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ABSTRACT

Realization of the full benefits of p-version finite elements for general 3D curved

domains requires (i) careful construction and control of the mesh layout and geomet-

ric approximation, (ii) effective three dimensional adaptive control, and (iii) efficient

numerical methods for high order method. This thesis addresses the first two issues

in solving linear elliptic problems in general 3D curved domains.

An automatic p-version mesh generation procedure to construct near optimal

p-version meshes is presented. Starting from a surface triangulation, the process

automatically isolates and meshes the singular model features and thin sections with

structured cylindrical graded meshes and one layer prismatic thin section meshes

respectively. A p-version mesh curving procedure with gradation and thin section

mesh control curves all the mesh entities on the model boundaries. Controlled curved

local mesh modifications are applied to correct the invalid mesh entities caused

by curving the mesh entities. Examples demonstrated that the curved p-version

meshes produced by this procedure save 15% ∼ 40% fewer elements comparing to

the curved meshes generated by curving without gradation and thin section control.

The simulation results presented further demonstrate these meshes provide superior

simulation results with less computational effort.

The performance of the p-version meshes are investigated in the p-version

analysis software StressCheck and Trellis. Trellis takes advantage of a topology

based high order hierarchic shape function structure to allow the assignment of

different p-order for the independent coordinates of the mesh entities in the adaptive

analysis. A directional correction indicator is derived from the computation of the

elemental residual error estimator such that the p-orders are adaptively enriched

in the appropriate directions. Linear elasticity examples demonstrate that the p-

version meshes, particular in the adaptive directional p-version analysis, can achieve

the same level of solution as conventional p-version method with substantially fewer

degrees of freedom.
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CHAPTER 1

Introduction

The error of approximation in the finite element method depends on the mesh

and the polynomial order of the elements. In conventional FEA codes, the poly-

nomial order of elements are fixed at 1 or 2, and the error is controlled by making

sufficiently finer meshes with the errors of approximation reduced as h is reduced.

The term h-version refers to this approach. Since the mid-1980’s an alternative,

known as the p-version, has been extensively researched [12, 48, 49, 66, 67]. In

this approach the error is controlled by increasing the polynomial order of elements,

denoted by p. The p-version method has the advantage of being able to achieve an

exponential rate of convergence in the application to problems of interest that can

not be accomplished by h-version method. However, realization of the full bene-

fits p-version finite elements for general three-dimensional curved domains requires

(i) careful construction and control of the mesh layout and geometry, (ii) effective

three dimensional adaptive control, and (iii) efficient numerical methods for high

order method. The technical components required to address these requirements

have yet to receive adequate consideration.

The performance of p-version finite element method depends on the character

of the exact solution over the domain. In portions of domain where the exact solution

is smooth the most effective mesh is one that is as coarse as possible so long as the

mesh provides a satisfactory geometric approximation to the domain. However,

there are many situations in which the solution of a boundary value problem is not

smooth, for example, singularities because of the domain geometry, load function

and material properties etc [17, 49]. In these cases, an optimal p-version method

requires a carefully designed mesh. For the singularities caused by the corners

and edges of the domain, basic theory and example studies [7, 16, 17, 102, 122]

demonstrated that meshes must be geometrically graded towards the singularities

to attain the exponential rate of convergence.

In the p-version method, the mesh entities on the domain boundary must

1
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properly approximate the geometry model to the correct order. There is limited

theoretical information available on the level geometric approximation required to

maintain convergence to the correct solution for all variables when the domains are

curved. A simple analysis based on the relation of approximation theory to the

convergence of the error in the energy norm indicates that the energy norm will

converge so long as the geometric approximation of the mesh is within one order of

that used in the finite element basis [45]. In the cases of elements defined in terms

of standard interpolating Lagrange polynomial this requirement is met by being

sure that all nodes at mesh vertices, on mesh edges and on mesh faces on curved

domain boundaries are placed on the appropriate boundary [47, 117]. If different

basis functions for the finite element approximation and element geometries are

chosen, one has to carefully consider how to satisfy the geometric approximation

requirements for these elements by the proper improvement of the mesh edge and

face shapes.

General 3-D curved solid models often have sections where one dimension is

small compared to the others. Historically, the methods used to analyze thin sec-

tions involved applying deformation assumptions to the 3-D elasticity equations

allowing the problem dimensionality to be reduced [105]. The application of such

methods requires a reduced dimensional domain model and the identification of

the thin sections to be applied model dimension reduction on those portions [105].

Handing the interconnection between two dimensional reduced elements to fully

three-dimensional solid elements is another source of difficulty [1]. Since the as-

sumptions corresponding to those deformation models are equivalent to allowing

only lower order deformation modes in thickness directions of the thin sections, an

alternative is to apply full three-dimensional models discretized with p-version finite

elements with low polynomial order through thickness [1, 40, 55, 57, 112]. Therefore

a mesh that contains elements through the thickness without through the thickness

diagonals is needed.

Geometric approximation, graded mesh layout towards singularities and meshes

without long diagonal through the thickness directions for thin sections for a general

curved model constitute the three basic requirements to consider in the construction



3

of a near optimal initial mesh for use with the p-version finite element method. The

existed mesh generators developed for h-version method do not consider these issues

adequately. The first aim of this thesis is to develop an automatic p-version mesh

generation procedure that addresses these three basic requirements.

Adaptive finite element analysis procedures employ solution results to estimate

the discretization error and determine how to improve the finite element discretiza-

tion till the prescribed accuracy tolerance is satisfied. An estimation of the error

over each element and a strategy to reduce the error by properly changing the poly-

nomial order p over the mesh are the critic ingredients for the adaptive p-version

method. The effective implementation of these methods also requires a flexible data

structure and methods that support general variations of p-order over the meshes

[115].

There are situations for problem of interest that the exact solution exhibits

anisotropic behavior, that is, the exact solution exhibit relatively strong gradients in

certain directions compared the other directions. Such situations can be caused by

the problem physical properties such as the thermal and fluid boundary layers [60],

orthotropic material or the model geometries, for example, one of the dimensions of

the structural part is much dimensional smaller than the other [1, 57]. An effective

adaptive p-version method must be capable of determining these directions and

applying high polynomial order for them to capture the exact solution behavior.

Issues on how to effectively adapt the polynomial directionally to achieve the

desired level of accuracy with the lowest number of degrees of freedom and compu-

tational cost are considered in this thesis. Specific attention is paid to derive the

directional correction indicator to determine the directions that need finer resolution

compared with other directions.

This thesis is organized with three parts. Part one discuss the basic theory

of p-version finite element method and the requirements of its implementation on

general 3D curved domains. Part two describes the automatic p-version mesh gener-

ation procedure that considers geometric approximation, mesh gradation layout and

structured mesh for thin sections together from the beginning that are central to

construct near optimal meshes for the use of p-version method. Part three discusses
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an adaptive directional variable p-version analysis procedure that allow assigning

different polynomial orders independently on each coordinate direction. The anal-

ysis results related to the p-version method are also presented. Finally, the thesis

ends with a summary of contributions and a discussion of future work.



5

Part I

Overview of p-Version Method and the
Requirements of its Implementation on General 3D

Curved Domains



CHAPTER 2

Overview of the p-Version Finite Element Method

This chapter first describes the model problem for second order linear partial

differential equation on general 3D curved domains. The key components to solve the

problem using p-version method is discussed. A priori estimate of the convergence

rate of p-version method in energy norm based on the form of the exact solution

and assuming optimal finite element meshes configurations are reviewed.

2.1 Model Problem Description

For the second order linear partial differential equations defined on domain Ω that

is a bounded region in Rnsd (nsd = 2, 3 is the problem dimension) with piecewise

smooth boundary Γ, let functions g, h define the subjected boundary conditions as

follows,

u = g on Γg , (2.1)

α
∂u

∂n
= h on Γh, (2.2)

Γ = Γg ∪ Γh and Γg ∩ Γh = ∅.
The abstract weak form for the second order linear partial differential equations

can be stated as follows [6, 71].

Given f, g , h, find u ∈ V such that for all the test functions w ∈W ,

a(w, u) = (w, f) + (w, h)Γh
, (2.3)

V defines the trial function space as,

V = {u | u ∈ H1(Ω), u = g on Γg}, (2.4)

and W defines the variation space as,

W = {w | w ∈ H1(Ω), w = 0 on Γg}, (2.5)

6
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where a( , ) is the bilinear form and ( , ) and ( , )Γh are the linear forms that depend

on the problems specified. There are a number of problems such as heat transfer,

porous media flow, laminar flow in a channel and linear elastic solid mechanics that

can be represented by the second linear elliptic equation. The examples presented

in this thesis focuses on Poisson equation and linear elasticity problem.

In case of Poisson equation, the bilinear and linear forms are defined as

[71, 124],

a(w, u) =

∫

Ω

w,iu,i dΩ, (2.6)

(w, f) =

∫

Ω

wf dΩ, (2.7)

(w, h)Γh
=

∫

Γh

wh dΓ . (2.8)

For linear elasticity problem, the bilinear and linear forms are defined as [71, 124],

a(w, u) =

∫

Ω

wi,jcijkluk,l dΩ, (2.9)

(w, f) =

∫

Ω

wifi dΩ, (2.10)

(w, h)Γh =

nsd∑

i=1

(

∫

Γhi

whi dΓ ), (2.11)

cijkl are the elastic coefficients.

Let V h and W h be the finite dimensional approximation to V and W , respec-

tively. The Galerkin finite element formulation for the weak form in Eq. 2.3 is given

as follows [71].

Given f, g , h, find uh = vh + gh such that for all wh ∈W h,

a(wh , vh) = (wh , f) + (wh , h)Γh
− a(w h , gh). (2.12)

2.2 The p-Version Finite Element Method

This section discuss the application of p-version method to solve the Galerkin

finite element formulation developed in Eq. 2.12.
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2.2.1 Finite Element Mesh

In the finite element method, the domain Ω is discretized with elements Ωe, e =

1...nel referred to as the finite element mesh. A general topology and classification

of the entities with respect to the geometric model entity that the mesh entity is on

[30] is used throughout in this thesis. The nomenclature used to describe the mesh

topology and classification to the geometric model are given as follows:

Ωv Domain associated with the model v , v = G, M where G signifies
the geometric model and M signifies the mesh model.

∂Ωv Boundary entities of Ωv.
Ωv Closure of the domain associated with the model v, v = G, M given

by (Ωv ∪ ∂Ωv).
Md

i ithmesh topological entity of dimension d in the mesh modelM . d =
0, 1, 2, 3 represent mesh vertex, edge, face and region respectively.

∂Md
i Boundary of mesh topological entity M d

i .

M
d

i Closure of mesh topological entity defined as (M d
i ∪ ∂Md

i ).
Gd

i Geometric model topological entity i of dimension d.
Ωe
i Domain of a finite element associate with a mesh topological entity

Md
i .

Ω
e

i Closure of a finite element.
< Classification symbol used to indicate the association of one or more

entities from the mesh model M with the geometric model G.
{Md} Unordered group of mesh topological entities of dimension d.

{Mdi
i {Mdj}} First order adjacency sets of individual mesh entity M di

i defined as
the set of mesh entities of dimension dj adjacent to mesh entityM di

i .

A mesh model is represented by the basic 0− to d−dimensional topological

entities [30]. In the three dimensional model (d = 3) these topological entities are,

TM = {{M{M 0}}, {M{M 1}}, {M{M 2}}, {M{M 3}}}, (2.13)

where {M{Md}}, d = 0, 1, 2, 3 are the set of vertices, edges, faces and regions

defining the primary topological elements of the mesh model domain.

There are two important concepts in the topology-based mesh data structure

for the use of the p-version method. First, mesh classification against the geometric

domain mdi
i < G

dj
j that defines the unique association of a mesh entity of dimension

di,M
di
i to a geometric model entity of dimension dj, G

dj
j where di ≤ dj [30]. Multiple
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Mdi
i can be classified on a G

dj
j . Mesh entities are always classified with respect

to the lowest order geometric model entity possible. The mesh classification on

the geometric model plays a crucial role in the automated mesh generation and

adaptation, analysis attribute transfer from the geometric model to the mesh, and

to obtain geometric shape information needed for use in defining properly curved

mesh entities. Second, adjacency describes how topological entities connect to each

other. The most important set of relations are the first order adjacency relations

that describe, for a given entity M di
k , all of the entities, M dj , (di 6= dj) which

are either on the closure of the entity (di > dj), or which it is on the closure of

(di < dj) [30]. These sets of relations support variety operations critical to the

effective application of the p-version method, including the simple assignment of

the desired polynomial order with respect to each topological entity in the mesh

and the topological hierarchic shape function construction.

2.2.2 Element-Level Shape Functions

Let Na denote the high order shape functions defined on the standard refer-

ence element Ωst defined in the ξ-space such that the finite element approxima-

tion uh over element Ωe is,

uh(ξ) =

nshp∑

a=1

Na(ξ)d
e
a, (2.14)

where dea are the unknown coefficients. nshp is the number of shape functions of the

element Ωe that depends on the polynomial order of the shape functions associated

with the mesh entities on the closure mesh entity of Ω
e
. When applying the first-

order adjacency, the closure of a finite element, Ω̄e, of dimension de, can be specified

and evaluated as,

Ω
e
=
{
Mde

e , ∂M
de
e

}
=
{
Mde

e , {Mde
e {Mde−1

j }}, ..., {M de
e {M0

j }}.
}

(2.15)

The selection of shape functions for the use of p-version method has received

extensively research in [40, 115, 117, 118, 124] and attention was focused on defining

hierarchic shape functions based on Legendre polynomials. This thesis applies the
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topology based hierarchic shape functions [115] that can be organized into vertex,

edge, face and region shape functions uniquely determined by the mesh topology

and the specified polynomial order on those mesh entities in Eq. 2.15.

The basic idea of the topology based hierarchic shape functions [115] is to

decompose the shape function N associated with mesh entity M
dj
j ∈ Ωe in the

form,

N = ψ(M
dj
j ,M

de
e )φ(M

dj
j ) dj ≤ de, dj, de = 0, 1, 2, 3, (2.16)

where,

• ψ(M
dj
j ,M

de
e ) is the blending function defined over M de

e specific to M
dj
j . The

blending function is written in the parametric coordinate system ξ of the

elementMde
e and independent of the polynomial order of the shape function N .

• φ(M
dj
j ) is the entity function written in the local parametric coordinate sys-

tem ξ̂ of the mesh entity M
dj
j that depends on the mesh entity M

dj
j and

the polynomial order of the shape function N , and is independent of the el-

ement Mde
e [115]. Thus, the form of the mesh entity function for M

dj
j is the

same for all elements (including those of different topologies and/or dimension)

connected to M
dj
j .

Previous efforts used a uniform polynomial order for the mesh faces and regions

in [115]. In Part III of this this thesis this is extended to include independent

directional polynomial for the use of adaptive analysis.

2.2.3 Mesh Geometry Mapping Functions

In the p-version finite element method, each element Ωe is mapped into a

standard element Ωst by a mapping function x = Qe
x(ξ). Since the boundary of the

general 3D curved domains generally consists of piecewise smooth curves and sur-

faces and most finite elements remains large, the mesh geometry mapping function

Qe
x(ξ) must consider using accurate mapping techniques to approximate the curved

boundaries.

In case of blended mapping [46, 124], x(ξ) is exact with respect to the bound-

aries ΓG of the geometric model when ξ ∈ Ωe < ΓG. This approach is accomplished
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by assigning the mesh entities classified on the curved boundaries of the same geom-

etry as that portion of the model boundary entity [46]. Center idea is to construct

the desired mapping for a mesh entity, M d
i , classified on a model entity, Gd

j as,

x(ξ) = Qe
x(ζ(ξ)), (2.17)

where ζ represents the local parametric coordinates associated with the model entity

Gd
j . The construction of ζ(ξ) depends on the classification of the mesh entity with

respect to the geometric model [46]. However, this is a computationally expensive

process.

An alternative is to construct an approximate geometry representation that

uses interpolation or geometry approximation techniques to determine appropriate

shapes for the mesh entities that are determined and stored together with the mesh

entities. In this method, the approximated geometry x(ξ) is written as a linear

combination of basis functions and control points defined over Ω
e
as follows,

x(ξ) = Qe
x(ξ) =

nq∑

i=1

Bi(ξ)b
e
i , (2.18)

where Bi is the chosen basis functions and bei are the control points. nq is the

number of basis functions to complete a geometric mapping up to order q. In the

isoparametric mapping used for lower order h-version finite element method, Bi(ξ)

is generally chosen the same as the shape function Na(ξ). For the p-version method

developed in this thesis, Bi(ξ) is chosen as the Bernstein polynomials on which the

Bezier curves, surfaces and regions are built.

A nth order Bernstein polynomial [58] is defined explicitly by,

Bn
i (t) =




n

i



 ti(1− t)(n−i), 0 ≤ i ≤ n, (2.19)
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where




n

i



 is a binomial coefficient as,




n

i



 =
n!

(n− i)!i!
. (2.20)

The Bernstein have a number of useful properties [58].

• Bernstein polynomials form a partition of unity,

n∑

i=0

Bn
i (t) = 1, 0 ≤ t ≤ 1. (2.21)

• Bernstein polynomials are symmetry,

Bn
i (t) = Bn

(n−i)(1− t). (2.22)

• Bernstein polynomials are positive,

Bn
i (t) ≥ 0. (2.23)

• Having special values,

Bn
i (0) = Bn

i (1) =







0 for i = 1, 2, ..., n− 1

1 for i = 0 or n
(2.24)

With the Bernstein polynomial defined in Eq. 2.19, a qth order Bezier mesh

edge can be constructed as [58],

xq(ξ) =

q
∑

i=0

Bq
i (ξ)b

q
i , 0 ≤ ξ ≤ 1, (2.25)

where bqi are the control points used to define the shape of the Bezier curve.

With Eq. 2.25, a quadrilateral Bezier mesh face with polynomial order (q1, q2)

for its coordinates (ξ1, ξ2) can be defined as the tensor product of a q1th order Bzier
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curve in ξ1 direction and a q2th order Bezier curve in ξ2 directions as [58],

x(q1,q2)(ξ1, ξ2) =

q1∑

i=0

q2∑

j=0

Bq1
i (ξ1)B

q2
j (ξ2)b

(q1,q2)
ij , 0 ≤ ξ1, ξ2 ≤ 1. (2.26)

b
(q1,q2)
ij are the control points.

For a qth order complete Bezier triangle face defined in the barycentric coor-

dinates ξ1 + ξ2 + ξ3 = 1, the formulation is [58],

xq(ξ1, ξ2, ξ3) =
∑

|i|=q
Bq

|i|(ξ1, ξ2, ξ3)b
q
|i|. (2.27)

where bq|i| are the control points net. |i| = i+ j + k and Bq
|i| are defined by,

Bq
|i|(ξ1, ξ2, ξ3) =




q

|i|



 ξi1ξ
j
2ξ

k
3 =

q!

i!j!k!
ξi1ξ

j
2ξ

k
3 , |i| = q. (2.28)

Follow the same algorithm, a hexahedral Bezier region with polynomial order

(q1, q2, q3) is a tensor product of three Bezier curves at the independent coordinates

ξ1, ξ2, ξ3 directions and is represented as,

x(q1,q2,q3)(ξ1, ξ2, ξ3) =

q1∑

i=0

q2∑

j=0

q3∑

k=0

Bq1
i (ξ1)B

q2
j (ξ2)B

q3
k (ξ3)b

(q1,q2,q3)
ijk , 0 ≤ ξ1, ξ2, ξ3 ≤ 1.

(2.29)

A Bezier prismatic region is the tensor product of a q1th order triangle face

along barycentric coordinates (ξ1, ξ2, ξ3) and a q2th order Bezier curve along coor-

dinate ξ4 direction and is of the form,

x(q1,q2)(ξ1, ξ2, ξ3, ξ4) =
∑

|i|=q1

q2∑

l=0

Bq1
|i|(ξ1, ξ2, ξ3)B

q2
l (ξ4)b

(q1,q2)
|i|l . (2.30)

As for a qth order Bezier tetrahedral region defined in the volume coordi-
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nate (ξ1 + ξ2 + ξ3 + ξ4 = 1), it can be represented as,

xq(ξ1, ξ2, ξ3, ξ4) =
∑

|i|=q
Bq

|i|(ξ1, ξ2, ξ3, ξ4)b
q
|i|, (2.31)

where |i| = i+ j + k + l and Bq
|i| are defined as,

Bq
|i|(ξ1, ξ2, ξ3, ξ4) =




q

|i|



 ξi1ξ
j
2ξ

k
3ξ

l
4 =

q!

i!j!k!l!
ξi1ξ

j
2ξ

k
3ξ

l
4, |i| = q. (2.32)

The Bezier mesh geometry shape posses a number of advantageous properties in-

clude:

• The Convex Hull Property - A Bezier curve, surface, or volume is contained

in the convex hull formed by its control points.

• The Variation Diminishing Property - An infinite plane can not intersect a

Bezier curve more times than it intersects control polygon which allows more

efficient intersection calculations.

• All derivatives and products of Bezier functions are easily computed Bezier

functions.

• Computationally efficient algorithms for degree elevation and subdivision are

available which can be used to refine the shape’s convex hull as well as adap-

tively refine the mesh’s shape.

The determination of the control points bei for a Bezier mesh entity shape requires

the solution of nq dimension linear system of equations [45] as follows,










m11 m12 ... m1nq

m21 m22 ... m2nq

... ... ... ...

mnq1 mnq2 ... mnqnq
















be1

be2

...

benq







=







c1

c2

...

cnq







, (2.33)

where

mij = Bj(ξ
(i)), (2.34)
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ci = x(ξ(i)), (2.35)

{ξ(i)}, i = 1...nq defines the set of parametric coordinates at which the approximate

geometry shape is evaluated. In the case of mesh edges classified on the curved

model boundaries, their control points are determined based on Bezier curve and

surface interpolation methods resulting from evaluating the model geometry at a

set of discrete locations. Common methods usually assume the interpolation points

are uniformly distributed in the parametric space of the mesh entity. However,

this approach can lead to poor geometric approximations. An alternative method

that improves the geometric approximation for a given order uses a chord length

method [59]. In cases where there are large changes in the curvature in the portion

model entity being approximated by the mesh entity the use of a curvature-based

procedure for selecting the interpolating points is appropriate [85]. Specific attention

needs to be paid to model entities that contain either parametric degeneracies and/or

periodicity.

2.2.4 Computation of Element-Level Stiffness Matrix and Load Vector

With the finite element mesh discretization and high order shape functions

the Garlerkin form in Eq. 2.12 is computed at the element level and subsequently

assembled to produce the equivalent global matrix forms [71] as,

Kd = F , (2.36)

where K is the global stiffness matrix and F is the global load vector. d is the

unknown coefficients vector. K and F are assembled from the local stiffness ma-

trix ke and load vector f e of each element [71].

In case of the Poisson equation, the local stiffness matrix ke and load vec-

tor f e of each element are computed as [71],

keab =

∫

Ωe

BT
a Bb dΩ

e, (2.37)

f e
a =

∫

Ωe

Naf dΩe +

∫

Γe
h

Nah dΓ −
nel∑

b=1

keabg
e
b , (2.38)
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with Ba = ∇Na.

