinates, and the matrix in (4.2) is the

identity matrix. Furthermore, the system of equations described above may be simplified

somewhat by statically condensing the coefficients since not all functions are coupled. In

practice, however, the interpolation is only computed during pre-processing, making the

time savings less significant.

As was noted earlier, the procedure described above for essential boundary condi-

tions may also used to set an initial condition in cases where the exact initial condition

is relevant to the simulation. However, experience has shown that in cases where such

accuracy is not necessary (as is usually the case), using the linear interpolation of the

initial conditions is sufficient to ensure convergence. The linear interpolation is obtained

by simply setting all higher-order coefficients equal to zero.

41

4.3.3 Periodic boundary conditions

The application of periodic boundary conditions poses several difficulties in the

context of hierarchical basis functions since all mesh entities must be identical on periodic

planes (including edge and face directions). A general methodology has been developed

for the application of periodic boundary conditions. The data necessary to enforce peri-

odic boundary conditions can be contained in a single array which specifies the “periodic

master” of each mesh entity. When essential boundary conditions are set, periodic bound-

ary conditions are also set by copying the solution coefficients of the periodic masters to

their periodic slaves. This operation is simply an indirect address of the solution array

using the periodic boundary conditions array. The equations corresponding to the peri-

odic entities are eliminated from the system by using this array to zero the corresponding

residual components.

4.4 Compact data structure

To start with the traditional finite element mesh structure providing coordinates and

connectivity is no longer sufficient. All the edges in the mesh pick up modes forp� 2,

triangular faces pick up modes forp � 3 and quadrilateral faces forp � 4, in addition,

different element topologies start having region modes associated with them starting at

different polynomial orders. Here we exploit the rich data structure provided by mesh

data base as described in section(4.2) to generate all the higher order mode and entity

information and condense it into the compact data structure used by the solver code.

Also all the information pertaining to any entity (such as a vertex, an edge, a face or a

region) are kept local. This information includes the number of modes on the entity, its

processor adjacency information, global equation number and its local polynomial order.

This increases the memory requirements somewhat but simplifies the process of applying

boundary conditions and generating parallel communication traces.

The first step in setting up the data structures is the assignment of global equation

numbers to all mesh entities. This is done by visiting each entity, determining the number

of shape functions it contributes based on its polynomial order and assigning a unique

equation number for each of these functions. Next all the elements in the mesh are visited

and the equation numbers associated with the lower order entities bound by it are col-

42

lected. For example a tetrahedral region may collect equation numbers from 4 vertices,

6 edges and 4 faces and the region itself if the polynomial order is greater than 3. This

procedure is similar to that described by Hughes [21] for meshes of Lagrange elements

where the global node numbers associated with each finite element are stored in the data

structure. For hierarchical basis functions, additional information needs to be maintained

for p > 2 which emanates from the mapping from entity to element.

This connectivity information provides a complete description of the mapping be-

tween the element level computations and the global degrees of freedom (where the linear

equations are formed and solved). For hierarchical basis functions of degree 3 and higher

some of the basis functions need to have their sign reversed since the mapping from the

entity to the element coordinate system introduces a sign change for some of the bounding

elements. The situation is illustrated by a simple example shown in Figure 4.1

3

12

1 2

3

1

2
�̂1 �̂2 � 1� �̂1

Figure 4.1: Mesh elements illustrating the reversal of shape functions

In figure 4.1 a two dimensional case is shown in which two triangular mesh faces

share a common edge; we will consider each face as an element (this is also applica-

ble to quadrilateral mesh faces, except for the actual expressions for the shape functions

and generalizes to regions in three dimensions). This figure shows the element numbers

in circles, as well as each local degree of freedom number with respect to each of the

elements. The edge is also shown along with its local coordinate system,�̂1, which is

directed as indicated by the arrow, note that the global direction of the edge is determined

by the vertex ordering stored in the mesh database. The local coordinates of the edge

must be mapped to the coordinate system of each bounding element in order to evaluate

43

the function. With the data structure described here, it is possible to evaluate a single set

of element shape functions to be used for all elements in the mesh. This enables the basis

functions to be pre-computed and tabulated for each quadrature point, as commonly done

for Lagrange-type elements.

Returning to the example, supposek = 3 has been set on the edge depicted in

figure 4.1. It will therefore contribute two functions, one quadratic and one cubic, to the

local basis of each of the two bounding triangular elements (see [13] for a description of

the shape functions) given by

N2(�̂i) = �2�̂1�̂2 (4.4)

N3(�̂i) = �2�̂1�̂2(�̂2 � �̂1) (4.5)

where the parametric coordinates for this edge are

�̂1 and �̂2 � 1� �̂1 (4.6)

and the subscripts on the basis functions refer to their respective polynomial orders. When

the coordinates are mapped from the edge to the element coordinates, the problem be-

comes apparent, i.e.

Element 1:

�1 = �̂1; �2 = �̂2 (4.7)

Element 2:

�1 = �̂2; �2 = �̂1 (4.8)

and the basis functions become:

44

Quadratic:

N
(1)
2 = �2�1�2 (4.9)

N
(2)
2 = �2�2�1

= N
(1)
2 (4.10)

Cubic:

N
(1)
3 = �2�1�2(�2 � �1) (4.11)

N
(2)
3 = �2�2�1(�1 � �2)

= �N (1)
3 (4.12)

where the superscript indicates the element that the function is associated with. The

cubic function on element2 is the negative of that on element1, while the quadratic

function is the same, regardless of the edge direction. This case generally occurs when

an element uses an edge in the opposite direction than that edge was defined. Since

the cubic edge function is different for each of the bounding elements, a single set of

basis functions will clearly not suffice to completely describe the basis. To overcome this

difficulty, during pre-processing the local degree of freedom numbers that correspond

to shape functions that must be negated are flagged (e.g. there equation numbers are

negated). This information is then used in the flow solver to create the correct element

basis functions from the pre-computed table of element functions. For quadratic or linear

basis, no functions need to be negated, and the data structures may be used as they are.

This also implies that when using the hierarchical code with linear elements, no significant

penalty is paid for having the generality of higher-order basis functions in the same code.

