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ABSTRACT: The structure and dynamics of linear monodisperse polyethylene (PE) melts (C160Hs22 and
Cu40Hsgsz) containing homogeneously distributed spherical nanoparticles were investigated. The PE chains
were simulated using a coarse-grained model and a Monte Carlo algorithm. Two variables were
considered: (i) the wall-to-wall distance between particles d and (ii) the interaction energy between
monomers and particles. The various chain structures changed greatly with d while the monomer—particle
interaction had little effect. The average size, shape, and orientation of PE chains did not differ significantly
from those of a neat melt. Bridge segments were more stretched relative to segments in the neat melt,
and the stretch increased with increasing d. However, the number of bridge segments decreased markedly
with increasing d. The chain dynamics were monitored by computing the Rouse relaxation modes and
the MSD. The dynamics were slowed by both geometric (confinement by fillers) and energetic (monomer—

particle energetic interaction) effects.

Introduction

There has been much attention paid recently to the
enhanced properties of polymers containing nanosized
filler particles. Many experimental studies have shown
improved material properties of polymer nanocompos-
ites over those of the neat polymer.!~* When a small
volume fraction of spherical nanoparticles was added
to a semicrystalline polyethylene (PE), for example, the
tensile strength increased up to 30%, and the tensile
modulus nearly doubled in comparison to a structurally
similar semicrystalline neat PE.! Similarly, for melts
and solutions containing small volume fractions of
nanosized spherical filler particles, the viscosity may
be up to an order of magnitude larger than that of the
neat polymer.2 The range of volume fractions of nano-
sized filler particles giving rise to reinforcement was
found to be from less than 1% to ~10%—much smaller
than normally used in traditional polymer composites,
where the fillers have dimensions on the order of
micrometers.

The nature of the polymer—filler particle interface
defines to a large extent the reinforcement and the
viscoelastic properties of the nanocomposites.?* The
interface can be controlled by adjusting the chemistry
of the filler surface. Experimentally, it has been ob-
served that when there was little or no adsorption of
the polymer to the particle, practically no difference was
seen in the storage or loss modulus of the nanocomposite
compared to the neat polymer.? However, the storage
modulus increased several orders of magnitude when
there was strong adsorption.? The reinforcement of
traditional polymer composites has been extensively
studied in the past, and these studies identified the
strength of the adsorption of polymers onto the surfaces
of the fillers, referred to as bound rubber in the field of
composite elastomers, as one of the variables influencing
the amount of reinforcement.32-34
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Several theories have been proposed for the molecular
origins of the reinforcement. An idea proposed previ-
ously for filled rubbers suggests that reinforcement is
obtained once the filler agglomerates percolate. This
idea contrasts with the experimental observation that
in filled polymers enhanced properties resulted once
good filler dispersion was achieved. An attempt to adapt
this idea for nonagglomerated filler structures was
based on the assumption that the dynamics of polymer
chains located near a surface was slowed down. This
lead to a confined polymer layer next to the filler, and
the thickness of this layer was estimated to be on the
order of 1—2 times the radius of gyration (R,). It was
conjectured that the percolation of these layers lead to
the overall enhancement of properties.® In contrast to
this idea is the transient filler network theory which
stated that fillers were connected by a network of
adsorbed chains forming a “secondary” (i.e., in addition
to the entanglements) network. Simple calculations as
well as molecular simulations estimated that the net-
work forms once the average filler wall-to-wall distance
was on the order of 2R, and smaller. This theory was
able to qualitatively explain the nonlinear viscoelastic
properties such as the Payne effect seen in nanocom-
posites.*

Many molecular scale simulations have been per-
formed to understand the molecular origins of the
reinforcing effect of nanosized fillers, with particular
attention devoted to planar interfaces and spherical
fillers.6-10.12,13.29 Both molecular dynamics (MD) and
Monte Carlo (MC) methods were employed, and all
studies used an idealized bead—spring representation
of the polymer chains. The results seem to support both
theories discussed above. The structure of the polymer
next to the filler surface is indeed different than in the
bulk, and it was confirmed that, provided the wall-to-
wall distance is small enough, polymer chains may
bridge several neighboring fillers and form a “secondary”
network.?