For the linear elasticity problem [71],

kepq = eTi k
e
abej, keab =

∫

Ωe

BT
aDBb dΩ

e, (2.39)

f e
p =

∫

Ωe

Nafi dΩ
e +

∫

Γe
h

Nahi dΓ −
nel∑

q=1

kepqg
e
q , (2.40)

the indices p, q are defined as follows [71],

p = ned(a− 1) + i, q = ned(b− 1) + j, (2.41)

ned is the degrees of freedom number. ei denotes the ith Euclidean basis vector for

the real space Rnsd . D is a symmetric, positive definite matrix of material properties

and is defined in terms of cijkl. Ba is of the form as [71],

Ba =







Na,x 0

0 Na,y

Na,y Na,x






, (2.42)

for nsd = 2 and of the form as,

Ba =
















Na,x 0 0

0 Na,y 0

0 0 Na,z

0 Na,z Na,x

Na,z 0 Na,y

Na,y Na,x 0
















, (2.43)

for nsd = 3 and 1 ≤ a, b ≤ nshp.

The local stiffness matrix ke and load vector f e are computed at the standard

element Ωst and dΩ
e can be computed as,

dΩe = dx = J dξ, (2.44)
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where J is the determinant of Jacobian of the mapping matrix
[
∂x
∂ξ

]

. In case nsd = 3,

x and ξ are defined as x(x, y, z) and ξ(ξ1, ξ2, ξ3), matrix
[
∂x
∂ξ

]

is computed as,

[
∂x

∂ξ

]

=







x,ξ1 x,ξ2 x,ξ3

y,ξ1 y,ξ2 y,ξ3

z,ξ1 z,ξ2 z,ξ3






. (2.45)

Based on the Eq. 2.18, the components are,

x,ξ1 =

nq∑

i=1

bxi
∂Bi

∂ξ1
, x,ξ2 =

nq∑

i=1

bxi
∂Bi

∂ξ2
, x,ξ3 =

nq∑

i=1

bxi
∂Bi

∂ξ3
, (2.46)

y,ξ1 =

nq∑

i=1

byi
∂Bi

∂ξ1
, y,ξ2 =

nq∑

i=1

byi
∂Bi

∂ξ2
, y,ξ3 =

nq∑

i=1

byi
∂Bi

∂ξ3
, (2.47)

z,ξ1 =

nq∑

i=1

bzi
∂Bi

∂ξ1
, z,ξ2 =

nq∑

i=1

bzi
∂Bi

∂ξ2
, z,ξ3 =

nq∑

i=1

bzi
∂Bi

∂ξ3
. (2.48)

J is computed as,

J = x,ξ1(y,ξ2z,ξ3 − y,ξ3z,ξ2) + x,ξ2(y,ξ3z,ξ1 − y,ξ1z,ξ3) + x,ξ2(y,ξ1z,ξ2 − y,ξ2z,ξ1). (2.49)

The derivative of Na with respect to x can be computed as follows,

Na,x =
∂Na

∂x
=
∂Na

∂ξ

∂ξ

∂x
, (2.50)

where
[
∂ξ
∂x

]
=
[
∂x
∂ξ

]−1
.

2.3 Effective Numerical Integration of p-Version Finite El-

ement Method

The stiffness matrix and load vector in Eq.2.37 - 2.40 can not be integrated

exactly and are generally computed using numerical integration. Let {Rp} be the

selected numerical integration scheme defined by a set of integration points {ξl} and
weights {wl}. In p-version method, the precision of the {Rp} must also increase as
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the polynomial order p increases. The influence of the numerical quadrature error

on the rate of convergence of p-version method has been investigated in detail in

[27, 76]. It was stated that the integration scheme {Rp} on the standard reference

element Ωst must satisfy two assumptions [27, 76]:

1. The weights are positive and the integration points lie within Ωst.

2. {Rp} is exact for all of the functions defined in Ωst with polynomial order

m ≥ 2p.

to ensure that the numerical quadrature error will decay as fast as the discretization

error.

In case of tensor product type elements such as quadrilateral and hexahedral

element, pi+1 points Gauss-Legendre and pi points Gauss-Lobatto in each direction

are minimal required when polynomial order of pi is used along the direction [27].

Therefore the total number of integration points ng are

ng = (pi + 1)× ... × (pj + 1)
︸ ︷︷ ︸

nsd times

(2.51)

for higher dimension elements in case of Gauss-Legendre scheme. As for other

topological elements such as triangle, tetrahedral, prism and pyramid that do not

have orthogonal local coordinates, the integration points can be derived by applying

the coordinates mapping strategy presented in [46] and will be described in Part III

of this thesis.

The matrix equation in Eq. 2.36 is solved to obtain the unknown coefficients

vector d to construct the finite element solution uh .

2.4 The Convergence Rate of the p-Version Method

The accuracy of uh to u is measured with the finite element approximation

error e = uh − u in norms of interest. Let || . || be the energy norm defined as,

||u|| = a(u, u)
1
2 . (2.52)
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The error measured in energy norm ||e|| is the overall quality measure of the finite

element solution and is of the most interest in this thesis [71, 124]. A priori estimates

of the convergence rate of p-version method in energy norm based on the character

of the exact solution and discretized finite element meshes has been investigated in

[12, 14, 17, 26, 48, 49, 66, 67, 124].

The exact solution u can be grouped into three categories over the closure of

the solution domain Ω (Ω = Ω ∪ ∂Ω) [124]:

(a) u is analytic over Ω. The function u is analytic in a point if it can be expanded

into a Taylor series about that point on the entire solution domain Ω.

(b) u is analytic over Ω except a finite number of singular points or lines. An

example of problems in this category is the crack tip (2D) or edge (3D) of an

elastic domain.

(c) u is neither in category (a) nor (b).

The linear elasticity and Poisson equation problems considered in this thesis belong

in either category (a) or (b).

Knowing the classification of a problem, the rate of convergence measured in

energy norm can be compared for different finite element methods. It has been

shown that in the case of h-version method with quasiuniform meshes, the error

measured in energy norm is [17, 124],

||e|| ≤ CN−β, (2.53)

where β = 1
2
min(λ, p) and λ is smoothness parameter of the exact solution. C is

positive constant and N is the number of degree of freedom. Eq. 2.53 shows the rate

of convergence using h-version method is 1
2
p when the solution u is smooth (category

a) and is 1
2
λ when the solution has singularities over the domain (category b).

For the p-version method, in the case the exact solution is smooth (category

a) without any singularity inside the model domain or on the boundary of the model

domain, the rate of convergence is exponential [12, 124],

||e|| ≤ Ce−γNθ

, (2.54)
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where C, γ, and θ are positive constants, θ ≥ 1/2 [124].

When there are singularities inside the domain or on the boundary of the

domain (u belongs to category b) and quasiuniform meshes are applied, the rate of

convergence for the p-version method is of the same form in Eq. 2.53. The constant

β is determined as follows [12, 124]:

• When the singularities are inside the domain but not on the boundary points

or edges of the domain, β = 1
2
λ. The rate of convergence of p-version method

is exactly the same as that of h-version method.

• When the singularities are on the boundary points or edges of the element

boundaries, β = λ. It shows that the p-version method can achieve twice the

rate of convergence as the h-version method. However, the convergence rate

for both of the methods is algebraic.

In case of nonquasiuniform meshes with geometric gradation q towards the

solution singularity (so called hp-version method), the rate of convergence for p-

version method is exponential and can be written as [17],

||e|| ≤ Ce−
√
(λ−1/2)N

√
2 log q log r, (2.55)

with

r =
1−√q
1 +

√
q
. (2.56)

The optimal rate of convergence in Eq. 2.56 is achieved if the quantity,

log q log
1−√q
1 +

√
q
, (2.57)

reaches its maximum.

The optimal q exists at [66],

q0 = (
√
2− 1)2 ≈ 0.1715. (2.58)

In practical implementation of p-version method, the geometric gradation is

usually chosen as 0.15 to overrefine the mesh [17, 122, 124].
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Although the above conclusions are drawn based on the studies of one or

two dimensional linear elliptical model problem, the analogous results hold in three

dimension [17, 124].



CHAPTER 3

The Implementation Requirements of the p-Version

Method on General 3D Curved Domains

This chapter discusses the influence of geometry on the character of the exact

solution for second order linear partial differential equations on general 3D curved

domains. The mesh requirements for p-version method to achieve its high rate of

convergence are then given. An overall algorithm to generate near optimal p-version

meshes is presented.

3.1 Geometric Mesh Gradation for Solution Singularities

Eq. 2.55 shows that the mesh must be graded towards the solution singular-

ities with an optimal gradation 0.15. The solution of second order linear partial

differential equations in three dimensions in the vicinity of any singular point can

be decomposed into three different forms, depending whether the singular point is

in the neighborhood of an edge, a vertex or an intersection of the edge and the

vertex. Let {Gdj}, dj = 0, 1 denote the model vertices and edges of a general 3D

curved model. In the vicinity of a model edge G1j with local cylindrical coordi-

nates (r, x3, φ) along the model edge, the exact solution u can be written as [17],

u =
J∑

j=1

S∑

s=0

T∑

t=0

cjst(x3)ψjst(φ)r
(αj+t)lns(r) + u0, (3.1)

where j, s, t are integers. cjst ∈ C∞(G1j) and ψjst are analytic in φ. u0 is smooth

function. J, S, T are chosen such that u0 is smoother than the smooth terms cjst

and ψjst in the sum. αj = jπ/ω and ω is the interior dihedral angle of the edge G1j .

Eq. 3.1 shows that the solution u behaves as rαj type functions and the smooth-

ness is characterized by the value αj. In case the interior dihedral angle ω ≥ π,

Eq. 3.1 indicates that the solution is smooth along the direction of the model edge

(x3 direction) and singular in the perpendicular direction (r direction). Thus, the

22
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mesh must be controlled with cylindrically geometric gradation layout in the perpen-

dicular direction of a singular model edge and coarse mesh along the edge direction

shown in Figure 3.1.

For a model vertex G0j with local spherical coordinates (ρ, θ, φ), the solu-

tion u can be written as [17],

u =
J∑

j=1

S∑

s=0

T∑

t=0

(
I∑

i=0

c̃jstiρ
−1/2+βi+fjst(ρ))ψ̃jst(φ)θ

α̃j+tlns(θ)+
I∑

i=0

diρ
−1/2+βi g̃i(θ, φ)+ũ0,

(3.2)

where c̃jsti, fjst, ψ̃jst, g̃i and ũ0 are smooth functions. J, S, T, I are chosen following

the same pattern in Eq. 3.1. βi is determined by the Laplace-Bertrami eigenval-

ues λi [17, 49] as,

βi =
√

1/4 + λi. (3.3)

It was seen from Eq. 3.2 that the exact solution u behaves as ρ−1/2+βi [17, 49]

that requires the mesh spherically graded towards to the model vertex. The determi-

nation of λi usually requires numerical approximations that makes the prediction of

the vertices singularities apriori more difficult. This thesis focus on edge singularities

for 3D curved domains.

3.2 Mesh Requirements for Thin Sections of 3D Curved

Models

In addition to the singular model edges and vertices that affect the character

of the exact solution, a complicated 3D curved model may have some additional

structures such as thin sections, stiffeners, fillets, cutouts, bosses etc. that affect the

character of the solution u and requires specific mesh construction in the p-version

method [79, 100]. This thesis considers the influence of thin section structures in 3D

linear elasticity problem. For the portions of domain where the thickness dimension

is no greater than one-tenth of the smallest in-plane dimension and is subjected to

loads that cause bending deformation in addition to stretching, these regions can

be regarded as thin section structures. Such sections are often modeled by applying

dimensional reduction to use 2D shell theories. The widely used conventional plate
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Figure 3.1: The Required Meshes for Singular Model Edges and Vertices

and shell theories are Kirchhoff and Reissner theories. In the Kirchhoff’s theory, the

displacement components ux, uy, uz are represented as [105, 124],

ux = ux0(x, y)− z
∂uz0
∂x

,

uy = uy0(x, y)− z
∂uz0
∂y

, (3.5)

uz = uz0(x, y),

where functions ux0, uy0 represent the components of the in-plane displacement com-

ponents in the x and y directions respectively. uz0 represents the traverse displace-

ment component. It is assumed that εz = ∂uz
∂z

= 0 such that the shear strains γxz

and γyz are zero.

γxz =
∂ux
∂z

+
∂uz
∂x

= −∂uz0
∂x

+
∂uz0
∂x

= 0. (3.7)

For the Reissner-Mindline plate model, the displacement components can be
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written as [103, 105, 124],

ux = φxz,

uy = φyz,

uz = β.

(3.8)

The physical interpretation of φx and φy are the rotation about x- and y- axis

respectively and β is the deflection in z- direction. φx, φy and β are the primary

variables in the plate problem u = [φx, φy, β]
T . With the above assumption, the

bilinear and linear operations of weak form for the three dimensional model problem

are modified as follows [103, 124],

a(w, u) =
d3

12

∫

Ω

εTRDRεRdxdy + d

∫

Ω

εTDDDεDdxdy, (3.9)

(w, q) =

∫

Ω

βqdxdy, (3.10)

(w, h) =

∮

Γ

(Mnφn +Mntφt −Qnβ)ds, (3.11)

where q is the imposed load in z-direction. εR = {∂φx/∂x, ∂φy/∂y, (∂φx/∂y +

∂φy/∂x)} and εD = {φx+∂β/∂x, φy+∂β/∂y}. Mn,Mnt, Qn, φn, φt are the moments,

shear forces deflection and rotation in the normal and tangential directions [103, 105,

124]. In case that isotropic material is used with Young’s module E and Possion

ratio v, the material property matrix DD and DR are of the form,

DR =
E

(1− v3)







1 v 0

v 1 0

0 0 (1− v)/2






, DD =

E

2(1 + v)




k 0

0 k



 , (3.12)

k is the shear correction factor used in the Reissner-Mindline plate model [103, 105,

124].

In many practical modeling problems the solution in the interior regions can

be approximated well with the 2D shell models. However, if the local quantities such

as stresses at the intersection regions are of interest, the 2D shell models can not

yield reliable results [1, 124]. Since the stresses are truly three dimensional for these
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intersection regions and the assumptions in Eq. 3.5 and 3.8 for the 2D shell models

do not hold. As an example, Figure 3.2(a) shows a model that three thin sections

intersect with each other and the joint regions must be modeled with fully three-

dimensional models. Special finite elements are needed to deal with the transition

between 2D and 3D elements that introduce additional computational difficulties [1,

124].

(a) Model with Three Thin Sections In-
tersected

(b) Tetrahedral Mesh for h-version
Method with 225440 Regions

Figure 3.2: Model and Tetrahedral Meshes for h-version Method

An alternative is to model the whole domain in three dimension. In case

the h-version method is applied to solve such the problem, an excessive number of

elements is needed (shown in Figure 3.2(b)) to mesh the domain because accurate

solution can only be obtained if the ratio aspect of an element is close to one for

the low order elements that apply isoparametric mapping. This makes fully three

dimensional h-version approximation inefficient.

In the case of the p-version method that uses reasonably coarse meshes to

discretize the domain, it is important to treat the in-plane directions and thickness

direction differently. The basic theory goes back to the p-version hierarchic plate

and shell models developed by Szabo etc. [123] where the displacement fields are
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typically approximated by expressions of the form,

ux =
n∑

i=0

fi(z)uxi(x, y),

uy =
n∑

i=0

fi(z)uyi(x, y), (3.14)

uz =
m∑

i=0

fi(z)uzi(x, y),

where fi(z) represents some approximations to the traverse variation of the dis-

placement components. Typically, fi(z) = zi [104, 123]. Each hierarchic lower order

model is embedded in all higher order models that covergence to the exact three

dimensional problems with n→∞ and m→∞ [123].

Eq. 3.14 indicates that the displacement components can be decompsed as

the product of function fi(z) that only depends on the direction z and functions

uxi(x, y), uyi(x, y) and uzi(x, y) that depends on the x direction and y direction

and independent of z. If prismatic elements are used to discretize the thin section

structures shown in Figure 3.3, the triangle faces of the prismatic elements are

aligned along the in-plane directions such that the area coordinates ξ1, ξ2, and ξ3

(ξ1 + ξ2 + ξ3 = 1) corresponds to the in-plane directions (x, y) and the independent

coordinate ξ4 corresponds to the thickness direction z. Therefore it is possible to

choose the polynomial order in the thickness ξ4 direction different from the in-plane

directions [1, 57, 104, 123].

Considering a polynomial order vector p = {p1, p2, p3} for the three inde-

pendent coordinates (ξ1, ξ2, ξ4) of a prismatic element, it is critical to have p1 >

p3, p2 > p3 for efficient discretization of the thin sections [1, 57]. In addition, in

the structural problem, the three primary variables (ux, uy, uz) can choose different

polynomial order vectors as px, py, and pz.

Since the polynomial order vector p defines the desired polynomial order for

the local independent coordinates on the prismatic region level, the polynomial

order of the closure topological mesh entities of the prismatic region Ω
e
must be

defined based on p such that correct number of shape functions as in Eq. 2.16 can
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Figure 3.3: Prism Element for Thin Section Structure

be constructed.

Given a polynomial order p = {p1, p1, p3} of a prismatic region M 3
e and the

local vertex indices as shown in Figure 3.3, the polynomial orders for its closure

topological mesh entities are:

• Mesh edge

1. The in-plane mesh edges M 1
01, M

1
12, M

1
02, M

1
34, M

1
45, M

1
35 have polynomial

order p1.

2. The thickness direction mesh edgesM 1
03,M

1
14,M

1
25 have polynomial order

p3.

• Mesh face

1. The in-plane triangle mesh faces M 2
012 and M2

345 have polynomial order

(p1, p1) for the two face independent coordinates.

2. Assuming the quadrilateral mesh facesM 2
0143, M

2
1254 M

2
0253 have the same

orientation such that the second face independent coordinate along the

thickness direction, they have polynomial (p1, p3).

Based on the above analysis, the desired mesh for the thin section structures

would be one layer prismatic elements without long diagonal through the thickness

direction.
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3.3 Geometry Approximation Representation of the Model

Boundary

For the second order linear partial differential equations, the functions related

to the geometry appearing in the element stiffness and load vector computation can

be represented by the following two terms:

• ∂ξ
∂x

in the derivative computation of the high order shape function Na with

respect to x shown in Eq. 2.50.

• J - the determinant of the Jacobian mapping matrix shown in Eq. 2.49.

Since the computation of ∂ξ
∂x

requires the inverse mapping
[
∂x
∂ξ

]−1
exists, the

mapping function Qe
x should satisfies the following conditions [71]:

1. One to one which indicates two different points in ξ-space of Ωst do not get

mapped into the same point in Ω
e
.

2. Onto which indicates each point in Ω
e
is the image of a point in Ωst under the

mapping Qe
x.

3. J(ξ) > 0 for all ξ ∈ Ωst(ξ).

Considering that the stiffness matrix and load vector are computed at a set

of integration points {ξl} determined by the selected numerical integration scheme

Rp for a specified polynomial order p in the p-version method (See Section 2.3), it

is essential for every mesh entity satisfies the condition 3 as J(ξl) > 0.

One important application of the Bezier geometric shape (See Section 2.2.3)

in the p-version mesh generation is the curved element shape validity test. In the

case of a Bezier tetrahedron volume, the determinant of Jacobian J is written as,

J = (
∂x

∂ξ1
× ∂x

∂ξ2
) • ∂x

∂ξ3
, (3.16)

where ∂x
∂ξ1

, ∂x
∂ξ2

and ∂x
∂ξ3

are the three partial derivatives of x(ξ) which are also Bezier

functions.

Because the product of Bezier functions are also Bezier functions, the J can

be represented as a polynomial in Beizer form which is bounded by its convex hull
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of control points. If all of the control points of the J are greater than zero then the

region’s J must be greater than zero everywhere. Comparing to validity checks that

test the value of the J at the integration points used in performing the analysis, the

approach has the following advantages for simplex mesh entities [85]:

• The element geometric shape is determined only by its own control points.

Once the element is valid, the determinant of Jacobian J is greater than zero

inside the element independent of the basis functions, polynomial order, or

integration rules of the finite element approximation.

• The relation of the J to the control polygon provides insight on how a region

found to be invalid due to some portion having negative J can be made valid

most effectively.

Error is introduced in the stiffness matrix and load vector when the mesh

geometry is an approximation to the actual geometric domain. Although the geo-

metric approximation error can be improved by raising the geometric approximation

order q, it increases the computational cost. The correct geometric approximation

order q, in term of the polynomial approximation order p, has been investigated in

[45] through the basic approximation theory. It has been shown that the geometric

approximation error measure in energy norm ||egeo|| is of the form,

||egeo|| ≤ Chq+2−m||u||Hr(Ω), r ≥ q + 1. (3.17)

In order to maintain the rate of convergence of p-version method, the geometric

approximation error must be as fast as that of the discretization error and is met

by [45],

q ≥ p− 1. (3.18)

Eq. 3.18 demonstrates that the geometric approximation of the curved geometric

model must be represented with correct order to ensure the rate of convergence of

the p-version method. This requirement is met by increasing the control points nq

in Eq. 2.18 to complete higher geometric approximation order q.
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3.4 Overall Algorithm for Automatic p-Version Mesh Gen-

eration

Near optimal meshes for the use of p-version method have been characterized

in the above three sections that includes the following aspects:

• Geometric mesh gradation towards solution singularities,

• Controlled geometric approximation error for curved model boundaries,

• Structured elements without long diagonals through for thin sections.

There exist a number of developed approaches that addressed gradation lay-

out in the mesh generation for the use of p-version method. For example, given a

starting coarse hexahedral and prism mesh, the edge and vertex refinement strategy

automatically replace finite elements connected to the singular model edges and ver-

tices with sets of strongly graded cylinder and spherical meshes [7] to produce the

required mesh gradation layout. This procedure is much simpler to implement but

has strict requirements on the initial given structured mesh and loses its generaliza-

tion. Another type of mesh generator that considers mesh layout is the advancing

layers method [39, 60, 73, 75, 84, 97, 113] that is primarily developed for viscous

flow problems exhibiting strong gradients in certain local directions compared to

the other directions. Central to these approaches is the generation of a graded mesh

next to surfaces where a boundary layer is needed and filling the rest of the domain

by an isotropic mesh generator. However, these procedures focused on dealing with

straight-sided linear mesh and must be extended to deal with curved elements.

The satisfaction of geometric approximation needs for the p-version meshes is

met through the assignment of appropriate geometric shapes to mesh edges and faces

classified on curved model boundaries. In case that the geometric approximation

shape of the elements is defined through the Lagrange interpolation polynomials, the

mesh vertices and the edge and faces nodes must be placed on the model boundaries.

When geometric approximation methods are used, the control points selected to

define the geometric shapes of the elements must be properly placed.

One approach to construct p-version meshes starts from linear straight-sided

mesh generation developed for the h-version method, followed by assigning high-
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order geometric approximation shapes to the mesh entities classified on curved model

boundaries and has been described in detail in [36, 47, 117]. However, this approach

does not consider the mesh gradation layout for the p-version method at singulari-

ties.

