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ABSTRACT

Large scale finite element models are routinely used in design and optimization for com-
plex engineering systems. However, the high model order prevents efficient exploration
of the design space. Many model reduction methods have been proposed in the literature
on approximating the high dimensional model with a lower order model. These methods
typically replace a fine scale model with a coarser scale model in schemes such as coarse
graining, macro-modeling, domain decomposition and homogenization. This paper takes a
systems perspective by stating the model reduction objective in terms of the approximation
of the mapping between specified input and output variables. Methods from linear sys-
tems theory, including balance truncation and optimal Hankel norm approximation, are
reviewed and compared with the standard modal truncation. For high order systems, com-
putational load, numerical stability, and memory storage become key considerations. We
discuss several computationally more attractive iterative schemes that generate the approx-
imate gramian matrices needed in the model reduction procedure. A numerical example is
also included to illustrate the model reduction algorithms discussed in the paper. We en-
vision that these systems oriented model reduction methods complementing the existing
methods to produce low order models suitable for design, optimization, and control.
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1. INTRODUCTION

For complex engineering systems such as large me-
chanical structures, fluid dynamic systems, inte-
grated circuits, and advanced materials, the under-
lying dynamical models are typically obtained from
the finite element method or discretization of par-
tial differential equations. To obtain good approxi-
mations of the underlying physical processes, these
models are necessarily of very high order. In order to
use these models effectively in design optimization
and iteration, the high order systems need to be re-
duced in size while still retaining relevant character-
istics. Many model reduction/simplication schemes
have been proposed in the past, such as Guyan and
the related improved reduced system (IRS) methods
[1, 2], hierarchical modeling [3, 4], macro-modeling
[5,6], domaining decomposition [7], and others. This
paper approaches model reduction from a systems
perspective. In contrast to other model reduction
techniques for finite element models, the systems
approach seeks to retain only the dominant dynam-
ics that are strongly coupled to the specified input
and output. This is similar to the goal-oriented
adaptive mesh generation method, where the mesh
geometry (and hence the approximate model) is
governed by its influence on the properties of inter-
ests [8]. There has been a recent surge of interests
in model reduction for large scale systems from the
systems community [9–13]. Well conditioned nu-
merical algorithms have also been developed and
become available [14]. The goal of this paper is to
present a tutorial of this class of approaches and the
underlying algorithms.
The basic problem is as follows: Given an nth order
linear time invariant (LTI) system with state space
parameters (A,B, C, D), find an rth order reduced
order model (Ar, Br, Cr, Dr), with r << n. The
goal of model reduction is to make the difference
between the full order model and reduced order
model small under some appropriate norm. For LTI
systems, model reduction methods can be broadly
classified as singular value decomposition (SVD)
based approach and the classical moment matching
method [9]. The SVD based methods can be further
separated into model based and data driven. The
model based methods assume the available of a high
order model. Data driven methods produce a re-
duced order model based on the input/output data.
This is also known as the model identification prob-
lem [15, 16]. In this paper, we will focus on model
based SVD methods, since a high order model (e.g.,
obtained from the finite element method) is assumed

available. We will consider four different norms for
comparison: the H∞ norm, which is the worst case
input/output L2 gain, the H2 norm, which is the
worst case gain from the peak input spectral density
to output power, and the time domain L∞ (largest
amplitude) and L2 (energy) norms under a specific
input of interest. Our discussion will focus on the
balanced truncation method which has an a priori
H∞ error bound and is stability preserving. How-
ever, the method in its original form has computa-
tion complexity On3, and faces numerical difficul-
ties for stiff high order systems. We then present a
number of iterative methods that produce approx-
imate balanced truncated models. These methods
possess better computational and numerical prop-
erties, especially when the system matrix is sparse.
A numerical example involving a piezo-composite
beam is included to illustrate the various methods
discussed in the paper.
This paper is organized as follows. Section 2 re-
views the basic description of linear systems. Sec-
tion 3 presents various model reduction methods,
the commonly used modal reduction, balanced trun-
cation, and optimal Hankel norm reduction. Sec-
tion 4 discusses various approximation techniques
for the controllability and observability gramians
needed in the balanced truncation. The balanced
truncation type of model reduction using the ap-
proximate gramians is shown in Section 5. A piezo-
composite beam example is included in Section 6 to
illustrate the performance of the methods presented.

2. PRELIMINARIES

2.1. System Description

The finite element method typically generates a high
order continuous-time LTI system in the state space
form:

ẋ(t) = Ax(t) + Bu(t), (2.1)

where x(t) ∈ Rn is the state vector and u(t) ∈ Rni

is the input vector. For mechanical structures, the
model is usually expressed in the generalized sec-
ond order form

Mq̈(t) + F q̇(t) + Kq(t) = Hu(t), (2.2)

where q, q̇, q̈ are the generalized coordinate, gener-
alized velocity, and generalized acceleration, respec-
tively, M , F , K are the mass, damping, and stiffness
matrices, respectively, and H is the influence matrix
corresponding to the input u(t). Note that F is dif-
ficult to obtain accurately, and is frequently just set
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to zero. The second order model can be transformed
to the state space form by, for example, defining the
state vector as

x(t) =
[

q(t)
q̇(t)

]
. (2.3)

Then

ẋ(t) =
[

0 I
−M−1K −M−1F

]
x(t)+

[
0

M−1H

]
u(t).

(2.4)
The state definition is not unique, for example, the
Legendre transformation is also a popular choice:

x(t) =
[

q(t)
Mq̇(t)

]
. (2.5)

In this case,

ẋ(t) =
[

0 M−1

−K −F

]
x(t) +

[
0
H

]
u(t). (2.6)

In the state space model, we will also consider an
output of interest

y(t) = Cx(t) + Du(t), (2.7)

where y(t) ∈ Rno . The input/output, (u, y), may
correspond to a particular property of interests, or
physical actuators and sensors.
Denote the system with input u and output y by G
(Fig. 1). For a given choice of the state, the quadru-
plet (A, B,C, D) is called the state space represen-
tation for G. A state space model can be trans-
formed to other state coordinates through a coordi-
nate transformation:

z = T−1x (2.8)

where T is any invertible matrix. The resulting state
space representation is (T−1AT, T−1B, CT,D).

G
u y

Figure 1: Input/output system under consideration

An LTI system may also be characterized by its im-
pulse response, g(t), which in terms of state space
parameters is given by CeAtB1(t) + Dδ(t), where

1(t) is the unit step function and δ(t) the unit im-
pulse. In this case, the output is related to the input
through a convolution:

y(t) =
∫ t

0

g(t− τ)u(τ) dτ + yzi(t) (2.9)

where yzi is the zero input (unforced) response due
to the initial state.
Another characterization of an LTI system is to
transform (2.9) to the Laplace domain:

Y (s) = G(s)U(s) + Yzi(s). (2.10)

where
G(s) = C(sI −A)−1B + D. (2.11)

Generalized second order systems (2.2) can also be
represented as

[
I 0
0 M

]
ẋ =

[
0 I
−K −F

]
+

[
0
H

]
u. (2.12)

A system in this form is referred to as a descriptor sys-
tem, where ẋ is multiplied by a matrix other than the
identity matrix. The key attractions of the descriptor
form are the avoidance of mass matrix inversion and
sparsity. In the usual state space form, (2.4) and (2.6),
the mass matrix inversion can destroy sparsity if the
mass matrix is not diagonal. For this reason, model
reduction of descriptor systems in their native form
is an active area of research. The subject and its as-
sociated numerical methods are presented in [17,18]
and will not be pursued here.
An LTI system, G, with input u(t) ∈ Rni and output
y(t) ∈ Rn

o may be regarded as a linear operator map-
ping Lni

p [t1, t2] to Lno
p [t1, t2], where 1 ≤ p ≤ ∞, and

(t1, t2) is the time range of interests. The worst case
input/output Lp gain is a norm of G (induced by the
Lp-norms):

‖G‖i,p = sup
u∈ni

p

‖y‖Lno
p

‖u‖L
ni
p

. (2.13)

Conceptually, G can be thought of as mapping a unit
Lni

p -ball to an ellipsoid in Lno
p as shown in Fig. 2.

