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Abstract

We present an anisotropic adaptive discretization method and demonstrate how
computational efficiency can be increased when applying it to the simulation of car-
diovascular flow. A SUPG stabilized FE-method is used to solve the incompressible
Navier-Stokes equations using linear elements. The anisotropic size field is deter-
mined from the recovered Hessian of the solution field. To perform mesh adaptation,
a single mesh metric field is constructed for the whole cardiac cycle. Two alterna-
tive approaches are applied, one in which a metric field is constructed based on the
average flow whereas in the other approach the metric field is obtained by intersect-
ing metric fields computed at a number of specified instants during the cycle. We
further demonstrate that controlling the mesh adaptation procedure in a way that
maintains structured and graded elements near the wall leads to a more accurate
wall shear stress computation. We apply the method to the case of a 3D branching
vessel model. The efficiency of our approach is measured by analyzing the wall shear
stress, a challenging but important quantity in the understanding of cardiovascular
disease. The anisotropic adaptivity based on metric intersection achieves an order
of magnitude reduction in terms of degrees of freedom when compared to uniform
refinement for a given level of accuracy.
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1 INTRODUCTION

In recent years, the relationship between hemodynamic factors and arterial
diseases has attracted numerous investigators to study arterial blood flow and
wall shear stress (WSS) patterns. The direct application of such a relationship
will help in surgical planning, in which patient-specific anatomic and physio-
logic information can be used to predict changes in blood flow for alternative
surgical procedures [1].

Interesting challenges arise in blood flow simulations due to the transient and
non-linear nature of the problem involving 3D geometries. Finite element (FE)
methods provide a viable option for understanding the complex nature of
blood flow and for obtaining relevant flow quantities, like WSS. The automatic
and adaptive construction of properly configured anisotropic meshes is central
to the ability to effectively perform these simulations.

In the procedures presented here, mesh adaptation is achieved by modify-
ing the elements according to anisotropic mesh metrics defined by an error
correction/indication procedure. Anisotropic mesh adaptation procedures re-
duce the number of elements (and degrees of freedom), leading to significant
computational savings for a given level of accuracy.

Before describing our approach we review the current state of the art. One
approach to control the error introduced due to discretization of the flow equa-
tions is to perform mesh adaptation that modifies the spatial discretization.
One way to carry out mesh adaptation is by applying local mesh modifica-
tion procedures dictated by the size field information based on a posteriori
error estimators/indicators. Traditionally, the size field is based on scalar er-
ror information that allows for isotropic mesh adaptation generally resulting
in equilateral elements.

The desired element size and orientation is significantly influenced by the char-
acteristics of the solution field which in turn depends on the equations being
solved, the initial and boundary conditions, and the geometry of the physical
domain. Many physical problems exhibit strong anisotropic phenomena which
introduces a desire for anisotropic elements, for example, boundary layers that
form near walls in viscous flows or shock waves in high speed flows. In this
scenario, an anisotropic mesh adaptation procedure capable of creating such
elements is highly desirable to further increase the efficiency of the simulations.

Recent efforts to obtain anisotropic meshes have considered the mesh metric
field to define the required mesh anisotropy. A mesh metric field allows one to
invoke local mesh modification operations (or perform a remeshing process)
in order to obtain elements that respect the required mesh anisotropy and in
turn align the mesh with the solution anisotropy. Substantial progress has been
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made in the development of such procedures for three dimensional domains
(see, [2] and references therein) including efforts on their application to a wide
variety of physical problems in 2D [3–6] and 3D [7–9]. The mesh modification
procedures have also been extended to handle 3D curved geometries [10], which
makes the process amenable to blood vessels.

Although anisotropic meshes have been used in the field of fluid mechanics for
some time, especially for cases with prior knowledge of boundary layers (see
for example [11–15] and literature cited therein), adaptive specification of the
size field for 3D problems has been achieved only in the past few years [7–9].
Most of the efforts carried out construct a mesh metric field based on the
Hessian matrix of an appropriate solution variable.

Mesh adaptation procedures have only recently been utilized [16] in blood flow
simulations. Most attempts to improve the simulation efficiency of hemody-
namics by means of mesh adaptivity are limited to isotropic adaptation and
steady flows, while cardiovascular flows are unsteady in nature and possess
distinct directional features. In this article we have applied anisotropic mesh
adaptation for pulsatile flow in realistic geometries chosen to demonstrate the
major difficulties that are encountered in the process.

The cyclic transient phenomena in blood flows complicate the process of
mesh adaptation as the flow features can propagate and vary, in terms of
shape and/or intensity, with time. There are two possible approaches to per-
form mesh adaptation for such problems. In the first, the mesh is continually
adapted according to the transient flow features. The second approach is to use
a single adapted mesh for the entire unsteady flow cycle. The latter approach
is a practical alternative for flows of pulsatile nature and therefore periodic
in time. The single mesh adaptation process for the whole flow cycle can be
based on different scenarios of flow conditions like the time averaged flow field,
peak flow field over the cycle or spatially local peak flows. In this article, we
apply two different adaptation strategies to obtain a single adapted mesh for
the whole cardiac cycle. One approach is based on the average speed field as
presented in [17] whereas in the other, size field information is constructed at
certain instants of the cardiac cycle, based on the instantaneous speed field,
and then combined into a single size field by using a metric intersection algo-
rithm.

The organization of the paper is as follows. Section 2 introduces the numerical
method that we use to solve hemodynamic flows and describes the computa-
tion of WSS. Section 3 presents the overall anisotropic mesh adaptation pro-
cedure. In this section we discuss the Hessian strategy and review the concept
of a mesh metric field. We then provide the details of anisotropic mesh size
field computation including a corrective mechanism of metric alignment at
no-slip boundaries. Finally, we propose a method that accounts for the tran-
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sient nature of the flow in the construction of the mesh metric field with the
help of a metric intersection procedure. Section 4 considers the effects of mesh
quality near the walls on WSS computation. In this section, we identify the
mesh requirements in terms of element shape and gradation that will lead to
more accurate computation of WSS. We provide a hybrid methodology that
combines anisotropic adaptivity with a generalized advancing layers method
to meet the desired requirements. Section 5 presents the application of differ-
ent anisotropic adaptive strategies for cardiovascular flows. In the first part
of this section, we analyze the efficiency of the two size field strategies; the
average flow field based adaptivity and an alternative based on mesh metric
intersection. We analyze the wall shear stress for a pulsatile flow case in a
vessel bifurcating into symmetric branches. In the second part of this section,
we demonstrate how mesh structure near the vessel walls affects the accuracy
of WSS computation and hereby motivate the hybrid approach proposed in
section 4.

2 BLOOD FLOW SIMULATION

This section presents the finite element formulation for the transient incom-
pressible Navier-Stokes equation governing blood flow. We use a stabilized
finite element formulation that has been shown to be robust, accurate and
stable on a variety of flow problems (see for example [1] and [18]). In particu-
lar, we employ the streamline upwind/Petrov-Galerkin (SUPG) stabilization
method introduced in [19]. The section also presents details on the numerical
computation of wall shear stress.

