
Introduction

Experimental observations indicate substantial differ-
ences in the rheology and dynamics of polymer liquids
reinforced with colloidal and nanosize particles com-
pared to complex fluids filled with micron sized par-
ticles (Reynaud et al. 2001; Zhang and Archer 2002,
2004; Donnet 2003). The filler size effect on the
overall material behavior has been attributed to either
inter-particle or polymer-particle energetic interactions,
both occurring at the nanoscale. The first mechanism
originates from the formation of spatial agglomerated
structures of small particles (due to electrostatic and
van der Waals’ forces) and the evolution of these
structures during loading (Leonov 1990; Heinrich and
Klüppel 2002; Cassagnau and Mélis 2003). When
fillers are well dispersed in the matrix, reducing the

filler size while preserving the filler volume fraction
leads to a dramatic increase of interfacial area and a
reduction of the average wall-to-wall distance between
fillers. Under such circumstances, a large fraction of
chains are in contact with at least one filler, some of
them forming bridges between neighboring particles.
Very similar to the rheology of confined polymer thin
films (Subbotin et al. 1995), the dynamics of such
systems is controlled by the polymer-filler affinity and
the stick-slip motion of chains close to the filler sur-
face (Havet and Isayev 2001, 2003). This perturbs the
viscoelastic behavior of the entire matrix phase. Such
an effect also exists in composites with much larger
fillers (e.g. micron size); however, the volume of per-
turbed matrix is limited to the interfacial boundary
layer which represents a negligible fraction of the total
volume of the material.
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Classical homogenization methods developed for
composites containing large fillers (much larger than the
chain size) do not capture size effects associated with the
filler dimensions. In these formulations, the overall vis-
coelastic properties are predicted in terms of the filler
volume fraction only. In order to predict the behavior of
nanocomposites with non-agglomerated fillers, the
effective viscoelastic properties of this new perturbed
polymer matrix must be determined. Along these lines,
we recently proposed such a model based on the theory
of transient networks (Sarvestani and Picu 2004). This
formulation applies to nanofilled polymeric mixtures in
the un-entangled regime and in which the wall-to-wall
distance between fillers is on the order of the chain size.
Although conceptually simple, the model captures the
main features that distinguish nanocomposite and mi-
crocomposite behaviors, for example, the rubber-like
response at low frequencies and the enhanced rein-
forcement at low deformation rates. Therein, since the
fillers are sufficiently close to each other, polymeric
chains act as bridges and form a network akin to the
situation in rubbers. The dynamics of this network is
controlled by the dynamics of the process of attachment/
detachment of chains to/from fillers.

In this article,we consider the cases of concentrated
entangled polymeric liquids that interact strongly with
filler particles. The fillers are assumed to be rigid and
spherical, and to be homogeneously dispersed in the
matrix (non-agglomerated). The structure of this system
was studied by Ozmusul et al. (2005), by means of
molecular computer simulation.

The effect of entanglements on the filled polymer
dynamics is captured by using the Generalized Rouse
Model (GRM). In this framework, the interaction of the
representative chain with its neighbors is purely fric-
tional, similar to the original Rouse model (Kavassalis
and Noolandi 1987, 1988). However, the presence of
entanglements destroys the three-dimensional isotropy
of polymer diffusional motion leading to non-equivalent
longitudinal and transverse modes. The confinement is
represented by using different friction coefficients for the
longitudinal and transverse relaxation modes. The
influence of the filler-polymer interaction (attachment/
detachment kinetics) is captured within a continuum
approximation: an attachment point is represented as a
region of enhanced friction for the respective chain. A
similar approach was used to model the boundary layer
friction of confined polymer melts (Subbotin et al. 1997).
Hence, the fillers are not represented explicitly in the
model, rather their effect is framed in a manner consis-
tent with the GRM.

Since we put the topological and energetic constrains
to chain motion in a unified framework, that of friction
laws, here it is further possible to capture polymer vis-
coelastic nonlinearities such as the convectional con-
straint release (Marrucci 1996). One of the objectives of

this work is to examine the extent to which such a for-
mulation based on the law of friction may describe the
viscoelasticity of filled melts and concentrated polymer
solutions.