Then ‖G‖i,p is the length of major axis of the ellip-
soid. The most common induced norms are L2 and
L∞ norms. In the case that (t1, t2) = (0,∞), the L2

induced norm is the same as the norm of the Hardy
space H∞ and can be calculated by using the trans-
fer function of G (we will soon encounter this again
from the frequency domain perspective). The L∞ in-
duced norm can be shown to be the L1 norm of the
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impulse response of G:

‖G‖i,∞ =
∫ ∞

0

‖g(t)‖ dt = ‖g‖L1
. (2.14)

G

,i p
G

1
pL

u =

in

p
L on

p
L

Figure 2: Input/Output Ellipsoid

An operator norm may also be defined for G di-
rectly without referring to the input/output norms.
A commonly used norm is

‖G‖H2
=

(∫ t2

t1

tr
[
g(t)gT (t)

]
dt

) 1
2

(2.15)

where tr denotes the trace of a matrix, and g(t) is the
impulse response of G. This norm can be thought of
as the generalization of the matrix Frobenius norm
to LTI systems. In the case that (t1, t2) = (0,∞), the
norm (2.15) is the same as the norm of the Hardy
space H2 [19].
If the time range is set to [0,∞), then an LTI sys-
tem G : Lni

p [0,∞) → Lno
p [0,∞) is called an Lp-stable

system (these notations may be extended to nonlin-
ear dynamical systems, see [20]). The Lp stability is
equivalent to the stability of the state space system,
called internal stability, (i.e., all eigenvalues of A in
the left half plane) under the stabilizability and de-
tectability conditions (basically ensuring that there
is no “hidden” internal dynamics) [20]. For general-
ized second order systems, stability means that the
damping and stiffness matrices are positive definite.
The Lp-norm is a natural performance metric, for ex-
ample, Lp-norm of G − Ĝ, where Ĝ is the reduced
order model.
A stable LTI system may also be regarded as a linear
operator under the Fourier transform, where the in-
put is û(jω) ∈ Lni

p (−j∞, j∞), the Fourier transform
of u(t), and the output is ŷ(jω) ∈ Lno

p (−j∞, j∞),
the Fourier transform of y(t) (assuming that the
Fourier transforms of the input and output signals
exist). In this case, the system is represented by the

Fourier transform of the impulse response, G(jω), or
the transfer function evaluated along the imaginary
axis. If we regard G(jω) as an Lp-mapping, we can
again use the induced Lp-norm as the performance
metric. The most common choice is the induced L2-
norm, which is also called the H∞-norm (norm cor-
responding to the Hardy space H∞). The H∞ norm
is a direct generalization of the matrix norm induced
by the Euclidean norm, which is the maximum sin-
gular value of the matrix. The H∞ norm is related to
the transfer function through

‖G‖H∞ = sup
ω
‖G(jω)‖ (2.16)

where ‖G(jω)‖ denotes the maximum singular
value of G(jω).
We can also regard G(jω) directly as an element of
Lno×ni

2 (−j∞, j∞). The corresponding norm (not an
Lp induced norm) is called the H2-norm (norm for
the Hardy space H2), which may be considered as a
generalization of the Frobenius norm. The H2 norm
is related to the transfer function as

‖G‖H2
=

(
1
2π

∫ ∞

−∞
tr

[
G(jω)GT (−jω)

]
dω

)
.

(2.17)
By using the Parseval Theorem, the frequency do-
main expression for the H2 norm can be shown to
be the same as the time domain expression in (2.15).
The H2 norm may be considered as an induced norm
for power signals [19]. Let P be the space of finite
power signals with the power of a signal u defined
as

‖u‖P =

(
lim

T→∞
1

2T

∫ T

−T

‖u(t)‖2 dt

) 1
2

. (2.18)

Define the autocorrelation matrix of u as

Ruu(τ) = lim
T→∞

1
2T

∫ T

−T

u(t + τ)uT (t) dt. (2.19)

The spectral density Suu(jω) of u is the Fourier
transform of Ruu. Signals with bounded spectral
density are denoted by

S =
{
u(t) ∈ Rni : ‖u‖S := ‖Suu(jω)‖L∞ < ∞}

.
(2.20)

Then H2 norm is the induced norm from S to P .
We will use the above norms to evaluate our
reduced-order models, by applying them to the dif-
ference between the full order LTI and the reduced-
order model, G − Ĝ. However, small

∥∥∥G− Ĝ
∥∥∥
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have different meanings depending on the norm
used. For performance comparison, we will use
four different metrics, summarized in Table 1: H∞
norm, H2 norm, output L∞ norm, and output L2

norm (the latter two for a specific input function).
Small

∥∥∥G− Ĝ
∥∥∥

H∞
may be interpreted in a worst-

case sense: the L2 norm of the output is small
for all inputs with unit L2 norms. However, there
could be large amplitude errors for short durations.
Also, for a given u, this norm could be very con-
servative, meaning that lower order Ĝ may be ob-
tained to achieve the same output error norm. Small∥∥∥G− Ĝ

∥∥∥
H2

means that the L2 norm of the difference

between the impulse response (or, equivalently, be-
tween the transfer functions) is small. This does not
directly translate to time domain error bound, how-
ever. In terms of the interpretation of induced norm
from S to P , small H2 norm means that under unit
Gaussian white noise input (unit spectral density),
the power of the output is small. Small output L2

and L∞ norms mean that the time domain output
response will be small in the L2 or L∞ sense for the
given input.

3. MODEL REDUCTION METHODS

3.1. Modal Truncation

Modal truncation is perhaps one of the simplest and
most well-known model reduction methods. The
basic idea is simple: Decompose the transfer func-
tion into a sum of “modes” which are transfer func-
tions with a single real pole or a pair of complex
poles. A reduced order model is obtained by re-
taining only the dominant modes (those contribut-
ing the most to the transfer function). In many cases,
it is the high frequency modes that are discarded,
due to damping and bandwidth limitation of actua-
tors and sensors. In terms of the state space repre-
sentation, modal truncation first transforms the sys-
tem into the modal form where the system matrix
is block diagonal with A1 containing the dominant
modes:

T−1AT =
[

A1 0
0 A2

]
, T−1B =

[
B1

B2

]
,

CT =
[

C1 C2

]
. (3.1)

The state space representation of the modal trun-
cated model is then (A1, B1, C1, D). The usual ap-
proach is to represent A in the Jordan form, and then
retain the low frequency eigenvalues only.

Modal truncation method is simple in principle, but
is limited in practice by the difficulty to assess the
modal dominance of a system. In other words,
knowledge of which modes should be retained is
not always clear, especially in systems which have
closely-spaced eigenvalues, lightly damped high
frequency modes, or wide band input excitations.
The method also lacks an a priori error bound. In
terms of implementation, an eigen-decomposition
on the full system is required which can be compu-
tationally expensive and numerically ill-conditioned
for large scaled systems.

3.2. Balanced Realization

Modal truncation is driven by the eigen-structure
of A and does not explicitly take the system’s in-
put/output properties into account. Another ap-
proach to model reduction is to retain only the
state dynamics that are strongly coupled to the in-
put/output of the system. To assess how strong this
coupling is, we apply the concepts of controllability
and observability. We begin by defining controlla-
bility. Consider all u ∈ Lni

2 [0, T ] with ‖u‖L2
= 1 ap-

plied to the system initially at rest (zero state). The
corresponding states at T , x(T ) ∈ Rn, indicate the
strength of coupling between input and state spaces.
We consider x(T ) strongly coupled to the input u(t)
if ‖x(T )‖ is large and vice versa. If ‖x(T )‖ = 0,
then those states are decoupled from the input. This
may be visualized as a mapping of a unit ball in
Lni

2 [0, T ] to an ellipsoid inRn, called the controllabil-
ity ellipsoid (see Fig. 3). The principal axes of the el-
lipsoid indicate the degree of coupling between the
state in that direction to the input signal. Denote
the mapping of L2-input to the final state, x(T ) as
LT : Lni

2 [0, T ] → Rn:

LT u :=
∫ T

0

eA(T−τ)Bu(τ) dτ. (3.2)

The lengths of the principal axes of the controllabil-
ity ellipsoid are the singular values of LT , or, equiv-
alently, the square root of the eigenvalues of

P (T ) = L∗T LT (3.3)

where L∗T is the operator adjoint of LT and P (T ) is
an n×n positive semi-definite matrix, called the con-
trollability gramian (at time T ). The controllability
gramian may be calculated from a linear matrix dif-
ferential equation

Ṗ (t) = AP (t) + P (t)AT + BBT , P (0) = 0n×n.
(3.4)
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Error Norm Interpretation∥∥∥G− Ĝ
∥∥∥