4.5 Parallel communications

Finite element methods are extremely well suited to use on parallel computers as

much of the computational effort is in the calculation of element level integrals. To reduce

the computational effort during the analysis phase, the structures specifying the interpro-

cessor communications are pre-processed. Each processor then executes a copy of the

45

analysis code, reading the pre-processed input data relating to its portion of the domain,

as well as information relating to other processors it must communicate with. This section

describes the information that processors must communicate to each other as well as the

construction of these data structures.

4.5.1 Mesh partitioning

For a parallel simulation to be efficient, the load distribution on all the proces-

sors should be balanced at all times. This helps avoid some processors lying idle and

some working too hard. For computations which depend on adaptive refinement, various

strategies of dynamic load balancing and migration have been developed and have to be

deployed at the solver stage. But for computations not depending on dynamic adaptivity

all the load balancing and partitioning can be done at the pre-processing stage. This in-

volves partitioning the mesh and assigning local equation numbers for all the entities on

every partition.

Mesh partitioning can be done in many ways to suit specific needs. We have chosen

2 popular strategies suitable for our needs.

Inertial Partitioning: This is the method where partition boundaries are chosen

based on geometrical considerations. The users specify criterion used to divide the mesh

into partitions. While this method is not ideal for achieving optimal interface length or

perfect load balancing in a generic case, this gives the user a greater control over the

description of the partitions. This can prove very helpful in some special cases where

specific sections of the mesh have to be on pre-determined partitions. An example for

inertial partitioning can be seen in figure 4.2.

Dual Based Partitioning: This involves partitioning the dual graph of the mesh

using various graph partitioning methods. We have used the generic graph partitioning

package,METIS [42], which provides extensive opportunities for customization and is

known to produce partitions with good load balancing and optimal interface length. An

example of a dual based partition can be seen in figure 4.3

Each processor maintains a complete collection of data representing its portion of

the finite element mesh and analysis information. This includesdof numbers and connec-

tivity information as well as boundary condition data for all nodes that are physically on

46

Figure 4.2: Inertial Partitioning

the processor or its interprocessor boundary. The finite elements are uniquely partitioned

among the processors, so each element will be found on only one processor. The mesh

entities that contribute to element level integrals, however, appear in multiple partitions

if they are on an interprocessor boundary. Element level computations are performed

completely local to each processor and must communicate only when the element level

contributions,such as element integrals, are assembled to the global equations. This global

assembly procedure involves the sending and receiving ofdof information between pro-

cessors. Another case in which processors must exchange information is when periodic

boundary conditions are present with periodic partners residing on different processors.

These two types of communications will be described below.

4.5.2 Communication

The basic idea behind the parallel communication of finite element information can

be described with the aid of figure 4.4. This figure illustrates three processors and vertices

on the interprocessor boundaries. For simplicity, only vertices are shown since edges and

faces are handled identically. The element residuals associated with each vertex are first

47

Figure 4.3: Dual Based Partitioning

assembled from elements on each of the bounding processors. After local assembly, these

values are sent in the direction of the arrows to the values on the master processor and

added. The sending processor (also known as the slave processor) then zeroes its residual

values, essentially removing this vertex from it’s system. In this manner, all residuals

associated with entities on the interprocessor boundary are only solved for by a single

processor, known as the entity’s master image. After the equations are solved, the solution

values are copied from the entities image on master processor to all of its slave images.

The creation of the necessary data structures and the execution of these tasks is described

in the next section.

For the processors to exchange information during the computation, each must

maintain a data structure describing its communications in addition to the other finite

element data. The MPI routines MPIsend and MPIreceive use this information to ex-

change data as described below. The procedure is as follows:

1. After each Newton iteration or time step, the solution values related to mesh entities

on the interprocessor boundary are copied to all of its images on each of the adjacent

48

1

3

2

Figure 4.4: Overview of communication

processors. This includes periodic boundaries.

2. Using this data, each processor computes its element level residual values without

any need for communication.

3. These contributions are then assembled to the global arrays (on processor) using

the traditional finite element assembly procedures (Hughes [21]).

4. An additional interprocessor assembly (described above) is then performed between

processors to account fordof’s on the interprocessor boundary as shown in Fig-

ure 4.4.

Let us define acommunication stageas that which involves all processors making

all their necessary communications. In other words, each communication stage consists

of each processor sending to and receiving from each processor with which it must com-

municate. We will denote byN i
P the number of processors with which processori must

communicate. There are two types of communication stage: one in which the residuals

are added to masters and zeroed on slaves (type 1), and another in which the solution

values are copied from masters to slaves (type 2). Both require the same information

49

and differ only slightly. A single type 1 communication stage is necessary each time

the element level residual formation and local assembly is completed and a type 2 com-

munication stage is necessary each time the boundary conditions are set on the solution

vector.

From the perspective of a single processor,i, a communication stage may be de-

scribed as a sequence oftasks, denotedT i
j ; j = 1 : : :N i

T . To minimize the communication

overhead, we require thatN i
T = N i

P , in other words, two processors may communicate

only one time during each communication stage. This forces us to designate one of the

processors in the task as master, and one as slave and will dictate which processor will

be master to each of the mesh entities on the interprocessor boundary. Since only one

communication can occur between any two processors, the set of tasks,T i
j , can be repre-

sented as a directed graph, with vertices and edges of the graph representing processors

and communications, respectively. This directed graph indicates which processor each

mesh entity will be solved on, it therefor must yield a unique master for each mesh entity.

For example consider the communication between processors1 and3 in Figure 4.4. If

the direction between these two processors was reversed, the vertex at the intersection of

all three processors would have no unique master. This requirement poses the additional

constrain that the graph beacyclic, i.e. contain no closed loops. A graph of this type is

commonly referred to as a Directed Acyclic Graph, or DAG (see Sedgewick [43]). The

procedure to create and set up the directed graph is as follows:

1. Mesh partitioning software such as METIS is used to assign each mesh region to a

partition.

2. Each mesh entity is visited and the processor ID number for each of its adjacent

regions is associated with the mesh entity (only once if multiple bounding regions

are in the same partition).

3. These processor adjacency sets (for each mesh entity) are used to create the partition

graph (no direction on graph edges yet).

Once the graph is set up, a simple method is used to create a directed graph from the

undirected one. The direction associated withT i
j is set to point to the greater ofi andj,

which is guaranteed to produce a DAG. Once a consistent graph is created, it is a straight

50

forward matter to visit each mesh entity and associate the unique processor which is to be

its master.

