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1 Introduction

There is a long history on the development of mathematical representations ca-
pable of providing behavioral predictions of physical parameters on the atomic,
molecular, microscopic, and macroscopic scales. Over the past half century,
simulation programs have been developed to support the computerized solu-
tion of these mathematical representations which, in some cases, are discretized
with billions of degrees of freedom and solved on massively parallel computers
with thousands of processors. Historically, scientists and engineers have applied
these models (simulation programs) to solve problems on a single physical scale.

However, in recent years it has become clear that to continue to make advances



in the areas of nanotechnology and biotechnology and to develop new products
and treatments based on those advances, scientists and engineers must be able
to solve sets of coupled models active over multiple interacting scales. For ex-
ample, the development of new materials will require the design of structure and
function across a hierarchy of scales starting at the molecular scales to define
nanoscale building blocks that are used to define mesoscale features that are
combined into micron-scale weaves that used in the manufacturing of the com-
plete part (Figure 1). Such capabilities are clearly central to the development
of nanoelectronics devices and future drug delivery systems (Figure 2), as well
as many of other future products. For example, consider new automotive skins
made of nano-reinforced materials in which the material interfaces are strong
at strain rates consistent with normal usage, leading to high stiffness so the
little dents are avoided, while at high strain rates the interfaces demonstrate
substantial local damage, thus providing high energy absorption under impact

loading to keep the individuals in the passenger compartment safe.

<INSERT FIGURE 1 HERE>

<INSERT FIGURE 2 HERE>

Although there are a large number of models available to solve various single

scale simulation problems, there is little or no support for the multi-model sys-



tems needed for multiscale problems. Considering the thousands of person-years
of effort that has gone into the development of these existing models, the effec-
tive development of multiscale simulations requires the use of the existing and
developing single-scale simulation models. Thus, the only practical approach
is to construct a component-based multi-model system, where each model is
developed as a component using clearly defined interfaces and functionality for
sharing information with other models that will allow the effective integration

of many models.

The successful definition of these component-based models must begin with
the careful decomposition and abstraction of the basic functional models and
a clear qualification of the functional and informational interfaces needed to
support their interactions. The goal of this chapter is to present a high-level
description of such a decomposition and abstraction to support multiscale sim-

ulation of problems defined over general space-time domains.

The next section considers the key functional and information hierarchies
of a multiscale simulation. Section 3 discusses the overall design of the six
functional components defined to support the full set of interactions and trans-
formations needed by multiscale simulation. It is the combination of these six
functional components with the existing single-scale models that will provide

an operational multi-model multiscale simulation system. Section 4 presents



two example simulations development building on initial prototypes of these

interfaces and existing singl- scale models.

2 Functional and Information Hierarchies in Mul-

tiscale Simulation

The abstraction of multiscale simulation processes must consider the hierarchy
of transformations required to go from a mathematical description of the phys-
ical behavior to computer models used to solve, at least approximately, those
mathematical descriptions. The highest level in the hierarchy is the mathemat-
ical descriptions as a set of governing equations used to describe the typically-
coupled physical behavior at the different scales including equations relating
parameters between the scales. The other two levels in the hierarchy are the
discretizations and numerical algorithms used to solve, often approximately,
those equations using computer models. A key to the abstraction of this pro-
cess is qualification of the information needed to support the models and the
transformations required as information is shared by models. The information

used in the processes can be placed in the following two groups:

o Domain definitions: The description of the domains over which the various
physical descriptions apply. In the case of multiscale analysis, this includes
appropriate definitions at each scale, and the spatial temporal interactions

between them.



e Physical parameter definitions: The description of the physical parame-
ters, defined over the appropriate domains, that are needed to qualify the

specific instances of the governing equations to be solved.

The ability to properly support component-based multi-model multiscale
simulation requires the specification of mathematical descriptions with associ-
ated domain and physical parameter definitions at the highest possible level
meaningful to the execution of the process so that the full range of methods of

solution and interaction between models can be supported.