H∞
Worst case L2 gain∥∥∥G− Ĝ

∥∥∥
H2

Worst case spectral density to power gain∥∥∥Gu− Ĝu
∥∥∥

L∞
Maximum output amplitude with input u∥∥∥Gu− Ĝu

∥∥∥
L2

Maximum output L2 norm with input u

Table 1: Error norms considered in this paper and their interpretations

The solution can also be written as a matrix integral:

P (T ) =
∫ T

0

eAtBBT eAT t dt. (3.5)

For stable systems (all eigenvalues of A are in the
strict left half plane), P (t) converges to a steady state
matrix, P , as t → ∞. In this case, P solves the fol-
lowing linear matrix equation called the Lyapunov
equation:

AP + PAT + BBT = 0. (3.6)

The solution can also be written as an integral:

P =
∫ ∞

0

eAtBBT eAT t dt. (3.7)

L
T

2

1
L

u =

2

i
n

L n
R

T
x L u=

Figure 3: Controllability Ellipsoid

A dual approach considers the state-to-output cou-
pling by using the concept of observability. Since
only state and output are considered, let input u = 0.
Denote the mapping of the initial state x0 ∈ Rn to
the output trajectory y ∈ Lno

2 [0, T ] by `T , then

y(t) = (`T x0)(t) = CeAtx0. (3.8)

We can visualize `T as a mapping of the unit
ball in Rn to an ellipsoid (at most n-dimensional)
in Lno

2 [0, T ], called the observability ellipsoid (see

1x =

2

on
Ln

R
T
ℓ

T
y x= ℓ

Figure 4: Observability Ellipsoid

Fig. 4). The principal axes of the ellipsoid indicate
the degree of coupling between the state and the out-
put signal. The lengths of the principal axes of the
observability ellipsoid are the singular values of `T ,
or, equivalently, the square root of the eigenvalues
of

Q(T ) = `T `∗T (3.9)

where `∗T is the operator adjoint of `T and Q(T ) is
an n×n positive semi-definite matrix, called the ob-
servability gramian (at time T ). The observability
gramian may be calculated from a linear matrix dif-
ferential equation

Q̇(t) = AT Q(t) + Q(t)AT + CT C, Q(0) = 0n×n.
(3.10)

The solution can also be written as a matrix integral:

Q(T ) =
∫ T

0

eAT tCT CeAt dt. (3.11)

For stable systems, Q(t) converges to a steady state
matrix, Q, as t →∞, which solves the following Lya-
punov equation (dual to (3.6):

AT Q + QA + CT C = 0. (3.12)

The solution can also be written as an integral:

Q =
∫ ∞

0

eAT tCT CeAt dt. (3.13)
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The solution of the Lyapunov equations has been
well studied in the literature. Two of the most pop-
ular methods are the Bartles and Stewart algorithm
[21] and the Hammarling algorithm [22]. These al-
gorithms involve the reduction of the system ma-
trix A to the triangular form via a Schur decompo-
sition, which requires O(n3) operations even when
A is sparse. This computation cost is acceptable for
small to medium scale problems (n ≤ 400), but is
obviously prohibitive for large systems. We will dis-
cuss reducing this cost through the use of approxi-
mate iterative methods in Section 4.
Once the gramians are found, we are now able to
construct a reduced order model by only retaining
the states that are strongly coupled to the input or
output. For controllability, let the eigenvalue de-
composition of P be given by (note that P is sym-
metric positive semidefinite):

P = TT
c ΣcTc (3.14)

where Σc is diagonal and contains the eigenval-
ues of P sorted in reverse order, and the columns
of Tc are the eigenvectors. The transformed sys-
tem (TcATT

c , TcB,CTT
c , D) has the controllability

gramian Σc. Now partition Σc to

Σc =
[

Σc1 0
0 Σc2

]

with Σc1 containing the dominant eigenvalues and
Σc2 the remainder. Partitioning A, B, C accordingly,
the state equation in the transformed coordinate be-
comes[

ż1

ż2

]
=

[
A11 A12

A21 A22

] [
z1

z2

]
+

[
B1

B2

]
u

y =
[

C1 C2

] [
z1

z2

]
+ Du.

A reduced order model may be obtained by direct
truncation, i.e., assume z2 is small. The correspond-
ing state space representation is (A11, B1, C1, D).
Another way to obtain a reduced order model is
through singular perturbation [23] by assuming that
z2 converges to a steady state much faster than z1. In
this case, set ż2 = 0 to obtain

z2 = −A−1
22 (A21z1 + B2u).

Substitute back into the ż1 equation to obtain the re-
duced order system:

ż1 = (A11 −A12A
−1
22 A21)z1 + (B1 −A12A

−1
22 B2)u

y = (C1 − C2A
−1
22 A21)z1 + (D − C2A

−1
22 B2)u.

(3.15)

Note that direct truncation matches the high fre-
quency gains between the full order and reduced or-
der models (i.e., D), and the singularly perturbation
model matches the DC gains.
Similarly, we can perform eigen-decomposition on
Q as

Q = TT
o ΣoTo. (3.16)

The eigenvalues Σo can be partitioned into the dom-
inant and discardable portions. The corresponding
partition of (A, B,C, D) can then be used to generate
a reduced order system by using either truncation or
singular perturbation.
The reduced order model using the input-to-state
or state-to-output coupling (through controllability
or observability, respectively) is intuitively appeal-
ing but unfortunately is coordinate dependent. Let
(A,B, C,D) and (T−1AT, T−1B, CT,D) be two state
space realizations of the same input/output system,
and (P, Q) and (P , Q) the corresponding controlla-
bility and observability gramians. Then

P = T−1PT−T , Q = TT QT. (3.17)

In general, P and P (resp. Q and Q) have different
eigenvalues (unless T is orthogonal, i.e., T−1 = TT ).
Therefore, model reduction based only on the con-
trollability gramian (resp. observability gramian) in-
formation would yield different reduced order mod-
els for the same system by just changing the state
representation. In particular, controllability may be
increased in certain state directions (e.g., through
scaling) at the sacrifice of the observability, and vice
versa.
A solution of the coordinate dependence problem is
to consider both controllability and observability at
the same time. Such a transformation may be found
through the eigen-decomposition of PQ:

Σ = T−1PQT (3.18)

where the diagonal matrix Σ contains the eigenval-
ues of PQ sorted in descending order and T is the
corresponding eigenvector matrix. In this coordi-
nate system, both controllability and observability
gramians are Σ:

P = T−1PT−T = Q = TT QT = Σ, (3.19)

and the system is said to be “balanced” (between
controllability and observability) [24]. Balancing is
usually performed for stable systems using the solu-
tions of the corresponding Lyapunov equations (3.6)
and (3.12). In this case, the diagonal entries of Σ
are called the Hankel singular values of the system
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and they are invariant with respect to the coordinate
transformation. Hankel singular values describe the
degree that a given state contributes to the input-
output energy flow of the system. States with small
Hankel values are both weakly controllable and
weakly observable, and can be removed from the
system (through truncation, called balanced trunca-
tion, or singular perturbation). Therefore, systems
that show a rapid decline in Hankel singular values
are easily approximated by a reduced order system.
A sharp decrease in the Hankel singular values can
indicate a good point to truncate the model [26]. Bal-
anced truncation is the main model reduction tool
examined in the paper, and we will later examine ap-
proximate, but computationally attractive, solution
to the system gramians and their use in balancing.
The most common method of finding the balanced
coordinate is the square root method first proposed
in [25]. First find the square roots of P and Q:

P = ZP ZT
P , Q = ZQZT

Q. (3.20)

The n × n square root matrices are known as the
Cholesky factors of the gramians. They are upper
triangular, and always exist since the gramians are
positive semi-definite. Next perform a singular
value decomposition:

ZT
P ZQ = UΣV T (3.21)

where U , V are orthogonal and Σ is diagonal. The
next step is to form the coordinate transformation
matrix which requires the system to be controllable
and observable, i.e., P and Q are positive definite.
If this is not the case (which is frequently the case
for large scale systems due to numerical accuracy), a
model reduction may first need to be performed to
remove the nearly uncontrollable and nearly unob-
servable subsystems (by using truncation or singu-
lar perturbation using controllability or observabil-
ity alone). If P and Q are both positive definite, then
ZP and ZQ are both invertible. Define

T1 = ZP UΣ−
1
2 , T2 = ZQV Σ−

1
2 . (3.22)

It follows that T−1
1 = TT

2 . Note, however, neither
T1 nor T2 require explicit matrix inversion. Using T1

as the transformation matrix (and use TT
2 instead of

T−1
1 ), the new state space representation is

(Ab, Bb, Cb, Db) = (TT
2 AT1, T

T
2 B, CT1, D). (3.23)

It can be verified that the controllability and observ-
ability gramians of this system both equal to Σ.