The issue whether the fillers perturb the polymer
structure depends on the length scale of observation and
was investigated previously using a bead—spring model.®
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Table 1. Details of the Systems Investigated

simulation vol
cell size L simulation  chain  no. of no. of wall to fraction melt monomer—particle
system [lattice cell sizeto  length chains particles particle wall of filler ¢ density p interaction
identifier units] R, ratio L/R, N N. N¢ diam D¢ distance d (%) [g/em3] parameter w
S1 19 x 18 x 18 2.53 80 14 0 0 0.767
S2 18 x 18 x 18 2.53 80 12 1 1.30R, 1.21R, 10.6 0.776 1
S3 18 x 18 x 18 2.53 80 13 1 0.70R, 1.83R, 1.59 0.764 0.1
S4 18 x 18 x 18 2.53 80 13 1 0.70R, 1.83R; 1.59 0.764 1
S5 18 x 18 x 18 2.53 80 13 1 0.70R, 1.83R; 1.59 0.764 2
S6 22 x 22 x 22 3.09 80 24 1 0.70R, 2.39R, 0.87 0.767 1
S7 21 x 21 x 21 2.95 80 20 1 0.70R, 2.25R, 1.00 0.736 1
S8 27 x 27 x 27 3.79 80 43 8 0.70R, 1.19R, 3.78 0.766 1
S9 31 x 31 x 31 2.75 220 24 1 0.90R, 1.86R; 2.56 0.767 1
S10 21 x 21 x 21 2.95 80 20 1 1.30R, 1.63R, 6.65 0.781 1

The findings were as follows: (a) The orientation of
bonds was perturbed only at distances from the wall
comparable with the bond length. (b) On the chain scale,
the size of the ellipsoidal chains did not change upon
confinement; rather, the chains rotated with their long
semiaxis in the direction tangential to the wall. (¢) The
size of the polymer decreased only when confinement
became excessive, i.e., when the wall-to-wall distance
was smaller than R,. This effect can be explained on
the basis of entropy considerations. The entropy loss
associated with rotation was marginal compared to the
loss associated with chain size variation. The previous
investigation® also showed that the energetic interaction
between polymers and fillers has little effect on struc-
ture.

The slowing down of the dynamics of chains near a
confining surface was also observed in simulations.!3:2?
The slowing down leads to an increase in the glass
transition temperature (T) of the material.'* The effect
is more pronounced as the interaction becomes more
attractive.

This paper investigates the structure and dynamics
of an amorphous PE melt containing spherical nano-
particles. Several questions are addressed: (i) Is the
static chain structure different in the nanocomposite
compared to the neat, and if it is different, on what
length scale is the difference seen? (ii) How does the
wall-to-wall distance and the monomer—particle inter-
action control the dynamics of PE chains and on what
length scale is the control seen? (iii) To what extent do
the results obtained with this polymer specific model
differ from those obtained with bead—spring models?

Simulation Setup

The simulations performed in this study used a
coarse-grained rotational isomeric state (RIS) model for
the PE chains where the chains were represented on a
high coordination lattice. The simulations were per-
formed at a temperature of 200 °C, which is above the
melting point of PE used in this simulation. The systems
represent bulk material with nanosized fillers homoge-
neously dispersed. In most simulations, one filler par-
ticle per simulation cell was considered. Since periodic
boundary conditions were used and the simulation box
was a distorted cube (a = = y = 60°), the filler
structure represented a close packing of spherical fillers
in space. The image effects were minimized by ensuring
the simulation cell size in all three coordinate directions
was larger than 2R, in all cases. Several larger systems
with eight fillers per simulation cell were also consid-
ered. The results from these systems were indistin-
guishable from those obtained with systems with one
filler per cell. The space occupied by the polymer was

filled to a density of ~0.76 g/cm?, as appropriate for PE
melt at 200 °C.