This study is organized as follows. We first examine
the diffusion equation for a bead-spring model of an
adsorbed chain with anisotropic friction. The full solu-
tion is sought for the simplified case of a nonlinear
dumbbell with single relaxation time. The effect of the
various model parameters is studied on particular types
of flow, and the model is compared with experimental
data. The paper concludes with a summary and discus-
sion of possible future extensions.

Generalized bead-spring model for the nano-composite

We consider a system of linear monodisperse amor-
phous homopolymers and a random distribution of non-
aggregated rigid spherical nanoparticles. The fillers are
uniformly distributed in 3D. An average chain confor-
mation is schematically depicted in Fig. 1. The dispersed
particles are sufficiently small such that even at low
volume fractions, the average particle wall-to-wall dis-
tance is on the order of the size of the average polymer
coil. Hence, in equilibrium, any chain may simulta-
neously attach to one or more nanoparticles. Each ad-
sorbed polymer chain section includes a succession of
polydisperse loops and train segments (Ozmusul et al.
2005). In addition, there exists a large number of poly-
disperse dangling tails in the matrix (segments connected
at one end to the filler and having the other end free).

Fig. 1 Schematic representation of adsorbed representative chains
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As in the Doi–Edwards reptation theory (1986), the
representative chain is assumed to be ‘‘confined’’ by a
‘‘tube’’ representing topological constraints to its mo-
tion. In the reptation theory, the diameter of this tube
represents the average distance between entanglements.
Here, we apply the idea of anisotropic effects to the
simpler kinetic theories (Deaguiar 1983; Bird and Wiest
1984). Bird and Deaguiar (1983) introduced the encap-
sulated dumbbell model, in which the Brownian motion
and hydrodynamic drag acting on each bead are not
isotropic. In their model, the dumbbell is constrained to
move within a ‘‘capsule’’ region due to the lateral
topological constraints. This idea was also advanced in
the more general case of multi-bead chains by Curtiss
and Bird (1981) as an alternative to the reptation theory.
The similarity between these approaches and the repta-
tion theory was studied by Baxandall (1987), who
showed that the reptation picture emerges by postulating
anisotropic hydrodynamic forces,without recourse to
the anisotropic Brownian motion.

The polymeric chains are represented here as freely
joined bead-springs subjected to anisotropic friction
(with non-bonded neighbors) and connected (with some
probability) to fillers. Each coarse grained chain consists
of M beads which are connected by M)1 springs. The
vector ri represents the position of the ith bead, while
Ri=ri+1 ) ri is the connector vector.

The configurational distribution function for the
representative chain, w (R1, R2, ..., RM - 1, t), satisfies the
following continuity equation (Bird et al. 1987):

@w
@t
¼ �

XM�1

i¼1

@

@Ri
� ð _RiwÞ: ð1Þ

As in the classical Rouse model, the evolution equations
for _Ri are obtained from the total force balance (equa-
tion of motion) of each bead. Neglecting the inertia
term, these read

F
ðeÞ
i þ F

ðBrÞ
i þ F

ðhÞ
i ¼ 0; i ¼ 1; 2; . . . M : ð2Þ

The three terms in Eq. 2 represent the effect of entropic,
Brownian, and hydrodynamic forces, respectively. The
entropic spring force is given by

F
ðeÞ
i ¼

XM�1

k¼1
ðdki � dkþ1iÞF ðcÞk

Rk

Rk
; ð3Þ

where F k
(c) is the modulus of the connector force between

adjacent beads, defined by Fk
(c)=) � Uel (Rk). Here, Uel

represents the entropy-controlled elastic free energy be-
tween beads.

The velocity distribution is assumed to be Maxvellian
and thus, the time average of fluctuating Brownian force
on the ith bead reads

F
ðBÞ
i ¼ �kBT

@

@ri
lnw: ð4Þ

The hydrodynamic force may be calculated using an
anisotropic Stock’s law as

F
ðhÞ
i ¼ �ni:ð_ri � j:riÞ: ð5Þ

Here, ni ¼ kBT D�1i is the tensorial friction coefficient
and Di is the diffusion tensor. The convective motion of
the beads in the flow is characterized by the macroscopic
velocity gradient tensor j:

In order to represent the confinement of the chain
motion within its tube, the diffusional motion is
decomposed in the direction along and perpendicular to
the tube axis. The friction coefficient in Eq. 5 is taken to
be anisotropic

ni ¼ ðnlÞiuiui þ ðntÞiðI� uiuiÞ; ð6Þ

where ui is a unit vector along Ri and I is identity tensor.
In theory, the corresponding values of the longitudinal
and transverse friction coefficients (nl and nt, respec-
tively) depend on the diameter of the encompassing tube
(on the order of the entanglement distance) in the coarse
grained model compared with the bead size (on the order
of the Kuhn segment length). If the bead size is similar
with the average tube diameter (i.e., highly entangled
systems), the lateral diffusion of the bead is retarded due
to the presence of topological constrains, and hence,
in states close to equilibrium one may take nt � nl
(Kavassalis and Noolandi 1988). In this work, the effect
of attachment to fillers on dynamics is also captured by
means of these friction coefficients. An attachment point
is represented as a region of the chain in which the
friction is more pronounced.

The material internal structure is subjected to
change after the inception of macroscopic flow. This
deviation from the equilibrium configuration, which is
accompanied by the emergence of nonlinear viscoelas-
ticy, is the result of topological constraint release as
well as the promotion of chain detachment from filler
surfaces (energetic stick-slip process). Inspired by the
theory of convectional constraint release (Marrucci
1996; Marrucci and Ianniruberto 1997) for both modes
of motion (longitudinal and transverse), the friction
coefficient n associated with the diffusion of each
bead is decomposed into the sum of a topological term
ntop, which is influenced by flow and possibly vanishes
at high deformation rates, and a constant irreducible
term nirr, which accounts for self diffusion and is
independent of topology.

More precisely, for the longitudinal motion of an
adsorbed bead, we have

ðnlÞi ¼ ðnadÞi þ n0; ð7Þ

134



where n0 is the friction coefficient corresponding to self
diffusion of a single bead and accounts for its friction
with the solvent molecules and/or other non-bonded
polymer beads. Using a simple activation model (Fren-
kel 1946) for a bead of size l, this friction coefficient is
approximated by n0=2kB Ts0 /l

2, with the time constant
s0 being

s0 ¼ s� exp
U0

kBT

� �
: ð8Þ

Here s� � l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=kBT

p
is the characteristic time of

molecular vibrations, and U0 is the activation energy for
diffusion of a segment in the bulk, and m is its mass.

The first term in Eq. 7, nad, represents the increase in
longitudinal friction due to the polymer-filler contact
points. This term may be evaluated by a similar thermal
activation model (Subbotin et al. 1997). The additional
friction due to the attachment is given by n ad=2kB
Tsad/l

2, where the effective time constant of detachment,
sad, is defined as

sad ¼ s� exp
Uad � F ðeÞi d

kBT

 !
: ð9Þ

Here s� � l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=kBT

p
is the inverse of the detachment

attempt frequency, as before, and Uad is the adsorption
energy to the filler surface. This last quantity is evalu-
ated as the energy difference of a bead residing on a filler
surface and its energy in the bulk. In Eq. 9 it is
acknowledged that the detachment process is favored by
the tension F(e)

i exerted on the adsorbed bead by the
adjacent strand(s) (Fig. 2). d is a constant activation
length.

The friction coefficient for the transverse mode is
expressed as

ðntÞi ¼ ðnlÞi þ
1

ðnenÞ�1i þ ai j: RiRih i � 1
2
d
dt R2

ih i
�� �� ; ð10Þ

where Æ...æ denotes � ... w (R) dR representing the
ensemble average of the respective quantity and a i is a
positive constant. The transverse friction coefficient is
always larger than the longitudinal coefficient. (nen)i
represents friction associated with the lateral constraint
on a single bead (entanglements). The second term in
the denominator of the right hand side of Eq. 10 stands
for the renewal of topological constrains through the
relative motion of chains during flow and is similar to
that used by Marrucci (1996) to represent constraint
release. The constraint release here affects the chain
motion in the transverse direction only, i.e. those
constraints that prevent the Rouse relaxation of the
tube. The two limits of Eq. 10 are: under equilibrium it
reduces to