The Hankel singular values also define an error
bound for balanced truncation. For a system G with
Hankel singular values (σ1 ≥ σ2 ≥ . . . ≥ σn), the ap-
proximation error for a balanced truncation reduced
order model of order k, Ĝk(s), satisfies the inequal-
ity

2(σk+1 + ... + σn) ≥ ‖G− Ĝ‖H∞ ≥ σk+1. (3.24)

Balanced truncation tends to match gain well but
sometimes poorly in phase. A related approach
called balanced stochastic truncation has been pro-
posed for square systems [27,28] which balances the
spectral factor of G(s)GT (−s) instead of G itself.
This approach tends to approximate the phase bet-
ter and has a guaranteed relative error bound, i.e., a
bound on

∥∥∥(G− Ĝ)G−1
∥∥∥. We did not compare this

approach in our numerical study in this paper.

3.3. Optimal Hankel Approximation

Balanced realization chooses a state coordinate
based on its contribution to the input/output en-
ergy flow. The logical next step is to consider the in-
put/output map without explicitly considering the
internal state of the system. We first define a lin-
ear operator, called the Hankel operator, that maps
the past input, Lni

2 (−∞, 0], to the future output,
Lno

2 [0,∞):

Γ = ΨoΨc. (3.25)

where Ψc : Lni
2 (−∞, 0] → Rn maps the past input to

the initial state, and Ψo : Rn → Lno
2 [0,∞) maps the

initial state to the future output. It can be shown
that the induced norm, ‖Γ‖, is the largest Hankel
singular value of the system. We can now pose the
model reduction as a minimization problem in terms
of the Hankel norm of the approximation error (this
is called the optimal Hankel norm approximation
problem):

min
order k Ĝ

‖G− Ĝ‖H . (3.26)

The solution of this problem is given [29], and can be
readily implemented. We also consider this method
in the numerical study in the next section. The op-
timal Hankel norm approximation method gives a
tighter guaranteed error bound in terms of the H∞
norm:

‖G− Ĝ‖H∞ ≤ (σk+1 + ... + σn). (3.27)
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3.4. Discrete Time Systems

The model reduction approach described above can
also be applied to discrete time LTI systems. Discrete
time system description arises for computation rea-
sons (as an approximation to continuous time sys-
tems – se Section 4) or due to sampled data imple-
mentation (zero-order-hold digital-to-analog input
and sampled analog-to-digital output).
Consider a discrete time system in a state space rep-
resentation:

x(k + 1) = Adx(k) + Bdu(k)
y(k) = Cdx(k) + Ddu(k), (3.28)

where k is a non-negative integer denoting the time
horizon.
As in the continuous time case, controllability can
be defined as the mapping, LN , from an input se-
quence uN = {u(k) : 0 ≤ k ≤ N − 1} to a terminal
state x(N) (starting from the origin):

LNuN =
N−1∑

i=0

AN−i−1
d Bdu(i) (3.29)

= [AN−1
d Bd, . . . , Bd]




u(0)
...

u(N − 1)


 .

The controllability gramian can also be similarly de-
fined as

PN = LNLT
N . (3.30)

One can visualize LN as the mapping of a unit
`ni
2 [0, N−1] ball to anRn ellipsoid, the controllability

ellipsoid, with the principal axes given by the eigen-
vectors of PN and their lengths given by the square
roots of the eigenvalues of PN . The controllability el-
lipsoid captures the degree of coupling between the
input and the state. In the case that the controlla-
bility ellipsoid is degenerate (zero length) in certain
state direction, then those states cannot be affected
by the input (i.e., they are uncontrollable) and can
be removed from the system description.
The gramian, PN , also satisfies the discrete time Lya-
punov equation:

AdPNAT
d − PN+1 + BdB

T
d = 0 (3.31)

and can also be solved explicitly through a finite
sum:

PN =
N−1∑

i=0

Ai
dBdB

T
d Ai

d

T
. (3.32)

If Ad is stable (i.e., all eigenvalues within the unit
circle), then PN converges to a steady state solution,
P , as N → ∞. In this case, P satisfies the steady
state Lyapunov equation

AdPAT
d − P + BdB

T
d = 0 (3.33)

and can be evaluated through an infinite sum:

P =
∞∑

i=0

Ai
dBdB

T
d Ai

d

T
. (3.34)

As a dual concept, consider an unforced system (i.e.,
u ≡ 0) with the initial condition x(0) generating
an output sequence yN = {y(k) : k = 0, . . . , N − 1}.
The mapping from Rn to `no

2 [0, N − 1] is then

`Nx(0) =




Cd

CdAd

...
CdA

N−1
d


 x(0). (3.35)

Define the observability gramian as

QN = `T
N `N . (3.36)

We can now visualize `N as the mapping of a unit
Rn ball to an (at most) n-dimensional `no

2 [0, N − 1]
ellipsoid, the observability ellipsoid, with the prin-
cipal axes given by the eigenvectors of QN and their
lengths given by the square roots of the eigenvalues
of QN . The observability ellipsoid captures the de-
gree of coupling between the state and the output.
In the case that the observability ellipsoid is degen-
erate in certain state direction, then those states do
not generate any output and can be removed from
the system description.
The gramian, QN , also satisfies the discrete time Lya-
punov equation:

AT
d QNAd −QN+1 + CT

d Cd = 0 (3.37)

and can also be solved explicitly through a finite
sum:

QN =
N−1∑

i=0

Ai
d

T
CT

d CdA
i
d. (3.38)

If Ad is stable, then QN converges to a steady state
solution, Q, as N → ∞. In this case, Q satisfies the
steady state Lyapunov equation

AT
d QAd −Q + CT

d Cd = 0 (3.39)

and can be evaluated through an infinite sum:

Q =
∞∑

i=0

Ai
d

T
CT

d CdA
i
d. (3.40)
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The gramians, P and Q, may be used in exactly the
same way as in the continuous time systems to re-
duce the system order. For balanced truncation, we
first perform an eigen-decomposition of PQ (in any
coordinate):

Σ = T−1PQT, (3.41)

where the diagonal matrix Σ contains the eigenval-
ues of PQ (Hankel singular values for the discrete
time system) sorted in descending order and T is the
corresponding eigenvector matrix. Then by using T
as the coordinate transformation, the transformed
system, (T−1AdT, T−1Bd, CdT,Dd), has identical
controllability and observability gramians which are
both Σ. The states corresponding to small values of
Σ may be truncated as in Section 3.2 to obtain the
reduced order model.

3.5. Example

3.5.1. Comparison of Model Reduction Methods

In this section, we examine the performance of the
model reduction techniques discussed above ap-
plied to a problem of moderate dimension (100
modes or n = 200). The purpose is to demonstrate
the effectiveness of model reduction for generalized
second-order models, and to determine the most ef-
fective type of model reduction, which will then be
applied to the large-scale problem.
The system under consideration here has been ran-
domly generated, and has a non-monotonically de-
caying frequency response. We apply three model
reduction methods that have been discussed: modal
truncation, balanced truncation, and optimal Han-
kel norm approximation. The performance of these
methods is compared by examining the frequency
response plots of the original system and the ap-
proximated ones.
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Figure 5: Graphical progression of modal truncation
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Figure 6: Graphical progression of balanced trunca-
tion
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Figure 7: Graphical progression of optimal Hankel-
norm approximation

Fig. 5-7 show the frequency response comparison
between the full-order model, the modal trunca-
tion models, the reduced order balanced truncation
models, and optimal Hankel norm reduction mod-
els. Balanced truncation retains the most dominant
system resonant modes in the frequency response,
while modal truncation retains the lowest frequency
modes irrespective of their contributions. Hankel
norm reduction matches the dominant modes rea-
sonably well but performs poorly at high frequency
since the contribution to the error norm is small.
Some of the undesirable features of modal and Han-
kel norm reduction methods may be corrected by se-
lecting modes based on their peak magnitudes or
through frequency dependent weighting, but bal-
anced truncation is the overall algorithm of choice
since it captures the dominant input/output fre-
quency response, provides an error bound, and pre-
serves system stability.
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3.5.2. Maximum Output Prediction with Reduced
Order Models