On the assumption that the entire model is thin, a number of developed pro-

cedures [79, 100] that aimed at meshing the thin domains with all hexahedral or

prism elements have been developed. Central to these algorithms is the generation

of a surface mesh for the medial surface of the curved models that is converted to

3D solid mesh by extrusion in the normal direction of the surface. However, these

approaches do not consider singularities and curved mesh entities.

In summary, the existing mesh generation procedures related to the p-version

method focus on only one of the three basic mesh requirements. This thesis pro-

vides an algorithm that considers all three requirements in an integrated manner.

Starting from a general curved solid model, the steps in the automatic p-version

mesh generation procedure are:

Step1: Generate a coarse surface mesh.

Step2: Automatically isolate the singular edges and vertices of the model.

Step3: Automatically identify the thin section structures.

Step4: Apply boundary layer mesh generation procedure to account for the isolated

singular features.

Step5: Mesh the thin sections with structured prismatic elements.

Step6: Apply general volume mesh generator to fill the remaining domains.

Step7: Curve the singular feature isolation mesh to maintain proper mesh gradation

layout

Step8: Curve the remaining mesh entities classified on the curved boundaries.

Step9: Apply local mesh modifications as needed to ensure validity of the mesh.
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In this work, the singular model edges are isolated through the checking of

the interior dihedral angles of the model edges. The identification of thin sections

is achieved based on a set of medial surface points obtained by an octant tracing

algorithm over a coarse surface mesh classified on the model. These isolated sin-

gular features and thin sections require the mesh to posses a graded layout and

without long diagonal through the thickness direction for p-version method. This

requirement is fulfilled in step 4 by applying the a boundary layer mesh generation

procedure [60] and step 5 by a developed process to match the surface configuration

between the two model faces that define a thin section structure.

The volume mesh generated at step 6 is straight-sided and needs to be curved.

Bezier mesh geometric shapes discussed in Section 2.2.3 are used as the geometric

approximation shape representation for the mesh entities that need higher order

shape. The advantageous properties of Bezier polynomial [58] enable the extension

of the curving procedure to any higher order. Considering the character of the

structured meshes in critical regions such that mesh gradation is maintained is

central to the curving procedure. For example, Figure 3.4 shows the difference in

meshes without (left image) and with (right image) consideration of maintaining

structure in the geometrically graded portion of the mesh.

Figure 3.4: Meshes without (left) and with (right) Considering the Or-
dering of Curving

The local mesh modification based procedure to curve a straight-sided mesh

for quadratic mesh geometries given in reference [47] provides key tools for the
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procedures presented here. The current procedure has been extended in this thesis

to:

• Support higher order mesh entity geometry.

• Provide generalized local mesh modification accounting for curved mesh enti-

ties.

• Maintain the structure of the mesh configuration around isolated singular

edges and vertices by carefully ordering and controlling the process of curving

mesh entities to ensure that the appropriate mesh gradations are maintained.

All three of these improvements are important to the generation of curved

meshes appropriate for optimal p-version analysis. The proper order and control

of the mesh modification operations accounting for the mesh gradations is a most

critical aspect of this process. The mesh curving procedure orders the mesh entity

curving into the following two steps:

• Curve the singular feature isolation mesh to ensure that a proper structure is

maintained in the curved mesh.

• Curve the remaining mesh entities classified on curved boundaries to the re-

quired order of approximation. Since curving entities can lead to invalid mesh,

this step includes the application of curved mesh modification operations in-

cluding entity shape change, splits, collapses and swaps as needed to ensure

that a valid mesh with acceptable curved elements is created.

The implementation of the above algorithm will be presented in part II of this

thesis in detail.
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Part II

Construction of Near Optimal p-Version Meshes



CHAPTER 4

Identifying and Meshing Singular Features and Thin

Section Structures

This chapter discuss the procedure to automatically identify and mesh the

singular features and thin sections of the 3D curved domains for the use of p-version

method.

4.1 Identifying Singular Features

Let Gdj , dj = 0, 1 donate the model vertices and edges of the problem do-

main Ω. The singular features are isolated as the set of model edges whose interior

dihedral angles are larger than π [17, 49],

Ĝ1i = {G1i | ωi ≥ π}. (4.1)

Since the interior dihedral angle ωi for a model edge G1i in a curved domain may

not be a constant, a variation ω along the model edge needs to be examined that

requires:

• The computation of the interior dihedral angle ω at a specified location of the

model edge.

• An algorithm to determine whether the dihedral angle of the model edge is

larger than π, and in the case of variable dihedral angles, determining where

the angle becomes 1800.

The interior dihedral angle ω at a specified location on the model edge is

defined as the angle between the two tangent planes of the two connected model

faces at this point. Let E0(x0, y0, z0) be the specified point at the model edge G10.

A(a1, a2, a3) and B(b1, b2, b3) are the two face normal vectors at point E0 as shown

in Figure 4.1(a). Vector A and B can be easily obtained through the queries of the

36
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solid modeler. Therefore, the two tangent plane at the point E0 can be determined

as,

a1(x− x0) + a2(y − y0) + a3(z − z0) = 0, (4.2)

b1(x− x0) + b2(y − y0) + b3(z − z0) = 0. (4.3)

The angle θ0 between these two tangent planes can be computed as,

cos θ0 =
a1b1 + a2b2 + a3b3

√

a21 + a22 + a23
√

b21 + b22 + b23
=

A ·B
√

||A|| · ||B||
(4.4)

Since θ0 is computed as the angles between two planes and it always lies

between [0, π], additional information is needed to determine whether the interior

dihedral angle ω = 2π − θ0 > π or ω = θ0 < π.

The approach used here starts from computing the intersection edge L between

the two tangent planes. Since L must go through the point E0, the edge can be

easily determined as,
x− x0
p

=
x− y0
q

=
x− z0
r

, (4.5)

where,

p =

∣
∣
∣
∣
∣
∣

a2 a3

b2 b3

∣
∣
∣
∣
∣
∣

, q =

∣
∣
∣
∣
∣
∣

a1 a3

b1 b3

∣
∣
∣
∣
∣
∣

, r =

∣
∣
∣
∣
∣
∣

a2 a1

b2 b1

∣
∣
∣
∣
∣
∣

. (4.6)

Therefore, two tangent vectors C and D perpendicular to the intersection edge L

at the tangent planes can be easily determined.

From this, compute

cos β0 =
(A+B) · (C +D)
√

||A+B||||C +D||
(4.7)

Since the vectorA+B always points outside of the model region, the value of cos β0

can serve as the indicator to determine how the interior dihedral angle ω is related

to the angle θ0. Considering that A,B,C,D,⊥L, A⊥C and B⊥D, cos β0 = ±1.
Thus,

• cos β0 = 1, the vector C +D points outside of the model region, the interior

dihedral angle ω = 2π − θ0 as shown in Figure 4.1(b).
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• cos β0 = −1, the vector C +D points inside of the model region, the interior

dihedral angle ω = θ0.

G0
1

G1
2

G0
2

E0

θ
0

Ω

A

B

L

(a) Angle θ0 Between the Two Tangent
Planes

G0
1

G1
2

G0
2

E0

Ω

A

B

L

C

D

(b) Computation of the Angle between
Vectors A + B and C + D

Figure 4.1: Computation of the Interior Dihedral Angle at Points E0 for
Model Edges G10

The algorithm to determine whether interior dihedral angle ω of a model edge

is larger than π depends on the model faces coming to the model edge. If both of

the model faces are planar the interior dihedral angle is constant along the model

edge and can be calculated at any location along the edge. If either one of the

model faces is non-planar, the dihedral angle may no longer be constant. Therefore,

the maximum dihedral angle ω along the model edge is searched through Golden

Section method [29]. The process terminates either the maximum dihedral angle if

found or the computed dihedral angle in the middle searching procedure is larger

than π.

Figure 4.2(a) shows a real 3D geometric model that the isolated singular model

edges are marked as dark in shown Figure 4.2(b).

4.2 Generation of Geometrically Graded Meshes Around

Singular Features

Starting from a linear surface mesh, the structured cylindrical layer meshes

around the singular edges are generated by growing the boundary layer mesh on it.
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(a) Geometric Model (b) Singular Model Edges Marked as Dark

Figure 4.2: Automatically Isolate Singular Model Edges

The boundary layer mesh is constructed using the growth curves originated from

the surface nodes [60]. These boundary nodes are connected to form the cylindrical

elements of the layer mesh. The intersection between the exposed boundary layer

mesh faces and surface mesh faces is check. If there are intersections, it is necessary

to reduce the height of a layer, or trim the number layers through the thickness in

order to resolve the intersections [60]. Each step in the processes performs checks

to ensure the validity of the mesh and to optimize the quality of the created mesh

entities.

The structured geometric graded mesh generation is controlled through a set of

attributes applied to the model entities being isolated. In this thesis, the attributes

are defined in a general form and then automatically associated to the singular

model edges once they are identified. The attributes include the parameters of:

• Total height,

• Gradation factor,

• Number of layers.

The geometric gradation factor q that accounts for the strength of solution
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singularity is set to value 0.15 with respect to the total layer height and two initial

layers of elements are generated that will be reset in the adaptive analysis [61].

The total height T of the graded layer mesh defines how far the singular

behavior of the solution is expected to exist into the domain. For a general curved

three dimensional model, the range and strength of the solution singularities caused

by the geometric model shape is difficult to predict a-priori. On the assumption

that the adaptive procedure will adjust the layer height and reset layer numbers

based on correction indicator in each step, the automatic p-version mesh generator

initially defines the height of the graded layer mesh T for an isolated singular edge

as one half of the distance to its closest non-connected model boundary entity that

considers the dominate singular behavior is reasonably local to the isolated singular

edges. A non-connected entity is one which does not share any common lower order

model entities. A simple algorithm based on the shortest distance between a set of

equally parameterized distributed sampling locations to their closest points on non-

connected model boundaries is used to get a useful estimation of T . Refinement is

applied for the initial equal sub-parametric domains if the variation of the computed

shortest distances is larger comparing to the local geometry. Therefore, the thickness

for each layer ti is calculated as,

ti = qiT, i = 0, 1. (4.8)

Figure 4.3 shows an example of singular edge isolation for a ”penny shaped

crack” on the interior of a domain. In this example cylindrical hexahedral and

prismatic elements are generated around the isolation edge.

4.3 Identify Thin Section Structures

The definition of a thin section is closely related to size of and order of the

elements in the mesh. The geometric characteristic for a thin section is the dimension

through the thickness is far less than the “in-plane” dimensions. A key challenge to

properly mesh the thin sections is to automatically identify and isolate thin sections

from the rest of domain. A plausible approach appropriate for identifying thin
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Figure 4.3: Example of Graded Mesh for an Isolated Singular Model Edge

section is to use medial surface information [50, 96, 129].

The medial surface is the locus of the center of interior points that is equidis-

tant to more than one points on the model boundary. The medial surface can provide

the information about the region’s geometry and topology [98, 99] as follows:

• Indication of local feature size (or local thickness) by the distance from a

medial surface point to its closest boundary points.

• Information on opposite boundary points by relating the closest boundary

points to a medial surface point.

Given a general curved solid model with a surface triangulation, a set of points

on the medial surface is computed using an Octree-based tracing algorithm [129].

Such points along with the topology classification and geometry similarities infor-

mation are used to automatically identify the thin sections. Central to the algorithm

is to find pairs of triangles on “opposite model faces” that are close to each other

relative to their size, thus indicating they are within a thin section.

Given a set of intersecting points between the medial surface and Octants com-

puted from the tracing algorithm [129], a pair of triangles M 2
i and M2

i′ is candidate

thin section triangle pair if there exist a pair of closest boundary points P1 and P2 from

a medial surface point E0i , such that P1 ⊂M
2

i and P2 ⊂M
2

i′ (over bar means closure

of a triangle), where the P1 and P2 have the following properties:

1. The ratio of thickness (defined as the diameter of the maximum inscribed
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sphere associated with E0i ) to the average size of M 2
i and M2

i′ is smaller than

a default value, for example 1/2 of the average edge length of the element.

2. The angle formed by the outward normal to M 2
i and M2

i′ is close to π.

Figure 4.4 shows the situation of two medial surface points E0
i , E

0
j and the

candidate thin section triangles defined by conditions of (1) and (2).

P1

P2

E0
iE0

j

j
2M

j’
2M

i
2M

i’
2M

Figure 4.4: Candidate Thin Section Triangle Pairs Identified by Medial
Surface Points E0i and E0j

A candidate thin section triangle pair is further processed to ensure that

all points on their closures meet those two conditions. For example, the triangle

pair (M 2
j ,M

2
j′) in Figure 4.4 will determined as non-thin section pair.

4.3.1 Collect Starting Thin Section Triangle Sets

Given a medial surface point E0i , introduce,

|E0i |∗ =







1 thin

0 not thin
(4.9)

to indicate whether E0i define a thin section triangle pair, where 1 indicates the

medial surface point is associated with thin triangle pair and 0 means they are not

part of a thin section. Denote the triangle pair as,

[E0i ]∗ = {M 2
k ,M

2
k′}. (4.10)
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With the above notations, a starting thin section triangle set is defined as,

Ĝ2j = { M 2
i |M2

i < G2j and M
2
i ∈ [E0i ]∗ and |E0i |∗ = 1 }. (4.11)

At this point, each Ĝ2j is uniquely associated with a G2j that may be subdivided

later as discussed in Section 4.4.1 to define paired thin section surface patches. For

this unique association, the identity tags of “opposite” sets for Ĝ2j can be recorded

during the construction of Ĝ2j . Generally, Ĝ2j may have one or more opposite sets

denoted as opp(Ĝ2j). A simple 2D example in Figure 4.5 shows that,

Ĝ11 = {M 1
a , M

1
b , M

1
c } and opp(Ĝ11) = {Ĝ13}, (4.12)

Ĝ12 = {M 1
d , M

1
e , M

1
f } and opp(Ĝ12) = {Ĝ13}, (4.13)

Ĝ13 = {M 1
a′ , M

1
b′ , M

1
c′ , M

1
d′ , M

1
e′} and opp(Ĝ13) = {Ĝ11, Ĝ12}. (4.14)

a
1M b

1M c
1M d

1M e
1M f

1M

a’
1M b’

1M c’
1M d’

1M
d’
1M

G

G

G

G

1
1

1
2

1
3

0
0

Figure 4.5: An Example to Demonstrate the Starting Triangle Sets

The sets as defined to this point may have to be later split or merged to

represent one thin section surface patch.

4.3.2 Determining the Missing Thin Section Triangles

The majority of thin section triangles are identified by the medial surface

points in the tracing algorithm. However, some are missed, see Figure 4.6(a), where

the dark shaded triangle faces are the identified thin section triangles by using

the medial surface points and the light grey shaded triangle faces are the missing

triangles. To determine whether a missing triangle M 2
e on G2j belongs to Ĝ2j , the

comparison between the local thickness hd and the local mesh size he at M2
e is
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needed. he is computed as the longest edge length connected to the vertices of the

triangle face M 2
e . hd is obtained by searching for the closest points of the vertices

of the triangle face M 2
e on the model faces that are known to be opposite to G2j .

If hd/he is smaller than a default value, place M 2
e in Ĝ2j . The triangle M 2

e′ that the

closest point is on is defined as the opposite triangle to M 2
e and put M 2

e′ in the set

Ĝ2j′ that is opposite to Ĝ
2
j . Based on such criterion, Figure 4.6(b) show the complete

thin section triangles to define the thin section surface patches.

 

(a) [The Thin Section Triangles Obtained
by Medial Surface Point

 

(b) The Complete Thin Section Tri-
angle Surface Patches

Figure 4.6: Examples for Determine Complete Thin Section Triangles

4.4 Meshing Thin Sections

The primary goal to mesh the thin section structures is to generate one layer

of prismatic elements through the thickness direction. Because the initial surface

triangulations of the two thin section surface patches do not match each other, the

direct connection between the thin section triangle pairs will often not produce the

desired meshes. Therefore surface mesh modification is used to ensure the topologi-

cal and geometrical matching between the paired thin section surface patches. The

algorithm consists of the following steps:

• Construct boundaries for thin section surface patches.

• Topologically match the boundaries of the paired thin section surface patches.
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• Delete the surface triangulation of one thin section surface patches.

• Copy the remaining thin section surface patches to the opposite model face.

• Directly connect the two surface triangulation of the paired thin section surface

patches to construct one layer structured prismatic elements.

• Split the prismatic elements to expose triangle faces for the isotropic volume

mesh generator.

• Apply isotropic volume mesh to fill the remaining domain.

Each step in the algorithm is described in detail in the following subsections.

4.4.1 Construct the Boundary Loops on Thin Section Surface Patches

The boundary loop of a thin section triangle set Ĝ2j is constructed by a set

of edges used only by one triangle in the set. To complete the definition of the

thin section surface patches opposite each other, the boundary loops of the paired

surface patches have to be matched. The process can lead to the need to split

one thin section triangle loop into multiple thin section loops. As an example,

Figure 4.7(a) shows three thin section triangle sets Ĝ21, Ĝ
2
2, and Ĝ23, where Ĝ

2
3 is

opposite to both Ĝ21 and Ĝ
2
2. In this case, splitting Ĝ23 to match the surface patches

of Ĝ21 and Ĝ
2
2 is needed as shown in Figure 4.7(b). Note the loops in Ĝ21 and Ĝ

2
2 can

not be merged to form one loop since the triangulation on the model edge G11 must

be maintained. For a thin section triangle set Ĝ2j that has multiple opposite surface

patches {Ĝ2k′}, the procedure to split the set by using the opposite triangle pairs

and connectivity information as follows:

• Construct the boundary loop of the surface patches Ĝ2j and {Ĝ2k′} shown in

Figure 4.7(a).

• For each of the opposite surface patch Ĝ2k′ , start from any mesh edge M 1
i′ of

the boundary loop and looks for its opposite mesh edge M 1
i . The opposite

mesh edge M 1
i is determined as the boundary edge of surface patch Ĝ2j whose

connected thin section triangle face is opposite to the thin section triangle face

connected to M 1
i′ .
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• If M1
i is not in the boundary loop, add M 1

i to the boundary loop opposite to

Ĝ2k′ . Else go to next mesh edgeM 1
i′+1. For example,M 1

1 shown in Figure 4.7(b)

is added to the boundary loop because its opposite edge M 1
1′ is on the loop of

Ĝ21′ .

Ĝ 2
3

G 1
1

Ĝ 2
1’ Ĝ 2

2’

(a) Loops on Thin Section Surface Patches

G 1
1

Ĝ 2
1’ Ĝ 2

2’

Ĝ 2
3

M1
1’

M1
1

(b) Opposite Loops

Figure 4.7: Construction of Boundary Loops for Each Thin Section

4.4.2 Boundary Matching for the Thin Section Surface Patches

Since the boundary loops determined by the initial surface mesh triangulation

of the two opposite thin section surface patches often do not match each other in

terms of the number of edges, a local mesh modification based procedure is applied

to ensure topologically matching between the each paired boundary loops. Given a

paired of opposite loops (L,L′) with different number of edges, the process begins

to divide each loop into a set of segments (Si, S
′
i) as,

L = ∪Si, L′ = ∪S ′
i. (4.15)

Each segment is determined by two vertices whose two connected mesh edges on

the boundary loop classify on different model entities. As an example, Figure 4.8(a)
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shows that a pair of opposite loops have been decomposed into four sets of segments.

Since the segments S0, S
′
0, S2 and S ′

2 only have one mesh edge, S0 automatically

matches S ′
0 and S2 automatically matches S ′

2. As for the segments S1 and S3 with

2 and 3 mesh edges, their opposite segments S ′
1 and S ′

3 have 3 and 2 mesh edges

respectively. Split and/or collapse operations are applied on each set of segments

to create and/or delete mesh edges to ensure the resulting number of the opposite

segments is equal. For example, Figure 4.8(b) shows a split operation is applied on

the segment S ′
1 to produce one more edge to match the segment S1 and a collapse

operation is applied on the segment S ′
3 to match segment S3 shown in Figure 4.8(c).

For a set of opposite segments (Si, S
′
i) that have different number of edges, the

selection of the segment and the type of operations to be applied is determined based

on the shape quality measured with aspect ration [46] of the resulting mesh. The

collapse operation is applied on the shortest edge possible of the segment with more

mesh edges and the split operation is always applied on the longest edge possible of

the segment with fewer mesh edges. The split operation can always be applied that

is essential for the set of opposite segments to have the same number of mesh edges

in the case that the collapse operations fails to be applied. The process terminates

till the number of the mesh edges of the set of opposite segments is equal.

4.5 Match Thin Section Triangle Surface Patches

The surface triangulation between the thin section surface patches after match-

ing the boundary loops often do not match each other as shown in Figure 4.8(c). The

procedure used here starts from deleting the triangle surface patch on one patch (see

Figure 4.9(a)) and then copying the surface triangulation of the remaining patch to

the opposite model face (see Figure 4.9(b)). The process consists of the following

steps:

1. Delete one thin section triangle surface patch that produces an empty polygon

on the opposite model face. The deleted thin section triangle surface patch is

selected as the one with worse mesh shape quality measured with aspect ratio

metrics [46].
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(2)

(1)

(1)

(3)

(2) New edge by collapsing

(c) Collapse Operation on Segment S3′

Figure 4.8: Split and Collapse Operations to Match Paired Opposite Seg-
ments for the Boundary Loops

2. For the verticesM 0
i on the boundary loop of the remaining thin section triangle

surface patch, find the opposite vertices M 0
i′ on the opposite boundary loop

through edge adjacency. Compute the target locations for the opposite vertices

M0
i′ by querying the closest points from solid modeler for vertices M 0

i on the

model face that M 0
i′ classified on. Incrementally move the vertices M 0

i′ to the

target locations.

3. Copy the rest of the vertices of the remaining triangle surface patch to the
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opposite model face. The locations for the copied vertices on the opposite

model face are determined by finding the closest points on the opposite model

face.

4. Topological connect the vertices on the opposite model face to create the

matched surface triangulation.

5. Connect the two matched thin section triangle surface patches to create one

layer prismatic elements.

s1

s2

s1’

s3

s3’

s2’

s0

s0’

(3)

(1)

(2)

(1)

(1)

(3)

(2)

Emplty polygon

(a) Delete One Triangle Surface
Patches

s1

s2

s1’

s3

s3’

s2’

s0

s0’

(3)

(1)

(2)

(1)

(1)

(3)

(2)

(b) Match Triangle Surface Patches

Figure 4.9: Surface Triangulation Match for Thin Sections

Each vertex M 0
i on the remaining surface patch must have an opposite vertex

M0
i′ on the opposite model face to produce one layer prismatic elements. In the case

of the vertices M 0
i on the boundary loop, M 0

i′ can easily be found on the opposite

boundary loop through edge adjacency. The desired target locations for M 0
i′ can

be obtained by directly querying the closest points of M 0
i on the opposite model

face. These vertices are incrementally moved to the computed target locations. The

movement of the mesh vertices M 0
i′ on the boundary loop can cause the surface

triangle faces to become unacceptable. Figure 4.10(b) shows an example where two

shaded triangle faces marked are unacceptable because of moving vertices M 0
0′ to

its target location moves too far over existing elements. This problem is solved by
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applying the local mesh modification procedure [82] and has to come before the

matching of surface triangulation.
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(c) Collapse M0
2′ to M0

0′
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1’

M0
0’

(d) Moving M0
1′

Figure 4.10: Incrementally Move Vertices on the Boundary Loop to the
Target Locations

For the rest of the vertices on the remaining surface patch, new vertices are

created on the opposite model face. The edges are created by the connection of

vertices and faces by edges.

