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Abstract

This paper presents a stabilized finite element formulation for nearly incompressible finite deformations in hyper-

elastic–plastic solids, such as metals. An updated Lagrangian finite element formulation is developed where mesh

dependent terms are added to enhance the stability of the mixed finite element formulation. This formulation circum-

vents the restriction on the displacement and pressure fields due to the Babuška–Brezzi condition and provides

freedom in choosing interpolation functions in the incompressible or nearly incompressible limit, typical in metal

forming applications. Moreover, it facilitates the use of low order simplex elements (i.e. P1/P1), reducing the degrees

of freedom required for the solution in the incompressible limit when stable elements are necessary. Linearization

of the weak form is derived for implementation into a finite element code. Numerical experiments with P1/P1 ele-

ments show that the method is effective in incompressible conditions and can be advantageous in metal forming

analysis.
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1. Introduction

Over the past three decades, considerable progress has been made in the the development of finite ele-

ment formulations capable of modeling large elastic–plastic deformations, and today, FEM codes that have

grown up from these developments are frequently used in industrial practice. Early formulations used

objective, spatial, rate forms for defining the elastic part of the deformation, which resulted in convenient

algorithms for updating the stress, see for example Hibbitt et al. [8], Needleman [22], and McMeeking and
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Rice [20]. Such formulations are still commonly used today. The primary disadvantages of elastic rate for-

mulations are that they, in most cases, allow elastic dissipation and require small time steps to maintain

accuracy. An exception to this is the formulation proposed by Xiao et al. [34], which is based on a rate

of the Eulerian logarithmic strain measure and does not exhibit dissipation. Simo and co-workers [26–

29] developed a general formulation that uses a hyperelastic constitutive equation to avoid the problem
of elastic dissipation and allow for larger time steps leading to more efficient algorithms. Weber and Anand

[32] and Eterovic and Bathe [6] present formulations that use a hyperelastic constitutive model based on the

Lagrangian, logarithmic strain measure assuming isotropic and combined isotropic-kinematic hardening,

respectively. In those works and many others (for example, Moran et al. [23] and Miehe et al. [21]), a mul-

tiplicative decomposition of the deformation gradient into elastic and plastic parts, as proposed by Lee [15],

is also assumed. The use of the Lagrangian, logarithmic strain measure together with the multiplicative

decomposition of the deformation gradient has several advantages, both in the formulation of constitutive

models and in the associated computational formulation. To be specific, the resulting return mapping algo-
rithm is similar to that of small deformation elasto-plasticity. Furthermore, it results in an additive decom-

position of the elastic and plastic strains in the absence of rotations, and the Lagrangian logarithmic strain,

for isotropically elastic materials, has a simple work conjugate stress measure, as shown by Hogar [10].

However, the latter advantage and usefulness of the Lagrangian logarithmic strain measure is lost if the

elastic behavior of the material is not isotropic.

An important consideration in modeling large deformation elastic–plastic processes by the finite element

method is the nearly incompressible behavior, typical in metals. To handle the near incompressibility, a

mixed formulation is used where the displacement and pressure fields are interpolated separately [2].
Due to plastic incompressibility, severe mesh locking and unphysical pressure oscillations may occur

unless the finite element interpolation functions satisfy the Babuška–Brezzi or inf–sup condition [1]. The

Babuška–Brezzi theory imposes certain conditions on the interpolation functions in order to guarantee

unique solvability and convergence. Hence the solution spaces for displacement and pressure cannot be

chosen independently when the discretization is based on the Galerkin method. This problem has been

studied thoroughly and several displacement–pressure combinations that satisfy the Babuška–Brezzi

condition are known. Unfortunately, many lower order elements, including the P1/P1 element with linear

interpolation for displacement and pressure, do not satisfy this condition and exhibit severe mesh locking.
Hence, attention is focussed in this work to stabilize the low order P1/P1 elements.

Stabilized finite element methods consist of adding mesh dependent terms, which are functions of the

residuals of the Euler–Lagrange equations evaluated element-wise, to the standard Galerkin method

[11,12,14,17]. With the addition of the stabilization terms, the consistency is not sacrificed since the exact

solution satisfies both the stabilization and Galerkin terms. Using this stabilization technique, it is possible

to avoid the stability problems that are seen with classical mixed methods when the interpolation does not

satisfy the Babuška–Brezzi condition. This permits freedom in choosing interpolations for the displacement

and pressure field, including equal order interpolations, and as a result, are well suited for p-adaptivity.
Stabilized finite elements have been used in fluid mechanics for incompressible flows and convection

dominated flows, as well as for related problems in linear elasticity. They were first introduced by Hughes

et al. [11] for incompressible stokes flow, the equations of which are similar to that of incompressible linear

elasticity. That early formulation was limited to continuous pressure elements. Later, Hughes and Franca

[12] extended the formulation for the stokes problem to one that converges for all velocity/pressure spaces,

including discontinuous pressure fields, by adding stabilization terms consisting of jumps in pressures

across element interfaces. One of the advantages of this formulation is that it results in symmetric matrices.

However, these pressure jump terms need a non-standard assembly procedure and the nodal pressure can-
not be eliminated at the element level due to the coupling introduced by these jump terms, thus eliminating

the primary advantage of discontinuous pressure elements. Franca et al. [7] show that under certain

assumptions these additional jump terms are unnecessary. These assumptions, however, preclude the use
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of linear stabilized elements without the pressure jump stabilization terms. Hughes et al. [11,12] derive error

estimates for the convergence of their stabilized elements for the stokes problem and linear elasticity. In

Hughes [13], a relationship is established between subgrid scale models and stabilized methods. Based on

this concept, Chiumenti et al. [5] proposed a stabilized formulation for small elastic strain analysis using

orthogonal subgrid scales.
Recently, the stabilized finite element method has been extended to problems involving finite deforma-

tions in solids. Klaas et al. [14] adapted the formulation presented in Hughes et al. [11] for large deforma-

tion hyperelasticity with linear P1/P1 elements. This formulation was later extended to higher order

interpolation functions by Maniatty et al. [18] using a local reconstruction method to construct part of

the stabilization terms. Maniatty et al. [17,19] also present a formulation for steady state flow problems

to analyze forming processes such as drawing. In that formulation, a mixed velocity/pressure formulation

was used, similar to that used in problems involving flowing fluids. In this paper, the method is extended to

non-steady, finite elasto-plasticity using a mixed displacement/pressure field formulation.
The form of the governing kinematic and constitutive equations used herein follow that considered in

Weber and Anand [32] and Eterovic and Bathe [6]. Specifically, a multiplicative decomposition of the defor-

mation gradient into elastic and plastic part is assumed [15], with the plastic part being isochoric. Both rate

independent and rate dependent, isotropic constitutive laws are considered.