2.1 Mathematical Physics Description Transformations and

Interactions

At the highest level, a mathematical physics description is a set of governing
equations that are assumed to govern the behavior at a particular scale over a
particular domain. The physics descriptions are written in terms of a set of de-
pendent variables and given parameters, and are a function of the coordinates of
the domain of the problem of interest. To make this more concrete, consider the
two most common forms of equations encountered in multiscale analysis which
are partial differential equations (PDEs) that are defined at various continuum
scales and molecular dynamics (MD) which is based on interatomic potentials

that define the interactions of discrete atoms at atomic scales.



2.1.1 PDEs

PDEs may be written in terms of multiple sets of dependent variables where
each of them can be tensor quantities of various orders. For the purposes of this

discussion, consider the domain PDE:
D™(u,0) — f=01in
subject to boundary conditions
Di(u,¥)—g;=0o0nTy,i=0,1,2,...,m—1
where
D™ represents the appropriate m'" order differential operator.

u(z, t) represents one or more vector dependent variables which are func-

tions of the independent variables of space, x, and time, .

U represents one of more scalar dependent variables which are functions

of the independent variables of space, x, and time, .

f represents the forcing functions.

Q) represents the domain over which the equation is defined.
D' are the appropriate i*" order differential operators.

g; are the given boundary conditions.

I'; are the portions of the boundary over which the associated boundary

conditions act.



The computerized models of the PDEs typically use mesh-based methods in
which the first set of transformations is a double discretization process in which
the dependent variables are discretized over mesh entities that represent the
primary transformation of the domain to be solved (see §2.2), either by direct
operator discretization (e.g., difference equations) or in terms of a set of basis
function substituted into a weak form of the PDEs. In both cases, this process
specifies a set of distribution functions over the mesh entities for the variables
written in terms of a yet to be determined set of multipliers, called degrees
of freedom (dof). The dof can always be associated with a single mesh entity
while the distribution functions are associated with one or more mesh entities.
In the case where the distribution is associated with multiple mesh entities,
that set is defined by rules associated with the discretization operator and can
be supported by using mesh adjacency information. Three common cases that
employ different combinations of interactions between the mesh entities, the dof,

and the distributions are:

o Finite difference based on a vertex stencil: In finite difference methods the
distribution functions are difference stencils where the dof are typically

values of the dependent variables at vertices in a mesh.

o Finite volume methods: Finite volume methods are constructed in terms of
distribution function written over individual mesh entities. In most cases
the field being defined is C~! and dof are not shared between neighboring

mesh entities. The coupling of the dof from different mesh entities is



through operators acting over common boundary mesh entities.

e Finite elements: Finite element distribution functions are written over
individual mesh entities, called elements. In cases where C™, m > 0
continuity is required, the distribution functions associated with neigh-
boring elements are made C™, m > 0 continuous by having common dof
associated with the bounding mesh entities common to the neighboring

elements.

The application of the discretization operation over the mesh entities pro-

duces a local contributor which can be stated symbolically as:

deC — fC

where k¢ is the discretized matrix for contributor C' that multiplies the vector

of dof associated with the contributor, d°.

These individual contributions are then assembled into a global algebraic
system, Kd = F, based on an assembly operator defined by the relationships of

the contributor level dof, d° , with the assembled set of global dof, d.

2.1.2 Molecular Dynamics

In molecular dynamics (MD), the mathematical model is a potential function
describing the forces between interacting atoms that depends on the relative

position of the atoms [17]. An example of a common potential function is the



Lennard-Jones potential defining the force between two atoms given by

RO C)

where ¢ and € are the Lennard-Jones parameters for a given material and r is
the inter-atomic distance. The parameters in the potential equations may be
developed empirically or based on simulations performed on the finer ab initio
scale. Because of the number of atoms involved in fill domains, MD simulation is
typically performed over small subdomains where boundary conditions must be
applied to the atoms on and/or near the boundary. Typical boundary conditions
are free-surface, periodic and fixed boundary conditions. The output of MD
simulations, the atom trajectories and forces on the atoms, are typically not of
specific interest, but are needed to determine the parameters meaningful at the
higher scales of interest. The extraction of those parameters often requires a set

of statistical ensembles.