2.1 Governing Equations

The governing equations for blood flow, assuming Newtonian constitutive be-
havior and rigid blood vessel walls, are the transient incompressible Navier-
Stokes equations

ui,i = 0, (1)

ρu̇i + ρujui,j = −p,i + τij,j + fi. (2)

The variables are: the velocity ui, the pressure p, the density ρ, and the viscous
stress tensor τij. The summation convention is used throughout, i.e., sum on
repeated indices. For incompressible, Newtonian flow the viscous stress tensor
τij is modeled by the symmetric strain rate tensor

τij = µ(ui,j + uj,i), (3)
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where µ is the viscosity. Finally, fi is a body force or source term, such as grav-
ity. This term is typically neglected in arterial flow analysis. The above system
of equations is supplemented with an appropriate set of boundary conditions
that are prescribed on the model boundary of the blood vessels. The no-slip
condition is imposed on the vessel walls that are assumed to be rigid and
impermeable. A time varying velocity profile, based on physiological values,
may be prescribed at the inlet. Constant pressure, resistance, or impedance
boundary conditions can be prescribed at the outlet [20].

2.2 Flow Solver

Finite element methods are based on the weak form of the governing equations
(1),(2) which is obtained by taking the L2(Ω)-inner product of the entire
system with weight functions. Integration by parts is then performed to shift
the spatial derivatives onto the weight functions. The diffusive term, pressure
term and continuity equation are all integrated by parts. The diffusive term
is integrated by parts to reduce continuity requirements, while the pressure
term is integrated by parts to provide symmetry with the continuity equation
which in turn is integrated by parts to provide discrete conservation of mass.

To derive the finite element discretization of the weak form of (1),(2), discrete
weight and solution function spaces must be introduced. Let Ω̄ ⊂ RN represent
the closure of the physical spatial domain (i.e., Ω∪Γ where Γ is the boundary)
in N dimensions; where only N = 3 is considered here. The boundary is
decomposed into portions with natural boundary conditions, Γh, and essential
boundary conditions, Γg, i.e., Γ = Γg ∪ Γh. In addition, H1(Ω) represents the
usual Sobolev space of functions with square-integrable values and derivatives
on Ω. Subsequently Ω is discretized into nel finite elements, Ω̄e. With this,
one can define the discrete solution and weight function spaces for the semi-
discrete formulation as:

S
k
h = {v|v(·, t) ∈ H1(Ω)N , t ∈ [0, T ],v|x∈Ω̄e

∈ Pk(Ω̄e)
N ,v(·, t) = g onΓg}, (4)

W
k
h = {w|w(·, t) ∈ H1(Ω)N , t ∈ [0, T ],w|x∈Ω̄e

∈ Pk(Ω̄e)
N ,w(·, t) = 0 onΓg}, (5)

Pk
h = {p|p(·, t) ∈ H1(Ω), t ∈ [0, T ], p|x∈Ω̄e

∈ Pk(Ω̄e)}, (6)

Pk(Ω̄e) denoting the space of all polynomials defined on Ω̄e, complete up to
order k ≥ 1. Let us emphasize that the local approximation space, Pk(Ω̄e), is
the same for both the velocity and pressure variables. This is possible due to
the stabilized nature of the formulation to be introduced below. These spaces
represent discrete subspaces of the spaces in which the weak form is defined.
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The stabilized formulation used in the present work is based on the formulation
described in [1]. Given the spaces defined above, the semi-discrete Galerkin
finite element formulation is applied to the weak form of the governing equa-
tions (1),(2) as: Find u ∈ S

k
h and p ∈ Pk

h such that

BG(wi, q;ui, p) = 0, (7)

BG(wi, q;ui, p) =
∫

Ω
{wi (ρu̇i + ρujui,j − fi) + wi,j (−pδij + τij)− q,iui} dΩ

+
∫

Γh

{wi (pδij − τij)nj + quini} dΓ,

(8)

for all w ∈ W
k
h and q ∈ Pk

h . The boundary integral term arises from the
integration by parts and is only carried out over the portion of the domain
without essential boundary conditions. Since the standard Galerkin method
is well known to be unstable for equal-order interpolation of the velocity and
pressure, additional stabilization terms are introduced as follows: Find u ∈ S

k
h

and p ∈ Pk
h such that

B(wi, q;ui, p) = 0, (9)

B(wi, q;ui, p) = BG(wi, q;ui, p)

+
nel
∑

e=1

∫

Ω̄e

{τM(ujwi,j + q,i/ρ)Li + τCwi,iuj,j} dΩe

+
nel
∑

e=1

∫

Ω̄e

{wiρ
∆
ujui,j + τ̂Ljwi,jLkui,k} dΩe,

(10)

for all w ∈W
k
h and q ∈ Pk

h . We have used Li to represent the residual of the
ith momentum equation

Li = ρu̇i + ρujui,j + p,i − τij,j − fi. (11)

The second line in the stabilized formulation, (10), represents the typical
SUPG stabilization added to the Galerkin formulation for the incompress-
ible set of equations (see [21]). The first term in the third line of (10) was
introduced in [1] to overcome the lack of mass conservation introduced as a
consequence of the momentum stabilization in the continuity equation. The
second term on this line was introduced to stabilize this new advective term.
The stabilization parameters are described in [18].

To summarize, we use the SUPG stabilized formulation for the transient
incompressible Navier-Stokes equations, governing blood flow, that are dis-
cretized by linear finite elements, both for the pressure and the velocity field.
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Stabilized finite element methods have been proven to be stable and higher-
order accurate for linear symmetric advective-diffusive systems ( model prob-
lem for the Navier-Stokes equations) in [22] and for the linearized incompress-
ible Navier-Stokes equations in [21]. Error analysis in these references relate
the global error estimates to interpolation estimates and show that the rate
of convergence of the total error is the same as that of interpolation estimates
in their respective, restricted cases. Error estimates for the full Navier-Stokes
equations are not yet available.

To develop a discrete system of algebraic equations, the weight functions wi

and q, the solution variables ui and p, and their time derivatives are expanded
in terms of the finite element basis functions. Gauss quadrature of the spa-
tial integrals results in a system of first-order, nonlinear differential-algebraic
equations. Finally, this system of non-linear ordinary differential equations is
discretized in time via a generalized-α time integrator [23], resulting in a non-
linear system of algebraic equations. This system is in turn linearized with
Newton’s method which yields a linear algebraic system of equations that is
solved (at each time step) and the solution is updated for each of the Newton
iterations. The linear algebra solver of [24] is used to solve the linear system
of equations.

2.3 Wall Shear Stress Computation

The wall shear stress can be defined in terms of the surface traction vector t

whose components are given as:

ti = (−pδij + τij) nj, (12)

p denoting the pressure, τij are the components of the viscous stress tensor
and nj are the components of the normal n to the surface. The WSS is then
defined, on each point on the surface, as:

tw = |tw| = |t− (t · n)n|, (13)

that is, the magnitude of the traction vector’s component in a plane tangential
to the surface.