For MPI to carry out the communications described above, each task,T i
j , must

provide details of the exchange of data between processorsi andj. To this end,T i
j has

associated with it, the following integer data:

tag: A unique tag associated withT i
j which distinguishes this send and receive for

the MPI functions.

type: Denotes whether this processor is master (= 1) or slave (= 0) in the current

communication. For a type 1 communication, a master calls MPIreceive(...) to

receive and add the data, while a slave calls MPIsend(...) to send and zero the

data. In a type 2 communication, the slaves receive and copy and the masters

send and thus there is no need to zero anything.

partner: PID number of the partner processor involved in this task.

numSeg: Number of data segments to be sent or received (see below).

segData: local dof numbers on the other processor to send to or receive data from for

each of the numSeg data segments.

Here a data segment is defined as a continuously numbered group ofdof numbers. Each

segment also contains its length and starting index. In the beginning of execution of the

analysis code, the segment data is used in conjunction with the MPITYPE HVECTOR(...)

function to create new MPI data types which are used during the communication stages.

These data types are simply masks that describe where information can be found on the

various processors for each of the segments inT i
j .

The above concepts can be clarified through a simple example. Consider the two

dimensional mesh shown in Figure 4.5.2 which is decomposed into four partitions. This

mesh can be considered as a single geometric face of a three dimensional model. The bold

encircled numbers indicate processor ID numbers and the small numbers indicate local

dof numbers on each partition. For simplicity, only vertex numbers are shown, however,

edges (ifp � 2) and faces (ifp � 3) also getdof numbers associated with them and

are handled identically to vertices. We also assume, for simplicity of discussion, that

51

1

987

6 5 4

32

1 2

34

7

1 2 3 4

5

4

6

321

7 6 5

111213

8 9 10

5 6 7 8

2

3

4

1

(a) Mesh

1 2

3 4

(b) Graph

there are now periodic boundary conditions applied to the geometric model. A consistent

graph corresponding to this mesh, created using the algorithm described above, is shown

in Figure 4.5.2. Let us consider only the tasks associated with processor2, T 2
j , where

j = 1 : : : 3, sinceN2
P = 3. T 2

1 involves a communication where processor2 is master,

anddof’s 7, 8, and13 on processor2 will be added to the contributions fromdof’s 3, 4,

and9, respectively, on processor1. The other two tasks associated with processor2, T 2
3

andT 2
4 , are both slave communications. Here,dof’s 7 and1 are sent to processor3 and1

through4 are sent to processor4, then these values are zeroed on processor2.

The Fortran90 code fragment given in Program 4.5.1 illustrates how these data

structures can be used within the analysis code to carry out a type1 communication

stage. In this program listing,global is a double precision vector to be operated on

andilwork is the local work array which contains the information described above.

52

Program 4.5.1Type1 communication stage

dimension global(nshg,n), temp(max), ilwork(nlwork)
...
numtask = ilwork(1)
do itask = 1, numtask

itag = ilwork (itkbeg + 1)
type = ilwork (itkbeg + 2)
partner = ilwork (itkbeg + 3)
numseg = ilwork (itkbeg + 4)
isgbeg = ilwork (itkbeg + 5)
if (type .EQ. 0) then

call MPI_SEND(global(isgbeg,1), 1,
sevsegtype(itask,kdof),

& partner, itag, MPI_COMM_WORLD,
ierr)

else
lfront = 0
do is = 1,numseg

lenseg = ilwork (itkbeg + 4 + 2*is)
lfront = lfront + lenseg

enddo
call MPI_RECV(temp(1), lfront*n, MPI_DOUBLE_PRECISION,

& partner, itag, MPI_COMM_WORLD,
& status, ierr)

itemp = 1
do idof = 1,n

do is = 1,numseg
isgbeg = ilwork (itkbeg + 3 + 2*is)
lenseg = ilwork (itkbeg + 4 + 2*is)
isgend = isgbeg + lenseg - 1
global(isgbeg:isgend,idof) = global(isgbeg:isgend,idof)

& + temp
(itemp:itemp+lenseg-1)

itemp = itemp + lenseg
enddo

enddo
endif
itkbeg = itkbeg + 4 + 2 * numseg

enddo

53

4.6 Chapter Summary

In this chapter we have presented the basic concepts of pre-processing higher order

finite element simulations. We have discussed the boundary conditions, the data struc-

ture used and the parallel communication model. In the next chapter we present some

hierarchic simulation examples which have been pre-processed and solved using methods

discussed so far.

CHAPTER 5

NUMERICAL EXAMPLES: STEADY LAMINAR FLOW &

CONCLUSIONS

This chapter presents numerical simulations which are used to explore the methods intro-

duced in the previous chapters. The problems presented here will verify the convergence

rate of the finite element formulation and quantify the cost associated with various poly-

nomial order basis functions. This chapter will demonstrate the cost effectiveness of the

higher-order basis functions when compared against the linear basis. First we introduce

the cost measures and their description.

5.1 Cost Comparison

Solution time, memory use and disk storage are clearly the most important measures

when considering the cost of a simulation. However, by looking at time alone, we would

fail to assess the scalability of the method to large-scale problems. In this section, we

introduce three additional measures that will be used to quantify the benefit of using

higher polynomial order. These measures take into account the costs of computing the

distinct components of a simulation, i.e. tangent matrix, residual vector, and linear system

solution.

The examples we present are two-dimensional, since we wish to discuss the cost for

problems with well-understood benchmark results. It is somewhat difficult to get a fair

cost comparison on 2D problems when using the 3D code, since the cost of the higher

polynomial order simulations is penalized for adding many additional degrees of freedom

in the third (inactive) dimension. Still, we would like to make some estimates of the

relative simulation cost, so we consider three cost indices,C1; C2, andC3, defined as:

C1 = nf � n2shp � nint (5.1)

C2 = nf � nshp � nint (5.2)

C3 = nk � (nv � nnzv + ne � nnze + nf � nnzf) (5.3)

54

55

wherenf is the number of equivalent 2D triangular face elements,nshp the number of

2D degrees of freedom, andnint is the number of triangular integration points required to

accurately integrate a 2D element. For the linear solver cost, we have usednk to represent

the number of Krylov vectors needed, andnnzv, nnze, andnnzf for the non-zero fill

pattern associated with vertices, edges, and faces (predictable only for uniform meshes).