2.1.3 Interactions Between PDEs and MD

It is common for a simulation to require the solution of a set of coupled mathe-
matical models where the coupling is defined by parameters assumed to be given
in one model and are actually the dependent (to be solved for) parameters in
another model. In some cases, the coupling simply requires solving the models
in a given order so that the required given parameters are available when the
model of interest is to be solved. In other cases the coupling is two way in that

parameters are shared in both directions, thus necessitating the application of



an appropriate coupling method.

Coupling on a single scale occurs when multiple models are used to solve for
different sets of the physical parameters of interest. A common example is fluid
structure interactions where the flow field is influenced by the geometry of the
structure it is flowing over, and the geometry of the structure is a function of
the forces on it created by the flow field going over it. The issues associated
with the transfer of parameters between the models depend on what portions
of the domain the interactions occur over, and how that portion of the domain
has been discretized both in terms of its geometry (mesh) and the distributions

and dof used.

The interactions of parameters between models solved on multiple scales
must account for differences of the domain representation of the different scales,
the models used to couple information between the scales, and the relationships
between the parameters passed between the models on the different scales. Two
broad classes of scale linking methods are information-passing and concurrent
bridging [13]. In the concurrent bridging, both the fine and coarse scales are
simultaneously resolved. In the information-passing methods, fine scales are
modeled and their gross response is infused into the coarse scale, and the in-
fluences of coarse-scale fields on the fine scales are taken into account. For

nonlinear problems, the models at different scales are coupled in both directions

10



and the information continuously flows between the scales.

In many message-passing techniques the fine scale model is a representative
unit cell subject to appropriate boundary conditions and the information passed
to the larger scale is assumed to be a point on that scale. In the concurrent
techniques the fine scale model acts over some small, but finite, portion of the
domain on the coarse scale and the parameters are passed through the common

boundary between the domains, or through some overlap portion of the domains.

In multiscale methods where entirely different models are used on the differ-
ent scales, the relationship of the parameters between the scales is usually not
direct and specific care must be taken to define the appropriate operators to
relate them. In some cases, these operators act as filters to remove specific in-
formation content (e.g., the removal of high-frequency modes when up-scaling).
In others they must account for relating discrete and continuum models (e.g.,
relating atomic-level deformations defined by atomic positions to a continuum
displacement field). In some cases, operators are needed to relate quantities with

different forms of definition (e.g., atomic-scale forces to continuum stresses).

The complication of properly relating information across multiple scales has
led to the active development of methods for scale linking and their imple-

mentation as computer models. Representative information-passing methods

11



include multiple-scale asymptotic techniques [14], variational multiscale meth-
ods [22], heterogeneous multiscale method [11], multiscale enrichment schemes
based on partition of unity [12], discontinuous Galerkin discretizations [21], and
the equation-free method [24]. Spatially-concurrent schemes are based on either
multilevel [15] or domai- bridging methods [4, 8], while the concurrent schemes

in the time domain are typically based on multistep methods [18].

2.2 Domain Definitions, Transformations and Interactions

The domains considered here are space-time domains. Since time is a linear
progression that runs from an initial time to a final time, it is simple to represent.
On the other hand, there are a number of general forms commonly used to
provide a high level representation of spatial domains. To meet the needs of

multiscale simulation the space-time domain representations must be able to:

e Support the transformation of the original domain definition into the sets
of interacting representations used to support the discretization of the gov-
erning equations over the domain and maintain the relationship between

each of the representations.

e Support the definition of the physical parameters (attributes) associated
with the equations to be solved and the proper transformation of that

information into any derived representation used by the models.

e Support the ability to address any domain interrogation required during

12



the execution of models involved with the simulation.

e Support the geometric interactions between related domains used in a

multiscale simulation.

The definition of the domain is a function of the type of mathematical de-
scription used. For example, continuum domain definitions are needed in the

case of PDEs while a discrete set of atomic positions are needed in MD.