The intention of this paper is to extend the use of stabilized finite element methods to finite deformation

elasto-plasticity, where the use of stable elements are required due to plastic incompressibility. We concen-

trate on P1/P1 elements and continuous interpolation of pressure as discontinuous pressure elements are not

advantageous in the stabilization of linear elements because of the need for jump terms as described earlier.
The outline of the paper is as follows. In the next section, we list the basic governing equations for iso-

tropic, finite deformation elasto-plasticity. Section 3 summarizes the integration procedure used to integrate

the constitutive equations. In Section 4, the proposed stabilized Petrov–Galerkin formulation, to circum-

vent the Babuška–Brezzi condition in nearly incompressible situations arising from large plastic deforma-

tions, is introduced. The consistent linearization required for quadratic convergence is presented in Section

5 for implementation into a finite element code. Finally, four numerical examples are presented to test the

behavior of stabilized finite elements under plastic incompressibility and conclusions are drawn.
2. Governing equations

For completeness, the basic governing equations for isotropic, finite deformation elasto-plasticity are

given. Consider the motion of the body occupying configuration B0 at time t = 0 under the action of exter-

nal forces. The position of the body at a time t is given by
x ¼ uðX; tÞ; ð1Þ

where X is a point on the initial reference configuration B0 and x is the same material point in the deformed

configuration B at time t. The deformation gradient is then F = $u(X, t). For the case of an updated

Lagrangian analysis the reference configuration is updated at the end of each time step. The reference con-

figuration at time t = tn will be Bn, and Bn+1 is the current configuration at t = tn+1. The relative deformation

gradient is then
Fr ¼ Fnþ1F
�1
n ; ð2Þ
where Fn and Fn+1 are the total deformation gradients at time t = tn and t = tn+1, respectively.

For any given time, a multiplicative decomposition [15] of the deformation gradient into elastic and plas-

tic components is assumed giving
F ¼ FeFp: ð3Þ
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Since the plastic deformation is isochoric, detFp = 1.

The boundary value problem consists of equilibrium, neglecting body forces, on the reference configu-

ration Bn
r � Pr ¼ 0 ð4Þ
and is subject to the boundary conditions
u ¼ �u on oBu;

t ¼ �t on oBt;
ð5Þ
where �u and �t are prescribed displacements and traction on oBu and oBt, respectively, and
Pr ¼ ðdetFrÞTF�T
r ð6Þ
is the first Piola–Kirchoff stress on Bn, T being the Cauchy stress on the deformed configuration Bn+1.

The constitutive model for the hyperelastic part of the deformation is assumed linear and isotropic
bT ¼ cL : bE e
; ð7Þ
where
cL ¼ 2lP þ j � 2

3
l

� �
ðI � IÞ; ð8Þ

bT ¼ ðdetFeÞReTTRe ¼ ðdetFÞReTTRe: ð9Þ
I and P are the second- and fourth-order identity tensors, l and j being the shear and bulk modulus of the

material and
bE e
¼ lnUe ð10Þ
is the logarithmic strain. bT is the stress measure that is work conjugate to the logarithmic strain for iso-

tropic elasticity [10]. Furthermore, Re and Ue are the rotation and right stretch tensors from the polar

decomposition of Fe. Using the elasticity relations, the mean stress p̂ can be written as
p̂ ¼ 1

3
trðbT Þ ¼ j trðbEÞ ¼ j trðlnUeÞ ¼ j lnðdetUeÞ ¼ j lnðdetFÞ; ð11Þ
which results in the elastic compressibility condition
lnðdetFrÞ �
ðp̂nþ1 � p̂nÞ

j
¼ 0: ð12Þ
The plastic part of the deformation gradient Fp evolves according to the flow rule given by
_F
p ¼ bLp

Fp ð13Þ

with
bDp
¼ symðbLp

Þ ¼
ffiffiffi
3

2

r
_ep bN and cW p

¼ skwðbLp
Þ ¼ 0; ð14Þ
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where
bN ¼
ffiffiffi
3

2

r bT 0

r
ð15Þ
is the direction of plastic flow, bT 0
¼ bT � 1

3
p̂I is the deviatoric stress,
r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
bT 0

� bT 0
r

ð16Þ
is the equivalent stress, and _ep is the equivalent plastic strain rate.

In the case of rate dependent viscoplasticity, _ep is prescribed by the constitutive function
_ep ¼ f ðr; sÞ ð17Þ

along with the evolution of the internal state variable s
_s ¼ gð_ep; sÞ: ð18Þ

For rate independent plasticity, _ep is obtained from the consistency condition which requires that the stress

state must stay on the yield surface f = r � (Y0 + Hep) during plastic flow along with the associative flow rule
bDp
¼ _ep

of

obT ; ð19Þ
where Y0 is the yield strength of the material and H is the isotropic hardening modulus. The stress update

procedures for the constitutive models used herein are presented in Section 3.
3. Integration of constitutive equations

The procedure used for the time integration of the constitutive equations follows that outlined by Weber
and Anand [32] and Eterovic and Bathe [6], and a summary is provided in Appendix A for completeness.

The use of logarithmic strain causes the return mapping to be similar to that for small deformation plas-

ticity. The integration procedure updates the Cauchy stress T, internal state variable s and plastic deforma-

tion gradient Fp over an increment Dt from tn to tn+1 given the relative deformation gradient Fr.
4. Stabilized formulation

Stabilized methods provide the freedom to choose interpolation functions based on accuracy and effi-

ciency requirements without needing to be concerned about stability. Stabilized methods, as mentioned

in Section 1, have been been used to overcome instabilities associated with incompressibility with much suc-

cess in applications in fluid mechanics and incompressible, linear elasticity. For linear governing equations,

the relationship to subscale methods [5,13] have been established and error estimates [12] have been derived.

Recent works extending stabilized methods to non-linear problems in solid mechanics [14,17] have demon-

strated promise and will be built upon herein.

Stabilized methods have the form of generalized Galerkin methods where mesh dependent terms, typi-
cally functions of the Euler–Lagrange equations (Eqs. (4) and (12)), are added to enhance the stability of

the mixed method and circumvent the Babuška–Brezzi condition, thus allowing for greater flexibility in

choosing the interpolation functions. In particular, the use of equal order interpolation for displacement

and pressure (e.g. P1/P1) are supported by the present formulation. In this work, the push forward of

the gradient of the pressure weighting function, F�T
r r~p, $ being the gradient with respect to the reference

coordinates Xn 2 Bn, is used to perturb the Galerkin weighting function. Thus, the strong form of the
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equilibrium equation (4) is integrated with the weighting function ~w ¼ ~uþ dF�T
r r~p where ~u is the standard

part and the second term is the perturbation, which gives rise to the stabilization terms. The coefficient d is a

mesh dependent stabilization parameter, which is chosen following Hughes et al. [11] as d ¼ ah2e
2l where he is

the characteristic element length, l is the shear modulus of the material, and a is a non-dimensional, non-

negative stability parameter. It should be noted that Hughes et al. [11] derived this form for the stabilization
parameter for linear, small strain elasticity. The same form was found to work well for finite elasticity

[14,17]. The same choice is used here; however, the range of ‘‘good’’ stabilization parameters is expected

to be different from that in elasticity because the stress will be relaxed due to the plastic deformation. It

is the relatively stiff elastic compressibility compared to the elastic–plastic distortion that leads to the insta-

bility in the elastic–plastic case. Thus, the stabilization parameter required to provide stability for the elas-

tic–plastic case is expected to be higher than for the elastic case when scaled by the twice the elastic shear

modulus. An alternative scaling is discussed in the results (Section 6). If a is chosen to be zero, the formu-

lation reduces to the standard Galerkin formulation. In the absence of body forces, using the modified
weighting function, the following Petrov–Galerkin formulation results. Find u 2 U ; p̂ 2 P such that for

all ~u 2 V , ~p 2 P
Z
Bn

ðr � PrÞ � ~uþ ah2e
2l

F�T
r r~p

� �
dV n �

Z
Bn

lnðdetFrÞ �
p̂
j

� 	
~pdV n ¼ 0; ð20Þ
is satisfied where
U ¼ u j u 2 ½H 1N ; u ¼ �u on oBu


 �
;

V ¼ v j v 2 ½H 1N ; v ¼ 0 on oBu


 �
;

P ¼ fp j p 2 L2g:
N being the space dimension and H1 represents the Sobolev space. In Eq. (20), u = un+1 � un and

p̂ ¼ p̂nþ1 � p̂n represents the change in displacement and pressure over the increment and Fr = I + $u is

the relative deformation gradient.