The first of these measures,C1, represents the computational cost associated with the

formation of the left hand side (LHS) or residual tangent matrix.C2 is associated with

the cost of forming the residual vector (RHS).C3 relates to the cost of solving the linear

system, which is dominated by the non-zero fill pattern. This cost is relevant to our linear

solve since we are using a sparse, iterative solver which, for each Krylov vector, performs

a matrix-vector product only with the non-zero matrix entries (see Saad [41]). The impact

of each of these cost measures is somewhat problem dependent, and more details will be

discussed with respect to the individual simulations presented in the following section.

5.2 Kovasznay flow

The first simulation is used to verify the convergence rate of the finite element

formulation. It is well known that the interpolation error should converge at a rate of

hk+1, whereh is a suitable measure of the element size (see Johnson [34]). Since we are

simulating this flow on a structured, uniform grid,h is simply taken as the length of the

element in thex1 or x2 direction, (i.e.�x1).

The Kovasznay flow may be associated with the incompressible flow some distance

downstream from a rectangular grid (see Kovasznay [37]) and has a closed form analytical

solution given by:

u1 = 1� e�x1 cos(2�x2) (5.4)

u2 =
�

2�
e�x1 sin(2�x2) (5.5)

with

� =
Re
2
�
r

Re2

4
+ 4�2 (5.6)

56

and we have taken Re= 40 for the present study. The flow is considered on a rectangular

domain of0 � x1 � 1 and�1
2
� x2 � 1

2
with the exact solution imposed as an essential

boundary condition at the inflow and upper and lower walls, while the pressure was set to

zero at the outflow. Since this is a non-trivial essential boundary condition, the interpola-

tion technique described in Section 4.3.2 is employed to determine the basis coefficients

on the boundary. Failure to correctly interpolate the boundary condition results in sub-

optimal convergence rates (particularly for the higher-order simulations). The qualitative

behavior of the solution is depicted in Figure 5.1 which shows contours of fluid speed for

the cubic simulation on the21� 21 mesh.

0.0 0.5 1.0
-0.5

0.0

0.5

Figure 5.1: Kovasznay flow. Contours of fluid speed for cubic simulation on21� 21
mesh

A convergence study was performed for this flow to determine the accuracy of the

different polynomial order simulations as functions of the mesh size,�x1, and the poly-

nomial order of the basis. Figures 5.2(a) and 5.2(b) show the log of the normalized error

in theL2 norm of the velocity field versuslog(�x1) and polynomial order, respectively.

Here, the error in theL2 norm is computed numerically from the formula

E2 =

R

eiei dxR

uiui dx

(5.7)

57

0.5 1 1.5 2 2.5 3 3.5 4 4.5
−14

−13

−12

−11

−10

−9

−8

−7

−6

−5

−4

Log(nx−1)

Lo
g(

E
)

3.81

3.02

1.99

(a) log of error inL2 norm vs. log(�x1).
� � � :k = 1, ��:k = 2, and� k = 3.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
−14

−13

−12

−11

−10

−9

−8

−7

−6

−5

Polynomial order

Lo
g(

E
)

(b) log ofL2 error vs.k

Figure 5.2: Kovasznay flow convergence study

where

ei = ui � u
(h;k)
i (5.8)

represents the difference between the exact,ui, and finite element,u(h;k)i , solutions for the

velocity.

Figure 5.2(a) enables us to determine the rates of convergence of the different sim-

ulations to be 1.99, 3.02, and 3.81 for the linear, quadratic, and cubic simulations, respec-

tively. These values compare well with the theoretical predictions for the interpolation

error (i.e. 2, 3, and 4 for linear, quadratic and cubic). It is clear from Figure 5.2(a) that

the constant in the error estimate also greatly improves for the higher-order simulations,

making the higher-order basis most attractive even on the coarsest meshes. Figure 5.2(b)

demonstrates the exponential convergence of the method when�x1 is fixed and the poly-

nomial order is increased.

A cost analysis of the Kovasznay flow simulations was performed based on the cost

measures discussed in the previous section. Of particular relevance is the value of each

of these cost measures when trying to obtain a solution of a specified accuracy. Consider

the case where the quadratic and the linear basis attempt to achieve the same accuracy

as the cubic basis on the coarsest hexahedral mesh (5 � 5 points). The results of these

cost studies are illustrated in table 5.1. From this Table it is clear that, for this level

58

of accuracy, the cubic simulation is the most cost effective for almost all cost measures

considered. For matrix formation costs,C1, the higher order approaches enjoy only a

slight advantage. This is to be expected since element matrices grow nonlinearly (i.e.

n2shp) so that despite the reduction in the number of elements required to attain a given

accuracy, this cost remains relatively constant. This issue can be mitigated by noting

that it is not necessary to form the element stiffness matrix at every time step. We have

observed that, once past the first few steps, where the tangent to the residual changes

rapidly, the LHS can be stored and reused for 10 or more steps/iterations. This effectively

takes this cost out of the problem. This is important since otherwise, ask rises, LHS

matrix formation can become the dominant cost. Even unsteady problems can typically

follow this strategy though greater care must be taken to ensure that convergence within

a given step is not compromised. The second cost index,C2, shows a significant cost

reduction for increasingk (factor of 12 more for linears than cubic hexes).

Though we have a rather complicated RHS to form (viz. (3.8)) the total cost of

our calculations are often dominated by the iterative solver. Therefore,C3 is often an

important cost to consider. Here, we see an even more dramatic increase in computational

effort ask decreases. While one expects the equations to get more stiff as the polynomial

order increases we observe that the accuracy attained more than offsets the cost. It is

important to note that decreasing element size also results in element stiffness and lower

order methods must undergo many more subdivisions to obtain the same accuracy of the

higher polynomial orders, increasing the number of iterations required and increasing

the number of degrees of freedom in the system, both direct contributors to the cost of

solution.

Topology k C1 C2 C3

Hex(5x5) 3 1.00 1.00 1.00
Hex(10x10) 2 1.27 1.90 1.84
Hex(49x49) 1 4.00 12.0 30.1

Table 5.1: Kovasznay relative cost comparison, extrapolating data to fictional
meshes which would achieve the same accuracy as cubic hexahedra (5� 5 points).