In this section, we present an application of model
reduction to the determination of the value and lo-
cation of the maximum strain in a structure. This in-
formation can be used to ensure that a critical yield
stress is not exceeded or to optimize the placement
of sensors to collect strain data for control purposes.
We will show that a reduced order model can be
used to predict the value and location of the maxi-
mum strain while reducing computational expense.
Our motivating example is a piezoelectric compos-
ite beam, with a force input applied at a randomly-
selected location along its length. The model has
been discretized to 400 nodes, giving the full-order
model 800 states. Therefore, there are 399 possible
locations for the maximum strain.
To apply the model reduction methods presented
earlier, we can consider 399 systems, each with a dis-
tinct single output corresponding to the strain at a
node. Alternatively, we can consider a single sys-
tem with 399 outputs, and reduce the model only
once, obtaining a model with 399 outputs. The first
approach has the greatest potential for model re-
duction, since less information is required to de-
scribe the input-output relationship, but the second
is much more efficient computationally since it re-
quires only one reduction. The time required to per-
form 399 individual reductions is much more than
the time required to simply compute the full-order
model, making the first approach impractical. We
thus proceed with the multiple-output approach.
Thirty simulations were performed, in which the in-
put was a bounded sinusoidal force function with
random frequency content and amplitude. The force
was applied at randomly selected points on the
beam, and the full-order model was simulated to
find the value and temporal and spatial locations of
the maximum strain. Reduced order models with
4 to 200 states were then generated, and the pre-
dicted value and location of the maximum strain
were found. The results of these predictions were
compared with the actual value and location of max-
imum strain, and the quality of the approximation
was then assessed. We define a “successful” pre-
diction as one predicting the strain value within 5
percent, the location within ±2 nodes, and the time
within ±10 time steps. Our simulation was run for
1000 time steps. The results are presented in graph-
ical form in figure 8, which shows the percentage of
tests giving successful approximations for a given
reduced-order model size. It is evident that a reason-
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Figure 8: Results for 30 tests of maximum strain pre-
diction

able prediction can be obtained using reduced order
models of order 200 or less in most cases.
In almost all cases, the time and location were suc-
cessfully predicted before the strain value itself. It
is not known a priori when the reduced order model
will successfully predict value, time, and location,
but it was observed that once an accurate predic-
tion had been reached, it remained accurate when
we further increased the model order. Convergence
of the maximum strain value was asymptotic, but
the behavior of the convergence of location and time
was not well-defined, often oscillating between sev-
eral distinct values before converging.
Although we cannot calculate an analytical error
bound for a problem of this type, we can define an
a posteriori error bound as follows. The induced L∞
norm in the time domain is the L1 norm of the im-
pulse response [19]:

‖g − ĝ‖L1 =
‖y − ŷ‖L∞

‖u‖L∞
(3.42)

where g and ĝ are the impulse responses of the full-
order and reduced order systems, y and ŷ are the
respective outputs, and u is the input. If the desired
maximum output error bound is, ε, then a sufficient
condition is

‖g − ĝ‖L1 ≤
ε

‖u‖L∞
. (3.43)

For a given input u, we can choose the order of the
reduced model sufficiently high (and ‖g − ĝ‖L1

suf-
ficiently small), so that (3.43) is satisfied. The con-
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vergence of ‖g − ĝ‖L1
for several output locations is

shown in Fig. 9.
The benefit of model reduction can be seen in the
computational time savings shown in Table 2. We in-
cur a one-time cost of reduction (in terms of gramian
computation and SVD needed in balancing), and af-
ter this we enjoy a significant savings for each iter-
ation in terms of the solution of the time response.
The cost to simulate an 200th order model is about
1
16 of an 800th order model. So after 10 design itera-
tions, the total computation time using the reduced
order model is already less than that of the full order
model.

4. APPROXIMATE SOLUTIONS OF GRAMIANS

We have shown that balanced truncation is an ef-
fective model reduction technique in the previous
section. However, its application to large systems
is limited by the computational load (of order n3

for the gramian and SVD calculations needed in
balanced transformation) and storage requirements.
Additionally, the numerical implementation can be-
come ill-conditioned for stiff systems (widely sepa-
rated eigenvalues in A). In this section we present
several methods that are more numerically efficient
to approximately compute the system gramians.
For large systems with many state variables and rel-
atively few inputs and outputs, typical of models
arising from the finite element method, the Hankel
singular values decay rapidly. This implies that the
input-output energy coupling is dominated by just
a few states. As a result, the gramians have low nu-

merical ranks. We can exploit this fact by computing
just the dominant portion of the gramians which can
then be sued to calculate a reduced order model. If
we can efficiently compute an approximate gramian
that has eigenvectors that point roughly in the same
state directions as the dominant eigenvectors of the
actual gramian, then the approximate gramian will
perform nearly as well as the actual one in the model
reduction process. This low rank gramian approx-
imation then takes the place of the solution of the
full order Lyapunov equations, which is computa-
tionally prohibitive for the large-scale problem.

4.1. Discrete-Time Gramian Formulation

Instead of solving for the gramians in continuous-
time, we will consider the solution a discrete-time
system that has the same gramians. This process al-
lows us to calculate the gramians using an infinite
series instead of the integrals in (3.7) and (3.13).
Consider the following bilinear transformation that
maps the imaginary axis (in the s domain) to the unit
circle (in the z domain)

s = p
(1− z)
(1 + z)

(4.1)

where p < 0 is a shift parameter to be chosen. If the
discrete time system is obtained through uniform
time domain sampling of the continuous time sys-
tem, then p = −2fs with fs the sampling frequency.
Substituting (4.1) into the continuous time transfer
function (2.11), we obtain a discrete time transfer
function

Hp(z) = Cp(zI −Ap)−1Bp + Dp, (4.2)

where

Ap = (pI + A)−1(pI −A)

Bp =
√
−2p(pI + A)−1B

Cp =
√
−2pC(pI + A)−1

Dp = D − C(pI + A)−1B. (4.3)

The corresponding Lyapunov equations for the dis-
crete time controllability and observability gramians
are

ApPAT
p − P + BpB

T
p = 0

AT
p QAp −Q + CT

p Cp = 0. (4.4)

Note that for any p < 0, these equations are ex-
actly the same as the continuous time Lyapunov
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Model Order Red Time (s) Time (1)(s) Time (10)(s) Time (100)(s)
Original 800 0 24 240 2400
Reduced 200 125 125+1.5 125+15 125+150

Table 2: Cost savings in maximum strain problem design cycles

equations (3.6) and (3.12). The solutions may be ex-
pressed as infinite sums instead of integrals in (3.7)
and (3.13):

P =
∞∑

j=0

Aj
pBpB

T
p AT

p

j

Q =
∞∑

j=0

AT
p

j
CT

p CpAp
j . (4.5)

Since Ap is stable (i.e., all eigenvalues within the unit
circle), these series converge. A natural approxima-
tion of P and Q may then be found by truncating
these series. We now examine various variations for
solving for the approximate gramians efficiently.

4.2. Smith Method

The infinite series (4.5) may be truncated to generate
the following kth order approximate gramians:

Pk =
k−1∑

j=0

Aj
pBpB

T
p AT

p

j

Qk =
k−1∑

j=0

AT
p

j
CT

p CpAp
j . (4.6)

These sums may be iteratively computed:

Pj = ApPj−1A
T
p + BpB

T
p , P0 = 0

Qj = AT
p Qj−1Ap + CT

p Cp, Q0 = 0, (4.7)

where j = 1, . . . , k. This iterative solution for the ap-
proximate gramians is known as the Smith method.
The computational cost is O(n3) for fully populated
A, and O(n2) for tridiagonal A.

4.3. ADI Iteration

The Alternating Direction-Implict (ADI) algorithm
[30, 31] is a generalization of the Smith method by
using distinct shift parameters p1, p2, ..:

Pj = Apj Pj−1A
T
pj

+ Bpj B
T
pj

, P0 = 0

Qj = AT
pj

Qj−1Apj + CT
pj

Cpj , Q0 = 0, (4.8)

where Apj , Bpj , Cpj are the transformed state space
matrices as defined in (4.3) with p replaced by the
jth shift parameter pj . When a fixed number of shift
parameters are used, they are recycled in the itera-
tions. Referencing (4.7), the ADI iteration simplifies
to the Smith method when only one shift parameter
is used. However, when multiple shifts are used, the
convergence rate is typically faster than the Smith
method.
The iterations in (4.8) may be split into two steps to
gain efficiency:

(A + pjI)Ptemp = −BBT − Pj−1(AT − pjI)
(A + pjI)Pj = −BBT − PT

temp(A
T − pjI)

(AT + pjI)Qtemp = −CT C −Qj−1(A− pjI)
(AT + pjI)Qj = −CT C −QT

temp(A− pjI)
P0 = Q0 = 0 (4.9)

where Ptemp and Qtemp are intermediate matrices.
Computationally, each ADI iteration in (4.9) in-
volves two matrix-matrix products, and two matrix-
matrix solves. For a full matrix A, a matrix-matrix
solve has computational cost O(n3), which is im-
practical for large n. To reduce the computational
cost to O(n2), a general matrix A must be made tri-
diagonal.