Traditionally the boundary quantities, also referred as wall quantities, like
the viscous fluxes τ̂in (= τijnj), are evaluated by substituting the numerical
derivatives of flow quantities into the definition of the fluxes. However, instead
of computing the viscous flux in this way (i.e., by differentiating the veloc-
ity) a more accurate and globaly conservative computation can be made by
introducing a modified finite element formulation with an auxiliary flux field
for the boundary flux on the portion with essential boundary conditions, Γg
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(see [25, page 107], [26]). Taking τ̂in as the unknown (discrete) viscous flux,
the modified formulation which derives from the discrete weak formulation
(10) is: Find u ∈ S

k
h, p ∈ P

k
h and τ̂in ∈W k

h −W
k
h such that

Bmod(wi, q;ui, p) = 0, (14)

Bmod(wi, q;ui, p) = B(wi, q;ui, p)

+
∫

Γg

ŵi(− τ̂in) dΓ ∀ŵ ∈ W k
h −W

k
h.

(15)

Note that the above problem splits into two subproblems:

B(wi, q;ui, p) = 0 ∀w ∈ W
k
h, (16)

∫

Γg

ŵiτ̂in dΓ = B(ŵi, q;ui, p) ∀ŵ ∈W k
h −W

k
h, (17)

where W k
h is the discrete function space spanned by the basis functions in-

cluding the ones omitted to satisfy the homogenous essential boundary condi-
tions. Let η denote the set of all degrees of freedom (dof) and ηg be the subset
corresponding to the ones located on Γg. W

k
h spans all the basis functions

associated with η − ηg, as:

W
k
h = span{NA}A∈η−ηg

, (18)

where NA is a basis function associated with dof dA. Now, W k
h can be ex-

pressed as:

W k
h = W

k
h

⊕

span{NA}A∈ηg
. (19)

This technique is often referred as the consistent boundary-flux calculation
technique and it is constructed to satisfy the conservation properties, see,
e.g., [27, pages 42–44] and [26]. The auxiliary problem (17) is solved for the
boundary flux after the original problem (16) as a post-processing step (i.e.,
if u (∈ S

k
h) is already determined by (16), then the right-hand side of (17) is

completely determined). The flux is expressed in terms of the basis functions
associated with ηg. The integrals in (17) exist only over the elements touch-
ing Γg, due to the compact support of basis functions, making the auxiliary
problem inexpensive.

The traction vector t can be computed once τ̂in is known, which in turn can
be used to compute the WSS as defined in (13). The remaining step is the
computation of the normal n at boundary nodes. Noting the normal is not
uniquely defined at nodes on curved boundaries (i.e., vessel walls) because
of the C0 mesh elements, the final task is to find an appropriate normal. In
this work, we use basis function weighted normals as described in [27, pages
542–544].
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3 ANISOTROPIC ADAPTIVE PROCEDURE

The accuracy of a numerical solution depends on the spatial discretization
of the physical domain, i.e., on the process of subdividing the domain into a
finite number of elements, also referred to as the mesh. In general, the de-
sired element sizes in different directions are influenced by the physical and
geometric features of the problem which can vary significantly. In many phys-
ical problems, including blood flow, the solution exhibits strong anisotropic
features creating a demand for elements which are aligned with the solution’s
anisotropy. In realistic cases such information, required to compute the de-
sired solution field to an acceptable level of accuracy, is unknown a priori. An
efficient approach to overcome this difficulty is to apply an iterative adaptive
procedure where the errors introduced due to spatial discretization are con-
trolled within a specified tolerance. An anisotropic adaptive procedure modi-
fies the mesh in a way such that the local mesh resolution becomes adequate
in all directions.

In this section, we describe the anisotropic adaptive procedure that we employ.
We describe the basis for the Hessian strategy, a method suited when using
linear finite elements, and review the concept of mesh metric tensors which is
used to represent the desired mesh anisotropy. We then provide the details of
the anisotropic mesh size field computation. We also present a technique to
align mesh metrics at no-slip boundaries. Finally, we sketch how time depen-
dence of the solution can be included in the adaptive process by combining
mesh metric fields that are obtained at specified instants during a cardiac
cycle, hereby avoiding mesh adaptation after each single time step.

3.1 General Components

An adaptive method involves a feed-back process that evaluates the quality
of the computed solution using a posteriori error estimation. To control the
discretization errors mesh modification procedures are applied to change the
local mesh resolution. The key ingredients of an adaptive meshing method
include:

• A posteriori error estimation/indication: Estimating and/or obtaining an
indication of the discretization error based on the quality of the computed
solution. See [28] or [29] for a survey.

• Size field construction: Transformation of the error information into a size
field information that describes the desired mesh resolution over the domain.

• Modifying strategy: Altering the mesh based on the size field information
using local mesh modifications [30,31] or global remeshing [32,33].
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The above components are general enough to include anisotropic mesh adap-
tation techniques provided each of them incorporates appropriate directional
information. The remainder of this section elaborates on these key compo-
nents, except the last item which has been described in [2,34].

3.2 Hessian Strategy

To obtain directional information of the error we use the Hessian strategy [35],
a method where the field’s second derivatives are used to extract information
on the error distribution. The Hessian can be computed from any component
of the solution field and a scalar, such as speed or density is usually chosen.
This directional information is converted into a mesh metric field which pre-
scribes the desired element size and orientation. Recall that a function which
is sufficiently smooth can be expanded into a Taylor series. When trying to
interpolate that function with a piecewise linear function, the interpolation er-
ror will have a lowest order error term proportional to the second derivatives
of the function, which covers a large portion of the discretization error [36].

The interpolation error ‖e‖∞,K in 3D in the L∞ norm defined on an element K,
given the solution is sufficiently regular, then can be measured as follows [37]:

‖e‖∞,K ≤ c1max
x∈K

max
v⊂K

〈v, |H(x)|v〉, (20)

≤ c1max
x∈K

max
e∈EK

〈e, |H(x)|e〉, (21)

where c1 is a constant independent of element parameters, v is any vector con-
tained in the element, EK is the set of element edges and |H| is the absolute
value of the Hessian matrix of the solution (i.e., consists of absolute eigenval-
ues). To obtain such error estimates over the domain in different norms see
references [35,38,39].

The Hessian strategy involves the computation of the symmetric matrix of
second derivatives that can be decomposed as H = RΛRT , where R is the
eigenvector matrix and Λ = diag(λk) is the diagonal matrix of eigenvalues
(k = 1, 2, 3 in 3D). The directions associated with the eigenvectors pk are
referred as principal directions and the eigenvalues λk are then equivalent
to the second derivatives along the local principal directions. The strategy
is based on the idea that a high magnitude of an eigenvalue implies a high
error in the direction associated with the corresponding eigenvector, so a small
element size would be desired in this direction. Conversely, a low eigenvalue
magnitude in a particular eigendirection suggests that the element size can be
large in this direction.
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3.3 Mesh Metric Field

To perform anisotropic mesh adaptation requires a way to define the desired
element size distribution over the domain. Mesh metric tensors are used to
represent a size field defining the desired mesh anisotropy at a point (see for
example, [40]). A mesh metric field is used to represent the desired size field as
a second order tensor at each point of the domain. The mesh metric tensor at
any point P in the domain is defined as a symmetric positive definite matrix
M. The associated quadratic form 〈x,Mx〉 = 1, defines a mapping of an
ellipsoid in the physical space into a unit sphere in the transformed/metric
space. In other words, any vector x at point P assumes a unit value where
distances are measured in the metric space.