Using Eqs. (6) and (66) along with the deviatoric split of bT nþ1 ¼ bT 0
nþ1 þ ðp̂n þ p̂ÞI , the first Piola Kirch-

off stress can be expressed as
Pr ¼
ðdetFrÞ
ðdetFnþ1Þ

Re
�
bT 0

nþ1R
e
�
TF�T

r þ ðdetFrÞ
ðdetFnþ1Þ

ðp̂n þ p̂ÞF�T
r

¼ ðdetFrÞT 0
nþ1F

�T
r þ ðdetFrÞðpn þ pÞF�T

r ; ð21Þ
where
pnþ1 ¼
1

3
trðTnþ1Þ ¼

p̂nþ1

detFnþ1

:

The divergence of Pr becomes
r � Pr ¼ r � ½ðdetFrÞT 0
nþ1F

�T
r  þ ðdetFrÞrðpn þ pÞF�T

r

¼ ðdetFrÞ½r � T 0
n þr � ðT 0

nþ1 � T 0
nÞF�T

r þ ðdetFrÞrðpn þ pÞF�T
r

¼ ðdetFrÞ½r � ðT 0
nþ1 � T 0

nÞF�T
r þ ðdetFrÞrpF�T

r

¼ r � ½ðdetFrÞðT 0
nþ1 � T 0

nÞF�T
r  þ ðdetFrÞrpF�T

r ; ð22Þ
where the Piola identity r � ½ðdetFrÞF�T
r  ¼ 0 andr � ðT 0

n þ pnIÞ ¼ 0 were used to arrive at the above result.

Integrating the first term in Eq. (20) by parts and assuming p � p̂ due to the near incompressibility

(detFn+1 � 1) gives
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�
Z
Bn

Pr : r~udV n þ
Z
oBn

tr � ~udAn þ
Z
Bn

ðr � PrÞ �
ah2e
2l

ðF�T
r r~pÞdV n �

Z
Bn

lnðdetFrÞ �
p
j

h i
~pdV n ¼ 0:

ð23Þ
Considering the arbitrariness of the weight functions ~u and ~p and substituting for $ Æ Pr from Eq. (22) leads

to the following stabilized mixed weak formulation
Z
Bn

Pr : r~udV n ¼
Z
oBn

tr � ~udAn; ð24Þ

Z
Bn

lnðdetFrÞ �
p
j

h i
~pdV n �

Xnel
e¼1

ah2e
2l

Z
Be
n

½ðdetFrÞF�1
r F�T

r  : ½rp �r~pdV e
n

�
Xnel
e¼1

ah2e
2l

Z
Be
n

r � ½ðdetFrÞðT 0
nþ1 � T 0

nÞF�T
r 


 �
� ðF�T

r r~pÞdV e
n ¼ 0; ð25Þ
where nel is the number of elements and the perturbation is applied element-wise. It should be noted that for

linear interpolation of the displacement field (triangles or tetrahedra), the last term in Eq. (25) is zero. By

allowing for linear interpolation of both the displacement and pressure fields, the number of degrees of free-

dom is greatly reduced from the quadratic displacement interpolation functions (on triangles and tetra-
hedra) required by the Babuška-Brezzi condition. However, for higher order interpolations,

r � ½ðdetFrÞðT 0
nþ1 � T 0

nÞF�T
r  is not zero and depends in a complicated way on the gradient of the displace-

ment field. Maniatty et al. [18] use a local reconstruction method to compute this term and treat the last

term in Eq. (25) as a forcing term by moving it to the right-hand side in order to avoid computing the com-

plex derivatives required for linearization.

For discontinuous pressure elements an additional stabilization term
�
Xnel
e¼1

bhe
2l
eCZ spts~ptdA
has to be added [12] to Eq. (25) where spb denotes the jump in pressure across the interelement boundary eC
and b is another nondimensional stability parameter. Due to coupling between elements, the pressure can-

not be eliminated at the element level and does not offer any advantages compared to continuous pressure

elements. Franca et al. [7] show that these terms are unnecessary if the interpolation order k P 2 in two

dimensions and k P 3 in three dimensions for triangles and tetrahedra, where k is the order of interpola-

tion of the displacement field. This allows the nodal pressures to be eliminated at the element level using a

penalty technique. However, since we are focusing on stabilizing linear P1/P1 elements, we restrict ourselves

to continuous pressure elements and
P ¼ fp j p 2 C0g;
where C0 implies a continuous function.
5. Linearization

A Newton–Raphson algorithm is used to solve the system of equations (24) and (25). Consistent linea-

rization is necessary to preserve quadratic convergence. Linearization leads to the stabilized system of

equations
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Kðu;pÞð~u;DuÞ þ GðuÞð~u;DpÞ ¼ f ð~uÞ � kðu;pÞð~uÞ;
H ðu;pÞð~p;DuÞ þM ðuÞð~p;DpÞ ¼ HðuÞð~pÞ � hðu;pÞð~pÞ;

ð26Þ
where
kðu;pÞð~uÞ ¼
Z
Bn

Pr : r~udV n; ð27Þ

f ð~uÞ ¼
Z
oBn

tr � ~udAn; ð28Þ

hðu;pÞð~pÞ ¼
Z
Bn

lnðdetFrÞ �
p
j

h i
~pdV n �

Xnel
e¼1

ah2e
2l

Z
Be
n

½ðdetFrÞF�1
r F�T

r  : ½r~p �rpdV e
n; ð29Þ

HðuÞð~pÞ ¼
Xnel
e¼1

ah2e
2l

Z
Be
n

r � ½ðdetFrÞðT 0
nþ1 � T 0

nÞF�T
r 


 �
� ðF�T

r r~pÞdV e
n ð30Þ
with Pr as defined in Eq. (21)1.
Kðu;pÞð~u;DuÞ ¼ Du½kðu;pÞð~uÞDu ¼
Z
Bn