2.2.1 Continuum Domains

There are multiple sources for domain definitions with CAD models, mesh mod-
els and image data being the most common. CAD systems and mesh models
employ some form of boundary representation. Image data is defined using a
volumetric form such as voxels. Except in cases of directly using the image data
as the model, it is generally accepted that the use of a boundary representation
is well suited for the domain definition in continuum level simulations. Common
to all boundary representations is the use of the abstraction of topological enti-
ties and their adjacencies to represent the entities of different dimensions. The
information defining the actual shape of the topological entities can be thought
of as information associated with the entity. The ability to interact with the
domain definition in terms of the topological entities provides an effective means
to develop abstract interfaces to the domain definition allowing the easy inte-

gration of multiple domain definition sources.
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In addition to the topological entities and associated shape information, geo-
metric modeling systems maintain numerical tolerance information on how well
the entities actually fit together. The algorithms and methods within the geo-
metric modeling system are able to use the tolerance information to effectively
define and maintain a consistent representation of the geometric domain. (The
vast majority of what various geometry-based applications have referred to as
dirty geometry is caused by a lack of knowledge or by improper use of the tol-

erance information [3].)

< INSERT FIGURE 3 HERE >

The abstraction of topology provides an effective means to develop functional
interfaces to boundary-based modelers that are independent of the specific shape
information. The developers of CAD systems have recognized the possibility of
supporting geometry-based applications through general APIs. This has lead
to the development of geometric modeling kernels such as ACIS and Parasolid.
These geometric modeling APIs have been successfully used to develop auto-

mated finite element modeling processes [40, 43] and automatic mesh generators

[3].

In the application of generalized numerical analysis processes, the geomet-

ric domain must be transformed into a mesh that approximates the domain.
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To support a full set of operations needed for reliable multiscale analysis, the
mesh must maintain an association with the continuum domain representation,
and with the distribution functions and dof used in discretizing the PDEs (see
§2.1.1). From the perspective of maintaining its relationship to the geometric
domain, the use of an appropriate set of topological entities and their adjacency
is ideal [2]. In cases where there is a higher-level structure associated with the
definition of the mesh, a simplified representation based on that structure can
provide the needed information and relationships back to the continuum domain

definition.

A key component of supporting mesh-based simulation is the association of
the mesh to the geometric model [2, 36]. This association can be defined as
follows:

Classification: The unique association of mesh topological entities of di-
mension d;, Midi to the topological entity of the geometric model of dimension
dj, G;lj where d; < dj, on which it lies is termed classification and is denoted
Mf C G‘;j where the classification symbol, C, indicates that the left hand en-

tity, or set, is classified on the right hand entity.

Reverse Classification: For each model entity, G?, the set of equal order
mesh entities classified on that model entity define the reverse classification

information for that model entity. Reverse classification is denoted as

15



RC(GY) = {M{ | M{ T Gf}

Shape information can be effectively associated with the topological entities
defining the mesh. In many cases this is limited to the coordinates of the mesh
vertices and, if they exist, higher-order nodes associated with mesh edges, faces
or regions. In addition, it is possible to associate other forms of geometric
information with the mesh entities. For example, the association of Bezier
curves and surface definitions with mesh edges and faces for use in p-version
finite elements [28]. The mesh classification can be used to obtain other needed
geometric information such as the coordinates of a new mesh vertex caused by

splitting a mesh edge classified on a model face.

2.2.2 Discrete Domains

The domain definition for the discrete models are the positions of the entities
for which the potentials are written to relate. For example, in the case of MD
this is the position of atoms. In many cases it is possible to define the full
set of discrete entity positions from a higher-level construct with appropriate
transformations. In this case the highest-level domain definition consists of the
geometry of the domain to be included, parameters defining the distribution of
the discrete positions and the functions required to define those positions. The
overall domain is often a representative volume that has portions of its bound-

ary interior to a higher-level domain and may include knowledge of free surfaces.

16



The parameters and transformations used to define the atomic positions are
a function of the type of material being defined. In the case of perfect crystals,
the position of atoms within each crystal are defined by a set of lattice vec-
tors. The definition of the geometric configuration of the crystal is a nontrivial
process that can start with a statistical method to define an initial set of seed
locations for crystals whose initial shape can then be defined as the Voronoi
diagram of those points. To define more-realistic configurations various grain
growth procedures that account for knowledge of the material system can be
applied. There can be defects in the crystal systems [23] and by providing addi-
tional information about these defects the total number of particles, coordinates
and velocities of the particles can have an initial adjustment applied to them.
In the case of polymeric materials, the atomic positions must be defined by
their position along a molecular chain where there are strong bounds between
neighboring units in the chain. Statistically-based geometric constructs can be

used to define these material-dependent chains in the simulation box.