The stated goal of the mesh adaptation algorithm is to yield a mesh with reg-
ular elements in the metric space where each edge e must satisfy the following
relation:

〈e,Me〉 = 1. (22)

For further details on mesh modifications and element quality measures in the
transformed space see references [2,34]. The same references also provide the
details of the discretization of the mesh metric field over the domain along
with its implementation.

3.4 Size Field Computation

A crucial step in the process is the construction of a size field based on the
Hessian that can be input to the mesh adaptation module. The key point
in the construction of a size field is to attempt to uniformly distribute the
estimated error in all directions. To achieve a suitable mesh resolution in
different directions, a uniform distribution of local errors is applied in the
principal directions which leads to h2

k|λk| = ε, where ε is the user specified
tolerance for the error and hk is the desired size in the kth principal direction.

To compute the Hessian matrix we reconstruct the second derivatives at each
node by using the derivative information of the computed solution from the
patch S of all elements K surrounding a node. In the first step we recover
the gradient at node i by taking the volume weighted average of gradients on
elements in the patch Si. This is equivalent to a lumped-mass approximation
of a least squares reconstruction of the gradient for linear elements. The same
procedure is applied to each term of second derivatives to obtain the recov-
ered Hessian matrix. Care must be taken with the reconstruction on boundary
nodes as the above procedure is less accurate for these nodes. A simple ex-
trapolation technique is applied to project the interior values onto the nodes
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that lie on the domain boundary.

A mesh metric tensor is then obtained at each node by calculating a scaled
eigenspace of the recovered Hessian matrix as M = RΛ̄RT , where R is the
eigenvector matrix and Λ̄ = Λ/ε is the diagonal matrix of scaled eigenvalues.
Truncation values hmin and hmax for mesh sizes are specified to limit the eigen-
values. One reason for truncating the element size, in terms of edge lengths,
is to avoid singular metrics. For example, it is necessary to apply hmax in case
an eigenvalue is zero (or close to zero) in the direction where the solution does
not vary. The modified eigenvalues of the Hessian matrix then become:

λ̃k = min(max(ε−1|λk|,
1

h2
max

),
1

h2
min

), (k = 1, 2, 3). (23)

The final mesh metric field is constructed at each node through multiplication
of the diagonal matrix of modified eigenvalues Λ̃ = diag(λ̃k) with the matrix
R of eigenvectors: M = RΛ̃RT .

3.5 Metric Alignment at No-Slip Boundaries

The numerically computed second derivatives near boundaries are of limited
accuracy leading to a situation where the mesh metric tensors constructed
at nodes with a no-slip boundary condition are not always well aligned with
the correct directions. When fluid flows past a solid wall, one of the principle
directions of the Hessian is usually aligned with the normal to the solid wall.
Furthermore, in most cases, this normal direction has the highest eigenvalue
(smallest size request). We can exploit this physical property and reduce our
alignment error by aligning this principal direction (ordered as p1 without loss
of generality) with the local surface normal vector n. The plane containing
the other two principal directions (p2 and p3) will approximate the tangential
plane. Then, the principal direction (say, p2) associated with the next largest
eigenvalue (λ2) is projected on the tangential plane together with its size (h2),
see Fig. 1, as follows:

t1

n

p

p
(Projection on Plane)

Tangential Plane

2
h

2

h
t1

Unit

Normal

Fig. 1. Projection of vector h2 p2 on tangential plane.
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pt1 = (p2 − (p2 · n)n)/‖p2 − (p2 · n)n‖, (24)

ht1 = |(p2 · pt1)| h2, (25)

where pt1 is the normalized projection of p2 onto the tangential plane and
ht1 is the desired size in the direction of the projected vector pt1. Here, we
essentially remove the part of the vector along the surface normal n. The third
principal direction pt2 also lies on the tangential plane and is orthogonal to n

and pt1, i.e., pt2 = n× pt1. The desired size ht2 in this direction is

ht2 = |(p3 · pt2)| h3. (26)

Similarly, the desired size in the direction of p1 can be projected onto the
surface normal n as hn = |(p1 · n)| h1. The aligned mesh metric then can be
constructed based on the three new principal directions (i.e., n, pt1 and pt2)
and corresponding sizes (i.e., hn, ht1 and ht2).

3.6 Including Time Dependence: Intersecting Instantaneous Metrics

The mesh metric construction and subsequent anisotropic adaptation of the
mesh is of non-trivial cost. Furthermore, the error (and computational cost)
induced in the process of transferring the solution from the original to the
adapted mesh must be considered. It is sometimes prudent to consider alter-
natives, wherein the mesh is adapted less frequently. In the case of pulsatile
flow, the resulting flow is periodic in time, at least when phase averaged over
a number of cycles. In this scenario one can construct an adapted mesh that
would be appropriate for the entire cycle.

After making the decision to adapt once rather than at each flow step, the
selection of a solution field (or fields) to be used to extract size field informa-
tion remains. Clearly, one poor choice would be to select one time step since
we anticipate significant variation in the size field over the cardiac cycle. An
economical alternative is to consider the average flow over an integer num-
ber of cardiac cycles, which was also pursued in [17]. Meshes with significant
anisotropy were created and shown to efficiently predict wall shear stress for
a porcine aorta model. The downside to such an approach is that there is, in
general, no guarantee that the size field requirements of any given step can be
extracted from the average flow field. An alternative strategy is to construct
a mesh metric field at several pre-defined instants of the cycle and then com-
bine these metric fields into a single one that is the inner envelope of the set
of mesh metrics.

The goal is to find a unique mesh metric tensor that is obtained by intersecting
all the instantaneous metric tensors at each node. To define the intersection
of two mesh metric tensors we employ the fact that each of them can be
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geometrically represented by an ellipsoid. Consider two mesh metric tensors
M1 and M2 represented by their corresponding ellipsoids EM1

and EM2
we

can define the resulting intersected metric tensor M as the one which can
be geometrically represented by the maximum volume ellipsoid EM1∩M2

that
is contained within the intersection of ellipsoids EM1

and EM2
, for details

see [37,41].

In practice the intersection of metrics is achieved by the simultaneous reduc-
tion or diagonalization of two quadratic forms which is a valid operation since
both the tensors are positive definite. We illustrate the procedure from a ge-
ometric point of view in Fig. 2. It can be shown that this process allows one
to compute a common basis for the two quadratic forms that can be used
to determine the ellipsoid with maximum volume contained in the geomet-
ric intersection of the two candidate ellipsoids. The ellipsoid represented by
the final intersected metric is the one with maximum volume contained in
the common volume of all the candidates and therefore respects the size re-
quirements of different time steps. From an implementation perspective, the

Fig. 2. Intersection of mesh metric tensors represented by ellipsoids.

intersection procedure is sequentially performed for all instantaneous fields
chosen (in practice this is a subset of the timesteps in a given period). This
involves construction of a mesh metric field for each selected instantaneous
field and combining it with the one obtained through intersection of all the
previous selected instantaneous fields.