ðntÞi ¼ ðnadÞi þ n0 þ ðnenÞi; ð11Þ

while under the effect of fast flows and intense constraint
release it becomes

ðnlÞi � ðntÞi: ð12Þ

Equations 3, 4 and 5 for the forces acting on each bead
are substituted in Eq. 2, which is then solved for _Ri.
Then, the diffusion Eq. 1 becomes

@w
@t
¼ �

XM�1

i¼1

@

@Ri
� j:Riw�

XM�1

j¼1
Dij:

@w
@Rj
þ 1

kBT
F
ðeÞ
j w

� � !
;

ð13Þ

where

Dij ¼ kBT ½ðn�1i þ n�1iþ1Þdji � n�1iþ1djiþ1 � n�1i djþ1i�: ð14Þ

Finally, stress production is evaluated based on entropic
interactions only. The stress is expressed using the virial
formula (Kramers’ expression) as

s ¼ �q
XM�1

i¼1
F
ðeÞ
i Ri

* +
þ qðM � 1ÞkBT I; ð15Þ

where q is the chain number density, and the angular
parentheses represent ensemble average.

Reduction to a dumbbell model

In order to predict the constitutive response of the
material, Eq. 13 must be integrated for the time

Fig. 2 The ith adsorbed bead is pulled from the filler surface by the
entropic force in the adjacent strands. The actual chain is shown
with continuous line, along with the corresponding bead-spring
schematic. The force represents the net effect of the two strands
adjacent to the attached bead
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evolution of the distribution function, w. The stress is
computed from Eq. 15 using w.

Two simplifying assumptions are necessary before the
solution of Eq. 13 is attempted. First, it is assumed that
the probability of bead-filler attachment is constant
along the chain. Therefore, the representative chain has
constant friction nad along its contour, i.e. (nad)i=nad.
This is a mean field-type approximation for the effect of
fillers on chain mobility. Furthermore, it is assumed that
all friction coefficients are constants in time and during
deformation. Second, in order to render Eq. 13 tracta-
ble, each molecule is regarded as and encapsulated
elastic dumbbell with single relaxation time (Bird and
Deaguiar 1983) (Fig. 3). The dumbbells are composed of
two beads connected by an entropic spring.

The dumbbell model is obtained by preserving only
one term in the right hand side of Eq. 13 (M=2); i.e.,

@w
@t
¼ �r � j:Rw�D: rwþ 1

kBT
FðeÞw

� �� �
: ð16Þ

Here, the diffusion tensor D reads

D ¼ 2kBTn�1 ¼ Dluuþ DtðI� uuÞ; ð17Þ

and u shows the unit vector parallel with the dumbbell’s
end to end vector R. Following Marrucci and Ianniru-
berto (2001) we pre-average the tensor D simply by
replacing uu with the ensemble average Æuuæ, which itself
is approximated by the ratio ÆRRæ/ÆR2æ. Hence, the dif-
fusion tensor D can be written as

D ¼ Dl bIþ ð1� bÞ RRh i
R2h i

� �
: ð18Þ

where b=Dt/Dl.
Using Eqs. 7, 10, the conformational-dependent dif-

fusion coefficients are defined as

1

Dl
¼ 1

Dad
þ 1

D0
; ð19Þ

1

Dt
¼ 1

Dl
þ 1

D0
en þ Dc

en

: ð20Þ

where D0 stands for the irreducible self-diffusion coeffi-
cient of each dumbbell bead, given by (2kB T)/(Nn 0),
with N being the total number of statistical segments in
the original macromolecule. Dad and D0

en represent the
effect of energetic polymer-particle interactions and
equilibrium topological polymer-polymer entanglement
constraints, respectively, on the dumbbell diffusional
motion. Den

c is the corresponding mean-field diffusion
coefficients due to convective constraint release. These
quantities are given by

Dad ¼
2kBT
cNnad

; ð21Þ

D0
en ¼

2kBT
Nnen

; ð22Þ

Dc
en ¼ a j: RRh i � 1

2

d

dt
R2
� �����

����: ð23Þ

Here, c is the fraction of the representative chain seg-
ments adsorbed to fillers in the equilibrium configura-
tion, and a is a positive constant. To the best of authors’
knowledge, other than the scaling description for poly-
mer adsorption on a single colloidal particle by Aubouy
and Raphaël (1998), there is no analytical method to
estimate the value of c, especially for the case of multi-
particle structures. This information can be obtained
from molecular simulations of the equilibrium structure.
Such simulations have been performed for various filler
wall-to-wall distances and various levels of the energetic
interaction between polymers and fillers (Ozmusul et al.
2005). The main conclusions from that study are also
summarized by Sarvestani and Picu (2004).