r~u : Du½Prðu; pÞDudV n; ð31Þ

GðuÞð~u;DpÞ ¼ Dp½kðu;pÞð~uÞDp ¼
Z
Bn

1

ðdetFnÞ
trðF�1

r r~uÞDpdV n; ð32Þ

H ðu;pÞð~p;DuÞ ¼Du½hðu;pÞð~pÞDu¼
Z
Bn

~ptr½F�1
r rðDuÞdV n

�
Xnel
e¼1

ah2e
2l

Z
Be
n

ðdetFrÞ tr½F�1
r rðDuÞF�1

r F�T
r �F�1

r rðDuÞF�1
r F�T

r �F�1
r F�T

r ½rðDuÞTF�T
r

n o
: ½r~p�rpdV e

n; ð33Þ

M ðuÞð~p;DpÞ ¼ Dp½hðu;pÞð~pÞDp ¼ �
Z
Bn

1

j
~pDpdV n

�
Xnel
e¼1

ah2e
2l

Z
Be
n

½ðdetFrÞF�1
r F�T

r  : ½r~p �rðDpÞdV e
n; ð34Þ
where D/[A(/)]D/ represents the directional derivative of A in the direction D/. Note that for linear

interpolation of the displacement field, HðuÞð~pÞ ¼ 0. For higher order interpolations, this term could be

reconstructed using the procedure given in [18] and treated as a forcing term. The linearization of the first

Piola–Kirchoff stress Pr, required in Eq. (31), is given in Appendix B.
6. Numerical examples

In order to test the behavior of the proposed, stabilized, mixed finite element formulation with P1/P1

elements (which does not satisfy the Babuška–Brezzi condition) in the presence of plastic incompressibility,

four examples are considered: expansion of a thick cylinder, extension of a plate with a flat hole, Cook�s
plane strain problem, and the upsetting of a cylindrical billet. The examples are chosen such that the mate-
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rial is highly constrained causing instability in the nearly incompressible limit unless stabilization is applied,

demonstrating the effectiveness of the present formulation. The constitutive laws considered include both

rate independent plasticity and rate dependent viscoplasticity. The case of expansion of a thick cylinder

is used to study the effect of the stabilization parameter, the mesh refinement, and the ‘‘time’’ step refine-

ment on the convergence and accuracy of the method. For the other examples, comparisons are made with
stable elements and with previously published results. Convergence is said to be achieved when the residual

is reduced by a factor of 10�6. In some cases, results with unstable elements are presented with a different

colormap as their results usually deteriorate causing much larger extreme values compared to the stable ele-

ments. The meshes are generated using the T3d generator developed by Rypl [25].
6.1. Expansion of a thick cylinder

In this example, a cylinder of initial inner radius Ri = 1 m and outer radius Ro = 2 m is subjected to plane
strain expansion where the final inner radius is expanded out to ri = 1.5 m. Using symmetry boundary con-

ditions, a quarter of the cylinder is modeled. The material was chosen to be elastic–plastic with a shear

modulus l = 76.92 MPa, bulk modulus j = 166.67 MPa, yield stress Y0 = 0.3 MPa and a linear isotropic

hardening modulus H = 0.7 MPa. An approximate analytic solution to this problem, neglecting the rela-

tively small elastic deformations, is
Dp
rr ¼ � ri _ri

r2
Dp

hh ¼
ri _ri
r2

; ð35Þ

�p ¼ 1ffiffiffi
3

p ln
r2 þ R2

i þ 2Riri
r2 þ R2

i � r2i

� �
; ð36Þ

r ¼ Y o þ H�p T 0
rr ¼ � rffiffiffi

3
p T 0

hh ¼
rffiffiffi
3

p ; ð37Þ

op
or

¼ � oT 0
rr

or
� 2

T 0
rr

r
ð38Þ
where r represents the radial position in the deformed cylinder. Substituting Eqs. (37) and (36) into Eq. (38)
results in an equation that can be integrated numerically for the pressure using the boundary condition

T rrðroÞ ¼ T 0
rrðroÞ þ pðroÞ ¼ 0. The pressure can then be added to the deviatoric stress components to give

the total stress. This solution is used to validate the finite element model. The effect of the stabilization

parameter, mesh refinement, and step size on the accuracy and convergence behavior is investigated.

First, the effect of the stabilization parameter is studied. A mesh with 400 P1/P1 elements with 231 nodes

(3 degrees of freedom (d.o.f.) per node, 2 displacement, 1 pressure) is considered, and the expansion is done

in 10 equal increments. An error measure on the radial stress Trr of the following form is used
Error ¼ 1

T A
rrðriÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N int

XN int

int¼1

ðT int
rr � T AðintÞ

rr Þ2
vuut ð39Þ
where T int
rr and T AðintÞ

rr are the computed and analytic radial stress components at the finite element integra-

tion points, respectively. Fig. 1 shows the effect of the stabilization parameter on the error. The results are
insensitive to the stabilization parameter for a > 10 and values between 102 and 104 appear to be optimal.

The other components of the stress were also found to have similar accuracy. Figs. 2 and 3 show the con-

tour plots of Trr using P1/P1 elements with and without stabilization for a stabilization parameter a = 100.

Without stabilization, the results are very poor with strong spatial oscillations appearing in the solution.
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Fig. 1. Effect of the stabilization parameter, a, on the error.

Fig. 2. Contours of stress component Trr in MPa with stabilization, a = 100.

Fig. 3. Contours of stress component Trr in MPa without stabilization.
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It should be noted that a higher value of the stability parameter a is required to suppress oscillations in

the presence of plastic incompressibility compared to incompressible hyperelasticity, for example, in Klaas

et al. [14] and Maniatty et al. [18] where a = 1 was found to work well. This is likely because of the scaling of

a with twice the elastic shear modulus, 2l, in Eq. (20), which, while appropriate for elastic behavior, is too

large for elastic–plastic behavior where the stress is relaxed due to the plasticity. While the elastic part of the
behavior governs the compressible part of the deformation, it is the relationship between the relatively stiff

elastic compressibility and the relatively soft elastic–plastic distortion which causes the instability. A differ-

ent scaling that may be proposed is to use the elastic–plastic material stiffness derived in the consistent line-

arization. Considering Eq. (75), the scaling parameter analogous to 2l in the elastic case would be
2l 1� 3l
D�p

r�

� �
ð40Þ
for the elastic–plastic case, and using Eq. (53) results in
2l
rnþ1

rnþ1 þ 3lD�p

� �
; ð41Þ
which, for a large plastic increment (D�p = O(0.1) in this case) would give a scaling parameter of roughly

0.01 · 2l, and thus, an optimal stabilization parameter scaled by this parameter would be in the range of 1–

102, consistent with that found in elasticity. The important point to note, however, is that the solution is
insensitive to the stabilization parameter over a broad range of values, and once a value is chosen that sup-

presses oscillations, that parameter appears to work for a wide variety of meshes and problems, as will be

shown.

Next, the effect of mesh refinement and step size and the convergence behavior are investigated. For

these studies, the sensitivity parameter is held fixed at a = 100. Fig. 4 shows the effect of mesh refinement

on the accuracy for a fixed step size of 10 equal increments. The usual h-convergence behavior is observed.