4 MESH ADAPTATION IN BOUNDARY LAYERS

The mesh metric field developed in the previous section can be combined with
mesh modification procedures (see, [2]) but the resulting meshes can be ex-
pected to produce wall shear stress fields which have some inaccuracies. We
demonstrate that forcing structured layers of elements near the wall results
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in much smoother wall shear stress fields. In this section, we first review the
two existing classes of anisotropic boundary layer meshing strategies (general-
ized advancing layers and anisotropic adaptivity), noting their strengths and
weaknesses, and then propose a hybrid of the two approaches that captures
the strengths of each.

4.1 Generalized Advancing Layers

Mesh generation for viscous flow simulations has been tackled and addressed
by many researchers (see, [11] and references therein). The main idea of the
technique, referred to as generalized advancing layers method, is to inflate the
surface mesh into the volume along the local surface normals. The inflation
process is generalized by making it flexible to be able to handle geometries
with sharp corners or edges by creating blend elements. Such a mesh possesses
structure in the direction normal to the walls by creating triangular prisms.

In some sense, this approach is a natural extension of the structured grid
boundary layer mesh generators to unstructured grids. Many of the favor-
able attributes of structured grid meshes (control of the rate of change in
element size along normals, high-quality/high-aspect ratio elements, orthog-
onal elements at the boundary) were inherited by this approach. This filling
of the domain bounded by exterior no-slip surfaces (e.g., vessel walls) with
stretched elements and special treatment of intersecting surfaces at interior
edges/corners with high folding angle and hence, poorly defined normals of-
ten results in meshes with elements of unacceptable sizes for the flow features.
Perhaps of even greater concern is that this approach also inherited a major
deficiency of its structured grid predecessor: the need to specify the surface
element size and the distribution of points normal to the surface (e.g., spacing
of first point off of the wall, total thickness of the layers, number of layers) a
priori.

4.2 Anisotropic Adaptivity

For real applications involving complex geometries, the flow features are un-
known making an a priori specification of the boundary layer size field im-
practical. To address this difficulty, metric-based anisotropic adaptivity was
developed. The advantage of this approach is that no a priori size information
is required. The anisotropic adaptivity described heretofore makes no effort to
create and/or preserve orthogonality of short edges to the boundary. Although
this issue has only a minor influence on the flow variables, it has a much larger
impact upon the wall shear stress computation.
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The two boundary layer discretization approaches are illustrated in Fig. 3.
Shown are the clip planes of two meshes of a bypassed porcine aorta model;
the mesh shown on the left was generated by employing the advancing layers
method (for three layers) whereas the mesh on the right has been obtained
through an anisotropic mesh size field determined using the procedure de-
scribed earlier. The section of the mesh has been chosen to exemplify the
issues that exist in both the approaches in a general way including the situa-
tion where a corner is present. While the adapted case has captured the trend
of small, isotropic elements near the corner, it has done so with considerably
less smoothness in element size variation when compared to the advancing
layers approach. One can further see that it has created considerably more
anisotropic elements away from the corner, underscoring the impracticality
of a priori determination of the mesh sizes required by the advancing layers
approach.

We have observed that the advancing layers mesh, due to its structured na-
ture, is capable of delivering a WSS field that can be characterized as being
smoother with less fluctuations. The thicknesses of each of the layers have
been pre-defined and do not match the sizing requirement for an adequate
resolution of the flow field. The difficulty of using a pre-defined advancing lay-
ers mesh in our blood flow application is further substantiated by considering
the instantaneous flow profile in Fig. 3 which indicates strong variation of near
wall gradients. The anisotropically adapted mesh on the other hand integrates
the desired size field and therefore reflects the attempted overall reduction of
the discretization error by distributing it equally in all directions over the en-
tire domain. As a remedy we propose a hybrid approach which combines the
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Fig. 3. Advancing layers and anisotropically adapted mesh of a porcine aortic bypass
model.

advantages of both the advancing layers method and the anisotropic adapta-
tion by introducing a methodology in which the mesh is modified according to
the demands of the computed size field and at the same time maintains most
of the structured nature of the advancing layers mesh in the close proximity
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of the walls.

4.3 Hybrid Advancing Layers-Anisotropic Adaptation Method

The proposed algorithm enables the adaptive procedures to maintain struc-
tured and graded elements near the walls for accurate prediction of wall quan-
tities (like WSS). The initial adaptation cycle is performed on a mesh that
already carries an advancing layers mesh on no-slip boundaries. Subsequent
mesh adaptation preserves the layer structure normal to the walls while at the
same time incorporating desired element sizes in different directions as indi-
cated by the a posteriori size field information. The BL elements are viewed
as a product of a surface mesh (2D) and a thickness mesh (1D) as depicted in
Fig. 4. To preserve the structure of the mesh along the normals of the walls the
adaptive procedure is divided into two steps: surface adaptation and thickness
adaptation. The mesh composed of triangles located at the top of each layer
will be referred to as a layer surface, see Fig. 4, while the lines orthogonal to
the wall composed of edges are called growth curves. This two step adaptive

Layer Surface

Layer Thickness

Wall

First Layer

Second Layer Growth

Curve

Fig. 4. Conceptual decomposition of a BL element generated by advancing layers
method.

procedure is driven by the computed mesh metric field. The mesh metric field
at any point on a wall is decomposed into two components: a component on
the layer surface (referred to as planar part) and a normal component along
the layer thickness, see Fig. 5. This decomposition procedure can be performed
similarly to the metric alignment procedure presented in section 3.5. Here, the
normal component is composed of size hn along the normal and the planar
part is composed of the projected vectors (pt1 and pt2), and corresponding
sizes (ht1 and ht2), on the tangential plane. With this information in hand,
the decision to apply any mesh modification procedure on a layer surface will
be governed by the planar part of the mesh metric tensor and any change in
the layer thickness will be based on the normal component. Basic mesh mod-
ification operations, like edge split, edge collapse, node movement etc. [2,31],
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Fig. 5. Conceptual decomposition of a mesh metric tensor.

can be applied to perform these steps.

The edges of a boundary layer element can be classified into three categories,
as depicted in Fig. 6:

• Layer edge: All the edges of a BL element that have their nodes on the same
layer surface.

• Growth edge: Shortest edge, along the surface normal, of a BL element that
has its nodes on different layer surfaces.

• Diagonal edge: All the remaining edges of a BL element (that essentially
tetrahedronize the BL prisms).

Layer edges

Growth edges

Diagonal edges

Fig. 6. Classification of edges of a boundary layer element.