59

5.3 Flow over a backward-facing step

Consider a two-dimensional, incompressible flow over a backward-facing step at

Re = 800, based on the step height and the average inflow velocity. The geometry and

boundary conditions are similar to those used by Gartling [15]. The problem is speci-

fied by a fully developed flow entering a confined channel, and, atRe = 800, has been

demonstrated by numerous researchers to be steady and stable (see Greshoet al. [17]).

A complete description of the physical problem requires modeling the region upstream

of the step, and careful attention to the singularity that may develop at the step corner.

However, since the objective of this study was a comparison of various polynomial order

bases rather than a complete description of the physics, the standard step flow geometry

was simplified by excluding the region upstream of the step as described in Gartling [15].

This allows for a direct comparison with the benchmark results.

The geometry and boundary conditions are shown in Figure 5.3. The initial con-

dition consists of a parabolic (Poiseuille) velocity profile with the same mass flow-rate

as the inlet profile, imposed upon the entire channel. This initial condition is marched in

time using the backward Euler technique until the steady solution is reached, confirmed

in all cases by monitoring the changes in various flow quantities. The steady state is also

verified by steady shear stress on the channel walls.

ui = 0

ui = 0

ui = 0

u1 = 24x2(0:5� x2)
u2 = 0

P = 0

4:00:0 18:5 20:0

�1:0

0:0

1:0

x1

x

2

Figure 5.3: Step flow geometry and problem description

Numerical solutions were obtained on a variety of uniform tetrahedral meshes for

several different polynomial orders. The mesh statistics are shown in Table 5.2 where

each successive mesh represents a uniform refinement of the previous mesh, with the

exception of mesh B. Here,�x1 and�x2 represent the element size in thex1 andx2

60

directions, respectively.

Mesh Vertices Edges Faces �x1 �x2

A 405 724 320 0.250 0.250
B 847 1566 7200 0.167 0.167
C 2,211 4210 2,000 0.100 0.100
D 8,421 16420 8,000 0.050 0.050
E 32,841 64840 16,000 0.025 0.025

Table 5.2: Step flow mesh statistics

There are three major factors that contribute to the cost of the finite element simu-

lations discussed here: right hand side (or residual) evaluation, left-hand-side (or tangent

and mass) formation, and linear algebra (involving matrix-vector products for iterative

solution techniques). The first two of these measures rely on the numerical integration

of element level quantities, and the dominant terms are in the left-hand-side calculation

(proportional to the number of integration points times the number of element basis func-

tions squared). The matrix-vector products are dominated by the fill pattern of the matrix.

The relative size of these different measures depends on the order of the basis being used

(as well as the problem). For example, the linear basis is dominated by the linear algebra,

since we are using relatively cheap integration rules. Also, the fine meshes needed for

linear basis computations lead to greater cost in solving the linear system (more Krylov

vectors are needed).

In Table 5.3, we show the first cost index (C1), and a “-” in the Cost column in-

dicates that this simulation is not included in the study. The cost measured in this way

reflects the tangent matrix formulation cost. The symbols in the far-right column indicate

the meshes used in the comparison study discussed below. These calculations are in terms

of the face data and face quadrature rules in an attempt to level the playing field for the

2-D comparison with the 3-D code.

The basic character of this flow is well known. AtRe = 800, there are two

separation regions, one starting at the step corner and continuing downstream approxi-

mately 12 step heights, and another on the upper wall of the channel occupying a region

from approximately 10 to 20 step heights downstream. These features are shown in Fig-

ures 5.4(a)- 5.4(b) which represent the fluid speed, and pressure for the cubic simulation

61

Mesh k ns nint C1

1 405 4 -
A 2 1,129 9 -

3 1,853 16 0.02372 �
1 847 4 -

B 2 3,133 9 0.05081
3 6,859 16 0.24528
1 2,211 4 0.0527

C 2 8,421 9 1.0000 +

3 18,631 16 4.87871
1 8,421 4 3.0593

D 2 32,841 9 59.8383
3 73,261 16 -
1 32,841 4 185.9838 �

E 2 129,681 9 -
3 290,521 16 -

Table 5.3: Step flow simulation cost comparison

on mesh C. These figures are shown in the correct scale, however, only the first twenty

heights of the step are shown. Qualitatively, these figures compare well with those pre-

sented in Gartling [15].

The contour plots look similar for all simulations making it difficult to quantify the

benefit of the higher-order methods. We will therefore compare line plots of various flow

quantities at different spatial locations. The first of these plots demonstrates that all of the

methods are converging to the benchmark result (with linear being the slight exception).

Figure 5.5(a) shows the (most refined) cubic, quadratic, and linear simulations on meshes

C, D, and E, respectively, as well as the benchmark result of Gartling [15]. For each of

these, thex1- andx2- velocities and pressure are shown at two locations along the channel,

x1 = 7:0 andx1 = 15:0, the same locations presented in Gartling [15], which we have

included on the velocity plots as a benchmark result. The cubic and quadratic are able to

exactly reproduce the benchmark simulation, while the linear, even on the most refined

grid, is still slightly off in thex2-velocity at thex1 = 7:0 location. This isn’t surprising,

since the benchmark result is from a quadratic simulation with41 vertices across the

channel, which has the same number of points as our most refined linear simulation.

Figure 5.5(b) presents a comparison between the cubic simulation on mesh A, the

62

(a) contours of fluid speed

(b) contours of pressure

Figure 5.4: Step flow simulation characteristics: Mesh C,k = 3

−0.5 0 0.5 1 1.5 2
−0.5

0

0.5

−0.025 −0.02 −0.015 −0.01 −0.005 0 0.005 0.01
−0.5

0

0.5

−0.08 −0.07 −0.06 −0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02
−0.5

0

0.5

x
2

x
2

x
2

u1

u2

p

(a) Comparison on finest meshes.� : k = 1, + :
k = 2, �: k = 3, and : Gartling.