The simulation method employed in this study used
single bead moves that were local and were accepted
through the Metropolis Monte Carlo algorithm, which
effectively samples the conformational space. The coarse-
graining was achieved by combining every two carbon
and associated hydrogen atoms on the PE chain into a
bead that was located on a second-nearest-neighbor
diamond (SNND) lattice. The SNND lattice was created
by removing every other site from a diamond lattice
resulting in a lattice structure that when a random walk
was taken, the path closely approximated the actual
angles between carbon atoms belonging to the backbone
of a vinyl polymer chain. The RIS model was incorpo-
rated into the simulation to calculate the short-range
intramolecular conformational potential energy of the
chain. The long-range intramolecular and intermolecu-
lar interaction potential energies were calculated using
a lattice based approximation of the Lennard-Jones
potential between monomers and between monomers
and filler particle beads. The cutoff radius of the long-
range energy was three lattice units (each lattice unit
is ~0.25 nm).

This simulation method has been incrementally im-
proved over the years?1~23 and widely used to investigate
the properties of PE and other vinyl polymers including
their bulk dynamics,!”-!® mixing of PP and PE,!° mixing
of PP with differing stereochemical compositions,?’ and
thin films.?> Details of the simulation method and the
potentials employed for PE can be found in refs 16 and
25.

Spherical nanoparticles were added to the system by
creating a volume of beads on the SNND lattice struc-
ture that were uniquely specified as being of filler type.
These sites were not accessible to the polymers. The
particles were created by identifying all the sites within
a specified radius; therefore, the shape of the filler
particle was approximately spherical. The fillers were
fixed in space during simulation. This approximation
was acceptable because the filler mass was much larger
than that of the polymer beads. Related to particle size,
the filler radius and the distance between fillers were
both comparable to the radius of gyration in the neat
melt, which was consistent with prior research.”.27

The parameters of the various models considered are
listed in Table 1. It must be noted that PE in this model
remained amorphous at all times, hence, the issue of
how the presence of fillers affected the degree of
crystallinity, although important, was not addressed in
this study.

The distance between fillers was defined by the filler
size and the filler volume fraction. The wall-to-wall
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Figure 1. Energy difference between a bead located at
distance r from the surface of the filler and a bead in the neat
bulk. The distance r is normalized by half of the wall-to-wall
distance. Three energetic interactions are shown: (i) w = 0.1,
repulsive; (il) w = 1.0, neutral; and (iii) w = 2.0, attractive.

distance, d, which was defined as the smallest distance
between two points located on the surface of two
neighboring fillers, ranged from 1.2R; to 2.4R,.

The energetic interaction u(r) between polymer beads
and particle beads was defined using the same Lennard-
Jones potential as was used for the polymer to polymer
interactions except it was multiplied by a prefactor w,
as shown in eq 1. In this equation, € is the well depth,
o is the location of the well, and r is the distance
between bead centers.

4we[(g)l2 - (2)6] for r = 0.25 nm

hard for r < 0.25 nm

(D

ulr) =

In this study w was taken to be 0.1, 1.0, and 2.0 in
separate simulations, representing repulsive, neutral,
and attractive interactions, respectively. The case when
w = 1.0 represented the physical situation when short
polymer chains were grafted to the surface of the
particle such that the polymer—filler and the polymer—
polymer interactions were similar.

Figure 1 shows the solvation energy or the difference
in energy of a bead located at a specified distance, r,
from the filler surface and its energy in the neat bulk.
The depth of the well of the three curves indicates the
meaning of the terms repulsive, neutral, and attractive
used in this study.

Each system was equilibrated for at least 15 million
Monte Carlo steps (MCS); then production runs of 20
million MCS were performed. The equilibration ended
once the computed mean-square displacement (MSD)
of the representative chain center of mass reached R,?.
Each system was replicated three times to improve the
statistics.