One of the methods used to bridge scales is to combine sets of atoms into
unit that they can be defined in terms of a smaller number of discrete points.
One such approach well suited to lattice structures is the quasi-continuum meth-
ods where the movement of atoms over simple shapes (triangles, tetrahedra) is
described to vary linearly [25, 30]. In the case of polymeric chains, the atoms

along a chain are represented by a small number of beads placed along the chain
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29, 33).

2.2.3 Interactions of Domains

There are three general forms of domain interactions used in multiscale simula-

tions. They are:
e Disjoint domains that share information across a common boundary

o QOuverlapping domains where the higher scale domain overlaps all or part
of the finer-scale domain and the information is shared through the over-

lapped region

e Telescoping domains where the finite, but very small with respect to the
higher scale domain, small-scale domain passes information to a point in

the higher scale domain

In each case the operations used to transfer parameters between the scales

must be consistent with the form of domain interaction.

2.3 Physical Parameter Definitions, Transformations and

Interactions
The physical parameters used in the mathematical equations are tensor quanti-
ties [5] defined over various portions of the domain that can be general functions

of the independent variables of space and time as well as other dependent vari-

ables. Knowledge of the order of a tensor and the dimension of the spatial

18



domain it is defined over, defines the number of components needed to uniquely
define the tensor. The symmetries, for tensors of order two or greater, define
those components that are identical to, or negative of (anti-symmetric), other
components. The components of the tensor are in general functions of the do-
main parameters as well as other problem parameters. The ability to understand
and use a tensor at any particular instant requires knowledge of the coordinate
system in which the components are written. Tensors can be represented in
other coordinate systems of equal or lower order through appropriate coordi-

nate transformations.

To support the full range of simulation needs, the tensors used to define
the equations parameters must be related to the highest level of the geometric
representation to which they can be defined. For example, in the case of solving
PDE over continuum domains, the distribution of the given input tensors needs
to be related to the entities in the geometric model. The model topological
entities of regions, faces, edges, and vertices are ideally suited for supporting

that specification in a general way.

The tensors associated with the dependent parameters are determined as
part of the solution process. Therefore these tensors, referred to as fields, are
understood with respect to the spatial and equation discretizations used in the

simulation process. Since the spatial discretizations are required to maintain
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the relationship to the original domain definition (see §2.2), the fields can also

be related to the highest-level domain definitions.

In multiscale simulation, a single tensor field can be used by a number of
different analysis routines that interact and the field may be associated with
multiple spatial discretizations (e.g., meshes) having alternative relationships
between them. In addition, different distributions can be used by a field to
discretize its associated tensor. The ability to have a specific tensor defined
over multiple meshes and/or discretized in terms of multiple distributions can

be handled by supporting the concept of multiple field instances.

3 Constructing a Multi-Model: Design of Func-
tional Interfaces to Support Multiscale Simu-

lations

In the design of a multi-model to support multiscale simulations, it is impor-
tant to determine the basic information and operations required by the model
used and provide components to support the information and operations on it.
From a programming view point, each component is a library that can execute

independently of other parts such that constructing a model is done in a plug-
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and-play manner. Components interact with other components only through

the interoperable APIs.

The creation of the multi-model needed to support multiscale simulation

must:

e Focus attention on the needs of the models used in the simulations.

e Recognize and take direct advantage of the simulation steps that are well

handled by existing single scale model programs.

e Identify the appropriate abstractions to effectively support the flow of in-
formation between components within the process such that any required
transformations and models can be supported and any proper models can

be inserted.

The goal of the components being designed is to support reliable multiscale
simulations where explicit consideration is taken of controlling the approxima-
tion errors that arise within each step in the process. Since many of these
errors cannot be controlled through a-priori means, it is necessary to provide

adaptive feedback using a-posteriori information in the execution of each model.