Varying the number of increments, or in other words, varying the ‘‘pseudo-time’’ step size, was also inves-

tigated. The results for 3, 5, 10, 20, 50 and 100 increments varied by less than 5%, and the difference between
the results for 10 and 100 increments varied by less than 2%, with the error going down slightly as the num-

ber of increments increased. This is not surprising because the deformation path does not change with time,

i.e. the principle directions of the deformation are fixed, so a large step size can capture the whole defor-

mation history well. Finally, to demonstrate the convergence of the linearized system, the number of
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Fig. 4. Effect of mesh size on the error for the thick cylinder example.



Table 1

Number of iterations for different increments for the expansion of a thick cylinder example

Increment 1 2–10

Number of iterations 4 3
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iterations to convergence for each increment is given in Table 1. The Newton-Raphson algorithm was

found to converge quadratically.

6.2. Plate with a flat hole

The example of a square plate with a flat hole in plane strain is considered. The geometry and boundary

conditions are as shown in Fig. 5. A displacement boundary condition is applied stretching the plate by 3%.

Only a quarter of the plate is modeled and symmetry conditions are applied. The material is modeled as
elastic–plastic with the same material parameters as in the previous thick cylinder example (shear modulus

l = 76.92 MPa, bulk modulus j = 166.67 MPa, yield stress Y0 = 0.3 MPa, hardening modulus H = 0.7

MPa).

The mesh consists of 224 nodes (3 d.o.f. per node) and 393 P1/P1 triangles with linear interpolation for

displacement and pressure fields. Calculations were performed with the non-dimensional stability parame-

ter a = 100. This solution is compared to that obtained using the a priori stable P2/P0 triangular elements

with quadratic interpolation of the displacement and constant pressure on a fixed finite element mesh. It

should be noted that since the pressure is discontinuous for P2/P0 elements, the pressure can be easily elim-
inated on the element level, and thus, is not solved for directly. The mesh with P2/P0 elements consists of

840 nodes (2 d.o.f. per node, 2 displacement) and 393 triangles.

The axial component of the Cauchy stress field T22 computed with stable P2/P0 elements is shown in Fig.

6 and with P1/P1 elements without stabilization in Fig. 7. The P1/P1 element without stabilization performs

poorly, exhibiting oscillations in the stress field as expected. The results with P2/P0 elements are chosen as

the reference solution since these elements are inherently stable. Fig. 8 shows the stress field with the sta-
2 m0.1

0.4

2 m

u

X1

X2

Fig. 5. Plane strain plate with a hole geometry.



Fig. 6. Stress T22 in MPa with stable P2/P0 elements.

Fig. 7. Stress T22 in MPa with P1/P1 elements without stabilization.
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bilized P1/P1 elements. The results of the stable P1/P1 elements compare favorably to that of P2/P0 ele-

ments. The stabilized P1/P1 elements have a total d.o.f of 672 in comparison to 1680 with the stable P2/

P0 elements. Thus, the use of linear elements with stabilization leads to a significant reduction in the num-

ber of d.o.f. This reduction is expected to be more significant in 3D (see for example [18]).

6.3. Cook’s plane strain problem

This problem has been used by many authors (see Brink and Stein [2], Klaas et al. [14]) to test new finite
element formulations under combined bending and shear. A tapered panel is clamped on one side while a

shearing displacement acts on the other side (Fig. 9). A vertical displacement u = 7 mm was applied to all

the nodes on side BC as shown in the figure. Again, the material was chosen to be elastic–plastic with the

same properties as in the prior two examples (shear modulus l = 76.92 MPa, bulk modulus j = 166.67

MPa, yield stress Y0 = 0.3 MPa, hardening modulus H = 0.7 MPa).



Fig. 8. Stress T22 in MPa with P1/P1 elements with stabilization, a = 100.
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Fig. 9. Cook�s plane strain problem.
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Calculations were performed with the non-dimensional stability parameter a = 100. Figs. 10–12 show the

first principal stresses using P2/P0 elements, P1/P1 elements and P1/P1 elements with stabilization. As in the

previous example, the P1/P1 elements without stabilization performs poorly. The P2/P0 and the P1/P1 sta-

bilized elements give similar solutions when comparing Figs. 10 and 12. Table 2 provides a comparison of

the maximum and minimum principal stresses for all three cases. The minimum values of the principal

stresses occur at the top corner where the panel is clamped. The P2/P0 element is more effective in capturing

the stress concentration here due to the higher order of the displacements. A fixed mesh with 847 elements

was used to compare the results. The mesh with P1/P1 elements had 473 nodes (1419 d.o.f) while the mesh
with P2/P0 elements had 1792 nodes (3584 d.o.f). Table 3 lists the number of degrees of freedom used in

both the previous and the current examples.



Fig. 10. First principal stress in MPa for P2/P0 elements.

Fig. 11. First principal stress in MPa for P1/P1 elements without stabilization.

B. Ramesh, A.M. Maniatty / Comput. Methods Appl. Mech. Engrg. 194 (2005) 775–800 789
6.4. Upset forging of aluminum

The simulation of isothermal upset forging of an aluminum billet at a nominal strain rate of 0.01 s�1 was

carried out and compared to the results presented in Weber and Anand [32] and Lush et al. [16]. The vis-

coplastic constitutive equations for hot working of metals developed by Brown et al. [3] is used. The behav-

ior is highly nonlinear with the flow function and evolution equation as follows:



Fig. 12. First principal stress in MPa for P1/P1 elements with stabilization, a = 100.

Table 2

Comparison of principal stresses for Cook�s plane strain problem

r1 r2 r3

Max Min Max Min Max Min

P2/P0 0.457 �0.348 0.231 �0.577 0.031 �0.753

Stabilized P1/P1 0.439 �0.233 0.215 �0.310 0.013 �0.615

P1/P1 0.958 �0.722 0.742 �0.834 0.535 �1.076

Table 3

Number of degrees of freedom

Degrees of freedom

Displacement Pressure Total

Plate with hole

P2/P0 1680 0 1680

P1/P1 448 224 672

Cook�s plane strain
P2/P0 3584 0 3584

P1/P1 946 473 1419
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_ep ¼ f ðr; sÞ ¼ A sinh n
r
s

� �h i1=m
; ð42Þ

_s ¼ gð_ep; sÞ ¼ h0 1�
s
sH

��� ���asign 1� s
sH

� �h i
_ep; ð43Þ

where sH ¼ ~s
_ep

A

� �n



Table 4

Material parameters for 1100 Al at 450 �C

Material

parameter

Value

A 4.73 · 10�3 s�1

n 7.0

m 0.23348

s0 29.7 MPa

h0 1115.6 MPa

a 1.3

~s 18.9 MPa

n 0.07049

l 20.2 GPa

j 66.0 GPa
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and A; n; m; h0; ~s; a; n are material parameters (Table 4) for 1100 Al at 450 �C and are chosen as in [3].

Parameter s is a state variable representing the isotropic deformation resistance.