−0.5 0 0.5 1 1.5 2
−0.5

0

0.5

−0.025 −0.02 −0.015 −0.01 −0.005 0 0.005 0.01
−0.5

0

0.5

−0.08 −0.07 −0.06 −0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02
−0.5

0

0.5

x
2

x
2

x
2

u1

u2

p

(b) Comparison of qualitatively similar solu-
tions. � : k = 3, + : k = 2, �: k = 1, and

: Gartling

Figure 5.5: Backward-facing step. Velocity and pressure plotted versusx2 at x1 = 7
and x1 = 15. Velocities atx1 = 15 were shifted for plotting.

63

quadratic simulation on mesh C, and the linear on mesh E. These three simulations were

shown to produce qualitatively similar results for tetrahedral meshes by Whiting [58].

Clearly the cubic solution for thex2 velocity on mesh A, seems to deviate most, and

this is under further investigation. Table 5.3 shows the cost index for these three simu-

lations as0:02372, 1:000, and185:9838 for the cubic, quadratic, and linear simulations,

respectively.

5.4 Lid-driven cavity flow

The next problem considered is the steady, two-dimensional and incompressible

flow inside a closed container driven by its lid. The lid slides to the right at unit velocity

across the top of the cavity, shearing the fluid and setting up a recirculation region. There

is a primary vortex in the center of the cavity and secondary eddies in the lower corners

(the number of these secondary eddies depends on the Reynolds number). For the present

study, we have chosen to considerRe = 400 (based on the lid velocity), for which there

exist well-established benchmark results to compare with (see Ghiaet al. [16]). Since

the velocity is discontinuous at both upper corners, singularities will develop in the pres-

sure and stress fields, which must be controlled by the method. In addition, there are

singularities also in the lower corners, however, they are well resolved by the uniform

meshes.

ui = �i1

ui = 0

ui = 0ui = 0

p = 0

x1

x2

Figure 5.6: Lid-driven cavity geometry and boundary conditions

64

The geometry and boundary conditions are illustrated in Figure 5.6. In addition to

the velocity constraints, the pressure field is constrained by setting its value at the single

vertex in the lower left corner of the cavity. Uniform meshes were used with equal spacing

in thex1� andx2� directions. To isolate the singularities in the upper corners, nested

local mesh adaptivity was used by subdividing the original corner elements. The number

of new corner elements was chosen such that the first point is3:90625� 10�4 units from

the corner for each mesh. This distance dictates the extent to which the discontinuity

in the velocity field is resolved (i.e. how much fluid is “leaked” from the cavity) and is

fixed at the given value for all simulations by changing the number of corner elements.

This procedure is crucial to obtaining identical solutions for the different polynomial

orders, since the actual mesh size varies dramatically between the least refined cubic and

most refined linear simulations. Figure 5.7 shows an schematic illustration of the corner

refinement in the upper right corner. As mentioned earlier, the actual refinement is much

finer so that the first point is3:90625� 10�4 units away from the corner vertex (the upper

left corner is adapted the same way).

Figure 5.7: Mesh of lid showing corner adaptivity

The statistics for these meshes along with the polynomial orders used are shown in

Table 5.4. This data does not include the refinement in the upper corners, as this represents

a small percentage of the total mesh.

The basic solution characteristics of this flow are shown in Figures 5.8(a) - 5.8(b)

which display contours of fluid speed for a cubic simulation on a 11�11 mesh and a

quadratic simulation for a 21�21 mesh respectively. As can be observed with these

65

Mesh Vertices k

A 11�11 3
B 21�21 2,3
C 41�41 1,2,3
D 81�81 1,2
E 161�161 1

Table 5.4: Lid-driven cavity mesh statistics

(a) 11�11, cubic simulation (b) 21�21, Quadratic Simulation

Figure 5.8: Lid-driven cavity fluid speed contours: Mesh A,k = 3 and Mesh B,
k = 2

two figures, all converged simulations look identical. Figure 5.9(a) shows profiles of

u2(x1; x2 = 0) andu1(x1 = 0; x2) for the the most refined mesh for each polynomial

order. Note thatu1 was scaled by 0.5 to facilitate plotting. Also shown is the benchmark

result of Ghia,et al.[16] (one stray point was removed from their tabular data). The three

plots are virtually indistinguishable.

A cost comparison study similar to the Kovasznay flow study was carried out for

the lid-driven cavity flow (see the velocity profiles in Figure 5.9(a)). The simulations,

along with the second and third cost indices are shown in Table 5.5. Again, the cubic

simulations show a dramatic advantage relative to all other choices on all cost indices.

The “Matrix” column of Table 5.5 indicates the number of nonzero blocks for the sparse

66

u1 or x1

u
2

or

x
2

0

0

0.5

0.5
-0.5
-0.5

(a) Qualitatively similar solutions for Lid-Driven
Cavity flow.

Figure 5.9: Lid-driven Cavity flow. plots of u1(x1 = 0; x2) and u2(x1; x2 = 0), (�)
linear on 161� 161 mesh, (�) quadratic on 41 � 41 mesh and (+) cubic on 11 � 11
mesh, () Ghia et al..

storage of the tangent matrix (the dominant memory requirement), indicating that the

memory requirements for the cubic simulation are about 28 times less than that of the

linear simulation , while the quadratic requires about a factor of 9 times the memory . The

“Mesh” column compares the size of the file that stores the coordinates and connectivity

of the mesh.

Table 5.5: Lid-driven cavity normalized cost comparison
Mesh k C2 C3 Mesh Matrix

11� 11 hex 3 1.00 1.00 1.00 1.00
41� 41 hex 2 6.00 29.7 6.96 9.29

161� 161 hex 1 21.3 480 52.3 27.8

5.5 Conclusions

A stabilized finite element method using a hierarchical basis has been applied to the

incompressible Navier-Stokes equations. The implementation is general, allowing three-

dimensional simulations on arbitrary, unstructured meshes to be carried out on parallel

67

computers. This new formulation has been shown to yield accurate and robust simulations

on a variety of problems using both linear and hierarchical basis function alike.

The hierarchical basis described in this thesis has been shown to attain near optimal

rates of convergence with respect to the interpolation error for incompressible (Kovasz-

nay) flows. These studies have been motivated by the desire to simulate more complicated

physics problems, where traditional linear elements require too many grid points for cur-

rent computers. It has been shown here for the first time, through several, relatively simple

examples, that for steady problems the cubic and quadratic basis functions can be many

times more cost effective than linears. This indicates that the higher-order basis functions

may provide a means to attain simulations of physical problems unattainable with linear

elements due to computational limitations.