4.6 Volume Mesh Generation

When the thin section triangle surface patches are topologically and geomet-

rically matched, prismatic elements are constructed by directly connecting each
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paired triangles classified on the two opposite model face. The remaining domains

are filled by applying the generalized isotropic volume mesh generator developed for

the h-version method that can handle very complex 3D geometries [114]. Since the

volume mesh generator requires the exposure mesh faces to be triangles, splitting

one layer of prismatic elements into a combination of tetrahedra and pyramids is

needed.

The process of splitting of a prismatic element with one or more faces exposed

to the tetrahedral volume mesher is a function of how many quadrilateral faces

are exposed. Figure 4.11(a) shows the template for splitting one quadrilateral face

that the original prismatic element is decomposed with 4 tetrahedra and 2 pyramid

elements. Figure 4.11(b) shows the template for splitting two quadrilateral faces

that the original prismatic element is decomposed with 6 tetrahedra and 1 pyramid

elements. Both of the templates introduce one interior vertex inside the original

prismatic region and the location for the interior vertex is computed with centroid

parametric coordinate (1/3, 1/3, 0) on the original prismatic element. The case of

three exposed faces identifies a surrounded prismatic element which can not be

generated by the procedures used to isolated thin sections.

(a) Split One Quadrilat-
eral Face

(b) Split Two Quadrilat-
eral Faces

Figure 4.11: Split One Prismatic Elements to Create Exposure Triangles
for Volume Mesh Generation

Complete mesh results are shown in Section 5.4.



CHAPTER 5

p-Version Mesh Curving

This chapter describes a local mesh modification based Bezier curving proce-

dure needed by the automatic p-version mesh generation algorithm. The objective

of the procedure is to create a valid curved mesh up to any required order while

maintaining the geometric gradation for the singular model edges and prismatic thin

section meshes.

5.1 p-Version Mesh Curving with Gradation and Thin Sec-

tion Mesh Control

The straight-sided p-version meshes generated by the procedure presented in

Chapter 4 are mixed topological meshes that contain tetrahedral, prism, hexahe-

dral and pyramid elements. Comparing to the conventional isotropic straight edges

volume meshes, the straight-sided p-version meshes are characterized by:

• Graded layer mesh for the isolated singularities.

• One layer structured prismatic elements for the identified thin sections.

The conventional quadratic curving procedure developed for the straight edged

isotropic mesh [47] does not consider the characters of the straight-sided p-version

meshes. In the process of applying local mesh modifications to correct the invalid

elements caused by curving the mesh entities, the characters of the p-version meshes,

particular the graded layer meshes for the singularities, are likely disrupted (See the

right image of Figure 3.4).

The p-version mesh curving procedure developed in this work curves the mesh

entities classified on the curved boundaries in an appropriate order with gradation

and thin section meshes control as follows:

• Curve the graded layer meshes to ensure that the proper structure of the

singular mesh regions is maintained. This step is achieved by simultaneously

52
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curving the mesh entities on the boundary and those within the structured

layer above it as discussed in Section 5.2.

• Curve the prismatic thin section meshes. This step is accomplished by curving

prismatic element one at a time as discussed in Section 5.3.

• Curve the remaining mesh entities on the curved boundaries.

• In all the three steps, curving mesh entities may lead to an invalid mesh. A set

of curved local mesh modification operations build on the straight edge mesh

modification operations are applied in an appropriate order to incrementally

correct the invalid elements as discussed in Section 5.5.

Curving the graded layer and thin section mesh before curving the remaining

mesh entities on the boundaries is central to this procedure to maintain the charac-

ters of the p-version meshes. The application of the curved local mesh modification

operations is the key technique to ensure that a valid curved mesh is created.

5.2 Curve the Graded Meshes for Singular Features

To ensure a properly curved graded mesh around the singular features, the

process simultaneously curves the mesh entities on the boundary and those within

the structured layer above it. Figure 5.1 demonstrates this process with Fig-

ure 5.1(a) showing the linear structured layer mesh associated with a portion of

a curved model edge. Figure 5.1(b) shows how the local gradation would be dis-

rupted if only the mesh edge, M 1
0 , classified on the model edge G10 were curved. To

avoid this problem the “parallel” and “diagonal” mesh edges (see Figure 5.1(a)) are

also curved such that the entire layer maintains its gradation and element shapes

are smooth. This process is accomplished by moving the control points of the par-

allel and diagonal edges based on how far the control points of the edge on the

model boundary are moved with consideration given to the change in length of the

edges being curved. The need to account for the length of the edges being curved

is demonstrated in Figure 5.1(c) where all control points were moved the same dis-

tance as the associated control points on the mesh edge M 1
0 classified on the curved
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boundary. It is clear that the short edges are curved more than desired. The method

used scales the shape change of the base mesh edge accounting for edge lengths as

follows. Let Lbase , LPi
and LDi

be the straight-sided edge length of the mesh edge

on the curved boundary (the base edge), ith parallel and ith diagonal edge. The scale

factors SPi
and SDi

for ith parallel and diagonal edges applied to their movements

with respect to that of the base edge are,

SPi
=

LPi

Lbase

, (5.1)

SDi
= 0.5(SPi−1

+ SPi
). (5.2)

Figure 5.1(d) shows a smooth curved isolation mesh by using this method. The

curving procedure at this point only curves the graded layer meshes as needed.

5.3 Curve the Prismatic Thin Section Meshes

For the one layer prismatic meshes classified on the curved thin sections, the

process curves the prismatic elements one at a time to maintain the structure as

demonstrated with an example in Figure 5.2. Figure 5.2(a) shows one of the quadri-

lateral faces of a prismatic region. Figure 5.2(b) shows that the quadrilateral face

becomes invalid after the mesh edge M 1
0 is curved to the boundary. The invalidity

is caused by the interference between the curved mesh edge M 1
0 and the uncurved

mesh edge M 1
1 . The conventional curving procedure [47] will apply local mesh mod-

ification operations to eliminate the invalidity and the resulting mesh is shown in

Figure 5.2(c) that disrupts the structures for the thin sections. However, this in-

validity is avoided if the mesh edges M 1
0 , M

1
1 are curved to the boundary at the

same time shown in Figure 5.2(d). Therefore, the process picks up one prismatic

element from the thin section meshes and curves all the lower bounded mesh enti-

ties of the prismatic element before applying the validity check. In case that the

curved prismatic element remains invalid, curved local mesh modification operations

as discussed in Section 5.5 will be applied to correct the invalidity.
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(d) Scaled Curve the Graded Mesh

Figure 5.1: Scaled Curve the Graded Mesh

5.4 Curve Mesh Entities on the Curved Boundaries

After curving the graded mesh around the isolated mesh edges and the pris-

matic meshes for the thin sections, the curving procedure curves the remaining mesh

edges/faces classified on curved model boundaries. The entities are put into a list

with the attachment of a proposed Bezier geometric shape to curve them to the

boundary.

The process of curving the mesh entities traverses the list. If the movement

associated with this curving maintains validity of the connected mesh entities, the

entity is curved and removed from the list. If any invalidates arise, additional
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Figure 5.2: Curved the Prismatic Thin Section Meshes

processing is required. Since changing the shape of a mesh entity changes the shape

of the mesh entities it bounds, the process of checking the validity of the mesh must

check the shape validity of the connected mesh entities as well. This means that in

addition to verifying no self-intersection of the curved mesh face or edge, the shape

validity of the connected high dimensional mesh entities are checked using the shape

check algorithm outlined in Section 3.3. The verification of self-intersection of any

curved Bezier mesh edge or faces uses the variation diminishing property that no

no straight line intersects a curve more times than it intersects the curve’s control

polygon [58].

In those cases when a mesh entity does cause an invalidity, local mesh modi-

fication operations are applied as indicated in Section 5.3. After the needed mesh

modifications are performed the current mesh entity is removed from the list and

any new mesh entities created that are classified on curved boundaries are added to
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the list.

Figure 5.3(a)-5.3(d) shows a simple example of curving the mesh edges on

model edge G10. Mesh edges M 1
0 and M1

1 are curved to the boundary without caus-

ing any mesh invalidates. However, face M 2
0 becomes invalid when curving M 1

2 .

Considering that the bounded angle is already small at vertex M 0
0 , although possi-

ble shown in 5.3(c), just curving M 1
3 would produce two elements with small angles

at vertex M 0
0 . Therefore, swapping M 1

3 provides a better opportunity for main-

taining larger angles. However, the swapped edge must still be curved as shown in

Figure 5.3(d) to avoid mesh invalidities.
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G1
0

M1
1

M1
2

(a) Initial Straight-Sided Mesh

G1
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(b) Curve M1
0 , M

1
1 and M1

2
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0

M1
0
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2

M2
0

M1
3

M0
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(c) Curve M1
3 to Correct Invalid Ele-

ment M2
0

G1
0

M1
0

M1
1

M1
2

(d) Swap and Curve M1
3 to Correct In-

valid Element M2
0

Figure 5.3: Curve the Mesh Entities on Curved Boundary
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5.5 Curved Mesh Modification Operations to Correct In-

valid Elements

The curved local mesh modifications processes build upon a set of operations

that include mesh entity shape modification, split, collapse and swap. These oper-

ations are essential to ensure the reliability of the procedure to create valid curved

element meshes.

5.5.1 Mesh Entity Shape Modification

Mesh entity shape modification is often successful when curving a mesh entity

on the boundary has caused an intersection with another mesh entity and there is

adequate room on the “other side” of the intersected mesh entity to re-shape it such

that the intersection is eliminated. The properties of the Bezier control polygon are

used in this process to determine when and how to perform re-shaping to eliminate

the intersection and make the element valid again. For example, in the case of a qth

order Bezier tetrahedral region, the geometric approximation shape is represented

as in Eq. 2.31,

x =
∑

|i|=q
B|i|(ξ1, ξ2, ξ3, ξ4)b|i|, |i| = i+ j + k + l = q, (5.3)

where B|i| are the Bernstein polynomial defined in Eq, 2.32 and b|i| are the control

points. The determinant of the Jacobian J is computed as discussed in Eq. 3.16,

J = (
∂x

∂ξ1
× ∂x

∂ξ2
) • ∂x

∂ξ3
. (5.4)

Based on the property of the derivative of a Bezier curve, surface and region are

a one order lower Bezier curve, surface and region by differentiating the original

control polygon [58], ∂x
∂ξ1

, ∂x
∂ξ2

and ∂x
∂ξ3

are another three Bezier tetrahedral regions

with polynomial q − 1. For example, ∂x
∂ξ1

can be written in the form of,

∂x

∂ξ1
=
∑

|i|=q−1
B|i|(ξ1, ξ2, ξ3, ξ4)b

′
|i|, (5.5)



59

where b′|i| are vectors obtained by differentiating the original control points b|i| as

follows,

b′ijkl = q(b(i+1)jkl − bijkl). (5.6)

As an example, Figure 5.4(a) shows a linear quadratic Bezier tetrahedral with the

corresponding vectors determined by Eq. 5.6.

Therefore, the J is a Bezier tetrahedral region of order 3(q − 1) that can be

written as,

J =
∑

|i|=3(q−1)
B|i|(ξ1, ξ2, ξ3, ξ4)P|i|, (5.7)

where P|i| are constants. Considering that a Bezier polynomial is bounded by its

maximum and minimum control points [58], Eq. 5.7 indicates that min(P|i|) ≤ J ≤
max(P|i|). Ifmin(P|i|) ≥ 0 that means the determinant of the Jacobian of the region

is positive over the region domain. However, if min(P|i|) ≤ 0, the mesh shape may

be invalid. The portion of the element domain that is invalid depends on where

the P|i| ≤ 0 appears. The mesh shape modification procedure checks how the P |i|
become negative to determine the candidate control points to correct the invalidity.

If P|i| < 0 appears at the vertices, one of the three partial derivative vectors b

lies on the “opposite” side of the plane defined by the other two derivative vectors

a and c as shown in Figure 5.4(b) that,

b · (a× c) < 0. (5.8)

By constraining two of the derivative vectors, for example the vectors a, c, the

control point defined for the third vector b becomes the candidate point and need to

be moved to the other side of plane defined by vectors a, c to make b · (a× c) > 0.

The new vector b′ after moving the control point can be determined as,

b′ =
b · sin θ
cos t

, (5.9)

where θ = arccos(b · (a × c)) and t can be the default minimal angle for b′ pass

through the plane defined by a × c shown in Figure 5.4(c). The resulting valid

curved tetrahedral is shown in Figure 5.4(d).
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In the case that P|i| < 0 appears as the value of the edge, face or region control

points, the Bezier shape for the determinant of Jacobian determined in Eq. 5.7 is

subdivided at this specified location and check the determinant of Jacobian J for

the new created tetrahedral regions. If the negative value at the new vertex still

remains negative, apply the above procedure to correct the invalidity. This process

is continued until all the negative control points values have been corrected. In

the case that the movement of the candidate control points fail to move, other local

mesh modifications are applied to correct the invalidity. An example where the valid

curved mesh is regained by only applying mesh entity shape manipulation is shown

in Figure 5.5(b) where some mesh edges on the model faces have been reshaped.

5.5.2 Curved Split Operations

In those cases where two neighboring mesh entities of a single element are on

a curved boundary, the curving process will create in the limit angles of 1800. The

only option in this case is to execute a split operation so that a new mesh entity not

classified on that same boundary entity is introduced between those two entities.

Figure 5.5.2 gives an example in which when the initial linear mesh is curved there

are 1800 angles at the four mesh vertices M 0
i , i = 0...3 with circles around them in

Figure 5.6(b) as well as along the two edges connecting the two pairs of them. In

this case introducing edge splits of the edges M 1
0 ,M

1
1 on the top and bottom of the

cylinder eliminate the problem as shown in Figure 5.6(c) where the new created mesh

edges are marked as dark. The process of splitting takes advantage of the property

that the Bezier geometries maintain their shapes under a subdivision process.

The Bezier split operation is implemented based on the assumption that the

original curved entity shape remains unchanged up to any order in parametric space

[58]. The benefits for applying split operation are:

• No topological validity determination required.

• The geometric shapes of the new created mesh entities are well formulated by

the subdivision algorithm of Bezier curves, surfaces and regions [58].

For example, when splitting a q order Bezier mesh tetrahedron region at para-
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Figure 5.4: Correct Invalid Region by Shape Modification

metric location ξ′(ξ′1, ξ
′
2, ξ

′
3, ξ

′
4), the control points net of the new four regions can

be computed as,

b̂0(r,j,k,l) = bi0(ξ
′), (5.10)

b̂1(j,r,k,l) = bi1(ξ
′), (5.11)

b̂2(j,k,r,l) = bi2(ξ
′), (5.12)

b̂3(j,k,l,r) = bi3(ξ
′), (5.13)
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(a) Straight-side Mesh (b) Curved Mesh by Shape Modification

Figure 5.5: Curved Mesh Generation only by Shape Modification
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(c) Valid Curved Mesh by
Edge Split Operation

Figure 5.6: Split Operation to Correct Model Tangency Problem



63

where ξ′ is volume coordinates and ξ′1 + ξ′2 + ξ′3 + ξ′4 = 1. i0 = (0, j, k, l), i1 =

(j, 0, k, l), i2 = (j, k, 0, l) and i3 = (j, k, l, 0). bi0 , bi1 , bi2 and bi3 are corresponding

control points obtained by evaluate the original curved tetrahedron region at ξ ′

coordinate with respect to i0, i1, i2, i3.

Bezier edge and face split operations are the special cases of region split where

one or two parameters of are equal to zero.

For example, a curved face and region split are shown in Figure 5.7(a) - 5.7(d)

respectively where the newly created curved regions exactly decompose the shape

of the parent regions.

5.5.3 Curved Collapse and Swap Operations

There are cases where the applying only curving and splitting 1800 angles will

not produce a valid or satisfactory mesh result in terms of element shape. This typ-

ically occurs where the current mesh configuration is such that there is insufficient

room in the desired direction of motion to re-shape mesh entities. The goal of the

curved mesh entity collapse and swap operators is to change the mesh topology and

geometry to produce sufficient space. Such curved collapse and swap operations

are build on straight-sided collapse and swap operations [82] and this thesis only

focuses on the curved geometry aspects. Since these operators are computationally

more demanding than the others, they are only considered when needed in case

that the re-shape operation fails to produce valid or acceptable result mesh. Fig-

ure 5.8(a) shows a case where the invalidity caused by curving M 1
0 is effectively

corrected by collapsing edge M 1
1 from vertex M 0

1 to M0
2 (see Figure 5.8(b)). The

collapse produces a better mesh configuration than just curving edge M 1
2 shown

in 5.8(c) in terms of maintaining better face angles at the vertices.

The primary new complexity in collapse and swap operations introduced by

curved mesh geometry is determining appropriate geometric shapes for the new

mesh entities created during those operations. Figure 5.9(a) shows the curved do-

main defined by the five regions connected to vertex M 0
7 that will be deleted when

collapsing edge M 1
0 by moving M 0

7 to M0
6 . New edges M 1

1 and M1
2 shown in Fig-

ure 5.9(b) as well as their higher order connected entities need to have proper curved
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(a) Original Face Shared by Two Re-
gions

(b) Curved Face Split

(c) Original Region (d) Curved Region Split

Figure 5.7: Curved Face and Region Split Operations

shapes assigned to them to make the operation valid. Compatibility between geo-

metric shape and finite element basis indicates the geometric order of these mesh

entities should be equal to or less than that used for finite element to satisfy the

standard finite element completeness requirement. Thus, the geometric order of a

new edge or face can only elevate up to the allowable order. Within the limits of

the order of geometry allowed, it is important to determine an appropriate shape

for the new mesh entities. For example, if the edge shape of M 1
2 was constructed
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Figure 5.8: Edge Collapse to Correct Invalid Element

as straight-sided instead of curved it would intersect the boundary of the affected

region which indicates a mesh invalidity. To avoid this problem blending operators

[65, 69] are applied to compute the shape for new edges that need high order shapes

inside of curved quadrilateral polygons without interfering with others.

The general blending procedure to compute a curved edge shape inside a

quadrilateral polygon is as follows. Let (S0, S1, S2, S3) be the shapes of the curved

quadrilateral polygon and (P0, P1, P2, P3) are the four vertices. The blending

mapping inside the polygon is,

x = (1−ν)S0+µS1+νS2+(1−µ)S3−(1−µ)(1−ν)P0−(1−ν)µP1−µνP2−(1−µ)νP3.
(5.14)

where µ, ν are the corresponding two independent coordinates with 0 ≤ µ ≤
1 and 0 ≤ ν ≤ 1 . If the new diagonal edge is quadratic, substitute µ = ν = 0.5 into

Eq. 5.14 to compute the control point location,

x =
1

2
(S0 + S1 + S2 + S3)−

1

4
(P0 + P1 + P2 + P3). (5.15)

If the new edge is cubic, µ = ν = 1
3
and µ = ν = 2

3
are used for the two control

points respective shown in Figure 5.10(b). Since simple blend operations do not
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Figure 5.9: Curved Edge Collapse

ensure the generated entities will be contained in the bounding entities, the validity

checks for mesh regions as discussed in Section 3.3 must still be performed and the

control point locations adjusted as in Section 5.3.1 if needed.

5.5.4 The Incremental Curving Procedure

The incremental procedure developed builds on the linear geometry algorithm

of reference [47] with appropriate extensions to account for the added complexity

of curved mesh entities. Based on the computational cost and complexity of each

operation, the process works in the following five steps:

1. Determine if the invalidity is caused by pairs of neighboring mesh faces or edges

classified on the boundary such that angles of 1800 or greater are created. In

these cases apply a split operation that will introduce additional mesh entities

to subdivide those angles see Section 5.5.2.

2. Check whether there is adequate room on the “other side” of the intersected

mesh entity, its geometric order is sufficient to re-shape and the resulting
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Figure 5.10: Blending Method to Compute the New Edge Shape

curved mesh shape is acceptable. If these conditions are met, apply mesh

entity re-shape to fix the problem see Section 5.5.1.

3. Examine the possibility of applying a collapse operation to eliminate the in-

validity. Apply the collapse if possible see Section 5.5.3.

4. Examine the application of a swap operation to create the space required

to have appropriately shaped mesh entities in the swapped configuration to

eliminate the invalidity see Section 5.5.3.

5. If none of the above operations is successful, the mesh entity can not be curved

to the model boundary. The process keeps the original shape of the mesh entity

and applies local refinement on the mesh entity [82]. All new mesh entities

classified on the boundary into the list of entities to be processed. Subdivision

creates more options for applying other operations.

One important issue in the above process is the shape quality of the curved

mesh entity. The quality metrics are important when choosing which mesh modifi-

cation or configuration to apply to correct the invalid elements. For example, the

choice of the edge collapse operation in Figure 5.8(b) over the re-shape operation in

Figure 5.8(c). Some of the currently existing quality measures, such as interior de-

terminant of Jacobian variation [45], are proposed only based on element geometric
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shape without any direct relation to the solution accuracy. Under the assumption

that a future adaptive procedure will consider altering element interior shape to

optimize accuracy, the current procedure presented is focused only on ensuring a

positive Jacobian throughout the element domain and acceptable user specified face

angles.

Although the last operation does typically allow completion of the process,

it does introduce undesired mesh refinement (see Figure 5.11(c) in the examples

section). In such cases an alternative is to inflate the order of the geometry of the

mesh entity to provide additional shape freedom without the need to add additional

elements. As shown in Figure 5.11(d) this approach can be successful in obtaining a

valid mesh without the need of refining the mesh. Of course, inflating the geometry

order can force the need to inflate the order of finite element used at that location

past what may have been required for analysis accuracy. However, this is likely to

be more cost effective than the additional cost introduced by the refinement process.

5.6 Meshing Results

Curvilinear mesh examples are presented in this section to demonstrate the

capability of the procedure to automatically generate the p-version meshes consid-

ering geometric approximation, mesh gradation and thin section structure together

from the beginning.

5.6.1 Example 1

The first example is a biomechanical model used to simulate blood flow. Lin-

ear, quadratic, cubic and quartic meshes are shown in Figure 5.11(b)- 5.11(e). The

quality of curved mesh with respect to geometry model is measured by ∆dmin which

are the normalized maximum distance deviation ∆d to the shortest linear mesh edge

length. ∆d is computed as the maximum distance between sample points of each

mesh entity classified on curved model boundary and their corresponding closest

points on the boundary. Statistics for curving the blood vessel meshes are presented

in Table 5.1. The results clearly demonstrate that geometric approximation error in

terms of normalized maximum distance deviation has been improved by increasing
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the geometric approximation order especially in going from linear to cubic geometry.