Two different deformations of the cylindrical billet, with a diameter of 12.7 mm and a height of 19.05

mm, are considered. Symmetry allows the modeling of one-fourth of the billet. A node-to-segment contact

algorithm [30,33] is used to model the contact interactions between the die and billet. The die is considered

to be rigid and sticking friction is assumed between the die and the billet. The adaptive time stepping pro-

cedure of Lush et al. [16] is used to control the motion of the die and is crucial in the case of very large

deformations when new nodes come into contact with the die. The stress field for 30% upsetting with unsta-
ble and stabilized P1/P1 elements are compared while the die forces, effective plastic strain and the harden-

ing, represented by the evolution of the state variable s, are compared to that obtained by Lush et al. for

60% upsetting. The effect of the stabilization parameter is again investigated for this different material

model.

The mesh for 30% upsetting with P1/P1 elements consists of 121 nodes and 100 triangular elements. The

Cauchy stress along the compression axis, T22, for P1/P1 elements without stabilization is shown in Fig. 13.

This element shows the checkerboard oscillations for the pressure, rendering the solution useless. To show

the effect of the stabilization parameter, the component of the stress field for the stabilized P1/P1 element is
shown in Figs. 14 and 15 with a = 10 and a = 1000, respectively. With a = 10, some oscillations in the stress

field are still evident, while a = 1000 produces a smooth and stable stress field. A plot of the pressure on the
Fig. 13. Stress T22 in MPa for P1/P1 elements without stabilization.



Fig. 14. Stress T22 in MPa for P1/P1 elements with stabilization (a = 10).

Fig. 15. Stress T22 in MPa for P1/P1 elements with stabilization (a = 1000).

792 B. Ramesh, A.M. Maniatty / Comput. Methods Appl. Mech. Engrg. 194 (2005) 775–800
element located at the center of the billet and in contact with the die at the end of the stroke, where the

pressure is maximum, is shown in Fig. 16 for different values of the stability parameter a. It was seen that

a value of a between 102 and 104 was effective in suppressing oscillations in pressure and provides results

comparable to known stable elements. Computing the scaling parameter proposed in Eq. (41) for this case
gives a similar value as before of roughly 0.01 · 2l, which explains why the ‘‘good’’ values for a for this

example happen to be in the same range as for the previous examples. As before, it is expected that once
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Fig. 16. Effect of the stabilization parameter a on the maximum pressure for the upset forging example.



Fig. 17. Undeformed and deformed mesh for axisymmetric upsetting (60%).
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a stability parameter has been found that suppresses oscillations for a given material model, no further cal-

ibration is necessary as the value of a does not seem to be problem dependent. Therefore, a = 1000 was cho-

sen for the next case with larger deformation (60% upsetting). The height of the billet was reduced by 60%

in 90 s. The simulation took 101 increments with the time stepping prescribed by the adaptive algorithm.

Fig. 17 shows the undeformed and deformed meshes for this case. The effective stress and the pressure field

after deformation are shown in Figs. 18 and 19, respectively. The pressure field is smooth showing that the

stabilization technique is effective in suppressing the oscillations. The effective plastic strain (Fig. 20)
ep ¼
Z t

0

_ep dt ð44Þ
and the state variable fields (Fig. 21) are similar to the ones published in Lush et al. [16]. Fig. 22 shows the

total die force versus the die displacement. The die force calculated is in agreement with the experimental

data and simulations performed by Weber and Anand [32]. A jump in the die force occurs when new nodes
Fig. 18. Contours of the effective stresses in MPa.

Fig. 19. Contours of the pressure in MPa.



Fig. 20. Contours of the effective plastic strain.

Fig. 21. Contours of the state variable s in MPa.
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Fig. 22. Die force vs displacement for axisymmetric upsetting of 1100 Al.

794 B. Ramesh, A.M. Maniatty / Comput. Methods Appl. Mech. Engrg. 194 (2005) 775–800
come in contact with the die. Making the mesh fine in these regions will reduce the magnitude of these

jumps.
7. Conclusions

An updated Lagrangian stabilized finite element method, where mesh dependent terms are added ele-

ment-wise to the usual mixed method, is presented for elastic–plastic finite deformations. Numerical exam-
ples are performed using linear stabilized elements with different constitutive laws to demonstrate the

advantage of the stabilized finite element formulation. It was seen that the solution obtained with linear

elements compare favorably with stable elements (satisfying the Babuška–Brezzi condition) and could lead

to a reduction in the degrees of freedom (see Table 3) when stable elements have to be chosen due to the

incompressible behavior of the material. The effect of the non-dimensional stability parameter was studied

and an alternative scaling parameter was proposed for problems involving elastic–plastic deformations.
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This parameter can either be used in the denominator of the stabilization coefficient (d) or to provide insight

into a good range from which to select the stabilization parameter (a) for problems involving elastic–plastic

deformations. This formulation is being used as the analysis tool to determine optimal forming parameters

using a multi-tier optimization algorithm.
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Appendix I

Implicit integration of Eq. (13) over an increment from tn to tn+1 yields
Fp
nþ1 ¼ expðDt bDp

nþ1ÞF
p
n : ð45Þ
Integrating evolution Eq. (18) using a backward Euler scheme gives
snþ1 ¼ sn þ Dtgð_epnþ1; snþ1Þ: ð46Þ
Let Fe
� ¼ Fnþ1F

p�1
n be the trial elastic deformation gradient. Performing the polar decomposition of Fe

� and

Fe
nþ1 and using Eq. (45) we can write
Fe
� ¼ Re

�U
e
� ¼ Fe

nþ1F
p
nþ1F

p�1
n ¼ Re

nþ1U
e
nþ1 expðDt bDp

nþ1Þ: ð47Þ
From Eqs. (7), (8), (10), (14) and (15) it can be shown that Ue
nþ1 and expðDt bDp

nþ1Þ have the same eigenvec-

tors, i.e. they commute, due to the isotropic nature of the constitutive laws (8) and (14). Therefore

Ue
nþ1 expðDt bDp

nþ1Þ is symmetric. Then by uniqueness of the polar decomposition
Re
� ¼ Re

nþ1; ð48Þ

Ue
� ¼ Ue

nþ1 expðDt bDp

nþ1Þ: ð49Þ
Taking the logarithm of Eq. (49)
bE e

� ¼ bE e

nþ1 þ Dt bDp

nþ1; ð50Þ
where bE e

� ¼ lnUe
�. Applying the the elasticity operator (8) to Eq. (50) and using Eqs. (7) and (14), we obtain
bT � ¼ bT nþ1 þ

ffiffiffi
6

p
lDt_epnþ1

bN nþ1: ð51Þ
Taking the deviatoric component and using (15)
bT 0
� ¼

ffiffiffi
2

3

r
rnþ1

bN nþ1 þ
ffiffiffi
6

p
lDt_epnþ1

bN nþ1

ffiffiffi
2

3

r
r� bN � ¼

ffiffiffi
2

3

r
rnþ1 þ

ffiffiffi
6

p
lDt_epnþ1

 ! bN nþ1: ð52Þ
Therefore
r� ¼ rnþ1 þ 3lDt _epnþ1 ð53Þ
and
 bN nþ1 ¼ bN �: ð54Þ
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Eqs. (53) and (46) using the constitutive function (17)
rnþ1 � r� þ 3lDtf ðrnþ1; snþ1Þ ¼ 0;

snþ1 � sn � Dtgðf ðrnþ1; snþ1Þ; snþ1Þ ¼ 0
ð55Þ
are solved simultaneously for rn+1 and sn+1.
The integration algorithm proceeds as follows:

(1) Compute the deformation gradient at tn+1
Fnþ1 ¼ FrFn: ð56Þ

(2) Compute trial elastic deformation gradient
Fe
� ¼ Fnþ1F

p�1
n : ð57Þ
(3) Perform the right polar decomposition
Fe
� ¼ Re

�U
e
�: ð58Þ
(4) Compute trial elastic logarithmic strain using the spectral decomposition
bE e

� ¼ lnUe
� ¼

X3
a¼1

lnðk�
aÞna � na; ð59Þ
where k�
a and na are the eigenvalues and eigenvectors of Ue

�.