A number of the models needed to perform specific simulation steps are well
established and, because of the time and effort associated with their develop-

ment, must be used to advantage. Two such models are generalized fixed mesh
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continuum PDEs solvers (finite element, finite volume, and finite difference) and
discrete level models for solving discrete-potential systems (ab initio, molecu-
lar statics, molecular dynamics). The majority of the mature and heavily-used
of these codes operate only though fixed structure input and output files. In
some cases, the programs do support the addition of user-defined routines for
specific functions. For example the ABAQUS [1] supports the development of
user-defined material models and user-defined finite elements. Although lim-
ited, these two routines support the effective addition of the majority of the
functionalities needed for ABAQUS to be an effective model in a multiscale
simulation environment.

Another area where there are mature programs is the definition of geomet-
ric domains in terms of 3-D solids using boundary representations. The most
commonly used of these systems are built on a functional API [35, 41] that
is ideal for use to support component-based procedures. A number of models
are also available for the generation of the mesh level discretizations of the ge-
ometric domains. The interfaces to these procedures range from file-based to
API-based [3]. The API-based methodologies have been used in the develop-
ment of adaptive mesh modification procedures [26] and complete adaptive PDE
solvers [40, 43].

Considering the informational and functional needs of multiscale simulations
in combination with the available models that can effectively support specific

of the simulation tasks, the needed components are focused on information
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flow and transformation within a multi-model simulation. The components will

support the definition and control of the

1. overall problem,

2. equation parameters,

3. geometric domains,

4. discretized geometric domains,

5. tensor fields, and

6. scale linking operations.

The concept of defining a similar set of functional components to support
the interoperability of simulation models is a topic of current development for
mesh-based continuum simulation methods both in terms of open-source code
[9, 42] and commercial products [38]

< INSERT FIGURE 4 HERE >

Figure 4 illustrates a structure of a multi-model composed of the six com-
ponents used in each model where n is the number of models constructing the
multiscale multi-model. Each model uses instances of the six components. A
multiscale simulation process requires the application of multiple interacting
instances of the six functional components. As depicted in the figure, each in-

stance of components interacts with instances of other components of different
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type within a model (dashed lines), and instances of component of the same

type in other models (solid lines).

The explicit consideration of the relationships that must be supported be-
tween the information and operations associated with each component and the
models they interact with is critical. Therefore, the API of functions of a com-

ponent has the three categories:

e APIs for providing and modifying component-internal data (APIs which

don’t involve interactions with other instances),

e APIs for interaction between components, and

e APIs for interaction of components of the same type between models.

3.1 Overall Problem Definition

To support multiscale simulations, a high-level problem definition is needed.
The problem definition must include all of the physical parts involved and sup-
port the specification of general sets of relationships between the parts and
linkage to alternative representations of the parts. The structures and methods
used to support the problem definition must be able to support the morphing
into viewpoint-specific forms of the problem definition as needed for specific
models. In these viewpoints, parts may be decomposed into additional pieces

and additional information supporting the viewpoint added. For purposes of
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this discussion, the basic viewpoint of interest is multiscale simulation where
parts may be decomposed to support the definition of problems at different

scales or simulation idealizations needed by the various models.

Representations including simulation viewpoints have begun to be developed
[39]. The definition of such representations can be supported by a graph-like
structure similar to those used to define assembly and feature models in CAD
systems [6, 19] with the extensions necessary to support hierarchal decomposi-
tions and multiple viewpoints [7, 19, 20, 31].

Its functioning API must include
1. a component-internal API: (¢) part definitions, (i7) relationships of parts

2. an API for interacting with other components: (¢) relationships of parts
to domains, (i7) relationships of parts to parameters, (ii7) relationships of

parts to model functions and scale linking, and

3. an API for interacting with other instances of the overall problem defini-

tion: (¢) viewpoint construction rules.

3.2 Equation Parameters

The parameters used in the mathematical equations represent physical quanti-
ties best described by tensors. The types of physical parameters these tensors

define are material properties, loading functions, boundary conditions and ini-
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tial conditions. Although the execution of any model requires the specific set
of these tensors associated that the mathematical equations of that model, the
most general means for defining these tensors is to state them in terms of the
problem definition entities they are associated with. Generalized methods to
define and manipulate these tensors have been defined [32, 37].