Results and Discussion

The analysis of the simulation results considers both
subchain segments and entire chain segments. The
subchain segments include (i) bridges that connect two
neighboring fillers, (ii) dangling ends that connect to the
filler at one end and the other end is free, (iii) loops that
begin and end on the surface of the same filler, and (iv)
train segments that snake on the surface of given fillers.
Figure 2 illustrates the various types of chain segments
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Figure 2. Description of the various types of chain segments
investigated. Segment AB is a bridge, segment BC is a
dangling end, segment DE is a train, and segment FG is a
loop. A monomer is considered attached to a particle if it is
within the cut off distance (three lattice units = 7.5 A) from
the surface.

investigated. A chain is considered attached to a filler
particle when at least one of its monomers is within the
cutoff distance of the filler particle. This selection of
chain subsegments is considered due to the role they
are assumed to play in the viscoelasticity of the mate-
rial. Bridges and dangling segments are important, in
particular, since bridges form the secondary network
discussed in the Introduction section, while dangling
segments are expected to play a significant role in
setting the viscosity.

Structure: Subchain Segment Statistics. The
first aspect that deserves attention is how frequent the
various subchain segments appear in the various real-
izations of the system considered (S1—S10; see Table
1). This information is presented in Table 2. Table 2
includes the fraction of chains in the systems that form
bridges, average number of bridges per filler, fraction
of adsorbed beads per chain, and the fraction of chains
that have at least one bead adsorbed (one minus fraction
of free chains). Because the various systems have
different values of d/R; and w, the data in Table 2
indicate the effect of confinement and stickiness to the
filler on these quantities.

The following observations are made by comparing
systems S2, S4, and S6, which are described by the same
parameters except the wall-to-wall distance, d/R,, which
increases from S2 to S6: (i) The number of bridges
decreases rapidly with increasing d. In fact, when d >
3R, no bridges form between fillers. (ii) As d increases,
the number of dangling segments increases, this being
associated with the decrease in number of bridges. Note
that the filler coverage, the fraction of sites on the filler
surface occupied by polymer beads, is similar in all
systems. (iii) The number of loops and trains remain
constant as d = 1.83R,. (iv) While in S2, at the smallest
d, all chains form bridges, and a large fraction of beads
are attached; in S6, 40% of the chains in the system
are free. The effect of the monomer—particle interaction
prefactor, w, can be observed by comparing systems S3,
S4, and S5. It can be seen that this parameter has
essentially no effect on these measures of structure.

Structure: Subchain Segment Distributions.
The chain segment structure is represented by the
probability distribution function (PDF) of the number
of monomers, n, in the segment, and the PDF of the end-
to-end vector length, R... These measures are used as
input to rheological molecular models of the viscoelas-
ticity of nanocomposites.26
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Table 2. Summary of the Static Chain Structure

no. of monomers in segment
normalized by the chain

av no. of segments per filler

av fraction of
chains with

av no. of
bridges per

av fraction

of chains av fraction

particle

length (n/N)

system

identifier bridge

dangling

loop

train

bridge

dangling

loop

train

forming at
least one
bridge

chain that

forms
bridges

at least one
bead
adsorbed

of adsorbed

beads per
chain

S1
S2 18.5
S3 4.4
S4 4.2
S5 4.1
S6 1.3
S7 1.8
S9 5.5
S10

16.1
18.7
19.1
19.7
24.8
23.0
33.9
30.2

34.0
18.7
17.2
17.7
17.3
16.7
38.7
35.0

0.21
0.42
0.42
0.40
0.54
0.49
0.42
0.35

0.16
0.37
0.36
0.34
0.43
0.41
0.36
0.29

0.12
0.16
0.15
0.14
0.16
0.16
0.08
0.14

0.12
0.07
0.10
0.11
0.10
0.10
0.04
0.12

0.86
0.31
0.30
0.29
0.05
0.09
0.21
0.45

1.79
1.10
1.09
1.09
1.01
1.02
1.07
1.17

1.00
0.87
0.87
0.88
0.59
0.66
0.77
0.95

0.37
0.14
0.17
0.19
0.13
0.14
0.10
0.24

The distributions of the number of monomers per
bridge, dangling end, loop, and train segments normal-
ized by N, and the number of monomers in the chain,
P(n/N), are shown in Figures 3, 4, 5, and 6, respectively.
Data from systems S2, S3, S4, S5, and S6 are compared
in each figure. Systems S2, S4, and S6 have the same
monomer—particle interaction prefactor of w = 1.0
(neutral) but have a varying wall-to-wall distance, d,
between particles, whereas systems S3, S4, and S5 have
varying w but the same d.