There are, however, limitations of the present research. It is hoped that they may

be addressed in future work, to further enhance the benefit of the hierarchical basis. The

present formulation is limited to uniform polynomial order. The current implementation

is also limited to straight-sided elements using a linear mapping to element coordinates.

Non-uniform polynomial order will allow meshes for relatively simple configurations

such as boundary layers to be more effectively simulated by using a lower polynomial

order in the streamwise and span-wise directions while maintaining higher-order for the

wall normal direction, where the flow gradients are highest. This type of polynomial order

grading is easily made possible for meshes comprised of hexahedral elements due to the

fact that they are well aligned with surfaces.

REFERENCES

[1] F. Bastin. Jet noise using large eddy simulation. InAnnual Research Briefs, pages

115–132, NASA Ames / Stanford University, 1996. Center for Turbulence

Research.

[2] M. W. Beall and M. S. Shephard. A general topology-based mesh data structure.

Int. J. Numer. Meth. Engng., 40(9):1573–1596, 1997.

[3] M. Behr, D. Hastreiter, S. Mittal, and T. E. Tezduyar. Incompressible flow past a

circular cylinder: dependence of the computed flow field on the location of the

lateral boundaries.Comp. Meth. Appl. Mech. Engng., 123:309–316, 1996.

[4] K. S. Bey, A. Patra, and J. T. Oden. hp-version discontinuous galerkin methods for

hyperbolic conservation laws: A parallel adaptive strategy.Int. J. Numer. Meth.

Engng., 1995.

[5] R. Biswas, K. D. Devine, and J. E. Flaherty. Parallel adaptive finite element

methods for conservation laws.Appl. Numer. Maths., 14:255–284, 1994.

[6] F. Brezzi, L. P. Franca, T. J. R. Hughes, and A. Russo.b =
R
g. Comp. Meth. Appl.

Mech. Engng., 145:329–339, 1997.

[7] A. N. Brooks and T. J. R. Hughes. Streamline upwind / Petrov-Galerkin

formulations for convection dominated flows with particular emphasis on the

incompressible Navier-Stokes equations.Comp. Meth. Appl. Mech. Engng.,

32:199–259, 1982.

[8] P. Carnevali, R. B. Morris, Y. Tsuji, and G. Taylor. New basis functions and

computational procedures for p-version finite element analysis.Int. J. Numer.

Meth. Engng., 36:3759–3779, 1993.

[9] M. H. Carpenter and David Gottlieb. Spectral methods on arbitrary grids.Journal

of Computational Physics, 1996.

68

69

[10] J. Chung and G. M. Hulbert. A time integration algorithm for structural dynamics

with improved numerical dissipation: The generalized-� method.Journal of

Applied Mechanics, 60:371–75, 1993.

[11] L. Demkowicz, J. T. Oden, W. Rachowicz, and O. Hardy. Toward a universal h-p

adaptive finite element strategy, part 1: Constrained approximation and data

structure.Comp. Meth. Appl. Mech. Engng., 77:79–112, 1989.

[12] Karen M. D. Devine.An adaptive hp-finite element method with dynamic load

balancing for the solution of hyperbolic conservation laws on massively parallel

computers. Ph.D. Thesis, RPI, 1994.

[13] S. Dey.Geometry-based three-dimensionalhp-finite element modelling and

computations. PhD thesis, Rensselaer Polytechnic Institute, 1997.

[14] L. P. Franca and S. Frey. Stabilized finite element methods: II. The incompressible

Navier-Stokes equations.Comp. Meth. Appl. Mech. Engng., 99:209–233, 1992.

[15] D. K. Gartling. A test problem for outflow boundary conditions – flow over a

backward-facing step.International Journal of Numerical Methods in Fluids,

11:953–967, 1990.

[16] U. Ghia, K. N. Ghia, and C. T. Shin. High-Re solutions for incompressible flow

using the Navier-Stokes equations and a multigrid method.Journal of

Computational Physics, 48:387–441, 1982.

[17] P. M. Gresho. Some current CFD issues relevant to the incompressible

Navier-Stokes equations.Comp. Meth. Appl. Mech. Engng., 87:201–252, 1991.

[18] P. M. Gresho and R. L. Sani.Incompressible Flow and the Finite Element Method.

Wiley, New York, NY, 1998.

[19] P. Hansbo and A. Szepessy. Velocity-pressure streamline diffusion finite element

method for the incompressible Navier-Stokes equations.Comp. Meth. Appl. Mech.

Engng., 1990.

70

[20] D. Haworth and K. E. Jansen. LES on unstructured deforming meshes: towards

reciprocating IC engines. InProceedings of the 1996 Summer Program, pages

329–346, NASA Ames / Stanford University, 1996. Center for Turbulence

Research. also accepted for publication in Computers in Fluids.

[21] T. J. R. Hughes.The finite element method: Linear static and dynamic finite

element analysis. Prentice Hall, Englewood Cliffs, NJ, 1987.

[22] T. J. R. Hughes. Multiscale phenomena: Green’s functions, the

Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins

of stabilized methods.Comp. Meth. Appl. Mech. Engng., 127:387–401, 1995.

[23] T. J. R. Hughes, L. P. Franca, and M. Balestra. A new finite element formulation

for fluid dynamics: V. A stable petrov-Galerkin formulation of the Stokes problem

accommodating equal-order interpolations.Comp. Meth. Appl. Mech. Engng.,

59:85–99, 1986.

[24] T. J. R. Hughes, L. P. Franca, and G. M. Hulbert. A new finite element formulation

for fluid dynamics: VIII. The Galerkin / least–squares method for

advective–diffusive equations.Comp. Meth. Appl. Mech. Engng., 73:173–189,

1989.

[25] T. J. R. Hughes and K. E. Jansen. A stabilized finite element method for the

Reynolds-averaged Navier-Stokes equations.Surveys on Mathematics for Industry,

4:279–317, 1995.

[26] T. J. R. Hughes, L. Mazzei, and K. E. Jansen. Large-eddy simulation and the

variational multiscale method.Computing and Visualization in Science, to appear,

1999.