Multiplying both sides of Eq. 16 by RR, an evolution
equation for the second moment of the distribution
function results

d

dt
RRh i ¼ j: RRh i þ RRh i:jT þ 2D

� 3

R2
0

ðD � RRh i þ RRh i �DÞ; ð24Þ

where R2
0 is the mean square length of the end-to-end

vector of the equilibrium chains. To obtain Eq. 24, the
dumbbells are assumed Hookean and the entropic force
is taken as F(e)=(3kB T/R2

0)R.
Taking trace of Eq. 24 we obtain

j : RRh i � 1

2

d

dt
R2
� �

¼ pDl; ð25ÞFig. 3 The adsorbed ‘‘encapsulated’’ FENE dumbbell with aniso-
tropic friction, where nt > n l
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where

p ¼ 3

R2
0

1� b
R2h i RRh i: RRh i þ b R2

� �� �
� ð2bþ 1Þ: ð26Þ

Substituting Eqs. 25, 26 into Eq. 20 yields the following
expression for the transverse mode of motion:

Dt ¼
1

Dl
þ 1

D0
en þ a pj jDl

� ��1
ð27Þ

Therefore, the time evolution of A=ÆRR æ, the second
moment of the distribution function of the end-to-end
vector, may be obtained as

d

dt
A ¼ j:Aþ A:jT þ 2Dl bIþ ð1� bÞ A

TrA

� �

� 6Dl

R2
0

1� b
TrA

A:Aþ bA

� �
: ð28Þ

Eq. 28 may be solved, in principle, for any flow re-
gime. In the next section we present its solution for the
2D Couette flow. Under this condition, the shear stress
driving the flow can be expressed as

s12 ¼
3qkBT

R2
0

A12; ð29Þ

In steady-state flows, all time derivatives in Eq. 28
vanish and the system reduces to a set of algebraic
nonlinear equations.

Results and comparison with experiments

In this section, we qualitatively examine the steady state
response of nanofilled polymer composites subjected to
2D shear flow and then quantitatively compare the
predictions of the model with relevant experimental
observations.

Effect of model parameters

We begin by studying the qualitative behavior of the
model. For this purpose, we take R0 as the unit of
length, while the unit of time is s=(R2

0/6D0).
The activation length d is assumed to be on the order of
� R0 /10. Two non-dimensional quantities prove useful
in numerical studies:

e ¼ exp
Uad � U0

kBT

� �
e0 ¼ nen

n0
; ð30Þ

where the former represents the relative polymer-filler
affinity (energetic), while the latter represents the
anisotropy in diffusion of the representative bead in
the longitudinal and transverse tube directions, i.e. the

degree of entanglement. Note that in non-entangled
systems e¢=0. Positive values represent various degrees
of confinement of the representative chain to the tube,
with e¢ being in principle dependent on the tube diam-
eter. It is also assumed that in Eq. 22 a=0.5 (Marrucci
1996).

Figure 4 shows the variation of the steady-state shear
viscosity (g) of the reinforced polymer with the applied
shear rate ð_cÞ: Here, we assume e=10,000 and e¢=1
(moderately entangled systems). As mentioned earlier, c
is the fraction of adsorbed statistical segments of the
representative chain in the unloaded, equilibrium state.
This parameter is approximately proportional to the
filler-matrix interfacial area. For a ratio of attached
segments, c, as low as 0.1%, the magnitude of the zero
shear viscosity dramatically increases compared to the
viscosity of the neat polymer. A similar trend is observed
in experiments even at very low concentration of well-
dispersed nanoparticles (Zhang and Archer 2004). This
is in marked contrast with the predictions based on
continuum viscoelasticity (e.g. the Einstein relation for
colloidal suspensions). In the present model, this
behavior is solely due to the energetic interactions be-
tween polymer chains and fillers. The increase of c leads
to an almost proportional increase of the zero shear rate
viscosity.