The bridge and dangling end distributions change
substantially as the wall-to-wall distance d varies but
are essentially independent of the interaction prefactor,
w (see Figures 3 and 4). As expected, the bridge
distribution changes from a broad distribution where
the mean number of monomers per bridge is ap-
proximately one-half of the overall chain (N/2) to a sharp
distribution of bridge segments containing a small
number of monomers. The dangling end segment dis-
tribution changes from a nearly constant probability of
having any number of monomers between one and N
form a dangling end to a highly skewed distribution
where there is a high probability of having dangling end
segments having N/2 or less monomers. This is again
consistent with the effect of confinement because in S2
no long dangling ends may exist as they would form
bridges.

Figure 3b compares the distribution of the number
of monomers per bridge between two systems with
similar filler volume fraction and density but with two
different chain lengths, N = 80 vs N = 220. The two
distributions are identical as were the other three chain
segment distributions. This justifies the use of the
smaller but faster simulations based on N = 80 chains
rather than the N = 220 chain systems.

As can be seen in Figures 5 and 6, there is very little
variation in the distribution of loop and train segments
as the wall-to-wall distance and the monomer—particle
interaction prefactor change. This can be explained by
the fact that loop and train segments are structures
local to the surface of the particle. On average they form
with less than N/6 monomers in a chain and therefore
do not feel the effect of the neighboring particles that
are approximately twice as far away as their length.

The question of whether the equilibrium chain struc-
ture changes as a result of the presence of nanoparticles
is considered next. The issue is studied by probing the
PDF of the end-to-end vector length of bridges and
entire chains.

The probability distribution of bridge lengths in the
nanocomposite is compared to the probability distribu-
tion of subchain segments in the neat melt. Figure 7a,b

(S2) d/R;=1_2, w=1.0 o e

(S3) UR=1.8, w=0.1 —+—
51 (S4) IR =18, w=1.0 -
(S5) /R =1.8, w=2.0 - *-ee
(S6) IR =24, w=1.0 o

p(@N)

(S4)N=80 ---x--=
(S9N=220 -~

p(w/N)

Figure 3. Bridge segment probability distribution function
vs the normalized bridge segment length (n/N) for (a) all
systems considered (see Table 1) and (b) similar data for
different chain lengths.

shows the PDF of [RY.|/(Iv/n) for various composite
polymer systems, where R, is the end-to-end vector of
a bridge segment, [ is the bond length between mono-
mers, and n is the number of monomers in the segment.
Also shown is the PDF of segment lengths taken from
the neat system simulations. Recall that the neat
system is simulated with the same model for the
polymer, without fillers, and the distribution is Gauss-
ian. In particular, the neat system is sampled using
P(n/N) obtained for bridging segments for the various
filled systems (Figure 3), and the resulting distributions
of the segment end-to-end vectors are all Gaussian and
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Figure 5. Loop segment probability distribution function vs
the normalized loop segment length (n/N).

20 T T

(S2) d/Rg:ll‘z’ w=1.0 I ........ B

18 = (S3) /R =18, w=0.1 ——
(S4) YR =1.8, w=1.0 ----xc---

16 E (§5) R =18, w=20 x|

14 i (S6) IR 2.4, W=1.0 ~-oaee

0 0.2 0.4 0.6 0.8 1
/N

Figure 6. Train segment probability distribution function vs
the normalized train segment length (n/N).

superimpose exactly on the similar distribution of the
end-to-end vectors of the entire chains.