To perform adaptation on a layer surface only layer edges will take part in the
modification process in the plane whereas to change the thickness of layers only
growth edges will be split (or collapsed) and/or their lengths will be adjusted
through node movement. It is possible to carry out both of these operations in
a way that results in graded elements in the normal direction. The existence
of diagonal edges (see, Fig. 6) makes the process tedious, but considering the
inherent structure of triangular prisms enables one to simplify the process.
The surface adaptation is made possible with the help of three basic mesh
modification operations:

(1) Edge Split: An edge split operation will split a layer edge into two layer
edges. Fig. 7(a) shows the initial and final mesh topology.

(2) Edge Collapse: An edge collapse operation will collapse a layer edge.
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Fig. 7(b) shows the initial and final mesh topology.
(3) Edge Swap: An edge swap operation will swap a layer edge. Fig. 7(c)

shows the initial and final mesh topology.

(a) Edge Split (b) Edge Collapse (c) Edge Swap

Fig. 7. Mesh topology before (top) and after (bottom) mesh modification : (a) edge
split, (b) edge collapse and (c) edge swap.

In all the operations, basic geometric and topological validity checks must be
carried out (see appendix A in [42] for details).

With the idea of working with triangular BL prisms, a mesh modification
operation can be carried out on any layer surface and propagated through all
the layers as shown in Fig 8(a). Node movement can be applied to change
the layer thickness while maintaining the number and topology of layers. To
introduce more structured layers of elements growth edges can be subdivided
to create new nodes and in turn layers, see Fig. 8(b). After carrying out all the
mesh modification operations boundary layer prisms can be tetrahedronized
(see, [11]). In what follows we sketch the algorithm by demonstrating the major

(a) (b)

Layer edge

     split

Growth edge

       split

Fig. 8. Mesh modification applied on boundary layer prisms.

steps with the help of an example. Fig. 9 shows two sections of a clip plane
through an advancing layers mesh together with ellipsoids representing the
computed mesh metric field at a selected number of nodes. The mesh metric
field has been computed as described in section 3. We should note that the
metric field has been obtained on a mesh that only has about 13K nodes, a
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hn1

hn2

hn3

Fig. 9. Desired mesh metric tensors on a set of nodes of an advancing layers mesh :
(a) simple case (left) and (b) corner case (right).

number far too small to expect sufficiently accurate flow results, not to mention
second order field derivatives and their limited near wall reconstructability, on
which the metric field is based. Nevertheless, it is representative of a mesh that
one might start an adaptive computation from and is adequate to identify a
number of items that suggest a mesh modification in a consistent manner, i.e.:

• Normal to wall distances of nodes may change significantly in a subsequently
adapted mesh.

• While the thickness of the initial BL mesh is almost uniform, the modified
mesh may feature a more significant gradation in normal direction (this
point is more obvious when considering Fig. 9(b)).

• The initial element lengths parallel to the wall are too big, the modified
mesh will have smaller element sizes in that direction.

• The deviation of the principal direction representing the largest eigenvalue
(and thus responsible for the normal spacing) from the surface normal is
small but does exist due to numerical errors.

• Further adaptation steps will render a more accurate mesh metric field
computation possible.

Care is necessary when performing node movement since the desired normal
sizes are dependent on the location of the nodes and thus become invalid
if associated with a node that has been moved. Therefore, we parameterize
growth curves such that the requested nodal spacing along a growth curve
can be defined in terms of its parametric coordinates s, i.e., hn(s). This can
be achieved by interpolation of the nodal values along a growth curve or by
determining a user-defined function based on geometric or exponential growth
rate. The new nodal locations of all the nodes on a given growth curve can be
determined by sequentially querying the function hn(s).
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5 APPLICATION TO BLOOD FLOW SIMULATION

This section consists of two parts. The first part demonstrates the application
of the anisotropic adaptive procedure developed in section 3. Here, we com-
pare the results obtained on adapted meshes based on two different strategies,
one based on average flow and one based on mesh metric intersection, incorpo-
rating metric alignment at the walls. These results are also compared to those
obtained on a series of uniform meshes in order to assure their convergence
and to quantify the efficiency of our adaptive procedure in the computation
of wall shear stresses. The example considered involves pulsatile flow in a 3D
vessel with a symmetric bifurcation that serves as a prototype problem for
blood flow simulation.

In the second part of this section we support our contention that a hybrid
approach, which incorporates advantages of both the generalized advancing
layers method and anisotropic adaptivity, is required to obtain efficient and
accurate WSS computations, as indicated in section 4. To this end, we present
results for steady flow in a channel and a straight vessel with a steep velocity
gradient near the walls. We compare WSS values obtained on meshes that
possess structure near the walls to the ones computed on an anisotropically
adapted mesh.

5.1 Anisotropic Mesh Adaptation

We demonstrate the anisotropic method presented in section 3 on a model
which bifurcates into symmetric branches as shown in Fig. 10. The model is
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Fig. 10. Model of a blood vessel with a symmetric bifurcation

used for convergence analysis for our method. More physiologically realistic
models and simulations using anisotropic adaptivity can be found in [17]. The
time varying inflow boundary condition at the left end is assumed to be a
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Womersley profile [43], with Womersley number α = 5.6 and time period
tp = 5s, for which the flow rate is depicted in the inset of Fig. 11. We apply
zero velocity (no-slip) boundary conditions on the vessel walls and zero natural
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Fig. 11. Isolines of flow speed on a clip plane in a model with a symmetric bifurcation.
The inset shows the Womersley inlet flow rate along with the instant the flow profile
corresponds to.

pressure at the traction-free outlet. In this case, the viscosity and the density
are assumed to be µ = 0.04dyn s/cm2 and ρ = 1g/cm3, respectively.

We carry out simulations on a series of uniform meshes with varying mesh
density and on meshes that have been anisotropically adapted. The uniform
meshes consist of approximately 97K, 205K and 594K nodes, respectively,
whereas the adapted meshes have approximately 15K nodes. The simulations
were performed for two cycles to obtain a periodic flow and thus the results
for the second cycle are presented here. Each cycle was divided into 500 time
steps with a constant time step size of 0.01s. The simulations on the finest
uniform and the adapted meshes with 1000 time steps per cycle show no
significant difference when compared to the ones obtained with 500 time steps
per cycle, which ensures that the temporal errors are smaller than those due
to the spatial discretization.

In this case, the intersected metric field was constructed by considering 25
equidistributed instants over the cycle, sufficient to capture the transient flow
behavior. We first mention the common features that both the adapted meshes
exhibit. A clip plane of the adapted meshes along the flow illustrates the ef-
fect of the mesh modification procedures, see Fig. 12. Note that the clip planes
shown are not actual planes, rather they are a collection of the mesh faces cut
by the physical plane. All the newly created boundary nodes during adap-
tation have been snapped to the model surface. We observe that anisotropic
elements aligned with the flow are created. While in the upper part of the ves-
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Fig. 12. Clip plane through anisotropically adapted meshes of a vessel with a sym-
metric bifurcation (the windows correspond to zooms).

sel anisotropy in the plane perpendicular to the flow is less distinct, see section
A-A, the mesh in branches exhibit significant anisotropy in the plane perpen-
dicular to the flow especially near the inner side of the vessel walls where
the velocity gradients are steep, see section B-B. We can identify azimuthal
anisotropy for section B-B where the mesh resolution is varying in both the
azimuthal and radial direction. The instantaneous flow field, as depicted in
Fig. 11, makes the above observations more obvious. There are significant
changes in both the adapted meshes close to the bifurcation. The element
sizes in this portion are small but isotropic for both meshes (see the center
zoom windows in Fig. 12 (a) and (b)), reflecting the fact that the solution be-
havior is singular around the bifurcation. This example shows the capability
of our adaptive procedure to handle situations with arterial branching, i.e., it
suitably adapts the mesh for cases with both isotropic and anisotropic flow
behavior.