4.4. Cyclic Smith Method

The cyclic Smith method combines the ADI and
Smith methods by first applying the ADI method
for J steps (using all the shift parameters) and then
using Smith method to generate the approximate
gramians. To show the algorithm, we consider the
controllability case only. First write (4.4) with p = pJ

(which is equivalent to (3.6)):

P = ApJ PAT
pJ

+ BpJ BT
pJ

.

Then substitute for P in the right hand side by using

P = ApJ−1PAT
pJ−1

+ BpJ−1B
T
pJ−1

to obtain

P = ApJ
(ApJ−1PAT

pJ−1
+BpJ−1B

T
pJ−1

)AT
pJ

+BpJ
BT

pJ
.
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Repeat this process to obtain

P = Φ0,JPΦT
0,J + PJ (4.10)

where

Φk,` :=
∏̀

i=k+1

Api

and

PJ =
J∑

j=1

Φj,JBpj
BT

pj
ΦT

j,J

is just the Jth iterate of the ADI iteration (4.8).
Eq. (4.10) is of the same form as (4.4), therefore, we
may apply the Smith method to find an approximate
solution:

P
(CS)
j = Φ0,JP

(CS)
j−1 ΦT

0,J + PJ , P
(CS)
0 = 0, (4.11)

where j = 1, . . . , k, for the k-term approximation of
the infinite series expansion. For the observability
gramian, a similar propagation may be used

Q
(CS)
j = ΦT

0,JQ
(CS)
j−1 Φ0,J + QJ , Q

(CS)
0 = 0, (4.12)

where QJ is the Jth ADI iterate. The computational
cost is again O(n3) for fully populated A, and O(n2)
for tridiagonal A.
The advantage of the Cyclic Smith method lies in
faster convergence than the Smith method (due to
the multiple shifts) while avoiding using a large
number of shift parameters.

4.5. Shift Parameter Selection

The convergence of the Smith, cyclic Smith, and ADI
algorithms depend on the selection of the shift pa-
rameters, pj (user-selected real numbers or complex
conjugate pairs with negative real parts). To increase
the speed of convergence of these algorithms, pj

should be chosen so that the eigenvalues Apj have
small magnitudes. The eigenvalues of Apj is related
to the eigenvalues of A by

λi(Apj ) =
pj − λi(A)
pj + λi(A)

. (4.13)

The selection of the shift parameters (for ADI and
cyclic Smith cases) may then be posed as an opti-
mization problem of choosing p1, p2, . . . , pJ to mini-
mize the largest eigenvalue of Φ0,J :

min
p1,...,pJ

max
λ(A)

∣∣∣∣∣∣

J∏

j=1

(pj − λ(A))
(pj + λ(A))

∣∣∣∣∣∣
. (4.14)

For the Smith method, only one parameter needs to
be chosen. If the eigenvalues of A are known, and if
pj ’s are chosen to be the eigenvalues of A, then the
ADI algorithm will produce the exact solution of the
gramians in n step. Of course, the goal is to obtain
an approximate solution in a much smaller number
of iterations, so the number of shift parameters is in
general much smaller, i.e., J << n.
If the eigenvalues of A are all real, the solution to
(4.14) is known, and the optimal parameters may
be readily generated. However, second-order FEM
models typically have numerous complex eigenval-
ues, with small real parts. For this case, the problem
has no known closed-form solution. Various subop-
timal solutions have been proposed [32–34].

4.6. Low Rank Algorithms

The iterative methods presented so far avoid the
costly solution of Lyapunov equations in the com-
putation of gramians. However, their application to
large scale systems is inherently limited due to the
computation and storage requirements in propagat-
ing the full n × n system gramians at each iteration.
This section discusses the so-called low rank methods
which propagate the Cholesky factor of the gramian
instead of the full gramian [35].

4.6.1. Low-Rank ADI

Low-rank ADI (LR-ADI), proposed in [36], propa-
gates the Cholesky factor of the gramians in ADI in-
stead of the full gramian matrix. As a result, it has
reduced computational and storage requirements.
Let Pj be the jth ADI iterate. Since Pj ≥ 0, it can
be factored as

Pj = ZPj Z
T
Pj

.

The ADI iteration (4.8) may be written as

ZPj Z
T
Pj

= Apj ZPj−1Z
T
Pj−1

AT
pj

+ Bpj B
T
pj

=
[

Apj ZPj−1 Bpj

] [
Apj ZPj−1 Bpj

]T
.

We can now update ZPj instead of Pj :

ZPj =
[

Apj ZPj−1 Bpj

]
, ZP0 = 0. (4.15)

With a little algebra, it can be shown that

ZPJ =
[

BpJ
SJ−1BpJ

. . .
∏J−1

j=1 SjBpJ

]

(4.16)
where

Si =
√

pi

pi+1
(I − (pi+1 + pi)(A + piI)−1).
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The following iterative update may then be used to
generate ZPJ

(the indexing has been reversed for
convenience):

zj+1 = Sjzj , z1 = Bp1 ,

Sj =
√

pj+1

pj
(I − (pj+1 + pj)(A + pj+1I)−1),

Z
(ADI)
Pj

=
[

Z
(ADI)
Pj−1

zj

]
, Z

(ADI)
P1

= z1. (4.17)

Similarly, for the observability gramian, we have

zj+1 = ST
j zj , z1 = CT

p1
,

Z
(ADI)
Qj

=
[

Z
(ADI)
Qj−1

zj

]
, Z

(ADI)
Q1

= z1. (4.18)

The iteration terminates when ‖zj‖ becomes suffi-
ciently small.
Each iteration of LR-ADI requires only matrix-
vector solves, instead of the matrix-matrix products
used in the normal ADI method. A matrix-vector
solve has cost O(n2) if A is full, and O(n) if A is
sparse. Therefore, the LR-ADI algorithm has cost
O(n) if A is tri-diagonal or sparse, and O(n2) if A
is full. Each LR-ADI iteration adds a number of
columns to Z

(ADI)
Pj

and Z
(ADI)
Qj

corresponding to the
number of inputs. LR-ADI becomes most advan-
tageous when the iterations terminate with a small
number of columns, therefore saving both storage
and computation. There could be further savings if
only an orthonormal basis is saved in each iteration.

4.6.2. Low-Rank Cyclic Smith

In a manner similar to the LR-ADI algorithm, we can
formulate a low-rank cyclic Smith (LR-CS) method
to reduce computation and storage requirements
[38]. Consider the cyclic Smith iteration (4.11). Sub-
stitute the Cholesky factorizations for PJ , the Jth
ADI iterate, and P

(CS)
j , we get

Z
(CS)
Pj

Z
(CS)T

Pj
=

Φ0,JZ
(CS)
Pj−1

Z
(CS)T

Pj−1
ΦT

0,J + Z
(ADI)
PJ

Z
(ADI)T

PJ
. (4.19)

We can now just update the Cholesky factor instead
of the full gramian

Z
(CS)
PJ

=
[

Φ0,JZ
(CS)
Pj−1

Z
(ADI)
PJ

]
. (4.20)

This may be written in an alternate and more effi-
cient update:

zj+1 = Φ0,Jzj , z0 = Z
(ADI)
PJ

Z
(CS)
Pj

=
[

Z
(CS)
Pj−1

zj

]
, Z

(CS)
P0

= z0. (4.21)

Similarly, for the observability gramian, we have the
following iteration:

zj+1 = ΦT
0,Jzj , z0 = Z

(ADI)
QJ

Z
(CS)
Qj

=
[

Z
(CS)
Qj−1

zj

]
, Z

(CS)
Q0

= z0. (4.22)

The iterations terminate when ‖zj‖ is sufficiently
small. Similar to the LR-ADI case, since Z

(CS)
Pj

and

Z
(CS)
Qj

in general have low column ranks than the di-
mension of the system, the LR-CS method has less
computational (order O(n2) for fully populated A
and O(n) for tridiagonal A) and memory storage re-
quirements.