As the wall-to-wall distance increases, the distribu-
tions in Figure 7a shift to the right and become
narrower. This indicates that the bridges are stretched
compared to similar segments in the neat melt. It is the
reduced number of possible chain conformations as the
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Figure 7. Probability distribution of bridge segments’ end-

to-end vector length: (a) dependence on confinement, d; (b)
dependence on w.

chain becomes more stretched that causes the narrow-
ing of the distribution seen in Figure 7a. A similar effect
was observed in simulations using bead—spring mod-
els.?” The apparent stretch of bridge segments compared
to segments in the neat is due to the way the distribu-
tion of chain subsegments is probed. Let us consider an
extreme example. The distribution for the neat system
in Figure 7a is identical for chain end-to-end vectors and
for end-to-end vectors of chain subsegments; hence, one
can replace n by N in this case. If we fix the representa-
tive chain at one end to a wall and we bring the other

wall at a distance 4/vN from the fixed end, then the
probability of the free end to reach the wall is very small
(as seen in Figure 7a). If one would plot the PDF of only
these chains that do reach the wall, assuming that
sufficient statistics is accumulated, it would obtain a
narrow distribution strongly shifted to the right; only
the most stretched chains of the neat distribution
manage to reach the wall. A similar effect is observed
in the filled system. The farther apart the walls are the
fewer bridges exist, and the distribution of bridge end-
to-end distances shifts to the right monotonically as the
wall-to-wall distance increases.

We would like to comment on the importance of this
effect. Stretched chains are stiffer than unstretched ones
since the entropic force acting between the two ends
follows the Langevin function. This suggests that the
filled system is stiffer than the neat material just due
to the presence of these segments.?® However, signifi-
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cant stretching is observed only when the wall-to-wall
distance becomes larger than 2R,, situations in which
the number of bridges per filler is very small (see Table
2). Hence, an overall stiffening effect exists, but it is
not expected to be significant.

The effect of the polymer—particle energetic interac-
tion prefactor, w, is shown in Figure 7b. This parameter
changes nothing in the structure of the chain segments
as the interaction is local and cannot affect the chain-
scale structure. The strength of the interaction is
expected to be crucial in dynamics given the energy
penalty it imposes during chain detachment from fillers.

Further insight into the structure can be obtained by
looking at the statistics for entire chains. If only chains
that form bridges are selected, the distribution of the

end-to-end vector of the chain, Re/(IVN), is slightly
shifted to the right compared with the distribution in
the neat melt, indicating a minor stretch. This is
obviously an effect of the presence of the bridge.
However, when the whole population of chains is
considered, the end-to-end distribution is identical to
that in the neat melt to within the accuracy of the
present calculations. As previously observed for bead—
spring systems,”?7 the presence of the fillers does not
change the structure of the chains if the wall-to-wall
distance is larger than R, but rather chains remain
Gaussian. The stretching of bridges is associated with
the sampling of the Gaussian distribution as discussed
above.

The conclusion that chains preserve their neat melt
structure is reinforced by the evaluation of R, as well
as that of the eigenvalues of the gyration tensor 44, Ao,
As. Similar to the end-to-end distance, these quantities
also are insensitive to d and w for the range of
parameters considered. It is expected that if d becomes
smaller than R, the chain size will decrease, as found
for bead—spring systems. The ratios of the three eigen-
values of the gyration tensor (11/A3:49/13:13/A3) are found
not to be a function of distance from the particle. This
ratio was found to be approximately 14:3:1 for the neat
(S1) system. A change in these ratios in the composite
systems would imply a change in the shape of the
average chain. Again, no change was observed in these
ratios as a function of distance from the surface of
particle.

To further support the conclusion that chains preserve
their neat melt structure, the chain orientation was also
investigated by calculating the second Legendre poly-
nomial of the angle between the major semiaxis of the
chain and the vector normal to the filler surface passing
through the chain center of mass. A similar result to
that found for the size and shape of the chains is also
found. There is no significant difference in the average
orientation of the major semiaxis of the chain ellipsoid
as a function of distance from the surface of the particle.
This finding, however, is contrary to what was found
for the bead—spring model® in which the major semiaxis
of the chain ellipsoid rotates tangent to surface of the
filler as the distance between fillers decreased. The
reason for this discrepancy is likely a result of the
relatively smaller size of the particle (0.7R,) used in this
investigation compared to previous studies,® where the
particle size was ~1.0R;, and the large volume occupied
by the chains—the chains used in this study occupied a
volume ~23 times larger than the volume of the filler.