Table 5.1: Statistics for Curving the Blood Vessel Model

Linear Quadratic Cubic Quartic
∆dmin 1.7028 0.9897 0.5006 0.4648
Collapse 2 1 1
Collapse 3 1 1
Split 17 5 5
Recurving 29 15 14
Refinement 10 3 2

Table 5.1 also includes the statistics on which local mesh modifications were

used to correct the invalid elements. The shape manipulation operations are the

most frequently applied in this example. The number of refinements required has

been reduced from 10 for quadratic shaped elements to 3 for cubic shaped elements

and 2 for quartic shaped elements, thus demonstrating the benefit of using high

geometric order to alleviate the need for local refinement to fix invalidity.

5.6.2 Examples 2, 3

The next two examples are models with singular model edges as shown in

Figure 5.12 that the linear graded meshes are generated by the procedure discussed

in Chapter 4. The straight-sided meshes are curved with quadratic geometry shape

without considering gradation (top) and with considering gradation (bottom) by

using the curving procedures discussed above. In the curving procedure without

considering graded mesh, the gradation of the meshes around the singularities are

destroyed when local mesh modifications are applied to correct the invalid elements.

The number of elements for the meshes generated by the two different approaches

is compared in Table 5.2. For the left model, the number of mesh entities does

not change significantly because there are only two curved singular edges and each

of them with only one mesh edge classified on. For the right model, the number

of regions has been reduced 15% by applying the curving procedure considering

gradation.
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Table 5.2: Statistics for Curving Models with Singular Edges with-
out/with Considering Gradation

Left Model Right Model
Mesh a Mesh c Mesh b Mesh d

Regions 881 863 1923 1643
Faces 1911 1881 3456 3356
Edges 1265 1254 3356 2980
Vertices 236 237 467 406

5.6.3 Examples 4, 5

These two examples are models with thin sections given in Figure 5.13. The

first row shows the input surface triangulation for the two models. The second row

shows just the isolated opposite thin section surface patches after loop construc-

tion. As can be seen from the figures the two surface meshes are not yet matched.

The bottom row shows the final meshes where the thin section meshes have been

matched, the prismatic thin section elements created and volume mesh completed

and curved.

The statistics for these two meshes are compared with the all tetrahedral

meshes generated by the isotropic volume mesh in Table 5.3. The number of elements

has been reduced by almost 20% for the left model and by more than 40% for the

right model.

Table 5.3: Statistics for Curved Models with Thin Sections

Left Model Right Model
All Tet Mesh Mixed Mesh All Tet Mesh Mixed Mesh

Regions 492 413 787 463
Faces 1342 975 2345 1745
Edges 1045 732 2643 2034
Vertices 184 170 467 436

5.6.4 Examples 6, 7

The next two examples are models with singular edges and thin sections to-

gether shown in Figure 5.14 and Figure 5.16 respectively. Three different types of

meshes, curved isotropic volume mesh (type a), curved tetrahedral mesh without
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considering thin sections and gradation control (type b), and curved mixed mesh

with considering gradation control and thin sections (type c), are compared in Ta-

ble 5.4. The statistic shows that the curved mixed mesh generated by applying

the automatic p-version mesh procedure for the examples in Figure 5.14 produces

1/2 the elements of the type b mesh which does not account for the thin section

or gradation control. Figure 5.15 shows the close-up of mesh around the singular

edge for type b and type c meshes. The gradation for the type c mesh is maintained

through the curving procedure with gradation control. Even in the example given

in Figure 5.16 where the thin section represents a small portion of the domain, the

type c mesh generated a mesh with 240 fewer elements, which is a 24% reduction

in the number of elements than the type b mesh.

Table 5.4: Statistics for Curved Models with Singular Edges and Thin
Sections

Model in Figure 5.14 Model in Figure 5.16
Meshes Regions Gradation Regions Gradation
Type a 306 0.0 260 0.0
Type b 705 0.15 996 0.15
Type c 350 0.15 756 0.15

More p-version meshes can be found in Chapter 8 of the p-version analysis

results.
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(a) Geometry Model (b) Linear Mesh

(c) Curved Quadratic Mesh (d) Curved Cubic Mesh

(e) Curved Quartic Mesh

Figure 5.11: Blood Vessel Meshes
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(a) (b)

(c) (d)

Figure 5.12: Curved Meshes for Models with Singularities: Curving with-
out Considering Gradation (top). Curving with Considering
Gradation (bottom).
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Figure 5.13: Examples Meshes for Models with Thin Sections: Surface
Triangulations(top). Thin Sections(middle). Complete Vol-
ume Mesh with Prismatic Elements(bottom).
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Figure 5.14: Examples Meshes for Models with Singular Edges and Thin
Sections: Isotropic Volume Mesh (top). Curved Mesh
without Considering Gradation and Thin Sections (middle).
Curved Mixed Mesh with Considering Gradation and Thin
Sections (bottom).
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Figure 5.15: Close-up of the Meshes Around Singular Edge for Curved
Mesh without (Left) and with (Right) Considering Grada-
tion.
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Figure 5.16: Examples Meshes for Models with Singular Edges and Thin
Sections: Isotropic Volume Mesh (top). Curved Mesh
without Considering Gradation and Thin Sections (middle).
Curved Mixed Mesh with Considering Gradation and Thin
Sections (bottom).
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Part III

An Automated Adaptive Directional Variable
p-Version Analysis



CHAPTER 6

Flexible Topology Based Directional Variable p-Version

Approximation

The p-version method requires a flexible data structure to deal with the sit-

uation when p-orders varies from element to element. This chapter first reviews

the data structures for variable p-order approximation. Efforts are focused on the

necessary modifications that enable the mesh faces and regions to have different

directional polynomial orders. The implementation of the directional variable p-

version approximation in Trellis is then discussed.

6.1 Overview of the Variable p-Order Approximation Data

Structure

Most of the variable p-version approximation data structures specify the poly-

nomial order p based on element level Ωe then construct the high order shape func-

tions for the closure topological mesh entities of Ω̄e [44, 124]. The common method

[44] used for such type of structures to deal with neighboring elements of different

order is to add and/or delete hierarchic shape functions on the mesh entity shared

by the elements such that C0 continuity is maintained. A typical example is shown

in Figure 6.1 that two elementsM 2
0 andM2

1 are of the linear and cubic order respec-

tively. The solid dark circle indicates the shape functions for linear element M 2
0 and

the non-filled circle indicates the shape functions for the cubic element M 2
1 . Either

deleting the high order shape functions along mesh edge M 1
0 for M 2

1 (left) or adding

shape functions along mesh edge M 1
0 for M 2

0 (right) to maintain the approximation

continuity along mesh edge M 1
0 is required.

Another method to deal with the p-orthotropy is the generalized finite element

method (GFEM) (so called “hp-clouds” method) [19, 21, 51-55, 95]. In the GFEM

method, the domain is partitioned with a collection of open sets Ωe , Ω̄ ⊂ ∪nel
e=1Ωe.

The sets Ωe are so called clouds and a set of basis functions ϕe which form a partition

79
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Figure 6.1: Continuity by Hierarchical Shape Functions

of unity on Ω are constructed on the clouds [95],

nel∑

e=1

ϕe(x) = 1, x ∈ Ω̄. (6.1)

The typical hp-version general finite element shape functions are defined as

[95],

ϕai = NaLi, (6.2)

where Na is the conventional standard finite element shape function and Li is a

polynomial of degree p. Since the shape functions form a partition unity (PU) [95],

∑

a

ϕai =
∑

a

NaLi = Li

∑

a

Na = Li. (6.3)

Therefore, the polynomials Li can be recovered through linear combinations of the

cloud basis functions ϕai that allow the assignment of different polynomial order

of Li. This new hierarchic basis shape functions concentrate all the unknown of

degree of freedoms at the vertices of the elements and independent of the element

topology. However, the integration of the stiffness matrix can be considerable more

expensive than traditional finite element method, depending on the choice of the

partition of unity [54].

This thesis applies the topology based variable p-version approximation data

structure [115] that easily supports the general specification of shape functions over
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the mesh entities with the full set of shape functions determined by the order as-

signed to the mesh entities of the closure of the element. The hierarchic shape

function for each topological entity is uniquely constructed in the form of Eq. 2.16

for the specified polynomial order. The data structure can easily satisfy the C0 con-

tinuity requirement [115]. As an example, Figure 6.2 (left) shows a p-order variation

for the edges in a two dimension mesh. Variation on the p-order of the independent

coordinate of the mesh faces and regions is needed in this thesis (see Section 3.1.3)

and has thoes been added. For example, the p-order is 6 for ξ1 and 4 for ξ2 as in

Figure 6.2 (right) for the mesh face M 2
0 .

ξ1

ξ2

M 0
2

1

4
2

3
3

5

7 6

8
2 7

5

4 7

2 4
6

(6)

(4)

5

6

Figure 6.2: Variable p-Order Mesh for Mesh Edge and Faces in Two Di-
mension

6.2 Directional p-Order Approximation

Although the basic convergence rate in Eq. 2.55 would indicate no obvious

advantage of different p-order in each direction for the mesh faces and regions, it is

clear that the computational efficiency in terms of the number of degree of freedom

and computational cost can be improved [1, 57]. The example in Figure 6.3 demon-

strates the influence of the directional variable p-order on the number of shape

functions for a quadrilateral face, where the integers indicate the assigned polyno-

mial order for each mesh edge and the independent coordinates of the quadrilateral

face:

Case a Uniform p-order for the mesh edges and face.
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Case b Variable p-order for the mesh edges and uniform p-order for the indepen-

dent coordinates of the mesh face.

Case c Variable p-order for the mesh edges and the independent coordinates of the

mesh face.

ξ2

ξ1

7

7

7

 7

(7)

(7)

(a) Case a

ξ2

ξ1

7

7

(7)

(7)

2 2

(b) Case b

ξ2

ξ1

7

7

(7)

2 2

(4)

(c) Case c

Figure 6.3: Uniform, Variable and Directional Variable p-Order for a
Quadrilateral Face

Let n denote the number of shape functions for the quadrilateral face shown

in Figure 6.3 and can be computed as:

Case a: n = 4
︸︷︷︸

Vertices

+ 4× (7− 1)
︸ ︷︷ ︸

Edges

+ 1 + 2 + 3 + 4
︸ ︷︷ ︸

Face

= 38,

Case b: n = 4
︸︷︷︸

Vertices

+ 1 + 1 + 6 + 6
︸ ︷︷ ︸

Edges

+ 1 + 2 + 3 + 4
︸ ︷︷ ︸

Face

= 29,

Case c: n = 4
︸︷︷︸

Vertices

+ 1 + 1 + 6 + 6
︸ ︷︷ ︸

Edges

+ 1 + 1 + 1 + 1
︸ ︷︷ ︸

Face

= 22.

The example shows that the number of shape functions can be reduced from 38

to 29 if variable p-order is applied and the number can be further reduced down to

22 if directional p-order is applied for the independent coordinates of the face. Thus

the number of degrees of freedom can be reduced close to 1/2 for a case with strong

gradients in one direction and weak ones in the other. The influence of this ability

to reduce the number of degree of freedom, thus reducing the computational cost is

demonstrated by examples in the chapter 8. This section presents the modification
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of the topology variable p-order data structure [115] to allow the p-order variation

at the independent coordinates of mesh faces and regions as in case c.

Based on the construction of topology based hierarchic shape function pre-

sented in Eq. 2.16, the blending function for a mesh entity M
dj
j remains the same

once the topology of M
dj
j and Mde

e are determined. Therefore it is the entity shape

function φ(M
dj
j ) to complete the polynomial order requirement of the shape func-

tion N(M
dj
j ). Let pi be the requested polynomial order for the independent coor-

dinate ξi of a mesh entity M
dj
j and qi is the polynomial order of the blending

function used for ψ(M
dj
j ). Thus, the polynomial order of φ(M

dj
j ) for an entity is

given by pi − qi at each direction. Considering there is only one parametric co-

ordinate for a mesh edge, no modification is needed for a pth order mesh edge

function φ(M 1
j ) that remains the same as in [115],

φ(M 1
1 ) =

2

ξ2 − 1

√

2p− 1

2

∫ ξ

−1
Pp−1(t)dt, p ≥ 2, − 1 ≤ ξ ≤ 1, (6.4)

where Pn are the Legendre polynomials [8].

6.2.1 Triangle Mesh Face

For a triangle mesh face with barycentric coordinate (ξ1, ξ2, ξ3), ξ1+ξ2+ξ3 = 1,

the blending shape function ψ(M 2
j ,M

de
e ) is of linear order in each coordinate ξi [115].

Here, the directional p-order structure only varies the polynomial order on two of

the independent coordinates. Thus, the polynomial order for the mesh entity shape

function φ(M 2
j ) is (pi − 2) for each coordinate ξi respectively and the modified set

of triangle face functions based on Legendre polynomials is given as,

φ(M 2
j ) = Pα1−1(ξ2 − ξ1)Pα2−1(2ξ3 − 1), (6.5)

1 ≤ αi ≤ pi − 2,

Σαi ≤ max(pi)− 1, i = 1, 2,
(6.6)

where indices αi indicates the directional behavior for the two independent coor-

dinates ξi and defines the highest power of ξi in the resulting mesh entity shape

functions φ. It is clear that the formulation of the hierarchic shape functions for the
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directional p-order are the same as those in [115] and are uniquely determined by

Eq. 6.5. It is the modified Eq. 6.6 that controls the total number of the shape func-

tions to achieve the variable p-orders requirements at the independent coordinates.

As an example, Figure 6.4 demonstrates the difference between the number of tri-

angle face entity shape functions φ(M 2
j ) for the shape function N having uniform p-

order 6 and directional p-order (6, 4) respectively for the independent coordinate pair

(ξ1, ξ2). Here, the indices (α1, α2, α3) satisfy α1+α2+α3 = p, p = 3, ..., 6 for uniform

p-order up to order 6 shown in Figure 6.4(a) and the indices in Figure 6.4(b) satisfy

Eq. 6.6 as,

1 ≤ α1 ≤ 4, 1 ≤ α2 ≤ 2, α1 + α2 ≤ 5, (6.7)

that only include the terms needed up to 6th order in ξ1 direction and 4th order

in ξ2 direction in the resulting shape function N(M 2
j ).

α 2

α 3

α 1 1(ξ  )2(ξ  )

3(ξ  )

(1,1,1)

(1,2,1) (2,1,1)

(2,2,1) (3,1,1)(1,3,1)

(1,4,1) (2,3,1) (3,2,1) (4,1,1)

(2,1,2)

(a) Uniform p-Order

α 1
α 2

α 3

2(ξ  ) 1(ξ  )

3(ξ  )

(1,1,1)

(1,2,1) (2,1,1)

(2,2,1) (3,1,1)

(3,2,1) (4,1,1)

(2,1,2)

(b) Directional p-Order

Figure 6.4: Triangle Face Entity Shape Function φ(M 2
j ) for Uniform and

Directional p-Order

The symmetric counterpart for the independent coordinate pairs (ξ1, ξ3) and

(ξ2, ξ3) shown as the dash lines in Figure 6.4 can be obtained as a linear combination

of the existing modes [115], where the dependent coordinate picks up the higher poly-

nomial order of the independent coordinates (ξ1, ξ2). For example, (2, 1, 2) for a 5th

order polynomial can be represented by the combination of (2, 2, 1) and (3, 1, 1) as
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follows,

(2, 1, 2) = ξ1ξ3 −
1

4
(ξ1 + ξ3) +

1

14
= ξ1(1− ξ1 − ξ2)−

1

4
(ξ1 + 1− ξ1 − ξ2) +

1

14

= ξ1 − ξ21 − ξ1ξ2 +
1

4
ξ2 −

5

28
= −(ξ21 −

3

4
ξ1 +

3

28
+ ξ1ξ2 −

1

4
(ξ1 + ξ2) +

1

14
)

= −((2, 2, 1) + (3, 1, 1)). (6.8)

6.2.2 Quadrilateral Mesh Face

For a quadrilateral mesh face with independent coordinates (ξ1, ξ2), the blend-

ing shape function ψ(M 2
j ,M

de
e ) is of quadratic order in each coordinate ξi [115].

Thus, the polynomial order for the mesh entity shape function φ(M 2
j ) is (pi− 2) for

each orthogonal coordinate ξi respectively and the modified set of quadrilateral face

functions based on Legendre polynomials as,

1

4
(ξ21 − 1)((ξ22 − 1)φ(M 2

j ) =

√

2α1 − 1

2

∫ ξ1

−1
Pα1−1(t)dt

√

2α2 − 1

2

∫ ξ2

−1
Pα2−1(t)dt,

(6.9)

2 ≤ αi ≤ pi − 2,

Σαi ≤ max(pi).
(6.10)

The term 1
4
(ξ21 − 1)((ξ22 − 1) is the blending shape function that contributes to the

resulting shape function N together with the mesh entity function φ(M 2
j ). Again, in-

dices αi indicates the directional behavior for the two independent coordinates ξi and

defines the highest power of ξi in the resulting mesh entity shape function φ. The

modified Eq. 6.10 determines the number of face modes to complete the requested

polynomial order pi for each independent coordinate. As an example, the mesh

entity shape functions φ(M 2
j ) for a quadrilateral mesh face with uniform p-order 7

and directional p-order (7, 5) are shown in Figure 6.5.

6.2.3 Tetrahedral Mesh Region

For a tetrahedral mesh region with volume coordinate (ξ1, ξ2, ξ3, ξ4), ξ1 +

ξ2 + ξ3 + ξ4 = 1, the blending shape function ψ(M 3
j ,M

de
e ) is of linear order in each

coordinate ξi [115]. Here, the directional p-order structure only varies the polynomial

order on three of the independent coordinates. Thus, the polynomial order for the
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1(ξ  )2(ξ  )α 2 α 1

(2,2)

(2,3)

(2,4)

(2,5)

(3,2)

(4,2)

(5,2)

(3,3)

(3,4) (4,3)

(a) Uniform p-Order

1(ξ  )α 12(ξ  )α 2

(2,2)

(2,3) (3,2)

(4,2)

(5,2)

(3,3)

(4,3)

(b) Directional p-Order

Figure 6.5: Quadrilateral Face Entity Shape Function φ(M 2
j ) for Uniform

and Directional p-Order

mesh entity shape function φ(M 3
j ) is (pi− 3) for each coordinate ξi respectively and

the modified set of tetrahedral region functions based on Legendre polynomials is

as,

φ(M 3
j ) = Pα1−1(ξ2 − ξ1)Pα2−1(2ξ3 − 1)Pα3−1(2ξ4 − 1), (6.11)

1 ≤ αi ≤ pi − 3,

Σαi ≤ max(pi)− 1, i = 1, 2, 3.
(6.12)

The modified Eq. 6.12 determines the number of region shape functions needed for

the directional variable p-orders.

6.2.4 Hexahedral Mesh Region

The hexahedral mesh region shape functions are constructed based on the

tensor product polynomial basis using the Legendre polynomials [115] as,

φ(M 3
j ) =

√

2α1 − 1

2

∫ ξ1

−1
Pα1−1(t)dt

√

2α2 − 1

2

∫ ξ2

−1
Pα2−1(t)dt

√

2α3 − 1

2

∫ ξ3

−1
Pα3−1(t)dt,

(6.13)

where the indices αi has been modified as follows to handle the directional variable

p-orders,

2 ≤ αi ≤ pi − 2,

Σαi ≤ max(pi), i = 1, 2, 3.
(6.14)
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6.2.5 Prism Mesh Region

For a prism mesh region defined in the independent coordinates (ξ1, ξ2, ξ3, ξ4),

ξ1 + ξ2 + ξ3 = 1, the mesh region shape functions are products of the triangle face

functions and the one dimensional edge function along ξ4 given by [115],

φ(M 3
j ) = A(ξ1, ξ2, ξ3)×B(ξ4), (6.15)

A(ξ1, ξ2, ξ3) = φ(M 2
j ), (6.16)

B(ξ4) = φ(M 1
j ), (6.17)

where φ(M 2
j ) and φ(M 1

j ) are the entity shape functions for triangle face shown in

Eq. 6.5 and mesh edge shown in Eq. 6.4 [115]. The indices of (α1, α2, α4) for the

three independent coordinates (ξ1, ξ2, ξ4) in case of directional p-order are,

1 ≤ αi ≤ pi − 3,

Σαi ≤ max(pi), i = 1, 2,

2 ≤ α4 ≤ p4 − 2.

(6.18)

The orthogonality between the coordinate ξ4 and the barycentric coordinate (ξ1, ξ2, ξ3) al-

lows the assignment of variable p-orders for the prism mesh region.

6.2.6 Pyramid Mesh Region

The Pyramid mesh region acts as a buffer element to connect the four sided

faces of hexahedral or prism dominated structured mesh regions to the tetrahedral

element dominated unstructured mesh regions. The p-order hierarchic shape func-

tions for pyramid is more complicated than the other topology elements because

of the lack of the natural coordinates and the degeneracy of the apex [73, 134].

This thesis applies the degenerating procedure presented in [115] to construct the

shape functions for a pyramid element that collapses the vertices of the top face

of a hexahedral element to the center of the top face shown in Figure 6.6. The

mapping functions between the coordinates (ξ
′

1, ξ
′

2, ξ
′

3) for hexahedral element and

the coordinates (ξ1, ξ2, ξ3) for pyramid element is given as [115],
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ξ2

ξ3

ξ1

’
’

’

(a) Coordinates for Hexahedral

ξ3 ξ2

ξ1

(b) Coordinates for Pyramid

Figure 6.6: The Mapping between Hexahedral and Pyramid

ξ
′

1 =
2ξ1

1− ξ3
,

ξ
′

2 =
2ξ2

1− ξ3
, (6.20)

ξ
′

3 = ξ3.

Substitute the mapping function in Eq. 6.20 into the hexahedral region shape

function in Eq. 6.13 yield the region shape function for pyramid element. Thus, the

indices αi for a directional p-order pyramid is the same as that for a hexahedral

element shown in Eq. 6.14.

6.3 The Implementation of Directional Variable p-Order

Approximation in Trellis

Trellis is an object oriented software implemented for reliable solving problems

in mathematical physics [31]. Its input consists of a geometric model with appropri-

ate physical attributes. The geometry, physics, mathematical model, discretization

and numerical methods are decomposed into interacting classes that allow new ver-

sions and forms of each of the components to be introduced [31]. In addition, Trellis
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is geometric-based designed that support the directly retrieving of CAD model in-

formation for the need of adaptivity.

The implementation of directional variable p-order approximation in Trellis

focused on the system contributors for element stiffness matrices contributor (ke)

and element force vector (f e) of an element Ωe that require the evaluation of Na(ξ)

and Na,ξ(ξ) at a specified integration point ξ.

Let p describes the desired p-orders for the independent coordinates of the

mesh entity M
dj
j , M

dj
j ∈ Ω̄e, dj = 0, 1, 2, 3. The dimension of the vector p

equals to the entity dimension, dim(p) = dj. The number of shape functions Na is

determined by the polynomial order vector p related to the closure mesh entitiesM
dj
j

of the element Ωe. A data structure to manage the polynomial order vector p with

respect to any combination of the mesh entity, mesh entity independent coordinates

and applied physical field is needed. This requirement is accomplished by attaching

the vector p directly to the mesh entity M
dj
j that can be easily created, accessed

and modified. Considering that only small portions of the mesh entities need higher

p-orders in the adaptive analysis, a default value strategy is applied in managing the

polynomial order field over the finite element mesh such that only the mesh entities

that have different p-orders than the default value p0 need to be attached with

the specified p vector. Different physical fields can be applied over the same finite

element mesh such that a mesh entity may require different p-order vectors p that

can be uniquely distinct with each other by the identification tags.