5. APPROXIMATE BALANCE TRANSFORMA-
TION

Once the approximate gramians are found, we can
use them to generate a reduced order model. The
square root method presented in Section 3.2 can be
directly extended to use the approximate Cholesky
factors obtained by using the LR-ADI or LR-CS
methods [11, 36]. Let the approximate Cholesky fac-
tors of the controllability and observability grami-
ans be ẐP ∈ Rn×k and ẐQ ∈ Rn×k which are full
column rank matrices (note that there are possibly
many more rows than columns and, for simplicity,
we assume that the matrices have the same number
of columns). Next perform an SVD on the following
k × k matrix:

ẐT
P ẐQ = Û Σ̂V̂ T . (5.1)

Now define the transformation matrices

T̂1 = ẐP Û Σ̂−
1
2 , T̂2 = ẐQV̂ Σ̂−

1
2 . (5.2)

The reduced order system may then be readily ob-
tained:

(Â, B̂, Ĉ, D̂) = (T̂T
2 AT̂1, T̂

T
2 B, CT̂1, D). (5.3)

The low-rank methods presented earlier can pro-
duce ẐP and ẐQ directly at reduced computation
and storage needs as compared to the solution of the
full order gramians. If k << n, the SVD (an O(n3)
operation) will also provide considerable savings.
The quality of the reduced order model depends on
the how well the low rank Cholesky factors approx-
imate factors of the actual gramians. However, the
analytic error bound (3.24) no longer holds. Some er-
ror bounds have recently been developed [39] to ac-
count for the approximation error as well. Further-
more, the full order balance truncation preserves the

15



stability of the full order system. With the approx-
imate gramians, this is no longer true and the un-
stable modes will need to be removed. Other model
reduction methods using the approximate Cholesky
factors have also been proposed [11].

6. NUMERICAL EXPERIMENT

In this section, we use a fixed-free composite piezo-
electric beam presented in [40] to illustrate the
model reduction methods discussed in this paper.
The beam has been spatially discretized into 450
nodes, resulting in a full-order model with 900
states. The input is chosen as a force applied to node
250, and the output is the strain measured at node
2 (the beam root). The frequency response is shown
in Fig. 10. A complete derivation of the model ap-
pears in [40] and will not be repeated here. All sim-
ulations are performed using MATLAB 6.5, running
on a Pentium 4 2.0 GHz PC, with 512 MB of RAM.
The approximate gramian computation and balanc-
ing routines are drawn from the Lyapack [14] soft-
ware library.
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Figure 10: Frequency response of full-order model

Extensive numerical comparison between all the al-
gorithms for gramian approximation have been con-
ducted in [37]. The best performance is obtained
by using the LR-ADI algorithm for gramian ap-
proximation together with the low-rank square root
method for balancing. We will only present the re-
sults related to the LR-ADI method here.

6.1. Performance of LR-ADI and LR-Square-Root
Methods

The parameters that need to be selected in the model
reduction are the number of iterations and the or-
der of the reduced system. In the case of exact bal-
anced truncation, we know the H∞ error bound a
priori and can determine the required model order
to achieve the required error tolerance from (3.24).
In the approximated-gramian case, we do not have
a guaranteed error bound. Therefore, we supply a
“requested” model order, and the low-rank square
root balancing algorithm produces a reduced order
model of size no greater than requested order, and
possibly less. A less-than-requested model order can
occur when the approximated gramian is of insuffi-
cient order. Furthermore, since stability is not pre-
served under approximate balancing, there may be
unstable eigenvalues in the resulting model which
will need to be removed, resulting in a lower or-
der model. The presence of unstable states was
also noted by other researchers in [11, 38]. Fig. 11
shows the resulting model order for three values
of requested model order, as a function of the LR-
ADI iterations. Note that the 40th order model at-
tains its full size after about 200 iterations of LR-ADI,
meaning that after 200 iterations the gramians have
numerical rank sufficient to generate a 40th order
model. The 80th order model has a similar behavior,
reaching its full size after about 500 iterations. For
the 120th order model, the gramian has insufficient
rank even after 600 iterations.
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Figure 11: Resulting model order for given re-
quested orders

We next assess the model reduction error as a func-
tion of the iteration in LR-ADI. The requested order
is chosen to be 120. TheH2 andH∞ norms and time-
domain L2 and L∞ norms of the impulse response
of the error system are shown in Fig. 12. These rep-
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resent the best results obtained after testing several
different shift parameter sequences. Note that for
the most part, the error norms decay monotonically
in iterations.
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Figure 12: Model reduction error metrics - Beam
Model

Fig. 13 shows the error norms as a function of the
model order for both the exact and approximate bal-
ance truncation methods. We have observed that oc-
casionally the approximate balancing method pro-
duces better approximations to the original system
than the exact method. This is due to the numerical
inaccuracies present in the solution of the Lyapunov
equations, especially for high order stiff systems.
Fig. 14 shows the execution time of LR-ADI and the
LR-square root algorithms. We have used the fully
populated A in all the computations. Therefore, the
computation is linear in k and quadratic in n. If tridi-
agonalization is first performed, then the computa-
tion load grows linearly in n. The computation load
comparison is summarized in Table 3.

Structure Exact ADI LR-ADI
Full A O(n3) O(n3) O(n2)

Tridiagonal A O(n3) O(n2) O(n)

Table 3: Computational requirements for generating
reduced-order models
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In general, we observe satisfactory performance of
the LR-ADI algorithm with low-rank square root
balancing in terms of the modeling error. The LR-
ADI algorithm quickly converges to the dominant
eigenvectors of the gramians in the numerical exam-
ple, resulting in reduced order systems whose char-
acteristics closely match those of the original system.

6.1.1. Choice of Shift Parameters

If we know the eigenvalues of the system, we could
choose the shift parameters to be the same as the
eigenvalues, but the LR-ADI method will take many
steps to converge. Since we only want to iter-
ate a small number of steps, the number of shift
parameters is limited, and they should approxi-
mate the spectrum of the system. We have imple-
mented the shift parameter selection methods by
Wachspress [41] and Penzl [11], but the best results
were obtained by a heuristic selection procedure that
chooses parameters that cover the range of the sys-
tem eigenvalues, shown in Fig. 15.
If a large number of shift parameters are used, it
takes many iterations to cycle through the parame-
ters. If the shift parameters are few and far apart (to
cover the spectrum of A), the convergence will also
be slow since the spectral radius of Apj cannot be
made small. In general, the number of shift parame-
ters and their locations have to be carefully tuned to

obtain the best convergence for a given problem. We
have chosen 10 purely real shift parameters, which
we found to be a good trade-off between conver-
gence accuracy and convergence rate. We have also
noted that the use of complex conjugate parameters
(nearer to the system eigenvalues) does not appear
to be advantageous. Using 10 complex conjugate
pairs with real parts equal to those used in our work
results in a slower convergence than the purely real
parameters.
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7. CONCLUSION

Large scale dynamical systems arising from the fi-
nite element method can often be reduced signif-
icantly, since their input-output behavior is dom-
inated by only a small number of internal states.
We presented in this paper an overview of the the-
ory and application of model reduction methods
based on the input-state and state-output coupling.
Among the methods reviewed, balanced truncation
is the most attractive as it has a guaranteed H∞ er-
ror bound and produces a reduced-order model that
captures well the dominant input-output behavior
in both time and frequency domains.
A key step in balanced truncation is the solution of
two Lyapunov functions which is computationally
intensive and plagued by numerical difficulties for
large systems. We presented several iterative meth-
ods to generate approximately-balanced reduced or-
der models for large systems. Among them, the
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best choice is the low-rank ADI method which bal-
ances the computational load and memory storage
requirement. However, its effective use requires the
selection of a set of shift parameters. The result from
low-rank ADI method can be directly used in the
low-rank square root method to generate a low or-
der approximate model. A 900-state numerical ex-
ample is included to show the effectiveness of these
methods.
The model reduction algorithms presented here are
for LTI systems only, but models of physical systems
are invariably nonlinear. However, the gramian con-
cept central to the balanced truncation method may
be generalized to nonlinear systems and used for
their order reduction [9, 42]. Many physical models
also lack damping, such as in molecular dynamics.
In this case, finite time model reduction using the
same balanced truncation idea could be applied [43].

References

[1] R.J. Guyan. Reduction of mass and stiffness
matrices. American Institute of Aeronautics and
Astronautics Journal, 3(2):380, 1965.