(5) Compute trial stress
bT � ¼ 2lbE e

� þ j � 2

3
l

� �
ðtr bE e

�ÞI : ð60Þ
(6) Compute trial pressure
p� ¼ 1
3
trðbT �Þ: ð61Þ
(7) Compute deviatoric trial stress
bT 0
� ¼ bT � � p�I : ð62Þ
(8) Compute effective trial stress
r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
bT 0

� � bT 0
�

r
: ð63Þ
(9) Solve nonlinear system of equations for rn+1 and sn+1
rnþ1 � r� þ 3lDtf ðrnþ1; snþ1Þ ¼ 0;

snþ1 � sn � Dtgðf ðrnþ1; snþ1Þ; snþ1Þ ¼ 0:
ð64Þ
(10) Update the stress bT with p̂nþ1 obtained from the finite element update (see Sections 4 and 5)
bT nþ1 ¼ bT 0
nþ1 þ p̂nþ1I ¼ gnþ1

bT 0
� þ p̂nþ1I where gnþ1 ¼

rnþ1

r�
: ð65Þ
(11) Transform bT to T (the Cauchy stress on Bn+1)
Tnþ1 ¼
1

detFnþ1

Re
�
bT nþ1R

e
�
T ð66Þ



B. Ramesh, A.M. Maniatty / Comput. Methods Appl. Mech. Engrg. 194 (2005) 775–800 797
(12) Compute bDp

nþ1
bDp

nþ1 ¼
ffiffiffi
3

2

r
_epnþ1

bN nþ1 ð67Þ
where _epnþ1 ¼ f ðrnþ1; snþ1Þ and bN nþ1 ¼ bN � ¼
ffiffi
3
2

q bT 0
�

r�
:

(13) Compute Fp
nþ1
Fp
nþ1 ¼ expðDt bDp

nþ1ÞFp
n

expðDt bDp

nþ1Þ ¼
X3

a¼1
expðDtdp

aÞna � na

ð68Þ
where dp
a and na are the eigenvalues and eigenvectors of bDp

nþ1.

(14) Compute elastic part of the deformation gradient Fe
nþ1
Fe
nþ1 ¼ Fnþ1F

p�1
nþ1 : ð69Þ
The algorithm for rate independent plasticity is similar to the one presented above. For details, refer to

the papers by Weber et al. [32] and Eterovic and Bathe [6].
Appendix II

The linearization of the first Piola–Kirchoff stress Pr, required in Eq. (31), using Eq. (21)1 and
detFr

detFnþ1
¼ 1

detFn
yields
Du½Prðu; pÞDu ¼ 1

ðdetFnÞ
ðDu½Re

�DuÞbT 0
nþ1R

eT
� F�T

r þ Re
�
bT 0

nþ1ðDu½Re
�
TDuÞF�T

r

n
þRe

�ðDu½bT 0
nþ1DuÞR

e
�F

�T
r � Re

�
bT 0

nþ1R
e
�
TF�T

r ½rðDuÞTF�T
r � ðpn þ pÞF�T

r ½rðDuÞTF�T
r

o
:

ð70Þ
Using deviatoric part of Eq. (66)
bT 0
nþ1 ¼ ðdetFnþ1ÞRe

�
TT 0

nþ1R
e
�;
Du[Pr(u,p)]Du can be written as
Du½Prðu; pÞDu ¼ ðdetFrÞðDu½Re
�DuÞRe

�
TT 0

nþ1F
�T
r þ ðdetFrÞT 0

nþ1R
e
�ðDu½Re

�
TDuÞF�T

r

þ 1

ðdetFnÞ
Re

�ðDu½bT 0
nþ1DuÞRe

�F
�T
r � ðdetFrÞTnþ1F

�T
r ½rðDuÞTF�T

r ; ð71Þ
where
Du½bT 0
nþ1Du ¼ cL 0

: Du½bE e

�Du: ð72Þ
In the case of a viscoplastic material with flow function _ep ¼ f ðr; sÞ and evolution equation for the state

variable _s ¼ ~gðr; sÞ ¼ gðf ðr; sÞ; sÞ, the material stiffness cL0
is given by [32]
cL0
¼ 2l 1� 3lDt

_ep

r�

� �
P � 1

3
I � I

� �
þ 2l 3lDt

_ep

r�
� 1þ c

� � bN � bN ; ð73Þ
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where
c ¼ b2
a1b2 þ a2b1

; ð74Þ

a1 ¼ 1þ 3lDt
of
or

;

a2 ¼ 3lDt
of
os

;

b1 ¼ Dt
o~g
or

;

b2 ¼ 1� Dt
o~g
os

:

For rate independent plasticity the consistent elasto-plastic stiffness cL0
is given by [31]
cL 0
¼ 2l 1� 3l

Dep

r�

� �
P � 1

3
I � I

� �
þ 2l 3l

Dep

r�
� 1

1þ H
3l

 ! bN � bN : ð75Þ
The derivatives of the trial rotation and right stretch tensors Re
� and Ue

� required in Eq. (71) can be found

using the results obtained in Chen and Wheeler [4] and Rosati [24]
Du½Re
�Du ¼ 1

detYe
�
Re

�Y
e
� Re

�
TðDu½Fe

�DuÞ � ðDu½Fe
�DuÞ

T
Re

�

n o
Ye

�; ð76Þ

Du½Ue
�Du ¼ Re

�
TðDu½Fe

�DuÞ �
1

detYe
�
Ye

� Re
�
TðDu½Fe

�DuÞ � ðDu½Fe
�DuÞ

T
Re

�

n o
Ye

�U
e
�; ð77Þ
where
Ye
� ¼ trðUe

�ÞI �Ue
�

and
Du½Fe
�Du ¼ rðDuÞFe

n: ð78Þ

The linearization of bE e

� is done following the work of Hogar [9]. When the eigenvalues of Ue
� (k1, k2 and k3)

are unique i.e. k1 5 k2 5 k3 5 k1 the linearization gives
Du½bE e

�Du ¼ ðF1 þF2 þF3ÞC e
�ðDu½Ue

�DuÞC
e
�

� ½ðk1 þ k2ÞF3 þ ðk2 þ k3ÞF1 þ ðk3 þ k1ÞF2 C e
�ðDu½Ue

�DuÞUe
� þUe

�ðDu½Ue
�DuÞC

e
�


 �
þ ðk1k2F3 þ k2k3F1 þ k3k1F2Þ C e

�ðDu½Ue
�DuÞ þ ðDu½Ue

�DuÞC
e
�


 �
þ ½ðk1 þ k2Þ2F3 þ ðk2 þ k3Þ2F1 þ ðk3 þ k1Þ2F2Ue

�ðDu½U e
�DuÞUe

�

þ ½�k1k2ðk1 þ k2ÞF3 � k2k3ðk2 þ k3ÞF1 � k3k1ðk3 þ k1ÞF2 þ ðG1 þ G2 þ G3Þ
� Ue

�ðDu½Ue
�DuÞ þ ðDu½Ue

�DuÞUe
�


 �
þ ½ðk1k2Þ2F3 þ ðk2k3Þ2F1 þ ðk3k1Þ2F2 � ðk1 þ k2ÞG3 � ðk2 þ k3ÞG1 � ðk3 þ k1ÞG2
� ðDu½Ue