The two different procedures for determining the mesh size field can result
in different resolution of transient flow features. Fig. 13 shows the mesh in
the branches for the two cases. Here we observe a portion of surface mesh for
the inner and outer side of a branch (surface meshes are similar for the other
branch due to symmetry of the problem and thus are not shown). Note that
the elements along the flow direction are much longer in the adapted mesh
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that is based on the average flow field. This is due to the fact that the flow is
not fully developed after the bifurcation and the pulsatile nature of the flow
further adds to the complexity in the problem leading to a time dependent
axial variation in the velocity field within the branches. Mesh adaptation based
on the average flow scenario does not correctly account for this transient flow
feature whereas the one based on mesh metric intersection is more effective.

Outer Side

(a) Metric Intersection

      based  Adaptation

(b)    Average Flow

      based Adaptation

Outer Side

Inner Side Inner Side

Fig. 13. Surface of anisotropically adapted meshes near section BB of the bifurcating
vessel.

To evaluate the efficiency of our adaptive procedure we first obtain results
on a series of uniform meshes which have converged and then use the most
converged result for the purpose of comparison. We select section B-B of one
of the branches as the location where the adaptive procedure plays a signif-
icant role to capture the flow features. The WSS values for this location are
not constant along the circumference at any given instant as the flow profile
is varying in the azimuthal direction. In Fig. 14 the plot on the left shows
results on uniform meshes along with the one obtained on an adapted mesh
based on the intersected metric field whereas the plot on the right compares
results obtained on adapted meshes based on different strategies with the one
computed on the finest uniform mesh. Analyzing the plot on the left indicates
that the anisotropic adaptivity is particularly well suited to resolve the high
shear region near the inner side of the vessel branch where fluctuations even of
the finest uniform mesh are comparatively high. In the right plot we observe
that the mesh adapted based on the average flow scenario yields significantly
higher fluctuations as compared to the metric intersection procedure, espe-
cially near the inner (i.e., close to 90 degrees) and outer (i.e., close to 270
degrees) side of section B-B. Fig. 14 shows that the metric intersection based
anisotropic adaptivity is capable of obtaining solutions that are as accurate
as uniform meshes with an order of magnitude fewer dofs (around 15K nodes
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Fig. 14. WSS values along the circumference at section B-B in a vessel with a sym-
metric bifurcation. The left figure confirms that the anisotropic adaptivity utilizing
metric intersection achieves the converged solution with only 15K nodes. The right
figure indicates the improvement achieved by the metric intersection compared to
the average flow based metric.

were used in the anisotropically adapted cases which compare favorably to the
uniform case with nearly 600K nodes).

As this is a time varying flow it is also interesting to see the convergence of
the temporal behavior with improved spatial resolution. We have selected two
points, P and Q, that lie on the inner and outer side, respectively, of section
B-B (as depicted in Fig. 10). The first observation from the plots in Fig. 15 is
that the results are significantly smoother in the time domain than in the spa-
tial domain shown in Fig. 14. This illustrates that the spatial noise associated
with recovering a flux quantity does not globally pollute the solution in time,
suggesting that the primary fields (velocity and pressure) remain unaffected.
We observe in the plots on the left column of Fig. 15 that the solution has
converged on uniform meshes and that the adapted mesh which is based on
metric intersection is able to attain the converged solution. The plots on the
right demonstrate that the results obtained on the adapted mesh based on
the average flow field do not yet yield accurate results especially in intervals
near the peak flow where the values are approximately off by 8-10 percent
at point P. For the same number of nodes (approximately 15K), the metric
intersection procedure matches the finest (converged) uniform mesh result.
We finally want to reiterate that the WSS is a derivative field quantity and
therefore is subjected to a lower convergence rate than the primary field quan-
tities. To reproduce accurate spatial and temporal WSS values for pulsatile
flow simulations therefore is particularly demanding.

5.2 Anisotropic Adaptation with Boundary Layer Mesh

In this subsection we present results that show the impact of the mesh struc-
ture close to the vessel walls on WSS computation. We compare results that
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     Point P
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     Point Q

Fig. 15. WSS values with time at points P and Q in a vessel with a symmetric
bifurcation (also see caption of Fig. 14).

are computed after having applied two different meshing strategies, one in
which meshes are obtained by performing a complete anisotropic mesh adap-
tation process and another in which meshes are obtained by constraining the
structured layer of elements for one (or two) layer(s) near the walls in the pro-
cess of mesh adaptation. As the problems considered in this section involve
stationary flow we perform adaptation based on the steady-state numerical
solution. The meshes in the second case are generated by a sequence of steps
that can be described as follows: first, the anisotropic adaptive strategy is ap-
plied, secondly, the interior volume mesh is removed, leaving only the surface
mesh, thirdly, a boundary layer mesh with specific attributes is grown on the
remaining surface mesh, and finally, the resulting mesh is subjected to the
anisotropic adaptive procedure again, while constraining a defined number of
the layer(s) along the boundary. Therefore, the meshes for each of the cases
described above exhibit identical surface meshes and similar mesh resolution
along the normals. In doing so, we are, to a limited extent, mimicking a hy-
brid approach proposed in section 4. We should note that the sequence of
steps followed in the second case does not allow for adjustment of sizes in
normal-to-wall direction.

First we apply the procedure to a simple case of high shear flow between
parallel plates. In the second case, we consider a similar flow in a straight
cylindrical vessel. In both the cases, the computation is performed for several
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time steps until a well converged steady-state solution has been obtained.

5.2.1 Channel Flow

In this example, we consider channel flow as a benchmark problem with a
steep velocity near a wall, unaffected by wall curvature. The inlet flow profile
is taken to be:

u = ((25(1− |y|))−2 + ((1− |y|)1/7)−2)−
1

2 , (27)

where y (≤ 1) is the distance from the center plane of the channel. The vis-
cosity is set to a low value of µ = 10−5dyn s/cm2 to avoid significant diffusion
of the flow profile, and the density is assumed to be ρ = 1g/cm3. The model
is depicted in Fig. 16 along with an inset that shows the inlet flow profile.
The profile based on the one-seventh power law is chosen to allow for highly
varying second derivatives along the height of the channel, which adequately
reflects the situation that we face in real physiological flows, see the instanta-
neous flow field in Fig. 11, and more detailed in [17]. We compare simulation

Flow

Fig. 16. Model of a channel with inlet flow profile.

results obtained on three different meshes. Fig. 17 shows the three meshes
used: the first one is a completely adapted mesh and the others have struc-
tured elements frozen (i.e., not subjected to any mesh modification) for one
and two layer(s) near the walls. The windows show zooms of the meshes close
to the wall. As before, the adaptation is based on the Hessian strategy. As the
domain is a polyhedron there is no geometric model approximation error. This
case enables the isolation of the mesh sensitivity in the post-processing step of
WSS computation. We show WSS values on the upper surface of the channel
at different locations along the length, which remain nearly constant due to
the artificially small diffusion, in Fig. 18. Table 1 provides the mean values
along with the standard deviations of WSS for locations near the outflow, i.e.,
farther away from the artificial inflow. Based on the inlet profile, the exact
value of the WSS is 2.5× 10−4dynes/cm2.