Dynamics: Rouse Modes. The dynamics of the PE
chains is investigated by examining both the Rouse
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Figure 8. Autocorrelation function for the p = 1 Rouse mode
normal coordinate: (a) dependence on confinement, d; (b)
dependence on w. The time scale is normalized by the Rouse
time of the whole chain in the neat system.

modes and the mean-square displacement of the chain
center of mass, g5(¢),3! as a function of the number of
Monte Carlo steps (MCS). The characteristic relaxation
times of the system are determined in the usual way
by computing the autocorrelation function of the normal
modes. Figure 8 shows the autocorrelation function of
the first Rouse mode (p = 1) for various systems (see
Table 1). Figure 8a shows the effect of confinement by
comparing systems S2, S4, and S6 for which w = 1.0.
As long as d is larger than ~1.5R,; (S4 and S6) confine-
ment is too weak to influence relaxation. Slowing down
is seen in system S2, for which d = 1.2R,. The relaxation
of the neat system (S1) is plotted for reference. The
effect of the prefactor w is shown in Figure 8b in which
the wall-to-wall distance d is held constant (systems S3,
S4, and S5). As expected, increasing polymer—filler
adhesion leads to an additional slowdown.

Next, the issue of whether there is a length scale
below which the confinement has no effect on Rouse
relaxation is investigated. The idea is rooted in the
presumption that fillers will only affect relaxation
modes with wavelengths comparable to the character-
istic length scale of the microstructure, e.g., the wall-
to-wall distance. In the limit, one might expect the
motion of a single monomer would not be affected by
the presence of a particle. To test this hypothesis, all
Rouse modes were evaluated. The results are shown in
Figure 9 in which the normalization of the two axes
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reflects the expected Rouse scaling of the relaxation
times:28

(2)

A straight line with a slope of 2 and a y-intercept of
79 is predicted by this relation. The data for given system
align, which suggests that the Rouse scaling is followed.
The lines are shifted in the vertical direction, which is
a manifestation of the slowing down also seen in Figure
8a. Interestingly, the assumption made above seems to
be false: confinement affects all relaxation modes in the
same way, independent of their wavelength. The con-
clusion remains valid for the data in Figure 8b; the
slowing down due to w is similar for all modes. This
observation has implications on the modeling of the
rheology of the material at larger scales. It implies that
the effect of fillers on dynamics (at least Rouse dynam-
ics) may be represented in a mean-field sense by an
increase in the average friction the monomer feels. The
effective friction coefficient may be calibrated from the
intercept of the vertical axis in Figure 9. This mean-
field view was taken in the rheological model presented
in ref 26.

Dynamics: Diffusion. The dynamics is further
analyzed by evaluating the mean-square displacement
(MSD) of the chain center of mass, gs(¢), where time ¢
is converted here into number of MC steps. The results
are shown in Figure 10. The horizontal axis is normal-
ized by the Rouse time in the neat system. Its selection
for normalization is made considering that the Rouse
time of the various filled systems is only slightly
different than this value.

Figure 10a demonstrates the effect of confinement (w
= 1.0 in all these cases). The conclusion is similar to
that obtained from the Rouse analysis—confinement
slows down dynamics. The various g3 curves are paral-
lel, which indicates that confinement preserves the
nature of the diffusion but changes the diffusivity.