[27] K. E. Jansen. Large-eddy simulation of flow around a NACA 4412 airfoil using

unstructured grids. InAnnual Research Briefs, pages 225–232, NASA Ames /

Stanford University, 1996. Center for Turbulence Research.

[28] K. E. Jansen. A stabilized finite element method for computing turbulence.Comp.

Meth. Appl. Mech. Engng., 174:299–317, 1999.

71

[29] K. E. Jansen, C. H. Whiting, and G. M. Hulbert. A generalized-� method for

integrating the filtered Navier-Stokes equations with a stabilized finite element

method.Comp. Meth. Appl. Mech. Engng., 1999. accepted, SCOREC Report

10-1999.

[30] Z. Johan, T. J. R. Hughes, K. K. Mathur, and S. L. Johnsson. A data parallel finite

element method for computational fluid dynamics on the Connection Machine

system.Comp. Meth. Appl. Mech. Engng., 99:113, 1992.

[31] A. A. Johnson and T. E. Tezduyar. Mesh update strategies in parallel finite element

computations of flow problems with moving boundaries and interfaces.Comp.

Meth. Appl. Mech. Engng., 119:73–94, 1994.

[32] A. A. Johnson and T. E. Tezduyar. 3D simulation of fluid-particle interactions with

the number of particles reaching 100.Comp. Meth. Appl. Mech. Engng.,

145:301–321, 1997.

[33] C. Johnson and A. Szepessy. On the convergence of a finite element method for a

nonlinear hyperbolic conservation law.Mathematics of Computation, 1987.

[34] Claes Johnson.Numerical solution of partial differential equations by the finite

element method. Cambridge University Press, Sweden, 1987.

[35] J. Kennedy, M. Behr, V. Kalro, and T. Tezduyar. Implementation of implicit finite

element methods for incompressible flows on the CM-5.Comp. Meth. Appl. Mech.

Engng., 1994.

[36] J. Kim, P. Moin, and R. Moser. Turbulence statistics in fully developed channel

flow at low Reynolds number.Journal of Fluid Mechanics, 177:133, 1987.

[37] L. I. G. Kovasznay. Laminar flow behind a two-dimensional grid.Proc. Cambridge

Philos. Soc., 44, 1948.

[38] H. Le, P. Moin, and J. Kim. Direct numerical simulation of turbulent flow over a

backward-facing step.Journal of Fluid Mechanics, 330:349–374, 1997.

72

[39] J. T. Oden, I. Babu˘ska, and C. E. Baumann. A discontinuous hp finite element

method for diffusion problems.Journal of Computational Physics, 146:491–519,

1998.

[40] A. Rússo. Bubble stabilization of the finite element methods for the linearized

incompressible Navier-Stokes equations.Comp. Meth. Appl. Mech. Engng.,

132:335–343, 1996.

[41] Y. Saad.Iterative methods for sparse linear systems. PWS Pub. Co., Albany, NY,

1996.

[42] K. Schloegel, G. Karypis, and V. Kumar. Multilevel diffusion algorithms for

repartitioning of adaptive meshes. Technical Report #97-013, U. Minnesota, Dept.

of Comp. Sci. and Army HPC Center, 1997.

[43] Robert Sedgewick.Algorithms in C. Addison–Wesley, Reading, Massachusetts,

1990.

[44] F. Shakib.Finite element analysis of the compressible Euler and Navier-Stokes

equations. PhD thesis, Stanford University, 1989.

[45] F. Shakib and T. J. R. Hughes. A new finite element formulation for computational

fluid dynamics: IX. Fourier analysis of space-time Galerkin/least-squares

algorithms.Comp. Meth. Appl. Mech. Engng., 87:35–58, 1991.

[46] F. Shakib, T. J. R. Hughes, and Z. Johan. A new finite element formulation for

computational fluid dynamics: X. The compressible Euler and Navier-Stokes

equations.Comp. Meth. Appl. Mech. Engng., 89:141–219, 1991.

[47] Farzin Shakib. http://www.acusim.com.

[48] M. S. Shephard. The specification of physical attribute information for engineering

analysis.Eng. Comput., 4:145–155, 1988.

[49] M. S. Shephard, S. Dey, and J. E. Flaherty. A straight forward structure to construct

shape functions for variable p-order meshes.Comp. Meth. Appl. Mech. Engng.,

147:209–233, 1997.

73

[50] S. J. Sherwin and G. E. Karniadakis. A new triangular and tetrahedral basis for

high-order (hp) finite element methods.Int. J. Numer. Meth. Engng.,

38:3775–3802, 1995.

[51] S. J. Sherwin and G. E. Karniadakis. A triangular spectral element method;

applications to the incompressible Navier-Stokes equations.Comp. Meth. Appl.

Mech. Engng., 123:189–229, 1995.

[52] S. J. Sherwin and G. E. Karniadakis. Tetrahedral hp finite elements: algorithms and

flow simulations.Journal of Computational Physics, 124(1):14, 1996.

[53] B. A. Szabo and I. Babu˘ska.Finite Element Analysis. Wiley Interscience, New

York, 1991.

[54] C. A. Taylor, T. J. R. Hughes, and C. K. Zarins. Finite element modeling of blood

flow in arteries.Comp. Meth. Appl. Mech. Engng., 158:155–196, 1998.

[55] T. E. Tezduyar, S. Aliabadi, M. Behr, A. Johnson, V. Kalro, and M. Litke. Flow

simulation and high performance computing.Computational Mechanics,

18:397–412, 1996.

[56] T. E. Tezduyar, M. Behr, and J. Liou. New strategy for finite element computations

involving moving boundaries and interfaces. The

deforming-spatial-domain/space-time procedure. I. the concept and the preliminary

numerical tests.Comp. Meth. Appl. Mech. Engng., 94:339–351, 1992.

[57] T. E. Tezduyar, M. Behr, and J. Liou. New strategy for finite element computations

involving moving boundaries and interfaces. The

deforming-spatial-domain/space-time procedure. II. Computation of free-surface

flows, two-liquid flows, and flows with drifting cylinders.Comp. Meth. Appl.

Mech. Engng., 94:339–351, 1992.

[58] C. H. Whiting. Stabilized finite element methods for fluid dynamics using a

hierarchical basis. PhD thesis, Rensselaer Polytechnic Institute, Sep. 1999.