In Trellis, the FunctionSpace class is used to describe how a variable is interpo-

lated over a given domain Ωe that is able to get the degrees of freedom of the shape

functions and evaluate the shape functions and the derivatives of the shape func-

tions at the integration points [31] in the element domain. The directional variable

p-order hierarchic approximation is implemented as derived shape function classes

of FunctionSpace with respect to the topology of the domain Ωe. For example, the

class of hierarchic shape functions for a region domain is as follows:

class Hierarchic3D: public FunctionSpace {
public:

//Construction
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Hierarchic3D(pEntity ent, int defaultOrder, pMeshDataId attachId);

//Evaluate the shape functions Na(ξ)

void eval(double *pt, Mapping *m, double *result) const;

//Evaluate the derivative of shape functions Na,ξ(ξ)

void eval1stDeriv(double *pt, Mapping *m, mVector *result) const;

//Generate the degree of freedom of the domain Ωe

void KeyGenerator(const pEntity, Field *f, vecotr < DofKey > &)

const;

//Get the integration orders of the coordinates of the domain Ωe

void getIntegrationOrder(int *intOrder) const;

//Get the number of degree of freedom of the domain Ωe

int getDim() const;

private:

int d-Order;

int d-Dim;

pEntity d-ent;

}
The elemental hierarchic function space is initialized by the input default poly-

nomial order (defualtOrder) and an identification tag (attachId) to retrieve the pos-

sible attached polynomial order vector. The hierarchic3D is a generic class that can

compute the shape function or shape function derivatives for all of the topological

region domain. The process can be described by the pseudo code in Table 6.1.

6.4 Numerical Integration Schemes for Directional Variable

p-order Approximation

When Gauss-Legendre integration is applied, the number of integration points

for the quadrilateral and hexahedral elements are defined as in Eq. 2.51 for di-

rectional variable p-order approximation. For other topological elements such as

triangle, prism or pyramid, the definition of Gaussian integration rules at their nat-

ural coordinates for higher p-orders are not a straightforward process [37, 38, 46],

especially for pyramid element. This thesis derives the integration schemes for these
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Table 6.1: The Construction of Entity Hierarchic Shape Functions or
Derivatives for a Region Domain

For each vertex of the mesh entity
Compute the vertex shape function or derivative

For each edge of the mesh entity
Retrieve the desired polynomial order of the edge
For each polynomial order

Compute the edge shape function or derivative at the specified order
For each face of the mesh entity

Retrieve the desired polynomial order of the face
Compute the (αi, αj) set for the desired polynomial order
For each set (αi, αj)

Compute the face shape function or derivative
For the region mesh entity

Retrieve the desired polynomial order of the region
Compute the (αi, αj, αk) set for the desired polynomial order
For each set (αi, αj, αk)

Compute the region shape function or derivative

elements by transforming their independent coordinates ξ into the coordinates ξ ′

for quadrilateral face or hexahedral region [46].

Let Υ(ξ) be the functional to be integrated over the element Ω(ξ) as [46],

I =

∫

Υ(ξ)dξ. (6.22)

This function can be rewritten in the tensor product type coordinate ξ′ as [46],

I =

∫

Υ(ξ′)J(ξ)dξ′, (6.23)

where J(ξ) =
∣
∣
∣
∂ξ

∂ξ
′

∣
∣
∣. The p-orders resulting from the determinant transformation

matrix J(ξ) must be considered in the process to determine the Gauss-Legendre

integration points for each coordinate ξ ′i. Let pi be the resulting polynomial order

at coordinate ξ′i defined as,

pi = p′i + p′′i , (6.24)

where p′i is the polynomial order from Υ(ξ′) and p′′i is the polynomial order from

J(ξ). The number of Gauss-Legendre integration points is pi + 1 for coordinate ξ′i
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[27]. The influence of p′′i from J(ξ) on the number of integration points for different

topological elements is investigated in detail below.

1. Triangle mesh face

Let (p1, p2) be the highest power of the polynomial for the two independent

coordinates (ξ1, ξ2) of the triangle face, ξ3 = 1− ξ1 − ξ2. Since the coordinate

mapping between triangle face and quadrilateral face (ξ
′

1, ξ
′

2) is of the form

[74],

ξ1 =
(1 + ξ

′

1)(1− ξ
′

2)

4
,

ξ2 =
(1 + ξ

′

2)

2
, (6.26)

the corresponding mapping Jacobian is as,

J =

∣
∣
∣
∣

∂ξ

∂ξ
′

∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

(1−ξ
′

2)

4
− (1+ξ

′

1)

4

0 1
2

∣
∣
∣
∣
∣
∣

=
(1− ξ

′

2)

8
. (6.27)

Since J is a 1st order polynomial is ξ ′2 direction, the polynomial order becomes

p2 + 1 at ξ2 direction and the total number of Gaussian integration points for

a high order triangle face is,

ng = (p1 + 1)× (p2 + 2). (6.28)

2. Tetrahedral mesh region

Let (p1, p2, p3) be the highest power of the polynomial for the three indepen-

dent coordinates (ξ1, ξ2, ξ3) of the tetrahedral mesh region. Since the coordi-

nate mapping between tetrahedral region and hexahedral region (ξ
′

1, ξ
′

2, ξ
′

3) is

of the form [46],

ξ1 =
(1 + ξ

′

1)(1− ξ
′

2)(1− ξ
′

3)

8
,

ξ2 =
(1 + ξ

′

2)(1− ξ
′

3)

4
, (6.30)

ξ3 =
(1 + ξ

′

3)

2
,
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the corresponding mapping Jacobian is as,

J =

∣
∣
∣
∣

∂ξ

∂ξ
′

∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣
∣
∣

(1−ξ
′

2)(1−ξ
′

3)

8
− (1+ξ

′

1)(1−ξ
′

3)

8
− (1+ξ

′

1)(1−ξ
′

2)

8

0
(1−ξ

′

3)

4
− (1+ξ

′

2)

4

0 0 1
2

∣
∣
∣
∣
∣
∣
∣
∣

=
(1− ξ

′

2)(1− ξ
′

3)
2

64
.

(6.32)

J is a polynomial with 1st order in ξ ′2 direction and 2nd order in ξ ′3 direction

and the polynomial order for each coordinate become as (p1, p2 + 1, p3 + 2).

Thus, the total number of Gaussian integration points for a high order tetra-

hedral region is,

ng = (p1 + 1)× (p2 + 2)× (p3 + 3). (6.33)

3. Prism mesh region

Let (p1, p2, p4) be the highest power of the polynomial for the three inde-

pendent coordinates (ξ1, ξ2, ξ4) of the prism mesh region. Where ξ4 is the

coordinate along the quadrilateral face of the prism region. The coordinate

mapping between prism region and hexahedral region (ξ
′

1, ξ
′

2, ξ
′

3) is of the form

[74],

ξ1 =
(1 + ξ

′

1)(1− ξ
′

2)

4
,

ξ2 = (1 + ξ
′

2)/2, (6.35)

ξ4 = ξ
′

3,

the corresponding mapping Jacobian is as,

J =

∣
∣
∣
∣

∂ξ

∂ξ
′

∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣
∣
∣

(1−ξ
′

2)

4
− (1+ξ

′

1)

4
0

0 1
2

0

0 0 1

∣
∣
∣
∣
∣
∣
∣
∣

=
(1− ξ

′

2)

8
. (6.37)

J is a 1st order polynomial at ξ ′2 direction and the polynomial order for each

coordinate becomes as (p1, p2+1, p3). Thus, the the total number of Gaussian
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integration points for a high order tetrahedral region is,

ng = (p1 + 1)× (p2 + 2)× (p4 + 1). (6.38)

4. Pyramid mesh region

Based on the coordinate mapping between prism and hexahedral mesh region

shown in Eq. 6.20, the inverse mapping is [46],

ξ1 =
ξ
′

1(1− ξ
′

3)

2
,

ξ2 =
ξ
′

2(1− ξ
′

3)

2
, (6.40)

ξ3 = ξ
′

3,

and the mapping Jacobian is,

J =

∣
∣
∣
∣

∂ξ

∂ξ
′

∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣
∣
∣

(1−ξ
′

3)

2
0

ξ
′

1

2

0
(1−ξ

′

3)

2

ξ
′

2

2

0 0 1

∣
∣
∣
∣
∣
∣
∣
∣

=
(1− ξ

′

3)
2

4
. (6.42)

J is a polynomial with 2nd order at direction ξ ′3 and the polynomial order

for each coordinate becomes as (p1, p2, p3 + 2). Thus, the the total number of

Gaussian integration points for a high order pyramid region is,

ng = (p1 + 1)× (p2 + 1)× (p3 + 3). (6.43)

As an example, Table 6.2 presents the number of Gaussian-Legendre integration

points for uniform and directional variable p-orders elements with linear geometry.

It was shown that pyramid and tetrahedral elements demand more points than

hexahedral and prismatic elements because of the polynomial order introduced by

the coordinates transformation mapping. The number can be sizable reduced if

directional variable p-orders are applied.
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Table 6.2: Number of Gaussian Integration Points for Uniform and Di-
rectional p-Order

(p1, p2) ng (p1, p2) ng
Quadrilateral (6, 6) 49 (3, 6) 28

Triangle (6, 6) 56 (3, 6) 32
(p1, p2, p3) ng (p1, p2, p3) ng

Hexahedral (6, 6, 6) 342 (2, 4, 6) 105
Prism (6, 6, 6) 392 (2, 4, 6) 126

Pyramid (6, 6, 6) 441 (2, 4, 6) 180
Tetrahedral (6, 6, 6) 504 (2, 4, 6) 192



CHAPTER 7

Automated Adaptive Directional Variable p-Version

Analysis in 3D Curved Domains

This chapter describes the algorithm for the adaptive directional variable p-

version analysis procedure implemented in Trellis. The objective of the procedure

is to achieve the prescribed tolerance with less degree of freedom and computa-

tional cost. The three key components in the procedure, error estimator, directional

correction indicator, and p-order enrichment strategy, are discussed.

7.1 Automated Adaptive Directional Variable p-version Anal-

ysis in Trellis

Given the prescribed tolerance τ defined as the error measure in the energy

norm, the adaptive directional variable p-version analysis procedure for 3D curved

domains in Trellis consists of the following steps:

Step 1: Apply appropriate physical attributes on the geometry model. For exam-

ple, the boundary conditions, the loading, the material properties etc..

Step 2: Generate a near optimal mesh configuration using the automatic p-version

mesh generation procedure presented in part II of this thesis. Assign uniform

initial lower polynomial order p = 2 over the mesh.

Step 3: Solve the Galerkin finite element formulation of the given problem using

p-version method as described in Section 2.2 to obtain the finite element solu-

tion uh . Compute the solution accuracy η discussed in section 7.2 as follows:

• Evaluate error estimator ηk on each element Ωk.

• Compute the error estimator over the whole mesh as [6],

η2 =
∑

k

η2k. (7.1)

96
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Step 4: If η ≤ τ , then the procedure stops.

Step 5: Else, apply directional p-order enrichment strategy that consists of the

following aspects:

• Determine all the elements with ηk ≥ ϑ that need polynomial order en-

richment. ϑ is a threshold value determined based on the principle of

equilibrating the error in the elements [11] and will be detailed discussed

in section 7.4.

• For each selected element Ωk, compute the directional correction indica-

tor ηξik as discussed in 7.3 at each independent coordinate ξi.

• Predict the necessary polynomial enrichment ∆pξi as discussed in 7.4

at each independent coordinate ξi based on the directional correction

indicator ηξik .

Step 6: Update the finite element discretization with the new p-order distribution

over the finite element mesh and go to Step 3.

In the adaptive directional variable p-version analysis procedure, the error estimator

in step 3 provides an accurate measure of the error in energy norm. The directional

correction indicator and enrichment strategy in step 5 determine when and how to

enrich the polynomial order for the elements at each independent coordinate.

7.2 Error Estimators for the Adaptive p-Version Method

The error estimator provides an accurate measure of the finite element solution

accuracy that allows the adaptive procedure to determine when the prescribed level

of accuracy is achieved. The existing a posteriori error estimator can be grouped into

three categories [6]: estimators based on (a) gradient recovery, (b) extrapolation,

and (c) residuals.

7.2.1 Gradient Recovery Error Estimator

The recovery based method smoothes the gradients of the solutions on a given

mesh and the smoothed solution is compared with the original solution to assess the
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error [136, 137]. This type of a posteriori error estimator is very effective for some

classes of problem and h-version adaptivity [68, 70, 72]. Its use in p-version analysis

in less obvious. Therefore, this approach is not considered in the current work.

7.2.2 Extrapolation Error Estimator

Extrapolation based methods have been used for uniform p-version adaptivity

with the error estimator obtained using a sequences of hierarchical p-version finite

element solutions [124]. The derivation of this estimator starts from the a-priori

p-version error estimate in Eq. 2.53,

||e|| ≤ C

Nβ
, (7.2)

where C and β are positive constants and N is the number of degrees of freedom.

Let Π(u) define the potential energy as [124],

Π(u) =
1

2
a(u, u)− (u, f)− (u, h)Γh . (7.3)

Therefore, the error measured in energy norm can be written as [124],

||e||2 = 1

2
a(e, e) = Π(uh)− Π(u). (7.4)

Thus, Eq. 7.2 can be written in the following form,

||e||2 = Π(uh)− Π(u) ≈ C2

N2β
. (7.5)

The rate of convergence is characterized by the constant β. Eq. 7.5 is such that for

sufficiently large N the “less than or equal” sign can be replaced by “approximately

equal” [124].

Let Π denote the exact potential energy. Knowing Π(uh) and N for three

p-levels of extension as Πp, Πp+1 and Πp+2 and their associated numbers of degrees

of freedom Np, Np+1 and Np+2, respectively, the Eq. 7.5 for the three p-levels are,

Πp − Π ≈ C2

N2β
p

, (7.6)
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Πp+1 − Π ≈ C2

N2β
p+1

, (7.7)

Πp+2 − Π ≈ C2

N2β
p+2

. (7.8)

The constant C can be eliminated from the equations by dividing Eq. 7.6 by Eq. 7.7

and Eq. 7.7 by Eq. 7.8 as,

Πp − Π

Πp+1 − Π
≈
(
Np+1

Np

)2β

, (7.9)

Πp+1 − Π

Πp+2 − Π
≈
(
Np+2

Np+1

)2β

. (7.10)

The constant β can be eliminated from the equations by taking logarithm on both

sides of the Eq. 7.9 and 7.10 then dividing the Eq. 7.9 by 7.10 to be [124],

log Π−Πp

Π−Πp+1

log Π−Πp+1

Π−Πp+2

≈
log Np+1

Np

log Np+2

Np+1

. (7.11)

Since Np, Np+1 and Np+2 are the known degrees of freedom for the three p-levels,

the right side of the Eq. 7.11 is a constant and denote by α as,

α =
log Np+1

Np

log Np+2

Np+1

. (7.12)

Therefore, the Eq. 7.11 can be written as,

Π− Πp

Π− Πp+1

≈
(
Π− Πp+1

Π− Πp+2

)α

, (7.13)

where the exact potential energy Π is the unknown to be solved. Since α is gen-

eral not an integer, the analytic expression for Π can not be directly derived from

Eq. 7.13. Numerical methods such as Newton’s method [29] can be applied to solve

the Eq. 7.13 to get an estimation of the exact potential strain energy Π.

Once the exact potential energy Π is known, the constants β and C can be

obtained by substituting Π back to Eq. 7.6-7.10. Given Π, Πp, Πp+1 and Πp+2 are
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known, the error measured in the energy norm for each p-level can be computed

using Eq. 7.4.

7.2.3 Residual Error Estimator

The residual type of error estimators have been successfully applied in hp-

version method [4, 5, 44, 51, 91, 92, 94] can be divided into two categories [6]:

explicit residual and implicit residual. The explicit residual error estimator measures

the residual of the finite element solution in the model problem to reflect how well

the finite element approximation satisfies the underlying boundary value problem

in the interior of the domain, the Neumann boundary condition and the regularity

of the approximation on the inter-element boundaries [6]. The implicit residual

error estimator solves an auxiliary boundary value problem typical on each element

to attain an approximation to the actual error function. An elemental implicit

residual error estimator is implemented in Trellis to serve as the a-posterior error

estimator for the adaptive directional variable p-version analysis procedure.

For the second order partial differential equation with abstract weak form as

given in Eq. 2.3, the error e = u − uh satisfies a local boundary value problem on

each element Ωk as [6],

ak(w, e) = (w, f)k − ak(w, u
h) +

∫

∂Ωk

∂u

∂nk
w ds, ∀w ∈Wk, (7.14)

where ak( , ) and ( , )k are the bilinear and linear form on the element Ωk. Wk is

the variation space defined on the element Ωk,

Wk = {w ∈ H1(Ωk), w = 0 on Γg ∩ ∂Ωk}. (7.15)

The boundary conditions imposed on the boundaries of the element Ωk are as

follows:

• The element boundaries that intersect a portion of the Γg such that,

e = 0, on ∂Ωk ∩ Γg. (7.16)
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Eq. 7.16 indicates that the finite element solution uh represents the Dirichlet

boundary condition exactly such that the trial space for the local boundary

value problem in Eq. 7.14 can be the same as Wk defined in Eq. 7.15.

• The element boundaries that intersect a portion of the Γh such that,

α
∂e

∂nk
= g − α

∂uh

∂nk
. (7.17)

• The element boundaries lie on the interior of the geometric domain such that

∂e

∂nk
=

∂u

∂nk
− ∂uh

∂nk
. (7.18)

In Eq. 7.14, ∂u
∂nk

is the flux on the boundary of the element Ωk. One approach

to construct the flux is to replace the true flux ∂u
∂nk

by an approximation obtained

from the finite element approximation itself [6],

∂u

∂nk
≈ 〈∂u

h

∂nk
〉, (7.19)

where 〈∂uh

∂nk
〉 is the averaging of the discontinuous finite element approximation over

the boundary between two neighboring elements Ωk and Ωj as follows [6],

〈∂u
h

∂nk
〉 = 1

2
· {(∇uh)k + (∇uh)j}. (7.20)

Then, the flux definition can be extended to include the exterior boundary,

〈∂u
h

∂nk
〉 =







1
2
· {(∇uh)k + (∇uh)j}, on ∂Ωk ∩ ∂Ωj

h, on ∂Ωk ∩ Γh

∂uh

∂nk
, on ∂Ωk ∩ Γg

(7.21)

However, simple averaging of the boundary fluxes on neighboring elements fails

to satisfy the overall equilibrium requirements for the local boundary problem in

Eq. 7.14 [6]. One approach to solve this problem is to carefully construct a subspace

of Wk on which the bilinear form of Eq. 7.14 will be coercive [6].
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An alternative to compute the boundary flux data is the equilibrated residual

method that is implemented in Trellis for the use of this work. Central to this

approach is to carefully choose ∂u
∂nk

such that the underlying boundary value problem

in Eq. 7.14 is naturally well-posed by satisfying overall equilibrium [6]. Let gk be

the approximation of the flux on the boundary of element Ωk as,

gk ≈
∂u

∂nk
, on ∂Ωk. (7.22)

Because the flux is continuous on the interelement boundaries,

gk + gj = 0 on ∂Ωk ∩ ∂Ωj, (7.23)

gk is chosen to be the same as the flux on the exterior boundary Γh,

gk = h on ∂Ωk ∩ Γh. (7.24)

The boundary data and the interior residual must satisfy the overall equilibrium

condition for the local boundary value problem in Eq. 7.14. Thus, the boundary

flux gk must be in equilibrium with the interior load as follows [6],

(w, f)k − ak(w, u
h) +

∫

∂Ωk

gkw ds = 0 ∀w ∈ Wk. (7.25)

The solution gk of Eq. 7.25 serves as the flux on the boundaries of the element Ωk

such that the local error boundary value problem in Eq. 7.14 can be written as,

ak(w, e) = (w, f)k − ak(w, u
h) +

∫

∂Ωk

gkw ds, ∀w ∈Wk, (7.26)

Let W h
k ⊂ Wk be the finite element subspace defined over the element Ωk that

only includes the subset of shape functions for higher p-order. The finite element

solution for the local boundary value problem in Eq. 7.26 is:

Find φk ∈ W h
k , such that [6],

ak(w
h, φk) = (wh, f)k − ak(w

h, uh) +

∫

∂Ωk

gkw
h ds, ∀wh ∈W h

k . (7.27)
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Therefore, the error estimator ηk for the element Ωk is computed as [6],

ηk = ||φk||. (7.28)

The solution accuracy over the mesh is obtained by summing the local error esti-

mators as [6],

η =

(
∑

k

η2k

) 1
2

. (7.29)

The ||φk|| in Eq. 7.28 is the error functional measured in the energy norm as given

in Eq. 2.52,

||φk|| = ak(φk, φk)
1
2 . (7.30)

The error estimator ηk is used in the adaptive p-version analysis procedure

to determine when to perform p-order enrichment for a element Ωk by checking

whether ηk ≥ ϑ. However, additional information is needed in the adaptive direc-

tional p-version analysis to determine how to elevate the p-orders in the appropriate

independent coordinates for the selected element Ωk.

7.3 Stress Resultant Based Correction Indicator

Most of the conventional adaptive p- and hp-version analysis procedures use

the error estimators ηk as defined in Eq. 7.28 as the correction indicator to elevate

the p-order one or two order higher for the selected element without concerning any

directional behavior [4, 5, 44, 51, 91, 92, 94].

Another type of correction indicator used for adaptive p-version analysis pro-

cedures is constructed based on the jumps in the stress resultants across shared

edges (2D) or shared faces (3D) [33, 56, 120, 124]. Since this approach does not

compute the local error estimator ηk for each element, it works in conjunct with the

extrapolation error estimator as discussed in Section 7.2.2 to get a global estimation

of the solution accuracy. This form of correction indicator is used in the StressCheck

[120] based results given in chapter 8, it is briefly reviewed here.

Let Λ be the sum of the absolute values of the difference in stress resultants.

Figure 7.1 shows the jumps for the shared face of the elements Ωk and Ωk+1 given
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by [120],

Λk
j =

∣
∣F k

x − F k+1
x

∣
∣+
∣
∣F k

y − F k+1
y

∣
∣+
∣
∣F k

z − F k+1
z

∣
∣ , (7.31)

where Fx, Fy, Fz are the stress resultants.