�DuÞ;
ð79Þ
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when ki 5 kj = kk � k the linearization is
Du½bE e

�Du ¼ 1

ðki � kÞ3
ðki � kÞ 1

ki
þ 1

k

� �
� 2 ln

ki

k

� �� �
Ue

�ðDu½Ue
�DuÞU e

�

�
þ �ðki � kÞ k

ki
þ ki

k

� �
þ ðki þ kÞ ln ki

k

� �� �
Ue

�ðDu½Ue
�DuÞ þ ðDu½Ue

�DuÞUe
�


 �
þ ðki � kÞ k2

ki
þ k2

i

k

� �
� 2kik ln

ki

k

� �� �
ðDu½Ue

�DuÞ
	

ð80Þ
and k1 = k2 = k3 � k gives
Du½bE e

�Du ¼ 1

k
ðDu½Ue

�DuÞ ð81Þ
where C e
� ¼ Ue

�
2
and
Gi ¼
lnðkiÞ

ðki � kjÞðki � kkÞ
;

Fi ¼
1

ðki � kjÞ2ðki � kkÞ2
1

ki
� ðki � kjÞðGi þ GkÞ � ðki � kkÞðGi þ GjÞ

� 	
:

i, j, k being a permutation of 1, 2, 3.
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the Babuška–Brezzi condition: a stable Petrov–Galerkin formulation of the stokes problem accommodating equal-order

interpolations, Comput. Methods Appl. Mech. Engrg. 59 (1985) 85–99.

[12] T.J.R. Hughes, L.P. Franca, A new finite element formulation for computational fluid dynamics: VII. The stokes problem with

various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces, Comput. Methods

Appl. Mech. Engrg. 65 (1987) 85–96.

[13] T.J.R. Hughes, Multiscale phenomena: Green�s function, Dirichlet-to-formulation, subgrid formulation, subgrid scale models,

bubbles and the origins of stabilized methods, Comput. Methods Appl. Mech. Engrg. 127 (1995) 387–401.

[14] O. Klaas, A.M. Maniatty, M.S. Shephard, A stabilized mixed finite element method for finite elasticity: formulation for linear

displacement and pressure interpolation, Comput. Methods Appl. Mech. Engrg. 180 (1999) 65–79.

[15] E.H. Lee, Elastic–plastic deformation at finite strain, J. Appl. Mech. 36 (1969) 2–6.

[16] A.M. Lush, G. Weber, L. Anand, An implicit time-integration procedure for a set of internal variable constitutive equations for

isotropic elasto-viscoplasticity, Int. J. Plast. 5 (1989) 521–549.



800 B. Ramesh, A.M. Maniatty / Comput. Methods Appl. Mech. Engrg. 194 (2005) 775–800
[17] A.M. Maniatty, Y. Liu, O. Klaas, M.S. Shephard, Stabilized finite element method for viscoplastic flow: formulation and a simple

progressive solution strategy, Comput. Methods Appl. Mech. Engrg. 190 (2001) 4609–4625.

[18] A.M. Maniatty, Y. Liu, O. Klaas, M.S. Shephard, Higher order stabilized finite element method for hyperelastic finite

deformation, Comput. Methods Appl. Mech. Engrg. 191 (2002) 1491–1503.

[19] A.M. Maniatty, Y. Liu, Stabilized finite element method for viscoplastic flow: formulation with state variable evolution, Int. J.

Numer. Meth. Engrg. 56 (2003) 185–209.

[20] R.M. McMeeking, J.R. Rice, Finite element formulations for problems of large elastic–plastic deformation, Int. J. Solids Struct.

11 (1975) 601–616.

[21] C. Miehe, E. Stein, W. Wagner, Associative multiplicative elasto-plasticity: Formulation and aspects of the numerical

implementation including stability analysis, Comput. Struct. 51 (1994) 969–978.

[22] A. Needleman, A numerical study of necking in circular cylindrical bars, J. Mech. Phys. Solids 20 (1972) 964–970.

[23] B. Moran, M. Ortiz, C.F. Shih, Formulation of implicit finite element methods for multiplicative finite deformation plasticity, Int.

J. Numer. Meth. Engrg. 29 (1990) 483–514.

[24] L. Rosati, Derivatives and rates of the stretch and rotation tensors, J. Elast. 56 (1999) 213–230.

[25] D. Rypl, Sequential and parallel generation of unstructured 3D meshes, CTU Rep, 1998 2(3).

[26] J.C. Simo, R.L. Taylor, K.S. Pister, Variational and projection methods for the volume constraint in finite deformation elasto-

plasticity, Comput. Methods Appl. Mech. Engrg. 51 (1985) 177–208.

[27] J.C. Simo, M. Ortiz, A unified approach to finite deformation elastoplastic analysis bsed on the use of hyperelastic constitutive

equations, Comput. Methods Appl. Mech. Engrg. 49 (1985) 221–245.

[28] J.C. Simo, A framework for finite elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition:

Part I. Continuum formulation, Comput. Methods Appl. Mech. Engrg. 66 (1988) 199–219.

[29] J.C. Simo, A framework for finite elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition:

Part II. Computational aspects, Comput. Methods Appl. Mech. Engrg. 68 (1988) 1–31.

[30] J.C. Simo, T.A. Laursen, An augmented Lagrangian treatment of contact problems involving friction, Comput. Struct. 42 (1992)

97–116.

[31] J.C. Simo, T.J.R. Hughes, Computational Inelasticity, Springer, New York, 1998.

[32] G. Weber, L. Anand, Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastsolids

solids, Comput. Methods Appl. Mech. Engrg. 79 (1990) 173–202.

[33] P. Wriggers, Finite element algorithms for contact problems, Arch. Computat. Methods Engrg., State-of-the-art Rev. 2 (1995) 1–

49.

[34] H. Xiao, O.T. Bruhns, A. Meyers, Logarithmic strain, logarithmic spin and logarithmic rate, Acta Mech. 124 (1997) 89–105.


	Stabilized finite element formulation for elastic -- plastic finite deformations
	Introduction
	Governing equations
	Integration of constitutive equations
	Stabilized formulation
	Linearization
	Numerical examples
	Expansion of a thick cylinder
	Plate with a flat hole
	Cook’s plane strain problem
	Upset forging of aluminum

	Conclusions
	Acknowledgment
	Appendix I
	Appendix II
	References