Its functioning API must include

1. a component-internal API: (i) parameter information queries, (i7) param-
eter instance information queries, (ii4) parameter coordinate transforma-

tion, (iv) parameter reduction and modification,

2. an API for interacting with other components: (i) relation to problem

parts, (i) relation to model solution process, (ii7) relation to fields, and

3. an API for interacting with other instances of the equation parameter

component: (i) dependencies between parameters.

3.3 Geometric Domain

The geometric domain component is a functional unit to describe the multiscale
simulation domain at a scale which is either a continuum domain or discrete
domain. Within a multi-model, it supports the geometric interactions between

instances.

Consider first the API of the continuum geometric domain component de-
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fined in a CAD modeler which uses boundary representations. Its functioning

API must include

1. a component-internal API: (7) topological entity queries, (i7) shape infor-

mation, (¢i7) geometric model tolerance information,

2. an API for interacting with other components: (i) association with parts
in the problem definition, (i) association of equation parameters with the
geometric domain, (#i¢) association with domain discretizations (meshes),

(iv) association with scale linking, and

3. an API for interacting with other instances of the geometric domain com-
ponent: (i) geometric interactions relating domains on different scales

through boundaries and/or overlaps.

For atomic-scale models:

1. a component-internal API: (¢) the definition of atom layouts,

2. an API for interacting with other components: (i) obtain potentials, (i7)

provide forces, and

3. an API for interacting with other instances of the geometric domain com-
ponent: () placement of domain with respect to larger scale domains, (i)
geometric interactions relating domains of different scales through bound-

aries and/or overlaps.
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3.4 Discretized Geometric Domains

The discretized geometric domain component is a piecewise geometric represen-
tation of the corresponding geometric domain component in terms of a mesh or

atomistic layout.

The API must include

1. a component-internal API: (i) topological entity queries for meshes, atom

queries such as position of atoms and distance between atoms for atomistic,

2. an API for interacting with other components: (i) mesh shape information,
(77) association with the geometric domain, (ii:) association with fields,

and

3. an API for interacting with other instances of discretized domain: (7) mesh
to mesh interaction, (%) mesh to atomistic interactions, (ii7) discrete to

atomistic interactions.

3.5 Tensor Fields

The tensor field is the discretization of a tensor over a domain which is the de-
scription of physical parameters determined as part of the simulation processes.
The field discretizes a tensor over the discretized domain. The tensor field com-
ponent provides functions to obtain the information needed for error estimation

and to support the transfer of solution fields during the simulation.
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To be able to support a specific tensor defined over multiple discretized do-
mains, and/or discretized in terms of multiple distributions, the field component
has a set of field instances where a single field instance has a single set of dis-

tributions over a given discretized domain.

The fields API includes

1. a component-internal API: (¢) field information queries, (i7) field instance
information queries, (ii7) field coordinate transformation, (iv) field reduc-

tion and modification

2. an API for interacting with other components: (i) association of field with
the discretized geometric domain entities, (i¢) association with quantities

determined by model solution processes, (iii) relation to parameters, and

3. an API for interacting with other fields of the component: (i) solution

transfer between field instances.

3.6 Scale-Linking Operators

The function of the scale-linking operators is to transform parameters between
scales being addressed by different models. The parameters to be transformed
are tensors that are typically defined as fields on the appropriate discretization.

The definition of any scale linking operator is a function of
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e the domains on the two scales and the form of domain interactions,

e the domain discretization used for the interacting fields,

e the distribution functions and dof used to represent the interacting fields

over the discretized domains, and

e the functional operations associated with transforming the field informa-

tion on the one scale to the other scale.

The methods used should allow the scale-linking operators to be defined at
the highest level of problem definition with additional qualification as needed to
account for specific forms of domain discretizations and of the field distributions

used.

Its functioning API must include

1. a component-internal API: (¢) definition of the linking operations,

2. an API for interacting with other components: (i) relationship to parts
and domains and interactions, (i7) relationship to fields and parameters,

and

3. an API for interacting with other instances of scaling linking operator

component: (i) coupling interactions between scale linking operations.
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4 Example Multi-Model Simulation Procedures

The examples of automated adaptive simulation procedures presented in this
section employ prototype implementations of the functional components out-
lined Section 3. The first example is an automated adaptive single-scale proce-
dure that is being used in industry. The second is an adaptive atomistic/continuum

multiscale procedure currently under development.