Fx
k

Fy
k

Fz
k

Fx
k+1

Fy
k+1

Fz
k+1

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

k
(k+1)

Figure 7.1: Correction Indicator Based on Stress Resultants

Let Λk
max is the largest jumps of the element and ΛT is the sum of all the

largest jumps over all the elements as 120],

Λk
max = max(Λk

j ), ΛT =

nel∑

k=1

Λk
max, (7.32)

where nel is the number of element over the mesh. The relative jump Φk for the

element is computed as,

Φk =
Λk
max

ΛT
. (7.33)

A correction indicator for the element Ωk has been defined as [120],

θk =
Φk

Φmax

, (7.34)

where Φmax is the largest Φk over the mesh. 0 ≤ θk ≤ 1. The p-order of an element

Ωk is raised to be a order higher if the correct indicator θk is larger than a threshold

value ϑ defined between 0.75-0.85 [33, 56, 120, 124]. It is shown from the definition

of the correction indicator in Eq. 7.34 that no directional behavior needed by the
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independent coordinates is considered.

7.4 Residual Based Directional Correction Indicator

A directional correction indicator that can be obtained by solving the local

error boundary value problem in Eq. 7.27 considers the addition of terms in the

specific element coordinate directions. The error e over the element Ωk is defined

as e = u− uhp. Since the element space with higher polynomial order is larger than

the space with lower order, an approximation to this error can be defined as [90],

e ≈ Eh
p+r = uhp+r − uhp, r ≥ 1. (7.35)

Eh
p+r is obtained by solving the local boundary value problem in Eq. 7.27 with

the finite element solution φp+r
k carefully constructed at the finite element subspace

W h
k with polynomial order p+ r [6, 90]. Let Nl be the set of shape functions in the

finite element subspace W h
k with polynomial order p+ r and dl is the coefficients,

np+r is the number of shape functions, φp+r
k can be written as,

φp+r
k =

np+r∑

l=1

Nldl. (7.36)

Note that the summation only contains the extra set of shape functions needed by

the finite element space goes from polynomial order p to p+ r.

This procedure can also be applied for each coordinate ξi of the element Ωk

independently such that the error for each coordinate can be written as,

e ≈ Eh
p+r|ξi

= uhp+r|ξi
− uhp, r ≥ 1. (7.37)

Eh
p+r|ξi

can be obtained by solving the local boundary value problem in Eq. 7.27

by carefully defining Φ
p+r|ξi
k at the finite element subspace W h

k with polynomial or-

der p+ r |ξi .
Let N ′

j be the shape functions in the finite element subspace W h
k with poly-

nomial order p+ r |ξi and d′j is the coefficients, np+1|ξi is the number of shape
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functions, Φ
p+r|ξi
k can be written as,

φ
p+r|ξi
k =

np+r|ξi∑

j=1

N ′
jd

′
j, (7.38)

A directional correction indicator ηξik for the independent coordinate ξi of the

element Ωk is defined as,

ηξik = ||φp+r|ξi
k ||, (7.39)

that measures difference between the finite element solution in order p and one order

higher in the direction ξi [90].

The Eq. 7.39 indicates that the computation of the directional correction indi-

cator ηξik requires solving the local error boundary value problem in the Eq. 7.27 for

every independent coordinate ξi. An alternative is to solve the local error boundary

value problem once in the finite element subspace that increases the polynomial or-

der at every direction to obtain φp+r
k . Since hierarchic shape functions are applied

in this thesis, the shape functions N ′
j in Eq. 7.38 are a subset of the shape functions

Nl in Eq. 7.36 as,

N ′
j ⊂ Nl. (7.40)

In this case, the difference between d′j and dl is not large [90]. Therefore the correc-

tion indicator in Eq. 7.39 can be computed as,

ηξik ≈ ||φ
p+r|ξi
k || = ||

np+r|ξi∑

j=1

N ′
jdj||. (7.41)

for each independent coordinate ξi by using the same coefficients dl.

7.5 Directional Variable p-Version Refinement Strategy

An effective refinement strategy for the directional variable p-version analysis

procedure should be able to address the following two issues:

• A threshold value to determine which elements should be refined.
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• A criteria to predict appropriate p-order enrichment for the element indepen-

dent coordinates based on the directional correction indicator.

Most the p- and hp-version adaptive procedures determine the threshold value

ϑ as a fraction of the maximum element error estimator over the mesh,

ϑ = θ max(ηk), (7.42)

where θ is a fixed value typically between 0.75-1.0 [5, 44, 56, 94]. One or two

order enrichment is performed on the element Ωk whose error estimator is ηk ≥ ϑ.

However, numerical analysis results in [5, 44, 56, 94] demonstrated that with this

strategy more iteration steps are needed for the adaptive analysis procedures to

achieve the optimal convergence rate, especially in the asymptotic rate, due to the

following two reasons:

• The fixed constant θ may not include all the elements that need finer resolution

at each step.

• One or two order enrichment many not be sufficient for the select element.

Aiming at achieving the prescribed accuracy τ with lowest degree of freedom

and less computational cost, this thesis determines the threshold value ϑ based the

basic theory that a finite element discretization is asymptotic optimal if the error

is equidistributed over each element [11]. Thus, the prescribed accuracy τ can be

translated to the threshold value ϑ as follows,

τ = ||e|| = (nelϑ
2)

1
2 , (7.43)

such that,

ϑ =
τ√
nel

, (7.44)

where nel is the number of elements of the mesh.

Based on the definition of the directional correction indicator in Eq. 7.39, an

element Ωk needs p-order enrichment for its independent coordinates ξi if,

ηξik ≥ ϑ, i = 1, ..., nsd, (7.45)
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where nsd is the problem dimension.

The p-order enrichment ∆pξi for the coordinate ξi is assuming the error of a

p-version analysis at a level p+∆pξi can be predicted as [61],

||e||p+∆pξi
= (

np
np+∆pξi

)β||e||p. (7.46)

where np and np+∆pξi
are the number of degrees of freedom at polynomial or-

der p and p+∆pξi respectively. β is the estimated rate of convergence at polynomial

order p that can be approximately computed as [61],

β =
ν

2
max(p+ 1), (7.47)

ν is a reduction factor selected as 1
1.25

= 0.8 to allow 25% error in the estimated

value of β [61].

In this work, the p-order enrichment ∆pξi for the coordinate ξi is determined

assuming that the error over the element Ωk can be reduced to the threshold value

ϑ by increasing the p-order on coordinate ξi independently. Thus, Eq. 7.46 can be

written as,

ϑ = (
np

np+∆pξi

)βηξik . (7.48)

Therefore, the number of degrees of freedom needed for the element Ωk at the

polynomial order p+∆pξi is computed as,

np+∆pξi
= np × (

ϑ

ηξik
)

1
β . (7.49)

np+∆pξi
in Eq. 7.49 is solved using numerical methods such as Newton’s method

[29]. In the adaptive p-version analysis, the polynomial enrichment ∆pξi
at the

coordinate direction ξi of the element Ωk is determined as the minimal order that

the degrees of the freedom of the element Ωk is greater than np+∆pξi
in Eq. 7.49.

The directional p-order refinement strategy in Eq. 7.49 may lead to the over-

refinement of the p-orders on the coordinate ξi because it does not consider the

interference effect between each coordinate. Such overrefinement is acceptable com-
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paring to the uniform refinement strategy at each coordinate over the element.

Since ∆pξi predicts the enriching p-order at the ξi direction of the element Ωe
k,

the closure mesh entities of the element must also update their polynomial orders

along ξi direction. As a simple example, Figure 7.2 shows that the p-orders of the

mesh edges M 1
0 , M

1
2 and ξ1 of the element M 2

0 must be raised two order higher

in case that ∆pξ1 = 2 and the p-orders of the mesh edges M 1
1 , M

1
3 and ξ1 of the

element M 2
0 must be raised one order higher in case that ∆pξ2 = 1. For a mesh

ξ2

ξ1

M 1
0

M 1
2

M 1
1

M 2
0

M 1
3 (2)

(2)

(2)

(2)

(2)
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2

M 1
1
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0
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3
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(3) (3)

Figure 7.2: p-Order Enrichment At Direction ξ1 and ξ2

entity shared by two different polynomial order elements, it is always the higher

order element wins. For example, the mesh edge M 1
1 in Figure 7.3 is 6th order due

to the connected mesh face M 2
1 is of polynomial order 6 at this direction.

(6)M 1
1 (6)M 1

5

(2)M 1
6

(2)M 1
4

(2)M 1
2

(0)M 1
0

(2)M 1
3 M 2

0 M 2
1

Figure 7.3: p-Order Enrichment For a Mesh Entity Connecting to Two
Different Polynomial Order Elements at Direction ξ1



CHAPTER 8

Analysis Results for p-Version Method

This chapter presents the p-version analysis results that focus on the following

three aspects:

• The influence of geometric approximation on the solution accuracy of p-version

method.

• The performance of the p-version meshes for models with singularities or thin

sections in p-version analysis software StressCheck.

• The directional adaptive p-version analysis in Trellis.

8.1 The Influence of Geometric Approximation on the So-

lution Accuracy of p-Version Method

This section discusses the influence of geometric approximation on the solution

accuracy of p-version finite element method by using a benchmark two-dimensional

elasticity problem for which analytic expressions for the exact displacement and

stress field are known.

8.1.1 Model Problem Description

An infinite plane weakened by an elliptical hole is deformed by the application

of uniform tensile stress in the vertical direction at infinity as shown in Figure 8.1(a).

The relevant geometric parameters are the major axis a and minor axis b of the inner

ellipse. These parameters are typically related to a third parameter, m, as,

a = 1 +m, b = 1−m, 0 ≤ m < 1, (8.1)

where m = 0 indicates the ellipse turn to be circle and m = 1 is a sharp crack.

Due to the double symmetry of the problem, only one quarter of the sub-domain

110
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Figure 8.1: Elliptical Hole in an Infinite Plane Under the Uniform Tensile
Stress at Infinity

ABCDE needs to be investigated as shown in Figure 8.1(b). The exact stresses for

the infinite domain problem are known along edges BC and DC and are given by,

σx =
1

2
{S(1− cos 2θ) + 2τρρ cos 2θ − 2τρθ sin 2θ}, (8.2)

σy =
1

2
{S(1 + cos 2θ) + 2τρρ cos 2θ + 2τρθ sin 2θ}, (8.3)

τxy =
1

2
{(2τρρ − S) sin 2θ + 2τρθ cos 2θ} (8.4)

where

S = ρ4 −m2 − 2m+ 2ρ2 cos 2θ, (8.5)

τρρ, τρθ are the stress components expressed in elliptical coordinate system (ρ, θ) [88].

The mapping between Cartesian coordinate system (x, y) and elliptical coor-

dinate system (ρ, θ) is,

x = R(ρ+
m

ρ
) cos θ, x = R(ρ− m

ρ
) sin θ, R =

a+ b

2
. (8.6)

Traction (Neumann) boundary conditions are applied on edges BC and CD
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and symmetric Dirichlet boundary conditions are imposed on edges DE and AB.

8.1.2 Maximum Stress and Strain Energy

The maximum stress σmax of this problem is concentrated at vertex A and is

a function of ratio a/b being defined as [88],

σmax = (1 +
2a

b
)p. (8.7)

The finite element stress is computed directly in this study. The strain vector ε is

computed directly from the finite element displacement solution uh as [124],

ε =

{

∂uhx
∂x

,
∂uhy
∂y

,
∂uhx
∂y

+
∂uhy
∂x

}

. (8.8)

The finite element stress vector σ is then computed by applying the stress-strain

relationship as [88],

σ = E · ε, (8.9)

where E is the symmetric positive definite material stiffness matrix [88]. For the

isotropic material under plain strain assumption used in this study, E is of the form

[88],

E =







E(1−v)
(1+v)(1−2v)

Ev
(1+v)(1−2v) 0

0 E(1−v)
(1+v)(1−2v) 0

0 0 E
2(1+v)






, (8.10)

where E is the Young’s Module and v is Poisson’s ratio. The search for the maximum

computed finite element stress σfemmax is conducted over not only Gauss Quadrature

points but also the vertices of each element [124]. The relative error in maximum

stress is defined as,

ε∞ =
|σfemmax − σmax|

σmax

%, (8.11)
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is of the most engineering interest. The exact potential energy Π(u) of the sub-

domain loaded by traction only without body force can be computed as [130],

Π(u) = −
∮

(Tnun+Ttut)ds = −[
∫ C

B

(Tnun+Ttut)ds+

∫ D

C

(Tnun+Ttut)ds], (8.12)

where Tn, Tt and un, ut are the normal and tangential traction components and

displacement components. The angle α is measured from the positive x axis to the

normal boundaries, thus for BC and CD α is 00 and 900 respectively, so Eq. 8.12 can

be simplified as [130],

Π(u) = −[
∫ C

B

(uxσx + uyτxy)dy +

∫ D

C

(uyσy + uxτxy)dx], (8.13)

where σx, σy, τxy are stress tensor components and ux and uy are displacement

components [124]. The exact potential energy is obtained by submitting the exact

stress and displacement expressions defined in Eq. 8.2-8.4 into Eq. 8.13. The finite

element potential energy Π(uh) is computed based on the definition of the potential

energy in Eq. 7.3 as,

Π(uh) =
1

2
a(uh, uh)− (uh, f)− (uh, h)Γh = −1

2

(
(uh, f) + (uh, h)Γh

)
, (8.14)

that is the evaluation of the product of load vector and finite element solution over

the boundary [130]. The relative error in energy norm is defined as,

er =

√

Π(u)− Π(uh)

Π(u)
× 100%, (8.15)

8.1.3 Finite Element Meshes and Geometric Approximation Shapes

Two parameters m = 0.25 and m = 0.9 are selected to construct two test

models. The ellipse with parameter m = 0.25 is smooth with a weak stress concen-

tration 4.333333 while the ellipse with parameter m = 0.9 is sharp with a strong

stress concentration 39. An isotropic material with Young’s Module of 1.0 and Pois-

son’s ratio of 0.3 is used under the assumption of plane strain. The stress applied at

the infinite boundaries is p = 1 . Table 8.1 provides the exact potential energy (up
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to 7 digits significant figures) and the exact maximum stress for selected geometric

shapes.

Table 8.1: Parameters for Test Problem 1

m a b a/b σmax Π(u)
0.25 1.25 0.75 1.677 13/3 -7.8462131
0.9 1.9 0.1 19 39 -8.2308397

For both of the models, a coarse mesh with only one edge classified on the

ellipse AE (see Figure 8.2(a)) is used to perform the analysis and the function

polynomial orders vary from p = 2 to p = 10. For the mesh edge that is used to

geometrically discretize the ellipse, linear (q = 1), quadratic (q = 2), cubic (q = 3)

and quartic (q = 4) geometric approximations are selected.

For the model with parameter m = 0.25, two different fitting methods are ap-

plied for the q > 1 cases. The first is C0 interpolant where the interpolating points

are equally spaced in the parametric space of the edge. The second enforces C1 con-

tinuity at the vertices A and E. Close-ups of the geometric approximations in the

vicinity of vertex A are shown in Figure 8.2(b)-8.2(d).

For the model with parameter m = 0.9, Figure 8.3(b)-8.3(d) shows the ge-

ometric approximation shapes for the mesh edge classified on the ellipse that are

determined by the same two fitting methods for the model with parameterm = 0.25.

The C0 geometric approximation shapes defined by equal spaced interpolation pro-

vide poor geometric approximations, particular quartic shape. The quadratic and

cubic C1 geometric approximation shapes have better approximation quality than

the C0 shapes in terms of the maximum distance deviation between the geomet-

ric shapes and the model edge. However, the quartic C1 geometric approximation

shape does not show any improvement than the quartic C0 shape. The shapes in

Figure 8.3 and the analysis results in Figure 8.8 clearly demonstrate that the shapes

determined by the equal spaced interpolating points in the edge parameter space

are unacceptable. Alternative fitting techniques to construct geometric shapes for

the sharp ellipse are needed. In this thesis, a curvature variation based method is

applied in such a way that the interpolation points can be placed in the domains

that have larger curvature variation.
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Figure 8.2: Mesh and Different Geometric Approximation Shapes at
Point A for Model with m = 0.25

Let S(t) be the curvature variation function of the model edge over the para-

metric space a ≤ t ≤ b of the model edge. For the ellipse with m = 0.9, S(t) is of

the form,

S(t) =
190(1 + t2)

(1442t2 + 1 + t4)
√

(1442t2+1+t4)
(1+t2)4

, 0 ≤ t ≤ 1. (8.16)
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(a) Coarse Mesh
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Figure 8.3: Mesh and Different Geometric Approximation Shapes at
Point A for Model with m = 0.9

For a qth order mesh edge, the set of interpolation points ti is determined to satisfy,

∫ ti+1

ti

S(t)dt =
1

q

∫ b

a

S(t)dt, 0 ≤ i ≤ q − 1, (8.17)

that the curvature variation over each segment is equal. For the model with param-

eter m = 0.9, the unequal spaced interpolation points determined by the Eq. 8.17

are presented in Table 8.2 and the C0 geometric shapes are shown in Figure 8.4 that
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the approximation improvements of the cubic and quartic geometric shapes to the

model ellipse comparing to those C0 shapes in Figure 8.3 are obvious. The cubic

and quartic shapes are so close to the model ellipse edge that the difference between

them are very small in Figure 8.4.

Table 8.2: Unequal Spaced Interpolation Points for Model with m = 0.9

q t0 t1 t2
q=2 0.000921
q=3 0.000614 0.001228
q=4 0.000461 0.000921 0.001382

0 0.5 1 1.5
0

0.02

0.04

0.06

0.08

0.1

0.12

x

y

Model edge
quadratic
cubic
quartic

Figure 8.4: C0 Geometric Approximation Shapes Determined by Unequal
Spaced Interpolation Points for Model with m = 0.9

8.1.4 Analysis Results for the Model with m = 0.25

Convergence curves for the relative error in energy norm with respect to poly-

nomial order p for the various geometric approximation orders q are shown in Fig-

ure 8.5(a)-8.5(b). As should be expected, the error ceases to decrease when the

polynomial order increase past the geometric approximation order which is consis-

tent with the basic theory [46]. The discretization error approaches a limit as p in-

creases. This limit is essentially the geometric approximation error because for very

high p we solve the PDE nearly exactly on an approximated geometrical domain.
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The geometrical approximation error is less when the geometric approximation order

increases.
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Figure 8.5: Mesh and Different Geometric Approximation Shapes

The performance of the different geometric approximations on the L∞ norm

of the maximum stress is a bit more complex. Figure 8.6(a) shows the relative error

in maximum stress for the C0 geometric approximations and Figure 8.6(b) shows

it for the C1 geometric approximations. For the linear geometric approximation

(q = 1 for C0) the computed maximum stress is underestimated at p = 1, but

quickly increases past the exact value to overestimate the exact value by relative

error of 122% at p = 10. Such behavior is expected since as p increases we are moving

toward to the solution of a problem with a sharp corner at point A where the stress

theoretically goes to infinity. As the geometric approximation order q is increased

for the C0 shapes, the sharpness of the slope discontinuity at vertex A is decreased

and the stress results become more accurate. However, it is interesting to note that

in the case of quadratic C0 geometric approximation the stress is over-predicted

by 45%.

A comparison of the C0 and C1 geometric approximation cases indicates that

both of them underestimate the exact value for low order polynomial order p. In the

case of C0 geometric approximations the stress becomes overestimated when p con-
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Figure 8.6: Mesh and Different Geometric Approximation Shapes

tinues to increase. In the case of C1 geometric approximations the stress is al-

ways underestimated for q = 2 and q = 3 while the q = 4 does slightly overes-

timate the value for high p. Figure 8.7 provides a more direction comparison of

the C0 and C1 shapes for the various geometric approximation orders.
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Figure 8.7: Convergence Curves for C0 and C1 Shapes

It should noted that the geometric approximation error for the quadratic ge-

ometric approximations (q = 2), at p = 10 are substantial with an overestimate
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of 45% for the C0 case and underestimate of 16% for the C1 shape. The cubic

geometric approximations (q = 3) yield a smaller error at p = 10 with an overes-

timate of 7.7% for the C0 case and underestimate of 5.0% for the C1 case. The

quartic geometric approximations (q = 4) yield the smallest error at p = 10 with

an overestimate of 2.8% for the C0 case and 0.29% for the C1 case. These results

are consistent with those presented in reference [33] where the ellipse geometry was

approximated using a blending function method.

8.1.5 Analysis Results for the Model with m = 0.9

Convergence curves for the C0 geometric approximation shapes determined by

the equal spaced interpolating points are shown in Figure 8.8. The results for the

C1 geometric approximation shapes are nearly the same that will not be repeated

presented here.
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Figure 8.8: Convergence Curves for C0 Shapes with Equal Spaced Inter-
polating Points

In the case of solution accuracy measured with the relative error in the energy

norm with respect to the polynomial order, the error of the high order geometric

shapes converges to the same level accuracy (5%) as the linear geometric shape.

The phenomenon is expected because of the unsatisfied geometric approximations

determined by the equal spaced fitting technique. In the case of the L∞ norm, all
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Figure 8.9: Convergence Curves for C0 Shapes with Unequal Spaced In-
terpolating Points

the C0 approximation shapes underestimate the maximum stress with 75% relative

error in L∞ norm at p = 10.

The convergence curves for the C1 geometric shapes determined by the cur-

vature driven unequal spaced interpolating points are shown in Figure 8.9. The

relative error in energy norm with respect to the polynomial order are shown in

Figure 8.9(a). The error converges to different limits for different geometric ap-

proximation order as the polynomial order p increases, 5.8% for q = 1, 4.8% for

q = 2, 3.5% for q = 3, and 2.2% for q = 4 respectively. The limits decrease as the

geometric approximation order q increases that is consistent with the results for the

model with m = 0.25.

The relative error in L∞ norm with respect to the polynomial order are shown

in Figure 8.9(b). The quadratic approximation shape always underestimates the

maximum stress and the solution accuracy is -38% at p = 10. The cubic and

quartic geometric approximation shapes have the same behavior that underestimate

the exact stress at p = 2 then highly overestimate the exact stress at p = 3, 58% for

the cubic shape and 40% for the quartic shape. The curves then rapidly converge

to the exact stress after p = 4. The relative error is 6.67% for the cubic shape and

2.25% for the quartic shape at p = 10. Considering only one edge is used for the
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sharp ellipse, the results are promising.

8.2 The Application of p-Version Mesh for a 3D Model with

Singularities in StressCheck

This section investigates the influence of the p-version mesh constructed using

the automatic p-version mesh generation procedure presented in Part II of the thesis

with the p-version analysis software StressCheck to solve 3D linear elasticity problem

with singularities. The performance in terms of the relative error in energy norm

with respect to the degrees of freedom and the computational cost between the

p-version mesh and the conventional curved isotropic mesh is compared.

8.2.1 p-Version analysis Software StressCheck

StressCheck is a p-version finite element method based software that supports

linear and nonlinear stress analysis technology. Its main features include [120]:

1. Elements - support beam, fastener, link, quadrilateral, triangle, hexahedral,

prism and tetrahedral elements.

2. Error estimation - based on the extrapolation a posteriori error estimation

presented in Section 7.2.2.

3. Adaptivity - StressCheck supports uniform and adaptive p-version analysis.

The correction indicator is based on the stress resultant jumps between shared

edges and faces defined as in Eq. 7.31-7.34.

4. Material - linear isotropic, orthotropic, anisotropic etc.; nonlinear elastic-

plastic, bilinear, hyper-elastic etc.; Laminated isotropic and orthotropic layer

etc..