Shear thinning becomes more pronounced as the filler
concentration (and the average number of chain-filler
attachments) increases. Shear thinning in the neat
polymer is due to the convective constraint release at
high strain rates. The amount of thinning in the filled
polymer under steady-state conditions increases due to
the additional effect of chain-filler detachment. At low
strain rates, the processes of detachment and chain-filler
re-attachment balance each other and we conjecture that

Fig. 4 Variation of the steady-state normalized shear viscosity with
the shear rate for three values of the polymer-filler attachment
fraction c
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the re-attached chains have equilibrium conformations
on the re-attachment time scale. Hence, the equilibrium
structure and zero strain rate material response are
recovered. The detachment process contributes a frac-
tion of the flow stress and rate sensitivity. At high rates,
the detachment is more pronounced than re-attachment,
which leads to a reduction in flow stress and shear
thinning. Moreover, the onset of shear thinning shifts
towards the lower shear rates as the ratio of adsorbed
segments increases, indicating the increase in chain
relaxation time.

In order to study the model prediction of molecular
birefringence, we compute the orientation component
A12 and the alignment angle v=(1/2) tan) 1(2A1f2/A11)
A22) at various shear rates. These quantities are shown in
Figs. 5a, b, respectively. A12 is directly proportional to
the index of refraction and to the output of birefringence
measurements. Deformation produces chain alignment,

with the effect being more pronounced as the rate in-
creases. At very large rates, larger than the dominant
relaxation rate, saturation is seen in both the model and
experiments. As shown in the two figures, chain align-
ment is enhanced by the presence of fillers and the effect
increases with c. This is expected as the frictional effect
of fillers slows down chain relaxation. The onset of
saturation (non-linear behavior of the birefringence
versus strain rate) in Fig. 5a depends on filler concen-
tration, with the effect being observed at lower strain
rates as c increases. Furthermore, all curves seem to
eventually converge at the same saturation plateau. In
the model, this is due to the fact that at high strain rates
the rate of chain detachment from fillers is larger than
that of re-attachment, and hence, the neat polymer limit
is recovered. This is only an approximation since we
neglect the effect of the excluded volume of fillers on the
rheology here.

In Fig. 6, we show the sensitivity of viscosity to the
affinity parameter e for e¢=1 and c=0.001. The results
are shown at three different shear rates. The graphs
clearly illustrate the crucial importance of the polymer-
particle affinity for the rheological response of the sys-
tem. It is interesting to observe that in the present case,
since we neglect the excluded volume of fillers, they do
not affect the rheology as long as the affinity parameter e
is smaller than 100. This provides an indication as to
what type of surface treatment is required in a certain
system in order for the filling to be effective. At higher
affinities, the viscosity increases non-linearly with e.

Comparison with experimental results

Next, a quantitative comparison is made with the
experimental data reported by Zhang and Archer (2004).

Fig. 5 Variation of the steady-state values of the a orientation
component A12 and b alignment angle v with shear rate, for various
polymer-filler attachment fractions c

Fig. 6 Effect of the affinity parameter e on the viscosity at three
different shear rates
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They investigated the rheology of semidilute aqueous
solutions of poly(ethylene oxide) (PEO) containing a
homogeneous dispersion of nanosized silica particles.
We use data for 4.6 wt % of linear PEO at 25�C. The

polymers have narrow molecular weight distribu-
tion �Mw= �Mn ¼ 1:06ð Þ with �Mw ¼ 700; 000 g/mol. Spheri-
cal silica particles have narrow size distribution with an
average diameter of � 12 nm. In the experiment, the
silica particles were surface modified by grafting 2-
[methoxy(polyethyleneoxy)propyl] trimethoxysilane.

The chain length is evaluated as N � �Mw=137 and the
Kuhn segment length is 1.1 nm (Rubinstein and Colby
2003). The average length of the end-to-end vector of a
representative PEO chain results 88 nm. The average
wall-to-wall distance at this filler volume fraction
(2 vol%) is 59 nm. Hence, the average wall-wall distance
is between Rg and 2Rg. Using scaling relations for
semidilute solutions, it is possible to infer that the given
polymer concentration (4.6 wt %) is above coil over-
lapping and entanglement thresholds (Rubinstein and
Colby 2003).