4.1 Automated Adaptive Mesh-Based Simulation

A large number of codes are used for the solution of PDEs on a given fixed
mesh. Although these codes are capable of providing results to the required lev-
els of accuracy, the vast majority lack the ability to automatically control the
mesh discretization errors through the application of adaptive methods. Using
interoperable components discussed in Section 3 in conjunction with existing
fixed-mesh finite element models and a mesh modification component [26], mul-

tiple adaptive analysis procedures have been built.

One such example was created for 3-D forming simulations in which the de-
formable parts undergo large plastic deformations that result in major changes
in the analysis domain geometry. The meshes of the deforming parts typically
need to be frequently modified to continue the analysis due to large element
distortions, mesh discretization errors and/or geometric approximation errors.

In these cases, it is necessary to replace the deformed mesh with an improved
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mesh that is consistent with the current configuration. Procedures using the
two domain and field components are employed to determine a new mesh size
field considering each of these factors which is provided to a local mesh modifi-
cation [43] that creates the adapted mesh. The tensor field component is also
used to transfer history-dependent field variables as each mesh modification is
performed [43] so that the full set of information needed for the next set of
analysis steps can be provided to the analysis model which is the commercial

finite element code DEFORM-3D [16].

Figure 5 shows the setup, initial mesh, and final adapted meshes for a steer-
ing link manufacturing problem solved using this multi-model capability. A total
stroke of 41.7mm is taken in the simulation. The initial work piece mesh con-
sists of 28,885 elements. The simulation is completed with 20 mesh modification
steps producing a final mesh with 102,249 elements.

< INSERT FIGURE 5 HERE >

4.2 Adaptive Atomistic/Continuum Adaptive Multiscale

Simulation

A concurrent adaptive multiscale simulation capability is being developed for
the modeling of fracture problems in metallic structures [10]. The key analysis

engines for this multi-model application are non-linear finite element models for
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the continuum level and molecular statics models to address the discrete-level
aspect of dislocation formation and growth. Part of the simulation viewpoint in
this case is the indication of the sets of behaviors that can be associated with the
parts that indicates that both linear- and non-linear continuum behavior can
be considered and that atomistic regions can be superimposed at the locations
of failure initiation, like crack tips. The equation parameters include the con-
tinuum material properties, loads and boundary conditions, and the atomistic
potentials. The geometric domains include the full part geometry and atomistic
overlays, including defect locations, for the specific locations where that are
adaptively determined to be needed. The discretized representations of these
two regions are a finite element mesh and atomistic positions taking account of
the defects, respectively. The tensor fields include overall and local deforma-
tions and stresses on the continuum level, and atom positions and forces on the
atomistic level. Since the atomistic and continuum levels overlap, the options for
the scale-linking operators include the relating of local deformations and forces
either though the common boundary or through the overlap region. In both
cases, the atomistic deformations must be smoothed before being transferred
to the continuum level and the discrete inter-atom forces must be transformed

into stress like quantities to relate them to the continuum level stresses.

Figure 6 shows an example of adaptive atomic continuum simulations for

the definition and growth of dislocations at a crack tip. In this case the cracked
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macro-domain was defined in a solid modeler and the finite elements were au-
tomatically generated. Based on a two-component error indication procedure,
atomic lattice overlays are defined in the critical regions. As the defects form,
the atomic fields automatically adjust.

< INSERT FIGURE 6 HERE >

5 Closing Remarks

The focus of this paper has been an examination of the process of performing
adaptive multiscale simulation with the goal of defining an appropriate set of
high-level abstractions that can support the construction of multi-model simula-
tions taking advantage of established models that can effectively address specific
aspects of these simulations. This abstraction process has led to the definition
of the six functional components needed to support the transformation and
transfer of information to the various models associated with these multi-model
simulations. These ideas are demonstrated through two multi-model automated
adaptive simulation examples building on initial prototypes of the six functional

components.
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Figure 1.
system.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Figure 6.

Multi-model hierarchy used in the design of a composite material

Multi-model hierarchy needed for a drug delivery system.
Example of a non-manifold model.

Interactions between components.

Adaptive forming simulation example.

Adaptive molecular/continuum multiscale simulation.
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