8.2.2 Problem Description for the Model with Singularities

Figure 8.10 shows the three-dimensional model for which the top model face

and the left cylindrical inner face is under uniform pressure P = 1 and the right

cylindrical inner face is fixed. There are two singular model edges whose interior
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dihedral angles are 2700 and the stress at these edges goes to infinity theoretically.

The material for the problem is assumed to be linearly elastic with Young’s Modulus

of 2× 107psi and Poisson’s ratio of 0.3. Due to the symmetry, only one half of the

model is solved with uniform and adaptive p-version analysis in StressCheck.

Figure 8.10: Geometric Model Under Uniform Pressure

Since the extrapolated solution of this problem is unknown, a finer curved

graded mesh with 5481 regions and 4 graded layers towards the singular edges

shown in Figure 8.11 is applied with uniform p-version method to get an estimated

extrapolated potential energy Π(u). First, the finite element potential energy Π(uh)

at p = 6, 7, 8 is computed as shown in Table 8.3 and the extrapolated potential

energy Π(u) is computed using the extrapolation error estimator in Eq. 7.13.

Figure 8.11: Finer Curved p-Version Mesh with 4 Layers and 5481 Re-
gions

Figure 8.12 shows the two finite element meshes that will be uniformly and
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Table 8.3: Computation of the Extrapolated Potential Energy Π(u) for
the Model with Singularities

p=6 p=7 p=8
Dof 364, 254 623, 003 982, 085

Π(uh)(×10−1) -3.73765 -3.73841 -3.73881
Π(u)(×10−1) -3.73954

adaptively solved. Figure 8.12(a) is the curved isotropic volume mesh with 1014

regions and Figure 8.12(b) is the p-version mesh with 2 graded layers and 888

regions. The problem is solved with uniform p-version method from p = 2 to 8 and

adaptive p-version method till the maximum polynomial order of elements reaches

the p-order limit 8. The solution measured in energy norm er is computed using the

Eq. 8.15, where the extrapolated potential energy Π(u) used is -3.73954 obtained

from Table 8.3.

Both the meshes apply geometric mapping that uses a parabola to approximate

the model boundaries [120]. The geometric mapping in StressCheck must obtain at

least 6 sample points for each edge and 36 sample points for each face classified

on the curved model boundaries [120]. Although geometric mapping approximates

the model boundary more accurate than the isoparameteric mapping, geometric

approximation error still exist and must be considered in analyzing the results.

(a) Curved Isotrpic Volume Mesh with 1014
Regions

(b) Curved p-version Mesh with 2 Graded
Layers and 888 Regions

Figure 8.12: Finite Element Meshes
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8.2.3 Analysis Results

The statistics for uniform and adaptive p-version method is shown in Table 8.4

and 8.5 respectively, where the cpu time measures the computational cost for assem-

bling and solving the global stiffness matrix at each polynomial order or adaptive

iteration step. The extrapolated potential energy Π(u) in Table 8.4 is computed by

using the data at the polynomial order p = 6, 7, 8 respectively for both the meshes.

Convergence curves for the relative error in energy norm with respect to the

number of degree of freedom (Dof) and computational cost (CPU) for different

meshes and p-version methods are shown in Figure 8.13. The CPU time measures

the computational cost starting from first step to solve the problem till the current

step.

Table 8.4: Uniform p-version Analysis Results

Curved Isotropic Mesh Curved p-version Mesh
p Dof Π(uh)(−1) er(%) cpu(s) Dof Π(uh)(−1) er(%) cpu(s)
2 5,416 -3.55145 22.4 3.8 4,354 -3.49452 25.6 4.3
3 16,676 -3.69904 10.4 8.6 1,3781 -3.70743 9.27 14.4
4 37,693 -3.72223 6.80 21.9 31,593 -3.72957 5.16 34.5
5 71,509 -3.72983 5.10 61.8 60,454 -3.73415 3.80 105.2
6 121,166 -3.73350 4.02 230.4 103,028 -3.73562 3.24 456.4
7 189,706 -3.73551 3.28 593.1 161,979 -3.73631 2.94 1049.1
8 280,171 -3.73677 2.72 1621.6 239,971 -3.73672 2.75 2463.6
Π(u)(−1) -3.74032 1.44 -3.73769 2.21

The two extrapolated potential energy value computed in Table 8.4 are com-

pared with the reference value -3.7395441 obtained from the finer mesh, the relative

error is 1.44% for the curved isotropic mesh and 2.21% for the p-version mesh. Such

error can be regarded as the geometric approximation error for both the meshes

because the model boundaries are not represented exactly. It is expected that the

curved isotropic mesh has lower relative error than the p-version mesh since the

curved isotropic mesh has more mesh entities classified on the curved boundaries.

The geometric approximation error is then improved.

In the case of uniform p-version method, the error for both the meshes reaches

the same level of accuracy, 2.72% for the isotropic mesh and 2.75% for the p-version
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Table 8.5: Adaptive p-version Analysis Results

Curved Isotropic Mesh Curved p-version Mesh
Step Dof Π(uh)(−1) er(%) cpu(s) Dof Π(uh)(−1) er(%) cpu(s)
1 871 -3.45145 95.2 1.8 648 -3.45452 95.2 1.6
2 5,416 -3.55145 22.4 3.9 4,354 -3.49454 25.6 4.4
3 16,676 -3.69904 10.4 9.3 13,781 -3.70743 9.27 14.9
4 16,814 -3.70114 10.1 10.4 13,863 -3.71048 8.82 15.3
5 17,222 -3.70526 9.57 11.0 13,930 -3.71106 8.73 16.0
6 18,167 -3.71005 8.88 20.7 14,174 -3.71505 8.09 18.4
7 18,587 -3.71527 8.06 29.4 14,449 -3.71990 7.25 27.4
8 19,756 -3.71832 7.53 55.6 14,714 -3.72324 6.60 39.2
9 19,852 -3.71841 7.52 55.1 15,138 -3.72761 5.65 46.3
10 21,496 -3.72002 7.22 76.5

mesh at p = 8. However, the p-version mesh nearly reaches its limit value 2.21%

while the error for the curved isotropic mesh is still higher comparing to the limit

value 1.44%. Considering the degrees of freedom used at p = 8, the p-version

mesh uses 15% fewer DOF than the curved isotropic mesh. Convergence curve in

Figure 8.13(a) indicates that the p-version mesh converges faster than the isotropic

mesh and uses less than 1/2 the degrees of freedom a solution accuracy level of 5%,

3.80% at p = 5 with 60,454 Dof for the p-version mesh and 4.02% at p = 6 with

121,166 Dof for the isotropic mesh.

In the case of adaptive p-version method, the error converges very slow after

8 iteration steps for the isotropic mesh and the solution accuracy is 7.22% at the

last iteration step. This phenomenon does not appear for the p-version mesh that

the error keeps decreasing and terminates at a level of 5.65% at the iteration step.

Considering the degrees of freedom used at the last step of the adaptive p-version

analysis, the p-version mesh uses 30% fewer Dof than the isotropic mesh.

The comparison of the computational cost for the different types of meshes is

a bit more complex since it depends on the software implementation, particular the

solvers. The convergence curve in Figure 8.13(b) shows that the computational cost

for the p-version mesh in the uniform p-version mesh is always more expensive than

the isotropic mesh that is inconsistent with the convergence curve of the degrees

of the freedom in Figure 8.13(a). Such contradiction is because the p-version mesh
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use larger aspect ratio elements to discretize the domain, particular around the

singular edges. The larger aspect ratio elements worsen the conditioning of the

global stiffness matrix and require the iteration solver to take longer to converge.

In the case of the adaptive p-version analysis, the computational cost is consistent

with the degrees of freedom curves in Figure 8.13(a) that the p-version mesh use

33% less CPU time to achieve better solution accuracy than the isotropic mesh at

the last iteration step.

8.3 The Application of p-Version Mesh for a 3D Thin Sec-

tion Model

StressCheck allows to independent control the polynomial order in the thick-

ness and in-plane directions for the thin section structures discretized either by

hexahedral elements or prismatic elements. In the case of hexahedral elements, any

of the three independent coordinates can be selected to represent the thickness di-

rection. In the case of prismatic elements, only the direction along the quadrilateral

faces can be declared as the thickness direction [120]. In StressCheck, the polyno-

mial order of the thickness direction is fixed at a lower value of q and the polynomial

order p in the in-plane directions can be applied with uniform or adaptive p-version

analysis. Since the number of degrees of freedom associated with hexahedral or pris-

matic elements depends on the polynomial value p and q, the different controlling of

the p and q allows substantial savings in computational time without compromising

the quality and accuracy of solution.

Since StressCheck does not support pyramid element, the curved 3D thin sec-

tion model in this section is designed such that the p-version mesh only contains

prismatic elements without long diagonal through the thickness direction. The per-

formance of the prismatic p-version mesh when q = p and q = 1, 2, 3 is compared

with an isotropic tetrahedral mesh in terms of the solution accuracy measured in

energy norm with respect to the degrees of freedom and computational cost.
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8.3.1 Problem Description for the Thin Section Model

Figure 8.14 shows the curved thin section model under uniform pressure P = 1

while the two cylindrical holes are fixed. The material for the problem is assumed

to be linear elastic with Young’s Modulus of 3 × 107psi and Poisson’s ratio of 0.3.

Due to the symmetry, one half of the model is analyzed.

Figure 8.14: Thin Section Model

A finer curved prismatic mesh with 658 regions shown in Figure 8.15 is used

to estimate the extrapolated potential energy Π(u). Uniform p-version analysis is

performed and the finite element potential energy Π(uh) is computed at p = 6, 7, 8

presented in Table 8.7. The extrapolated potential energy is computed using the

extrapolation error estimator in Eq. 8.15.

Figure 8.15: Finer Curved Prismatic Mesh with 658 Regions

Two Finite element meshes shown in Figure 8.16 are used to solve the prob-

lem. The curved prismatic mesh (left) has 80 regions generated by applying the
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Table 8.6: Computation of the Extrapolated Potential Energy Π(u) for
the Thin Section Model

p=6 p=7 p=8
Dof 102, 958 153, 692 219, 288
Π(uh) -1.33677 -1.33773 -1.33822
Π(u) -1.33894

p-version mesh generation procedure presented in Part II of this thesis. The curved

tetrahedral mesh (right) is generated by the isotropic volume mesh generator and

has 297 regions.

(a) Curved Prismatic Mesh with 80 Regions (b) Curved Tetrahedral Mesh with 297 Re-
gions

Figure 8.16: Finite Element Meshes

The p-version analysis performed on the two meshes includes:

• Uniform p-version analysis for the tetrahedral mesh and the prismatic mesh

with q = p from p = 2 to p = 8.

• Fix the polynomial order q = 1, 2, 3 at the thickness direction for the prismatic

mesh and apply uniform p-version analysis at the in-plane directions from

p = 2 to p = 8.

8.3.2 Analysis Results

The statistics of the uniform p-version analysis for the tetrahedral and pris-

matic mesh with q = p is presented in Table 8.8. Table 8.9 shows the relative error

in energy norm with respect to the degrees of freedom for prismatic p-version mesh
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with q = 1, 2, 3 and Table 8.9 compares the computational costs for all of the five

analysis cases. Convergence curves for relative error in energy norm with respect to

the degrees of freedom and the computational cost are shown in Figure 8.17.

Table 8.7: Uniform p-version Analysis Results for Tet and Prism Mesh

Curved Tetrahedral Mesh Curved Prismatic p-version Mesh
p Dof Π(uh) er(%) Dof Π(uh) er(%)
2 1,728 -0.59427 7.45 1,199 -0.74494 6.66
3 5,101 -1.17889 3.46 2,592 -1.14193 3.83
4 11,241 -1.20603 1.57 4,850 -1.29592 1.79
5 20,973 -1.32453 1.04 8,213 -1.32051 1.17
6 35,116 -1.32948 0.84 12,921 -1.32803 0.92
7 54,493 -1.33160 0.74 19,214 -1.33106 0.78
8 79,226 -1.33274 0.68 27,332 -1.33275 0.68

Π(u) -1.33894 -1.33894

Table 8.8: Uniform p-version Analysis Results for Tet and Prism Mesh

q=1 q=2 q=3
p Dof Π(uh) er(%) Dof Π(uh) er(%) Dof Π(uh) er(%)
2 1,056 -0.67732 7.02 1,199 -0.74494 6.66 1,342 -0.74782 6.65
3 2,306 -0.98911 5.11 2,449 -1.13765 3.87 2,592 -1.14193 3.83
4 4,036 -1.05514 4.61 4,564 -1.29338 1.84 4,704 -1.29588 1.79
5 6,246 -1.06100 4.56 7,159 -1.31274 1.40 7,687 -1.31821 1.25
6 8,936 -1.06208 4.55 10,234 -1.31686 1.28 11,147 -1.32304 1.09
7 12,106 -1.06223 4.55 13,789 -1.31802 1.25 15,087 -1.32435 1.04
8 15,756 -1.06226 4.55 17,892 -1.31846 1.24 19,507 -1.32487 1.02
Π(u)) -1.33894 -1.33894 -1.33894

Since the problem does not possess any singularity caused by model geometry

shape, both the tetrahedral mesh and the prismatic mesh with q = p can achieve

exponential convergence rate as the convergence curves shown in Figure 8.17(a) and

the solution accuracy for each polynomial order p is nearly the same for these two

meshes. However, the prismatic mesh uses 1/3 fewer regions than the tetrahedral

mesh that substantially saves the degrees of freedom to analyze the problem. For

example, the prismatic mesh use 65% fewer Dof than the tetrahedral mesh to achieve

the same solution accuracy 0.68% at p = 8.
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Table 8.9: The Comparison of Computational Cost (CPU(s))

Tet Mesh Prismatic Mesh
q = p q = 1 q = 2 q = 3

p er(%) CPU er(%) CPU er(%) CPU er(%) CPU er(%) CPU
2 7.54 1.1 6.66 0.6 7.02 0.4 6.66 0.5 6.65 0.7
3 3.46 8.6 3.83 2.5 5.11 1.5 3.87 2.1 3.83 2.7
4 1.57 28.4 1.79 5.6 4.61 3.0 1.84 4.2 1.79 5.5
5 1.04 76.1 1.17 11.2 4.56 4.9 1.40 7.1 1.25 9.5
6 0.84 224.8 0.92 22.2 4.55 7.5 1.28 11.3 1.09 15.3
7 0.74 577.7 0.78 51.0 4.55 11.2 1.24 17.4 1.04 23.9
8 0.68 1450.6 0.68 96.9 4.55 17.0 1.24 26.4 1.02 37.2

As for the directional variable p-version analysis, the convergence curves in

Figure 8.17(a) indicate that the error ceases to decrease when the polynomial order

p past than quartic in the case that the polynomial order of the thickness direction

is fixed at q = 1. The error remains at 4.55% that is sizable larger than the case

q = p. In the case that the polynomial order of the thickness direction is fixed

at q = 2, 3, the convergence curves have the same behavior after p = 6 but the

convergent errors is much smaller than q = 1, 1.24% for q = 2 and 1.02% for q = 3.

Comparing to the prismatic mesh with q = p, the cases with q = 2, 3 use 35% and

20% fewer degrees of freedom at p = 8 respectively.

The computational cost for all of the five cases is compared in Figure 8.17(b)

that is consistent with the behavior of the convergence curves in Figure 8.17(a). At

p = 8, the prismatic mesh with q = p uses 95% fewer CPU time comparing the

tetrahedral mesh. The prismatic mesh with q = 2, 3 save 80% and 71% fewer CPU

time comparing to the case with q = p.

Both of the results from the models with singularity and thin sections show

that the p-version mesh must be appropriately constructed and the polynomial

order distribution must take the directional behavior into consideration in order to

efficiently apply p-version analysis.
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8.4 Directional Adaptive p-Version Method for Model with

Thin Sections

This section discusses the application of directional adaptive p-version analysis

in Trellis. The p-version mesh for the geometric model is generated by applying the

procedure presented in Part II of this thesis.

8.4.1 Model Problem Description

The model with thin sections is shown in Figure 8.18. Due to the symmetry

of the problem, only one half of the domain is analyzed by assigning properly sym-

metric boundary conditions. For this particular model, there are two portions of the

domain can be regarded as thin sections with thickness 0.5 (marked in Figure 8.18)

determined by the dimensions of the geometric model.

Figure 8.18: Geometric Model of the Structural Part with Thin Sections

The material is also assumed to be linearly elastic with Young’s modulus

3 × 107psi and Poisson’s ratio of 0.3. The quadratic Z directional pressure P is of

the form,

P = 1.− (
x

4.5
)2 (8.18)

and is applied on the inner circular surface that will cause the bending of the bottom

thin sections.

Since the extrapolated solution of this problem is unknown, a finer curved mesh

with 2192 tetrahedral regions is applied uniform p-version analysis in StressCheck
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to obtain an estimated extrapolated potential energy Π(u). The finite element

potential energy Π(uh) for three polynomial order p = 6, 7, 8 and the extrapolated

potential energy computed as Eq. 8.15 is presented in Table 8.10.

Figure 8.19: Finer Curved Mesh with 2192 Regions

Table 8.10: Computation of the Extrapolated Potential Energy Π(u) for
the Thin Section Model

p=6 p=7 p=8
Dof 263, 281 411, 920 608, 026

Π(uh)(×10−1) -3.78971 -3.79023 -3.79046
Π(u)(×10−1) -3.79062714

8.4.2 Finite Element Meshes for the Geometric Model

Figure 8.20 shows to curved meshes for the one half of the domain. The

mesh in Figure 8.20(a) is generated by the automatic tetrahedral volume mesh

generator and the mesh in Figure 8.20(b) is generated using the procedure presented

in Part II that has mixed topological elements. The two thin section structures

are meshed with prismatic elements without diagonal edge through the thickness

directions comparing to the all tetrahedral element mesh. Table 8.11 presents the

summary of these two meshes and the statistic indicates that number of elements

for mixed topological mesh has been reduced almost 50% comparing to the all

tetrahedral mesh.
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(a) All Tetrahedral Mesh (b) Mixed Topology Mesh

Figure 8.20: Meshes for Model with Thin Sections

The relative error er in energy norm is computed as,

er =

√

||u− uh||
||u|| % =

√

||e||
||u|| % =

√
∑
ηk

||u|| % (8.19)

Where ηk is the elemental residual error estimator computed based on Eq 7.28.

8.4.3 Analysis Result

The problem is analyzed using (1) Uniform p-version method that varies the

polynomial order from p = 2 to p = 8 and (2) Adaptive p-version method that

enriches the polynomial order independently at each coordinate direction of the

elements.

Table 8.12 presents the analysis results with respect to the number of degree

of freedom for uniform p-version method and 8.13 for adaptive p-version method.

The convergence curves are shown in Figure 8.21

Table 8.11: Mesh Comparison for Model with Thin Sections

Regions Faces Edges Vertices
All tetrahedral 131 328 264 67
Mixed topology 66 197 194 63

Tet Prism Pyramid Tri Quad
38 24 4 149 48
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In case of uniform p-version method, the mixed topology mesh can obtain more

accurate solution (1.57%) than the all tetrahedral mesh (4.15%) with 45% fewer

degrees of freedom. Such behavior is expected since the mixed topology mesh

have 50% less elements than the all tetrahedral mesh and functional space of pris-

matic element is also rich than tetrahedral mesh. In case of the adaptive p-version

method for the all tetrahedral mesh, the adaptive analysis stops after 6 itera-

tion steps with an unsatisfied solution accuracy level 9.02% because some elements

reached the admissible polynomial order limitation p = 8. For the mixed topology

mesh, the directional p-version method uses 53% less degree of freedom than that

used for uniform p-version method to achieve and solution accuracy that is slightly

better. The highest polynomial order at the last step is p = 7 for the elements next

to the fixed cylinder hole.

Table 8.12: Uniform p-Version Analysis Results

All Tetrahedral Mesh Mixed Topology Mesh
p Dof (N) er Dof (N) er
2 890 60.42 710 47.74
3 2,566 28.86 1,699 15.39
4 5,586 17.78 2,280 12.20
5 10,343 11.61 5,939 7.39
6 17,230 7.76 9,574 4.13
7 26,640 5.56 14,483 2.16
8 38,966 4.15 20,864 1.57

Table 8.13: Directional Adaptive p-Version Analysis Results

All Tetrahedral Mesh Mixed Topology Mesh
Step Dof (N) er Dof (N) er
1 890 60.42 710 47.74
2 2,635 24.02 1,925 14.35
3 2,837 22.08 2,145 10.46
4 3,371 17.06 3,536 8.87
5 4,129 11.19 5,767 4.36
6 4,432 9.02 6,768 1.97
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CHAPTER 9

Conclusions

9.1 Thesis Contributions

This thesis has addressed two issues related to adaptive p-version method:

1. Automatic construction of near optimal p-version meshes characterized by (i)

geometric mesh gradation towards solution singularities, (ii) controlled geo-

metric approximation error for curved model boundaries, and (iii) Prismatic

elements without long diagonals through for thin sections.

2. Directional adaptive control of polynomial order in the independent coordi-

nates of the mesh entities.

Chapter 4 presented a procedure that automatically isolates the singular model

edges and thin sections using the modeler information and a coarse surface triangu-

lation. Cylindrical layered meshes around the singular edges and one layer prismatic

thin section meshes are generated.

Chapter 5 presented a p-version mesh curving procedure that curves the mesh

entities classified on the curved boundaries in an appropriate order with gradation

and thin section meshes control. The procedure can produce a valid curved p-version

mesh up to any required order while maintaining the geometric gradation for the

singular model edges and prismatic thin section meshes. A set of curved local mesh

modification operations build on the straight-sided mesh modification operations

are applied in an appropriate order to incrementally correct the invalid elements

caused by curving mesh entities.

The performance of the p-version meshes is investigated in the p-version anal-

ysis software StressCheck and Trellis. Chapter 6 discussed the flexible topology

based directional variable p-version approximation structure that allow the assign-

ment of different p-orders in the independent coordinates of the mesh entities in the

adaptive analysis. Chapter 7 presented the automated adaptive directional vari-

able p-version analysis procedure for 3D curved domains implemented in Trellis.

139
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A directional correction indicator derived from the computation of the elemental

residual error estimator is given such that the p-orders are adaptively enriched in

the appropriate directions.

9.2 Recommendations for Future Work

Areas that can be extended from this thesis for the further research are listed

as follows,

1. Efficient numerical integration schemes could be addressed for directional

adaptive p-version method with curved p-version meshes.

2. The p-version adaptive analysis could be extended to fully automated hp-

version adaptivity that requires a criteria to determine whether h-version or

p-version refinement is performed at the adaptive analysis. In the case of h-

version refinement, the maintaining of the gradation and the prismatic thin

section meshes of the p-version meshes must be considered. The determination

of the number of layers for the singular model edges in the adaptive analysis

is also very important for the automated hp-version adaptivity.

3. The curved p-version mesh could be applied in various problems such as com-

putational fluid dynamics and multi-scale finite element analysis.

4. The p-version mesh generator in this work only considers C0 continuous ge-

ometric approximation shapes for the mesh entities classified on the curved

model boundaries. Approaches to construct higher order continuity geometric

shapes could be addressed.
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