[2] J.C. O’Callahan. A procedure for an improved
reduced system IRS model. In Proceedings of
the 6th International Modal Analysis Conference,
pages 17–21, Las Vegas, NV, 1989.

[3] T.I. Zohdi, J.T. Oden, and G.J. Rodin. Hierarchi-
cal modeling of heterogeneous bodies. Comp.
Meth. Applied Mech Engineering, 138:273–298,
1996.

[4] K.J. Bathe, N.S. Lee, and M.L. Bucalem. On
the use of hierarchical models in engineering
analysis. Comp. Meth. Appl. Mech. Eng., 82:5–26,
1990.

[5] A.C. Cangellaris and L. Zhao. Model order re-
duction techniques for electromagnetic macro-
modelling based on finite methods. Int. Journal
of Numerical Model, 13:181–197, 2000.

[6] A.C. Cangellaris, M. Celik, S. Pasha, and
L. Zhao. Electromagnetic model order reduc-
tion for system-level modeling. IEEE Trans. Mi-
crowave Theory and Techniques, 47:840–850, 1999.

[7] J. Rubio, J. Arroyo, and J. Zapata. SFELP: An ef-
ficient methodology for microwave circuit anal-
ysis. IEEE Journal on Microwave Theory and Tech-
niques, 49(3):509–516, March 2001.

[8] J. Tinsley Oden and K. Vemaganti. Estimation
of local modeling error and goal-oriented adap-
tive modeling of heterogeneous materials; part
I: Error estimates and adaptive algorithms. J.
Comp. Physics, 164:22–47, 2000.

[9] A.C. Antoulas, D.C. Sorensen, and S. Gugercin.
A survey of model reduction methods for large-
scale systems. In Structured Matrices in Operator
Theory, Numerical Analysis, Control, Signal and
Image Processing. AMS, 2001.

[10] P. Benner. Solving large-scale control prob-
lems. IEEE Control Systems Magazine, 24(1):44–
59, February 2004.

[11] T. Penzl, “Algorithms for model reduction of
large dynamical systems,” T.U. Chemnitz, Ger-
many, Technical Report, 1999.

[12] V. Balakrishnan, Q. Su, and C-K. Koh, “Efficient
balance-and-truncate model reduction for large
scale systems,” Proceedings of the American Con-
trol Conference, Arlington, VA, 2001.

[13] J-R. Li and J. White, “Efficient Model reduc-
tion of interconnects via approximate system
gramians,” IEEE/ACM International Conference
on Computer Aided Design, San Jose, CA, 1999.

[14] T. Penzl, “Lyapack - A MATLAB Toolbox for
large lyapunov and riccati equations, model
reduction problems, and linear-quadratic
optimal control problems.” Available from
http://www.tu-chemnitz.de/sfb393/lyapack/

[15] L. Ljung. System Identification: Theory for the
User. Prentice-Hall, 1987.

[16] B. De Moor, P. Van Overschee, and W. Favoreel.
Numerical algorithms for subspace state space
system identification - an overview. In Biswa
Datta, editor, Birkhauser Book Series on Applied
an Computational Control, Signals and Circuits,
pages 247–311. Birkhauser, 1999.

[17] T. Stykel, “Model reduction of descriptor sys-
tems,” Institut für Mathematik, Technische
Universität Berlin, Berlin, Germany, Technical
Report 720-01, Dec. 2001.

[18] T. Penzl, “Numerical solution of generalized
Lyapunov equations,” Advances in Computa-
tional Mechanics, vol. 8, pp. 33-48, 1998.

[19] K. Zhou, J.C. Doyle, and K. Glover. Robust and
Optimal Control. Prentice-Hall, 1996.

19



[20] C.A. Desoer and M. Vidyasagar. Feedback Sys-
tems: Input–Output Properties. Academic Press,
New York, 1975.

[21] R. Bartels and G. Stewart, “Algorithm 432, so-
lution of the matrix equation AX + XB =C,”
Comm. As. Computer Machinery, vol. 15, pp. 820-
826, 1972.

[22] S. Hammarling, “Numerical solution of the
stable, non-negative definite Lyapunov equa-
tion,”IMA Journal of Numerical Analysis, vol. 2,
pp.303-323, 1982.

[23] P. V. Kokotovic, R. E. O’Malley, P. Sannuti,
“Singular Perturbations and Order Reduction
in Control Theory - an Overview,” Automatica,
vol. 12, pp. 123-132, 1976.

[24] B.C. Moore, “Principal component analysis in
linear systems: controllability, observability,
and model reduction,” IEEE Transactions on Au-
tomatic Control, vol. AC-26, pp. 17-32, 1981.

[25] M. Tombs and I. Postlethwaite, “Truncated bal-
anced realization of stable, non-minimal state-
space systems,” International Journal of Control,
vol. 46, pp. 1319-1330, 1987.

[26] A.C. Antoulas, D.C. Sorensen, and Y. Zhou,
“On the decay rate of Hankel singular values
and related issues.” Rice University, Houston,
Texas, Technical Report, 2002.

[27] U.B. Desai and D. Pal. A transformation ap-
proach to stochastic model reduction. IEEE
Transaction on Automatic Control, 29(12):1097–
1100, December 1984.

[28] M. Green. A relative-error bound for balanced
stochastic truncation. IEEE Trans. Automat. Con-
trol, 33(10):961–965, 1988.

[29] K. Glover, “All optimal Hankel norm approx-
imations of linear multivariable systems and
their L∞ bound,” Int. Journal of Control, vol. 39,
pp. 1115-1193, 1984.

[30] G. Birkhoff, R. Varga, and D. Young. “Alternat-
ing direction implicit methods,” in Advances in
Computers, Vol. 3, New York: Academic Press,
pp.189-273, 1962.

[31] E. Wachspress, “Iterative solution of the Lya-
punov matrix equation,” Applied Mathematics
Letters, vol. 1, pp.87-90, 1988.

[32] B. Le Bailly and J.P. Thiran, “Optimal rational
functions for the generalized zolotarev problem
in the complex plane,” SIAM Journal of Numeri-
cal Analysis, vol. 38, no. 5, pp. 1409-1424, 2000.

[33] G. Starke, “Fejer-Walsh points for rational
functions and their use in the ADI iterative
method,” Journal of Computational and Applied
Mathematics, vol. 46, pp. 129-141, 1993.

[34] G. Starke, “Optimal alternating direction im-
plicit parameters for nonsymmetric systems of
linear equations,” SIAM Journal of Numerical
Analysis, vol. 28, no. 5, pp.1431-1445, 1991.

[35] J-R. Li and J. White, “Low rank solutions
of Lyapunov equations,” SIAM Journal Matrix
Anal. Appl., vol. 24, no. 1, pp.260-280, 2002.

[36] J-R Li, “Model reduction of large linear systems
via low rank system gramians.” Ph.D. disser-
tation, Massachusetts Institute of Technology,
2000.

[37] W. Gressick. A comparative study of order
reduction methods for finite element models.
Master’s thesis, Rensselaer Polytechnic Insti-
tute, Troy, NY., December 2003.

[38] T. Penzl, “A cyclic low-rank Smith method for
large sparse Lyapunov equations,” SIAM Jour-
nal of scientific computation, vol. 21, pp.139-144,
2000.

[39] S. Gugercin, D.C. Sorensen, and A.C. Antoulas,
“A modified low-rank Smith method for large-
scale Lyapunov equations,” Numerical Algo-
rithms, 32(1), pp.27-55, Jan., 2003.

[40] J. Fish and W. Chen, “Modeling and Simulation
of Piezocomposites,” Comp. Meth. Appl. Mech.
Engng., Vol. 192, pp. 3211-3232, 2003.

[41] E. Wachspress. “The ADI Minimax Problem for
Complex Spectra.” In Iterative Methods for Large
Linear Systems, D. Kincaid and L. Hayes, Ed.
New York: Academic Press, pp. 251-271, 1990.

[42] S. Lall, J. E. Marsden, and S. Glavaski. Em-
pirical model reduction of controlled nonlinear
systems. In In Proceedings of the IFAC World
Congress, Volume F, pages 473–478, 1999.

[43] M. Barahona, A.C. Doherty, M. Sznaier,
H. Mabuchi, and J.C. Doyle. Finite horizon

20



model reduction and the appearance of dissi-
pation in Hamiltonian systems. In IEEE Con-
ference on Decision and Control, pages 4563–4568,

December 2002.

21