We observe that oscillations of WSS are reduced by an order of magnitude
with the use of structured layer(s) of elements near the walls. Most of the
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Adapted One Layer Frozen Two Layers Frozen

Fig. 17. Three different meshes used for a channel (the windows correspond to
zooms).
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Fig. 18. WSS values along the span on upper surface at different downstream loca-
tions for a channel.

fluctuations even diminish when only one structured layer of elements is used.
This observation is true for all the locations that are shown, noting that the
differences between the one and two structured layer(s) meshes vanish quickly
with increasing distance downstream. The results clearly demonstrate that
WSS computation is sensitive to the mesh quality close to the walls and shows
that WSS computations can be significantly improved when using structured
layer(s) of elements.
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Table 1
WSS mean values (in dynes/cm2) and standard deviations (σ) for high shear flow
in a channel.

Mesh type Mean WSS σ

Adapted 1.9975e-4 1.9292e-5

One Layer Frozen 1.7931e-4 3.8245e-6

Two Layers Frozen 1.7559e-4 1.9011e-6

5.2.2 Cylindrical Vessel Flow

In this example, we consider a high shear flow in a straight cylindrical vessel.
The value of the viscosity is set to µ = 10−5dyn s/cm2 and the density is
assumed to be ρ = 1g/cm3. The model is depicted in Fig. 19 along with
an inset that depicts the inlet flow profile, which is an artificial steep flow
profile similar to (27), where y has to be replaced by the radial distance. As in

Flow

Fig. 19. Model of a vessel with inlet flow profile.

the previous example we obtain simulation results on three different meshes
(see Fig. 20). We show the computed WSS values along the circumference of
the vessel at different downstream locations in Fig. 21. Table 2 provides the
mean values along with the standard deviations of WSS for locations near the
outflow of the vessel, i.e., away from the artificial inflow.

Table 2
WSS mean values (in dynes/cm2) and standard deviations (σ) for high shear flow
in a straight vessel.

Mesh type Mean WSS σ

Adapted 1.9139e-4 1.9857e-5

One Layer Frozen 1.8551e-4 1.1200e-5

Two Layers Frozen 1.7989e-4 6.1007e-6

Similar to the case of the flat channel we observe that the oscillations of
computed WSS significantly decrease (by a factor of around four) with the help
of structured layer(s) of elements near the walls. Note that the fluctuations do
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Two Layers FrozenOne Layer FrozenAdapted

Fig. 20. Three different meshes used for a cylindrical vessel (the windows correspond
to zooms).
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Fig. 21. WSS values along the circumference at different downstream locations for
vessel.

not completely vanish when using structured layers, owing to the fact that both
flow and shear stress computation are also sensitive to the approximation of
the geometric model (introduced due to linear straight sided elements). Again,
the oscillations dampen out in the downstream direction. This example shows
that structured layer(s) of elements near the walls are required to improve the
WSS computation substantially in vessel geometries with curved boundaries.
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6 CONCLUSIONS AND FUTURE WORK

In this article, we have presented adaptive meshing procedures for computa-
tional hemodynamics. The method we have introduced is based on anisotropic
mesh adaptivity dictated by directional error indicators. These are used to
construct a mesh metric field that yields information on the local mesh res-
olution desired in different directions. Mesh adaptation governed by such a
mesh metric field results in highly anisotropic meshes well aligned with the
flow features leading to substantial computational savings. We discussed two
different strategies to obtain a mesh metric field that can be used to perform
mesh adaptation for the whole cardiac cycle. We have also proposed a hybrid
method by which anisotropic adaptivity and the structured nature of advanc-
ing layers meshing is utilized to further improve the accuracy of blood flow
simulations, in particular computation of wall shear stress.

We have demonstrated the efficiency of our adaptive procedure, based on a
metric intersection algorithm together with metric alignment at no-slip bound-
aries, by applying it to the simulation of pulsatile flow in a vessel with two
symmetric branches. We showed that the adapted mesh based on an average
flow scenario is not able to properly account for the transient flow features
and therefore does not yield accurate wall shear stress values. We obtained
gains of around one order of magnitude in terms of degrees of freedom when
our method is applied. This serves as a first step to perform accurate blood
flow simulations in real patient-specific geometries which would otherwise not
be possible within a reasonable time due to limited computational resources.

We have demonstrated that meshes with structured layers of elements at the
walls lead to better wall shear stress computations. We observed that the fluc-
tuations of the values are higher by one order of magnitude on meshes without
structured layers of elements in the case of channel flow. The fluctuations were
approximately quadruple in the case of pipe flow for similar mesh resolution in
the normal direction to the walls. This clearly supports our proposed method-
ology to use a hybrid adaptive procedure that combines anisotropic adaptivity
with a generalized advancing layers method.

The current status of adaptive procedures shows that although these proce-
dures have been successfully applied for many interesting problems in various
areas of research, there are still open issues. These issues have to be addressed
to design adaptive procedures applicable to more challenging problems, with
complex geometries, possessing different degrees of anisotropy in the solu-
tion characteristics, over the spatial and temporal domain. Automatically ob-
taining a suitable mesh for different quantities of physical interest (like wall
shear stress) not only requires focused effort to develop more sophisticated
adaptive meshing techniques but also needs more stringent and dependable
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goal-oriented error estimation that can provide the necessary directional infor-
mation. Therefore, efficient and reliable large scale viscous flow computations
on geometries, like the human arterial system, deserve careful investigations
to define the objectives of the adaptive procedures.

Acknowledgments

We gratefully acknowledge the support of this work by NSF grant ACI-0205741.
This work was facilitated through an allocation of advanced computing re-
sources by NPACI (NRAC program) through the support of the National
Science Foundation. We would also like to thank Frédéric Alauzet (INRIA
France) for helpful suggestions in this work. The solutions presented herein
made use of the linear algebra solution library provided by AcuSim Software.

References

[1] C. A. Taylor, T. J. R. Hughes, C. K. Zarins, Finite element modeling of blood
flow in arteries, Comp. Meth. Appl. Mech. Engng. 158 (1998) 155–196.

[2] X. Li, M. S. Shephard, M. W. Beall, 3D anisotropic mesh adaptation by mesh
modifications, Comp. Meth. Appl. Mech. Engng. 2005, submitted.
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