Figure 10b shows the effect of the filler—polymer
interaction prefactor, w. The curve corresponding to the
neutral interaction case (w = 1.0) has a slope of 1.0
beyond the Rouse time; i.e., it follows normal simple
diffusion dynamics. The system with repulsive interac-
tion (w = 0.1) is superdiffusive, while the one with
attractive interactions (w = 2.0) is subdiffusive (the
slope is smaller than 1.0 in the simple diffusion regime).
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Figure 10. Mean-squared displacement of the chain center
of mass vs time (MCS): (a) dependence on confinement, d; (b)
dependence on w. The time scale is normalized by the Rouse
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These findings can be understood by considering an
analogy with a random walk. If part of the sites
available to the random walker is “stickier” than others,
i.e., the walker spends more time there than in other
sites, the resulting Levy walk is subdiffusive and is
characterized by a scaling exponent smaller than one.
If the walker is made to spend less time in a fraction of
the available sites, the motion will be superdiffusive and
characterized by scaling exponents larger than one.
Likewise, if the walk is made in a confined geometry
and the walker spends the same amount of time in all
sites, the walk is diffusive, but the diffusivity depends
on the degree of confinement. The analogy with the
polymeric system considered here is obvious. If the
polymer—filler interaction is attractive, the representa-
tive bead spends more time at the wall than in any other
site of the lattice. If the interaction is repulsive, the
entropic interaction between chains and fillers pushes
the chains away from the filler surface, leading to the
creation of a low-density polymer layer in the immediate
vicinity of the wall.” As the number of occupied sites is
smaller in the depleted layer than in the bulk, the
residence time in these sites is shorter, which leads to
the superdiffusive behavior.

Conclusions

A series of on-lattice Monte Carlo simulations were
performed representing systems of PE chains containing
spherical nanoparticles. The purpose of this investiga-
tion was to better understand both the static chain
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structure and the chain dynamics of a PE nanocompos-
ite by comparing it to neat PE melt system. In addition,
we wanted to better understand the length scale over
which differences in the chain dynamics are expected.
This work concentrated on a polymer system that is
chemically defined and was an attempt to simulate real
systems as opposed to model (i.e., bead—spring) systems.
By using a real system, we hope to study more compli-
cated systems (such as surface modified particles) in the
future. In the near future, we will be comparing these
PE specific simulations to experiments performed using
the nuclear magnetic resonance technique.!!

The probability distribution of the number of mono-
mers present in bridge, dangling end, loop, and train
chain segments located around and in between spherical
particles was presented. The broad distribution of
bridges and the nearly uniform distribution of dangling
end segments drastically changed to a narrow distribu-
tion of a small number of monomers as the distance
between particles (d) decreased. Hardly any change was
seen in the monomer distribution of loop and train chain
segments as d decreased. For all chain segment types
investigated, the monomer distribution did not change
as a result of varying the monomer—particle interaction
energy prefactor, w.

The static chain structure of PE nanocomposites was
investigated by examining the following three chain
measures—average size, average shape, and average
chain orientation—between the composite systems and
the comparable neat system. For all three measures no
significant variation was observed between values found
for the composite systems and those found for the neat
system. In addition, no significant variations were found
in these measures as a function of distance from the
particle for all composite systems investigated.

However, when the structure of bridge segments was
examined in detail, it was found that they became more
stretched relative to the neat chain segments containing
the same number of monomers. The system with the
largest wall-to-wall distance between particles had
bridge chain segments that were ~40% more stretched
when compared to chain segments that contain the
same number of monomers in the neat system. The
amount of stretch in a bridge segment appeared to
decrease as the wall-to-wall distance decreased.

The new information presented in this paper is the
effect of the two variables, d and w, on the dynamics of
a PE nanocomposite system, specifically, the effect on
the Rouse relaxation times and the mean-square dis-
placement. Although the static chain structure inves-
tigation using a chemically specific model did not show
any differences compared to previous simulations using
bead—spring models, this was not obvious at the onset
of the investigation. The fact that nearly identically
probability distribution functions of chain structures
were found using either the polyethylene model or the
generic bead—spring model is an interesting result in
and of itself and supports the utility of faster, more
generic models to investigate chain structure at lengths
scales comparable to the radius of gyration of the chains.

The dynamics of the PE chain was found to be
different in the composite systems compared to the neat
PE. The Rouse relaxation time, 7, of the entire chain
increased rather suddenly as d decreased below ~1.5R,.
In addition, 7, also increased for systems with attractive
monomer—particle interaction energy compared to the
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systems with neutral and repulsive interactions. The
most notable observation was the slowing down in the
Rouse dynamics seen on all subsections of the chain no
matter how small the subsections were, meaning that
on average every monomer feels the confinement of the
neighboring particles, slowing the relaxation of every
chain subsection.
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