The values of the friction parameters n0 and e¢ are
determined by fitting the model to the experimental data
for the neat polymer. Since the experiments are per-
formed at relatively small strain rates at which the non-
linear behavior is not fully manifest, we disregard the
contribution of convective constraint release. We find
n0=2.3 · 10)12 kg/s, and e¢ = 0.66. Based on this, the
longest relaxation time of the system is expected to be on
the order of 1 ls, which is in agreement with experi-
mental measurement of Zhang and Archer (2004).

The adsorption energy of PEO to the surface treated
silica particles is unknown and hence, we cannot pre-
determine the value of Uad. Instead, we extract the
parameter cn ad from the Newtonian part of log g ver-
suslog _c of filled samples. Finally, the activation length d
is determined by fitting the onset of the non-linear re-
gime for one of the filled polymer curves. The activation
length results equal to almost five Kuhn segments.

The model prediction for viscosity g, alignment angle
v, and shear stress s12 are evaluated using these
parameters and are compared with the experimental
data in Fig. 7a–c. The degree of agreement is encour-
aging considering the simplicity of the model. Some
disagreement is seen at higher filler volume fraction in
the non-linear range. It appears that the dumbbell
approximation is too crude to capture the details of the
stick-slip process on filler surfaces involving polydisperse
trains and loops. However, the model predictions do
follow the stress-optical rule, as expected.

The linear viscoelastic response of the system can also
be predicted using the present model. In the low fre-
quency region, the slopes of both storage and loss

Fig. 7 Comparison of calculated a viscosity, b alignment angle, and
c shear stress with equivalent experimental data of Zhang and
Archer (2004). Predictions for the neat polymer are obtained by
using n0=2.3 · 10) 12 kg/s, and e¢ = 0.66. For filled systems, the
curves result by taking cnad equal to 1.05, 4.0, and 11.3, for 0.2%,
1%, and 2% filler volume fraction, respectively

b
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moduli increase with c from the values corresponding to
the unfilled material. However, no terminal plateau is
obtained when the wall-wall distance is on the order of
Rg. This effect, which is observed in experiments and is
captured by our network model (Sarvestani and Picu
2004), is assumed to be due to the presence of short
polydisperse bridging segments between neighboring
fillers. While the network model effectively captures this
behavior, the present frictional model does it only
approximately.

Zhang and Archer (2004) also report the stress opti-
cal coefficient. They observed that, at low rates, the
dispersion of nanofillers into the polymer leads to larger
stress optical coefficients compared to the neat polymer
solution. This is due to the enhanced stress production in
the filled system associated with the formation of the
secondary network of polymer bridging chains between
fillers. At high deformation rates, however, the SOC of
the filled material converges to that of the unfilled sys-
tem. This violation of the stress optical rule is attributed
to the formation of mesoscale structures of filler
agglomerates and to the orientation/deformation of
these clusters during flow. This larger scale effect is not
considered in the present model.

Conclusions

A model for filled concentrated solutions and polymeric
melts is proposed. The focus is on systems with small

fillers, in which the filler wall-to-wall distance is on the
order of the chain gyration radius and in which the
energetic interaction of polymers and fillers is strong. In
such systems, every chain has an equal chance to be
adsorbed on the fillers. The main focus here is on cap-
turing two major effects: entanglements and the process
of attachment/detachment of chains from fillers. These
are assumed to play the most prominent role in the
rheology of these materials. The dynamics is modeled
using classical concepts of polymer physics: the entan-
glements are modeled using the Generalized Rouse
Model, while the stick-slip process of the chain-filler
interaction is modeled in a homogenized way through an
additional friction force. Hence, the model is purely
frictional in nature.

The sensitivity of the model to the various parameters
is studied. Their values are obtained by fitting the
mechanical response of the neat polymer (for parameters
representing entanglements) and the zero shear rate
viscosity of one filled system (for parameters describing
the chain-filler attachment/detachment process). The
model predictions are compared with experimental data.
The agreement is good, although some discrepancies
exist in the highly non-linear range of strain rates.

The advantage of the model derives from its sim-
plicity and conceptual unity. The parameters are easy to
fit to experimental data and have transparent physical
meaning. Its drawbacks and limitations are related to
the homogenized representation of the polymer-filler
attachments and the dumbbell simplification used in the
solution.
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