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SUMMARY

An anisotropic adaptive analysis procedure based on a discontinuous Galerkin finite element dis-
cretization and local mesh modification of simplex elements is presented. The procedure is applied to
transient two- and three-dimensional problems governed by Euler’s equation. A smoothness indicator
is used to isolate jump features where an aligned mesh metric field in specified. The mesh metric field
in smooth portions of the domain is controlled by a Hessian matrix constructed using a variational
procedure to calculate the second derivatives. The transient examples included demonstrate the ability
of the mesh modification procedures to effectively track evolving interacting features of general shape
as they move through a domain. Copyright � 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The appropriate means to ensure that a mesh-based numerical analysis procedure produces
the most effective solution results is to apply an adaptive solution strategy. Efforts on the
development of these techniques have been underway for over 20 years and have provided
a number of important theoretical and practical results. However, these methods have not
yet found their way into common practice for a number of reasons. Among the reasons for
the slow acceptance is the lack of clear evidence that their implementations to be able to
deal with entirely general domains and solution fields in a computationally effective manner.
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In cases where the solution field is characterized by strong directional gradients, the effective
solution requires the adaptive creation of anisotropic mesh configurations. The paper presents
a set of procedures to create adaptively defined anisotropic meshes over general two- and
three-dimensional domains and demonstrates its application in transient flow simulations.

The three ingredients of an anisotropic adaptive procedure are:

• the equation discretization technology,
• the anisotropic mesh correction indication procedures that use the analysis results to

determine, where and how to modify the mesh to reach the desired level of accuracy, and
• the anisotropic mesh adaptation procedure to create a mesh configuration consistent with

the mesh distribution the correction indication procedures have defined.

A number of finite element and finite volume discretization technologies are amenable to use
with anisotropic meshes. In the present paper the applications considered are flow problems
modelled using conservation laws and characterized by having moving features such as shocks.
Therefore, the discontinuous Galerkin (DG) [1] finite element formulation given in Section 2
was selected for equation discretization. In addition to being well suited to the resolution of
solution fields with discontinuities, the DG formulations provide flexibility in the selection of
basis function leading to more effective numerical solution and can be effectively parallelized
due to the order independent nearest neighbour only interactions [2]. One complication of the
application of DG methods is their discontinuous nature does complicate the effective calculation
of the second order derivative quantities used by most anisotropic adaptive procedure. The
approach used in the current paper to address the evaluation of these derivatives is discussed
in Section 3.2.

Recently a number of investigators have begun to consider the various components of the
construction of anisotropic adaptive analysis procedures [3–14]. Ideally an adaptive analysis
procedure would employ a bounded estimate [15, 16] of the discretization error. Since such
estimates are based on elemental level contributions, they have typically been used to determine
where and how to improve the mesh when isotropic mesh refinement is used. For many classes
of equations of interest bounded error estimates are not yet available. However, this does
not preclude the use of simple error indicators based on various gradient measurements from
providing useful adaptive procedures [17–20]. A second complexity that arises in anisotropic
adaptive procedures is that even when available, the bounded error estimates are typically
scalar norms that do not provide the directional information needed to define the desired mesh
anisotropy. Therefore, anisotropic adaptive procedures employ the full set of second order
derivatives (Hessian matrix) [4, 6, 12] or examine derivatives in the direction of specific mesh
entities (typically edges) [9, 14] to obtain directional information on the desired mesh layout.
For purposes of this discussion the term mesh correction indicator is used to describe this
information after it had been scaled to define the actual anisotropic element sizes desired over
the domain. Section 3 discusses the procedures that constitute the mesh correction indicator
used in this paper to define the anisotropic adaptive mesh size field.

Given the new mesh size field, there are the two means to construct a mesh that satisfies
it. They are to regenerate the mesh against that mesh size field [3, 4, 6, 12], or to perform
appropriate local mesh modifications to match the desired mesh size field [9–11, 14]. The
remeshing based techniques have the advantage of not being constrained by the existence
of the previous mesh entities in the construction of the new anisotropic mesh configuration.
However, these methods do incur the cost of a complete mesh generation step and, in many
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applications, require the application of a solution field transfer process between meshes which
is both expensive and subject to accuracy loss. Mesh modification procedures can be executed
quickly with more controlled solution transfer procedures. However, with only a limited set of
mesh modification operations allowed, the mesh configurations are not optimal. Of course, with
the inclusion of a ‘full set’ of mesh modification operations (e.g. like the procedure in Reference
[10]) the differences in the final mesh configuration between remeshing and mesh modification
can essentially be eliminated. The procedure used in this work (see Section 4) applies a ‘full set’
of mesh modification operators employing a set of intelligent heuristics to effectively determine
the appropriate mesh modifications to obtain the desired mesh configurations. Section 5 presents
a set of two- and three-dimensional transient flow simulations to demonstrate the power of the
method to solve flow problems with complex evolving features.

2. DISCONTINUOUS GALERKIN FORMULATION

Consider an open set � ⊂ R3 whose boundary �� is Lipschitz continuous with a normal n

that is defined everywhere. We seek to determine u(�, t) : R3 × R → L2(�)m = V (�) as the
solution of a system of conservation laws

�tu + div �F(u) = r (1)

Here div = (∇ · , . . . , ∇ ·) is the vector valued divergence operator and

�F(u) = (F1(u), . . . , Fm(u))

is the flux vector with the ith component Fi (u) : (H1(�))
m → H(div, �). Function space

H(div, �) consists of square integrable vector valued functions whose divergence is also square
integrable i.e.

H(div, �) = {v|v ∈ L2(�)
3
, ∇ · v ∈ L2(�)}

With the aim of constructing a Galerkin form of (1), let

(x, y)� =
∫

�
xy dv

and

〈x, y〉�� =
∫

��
xy ds

denote the standard L2(�) and L2(��) scalar products respectively. Multiply Equation (1) by
a test function w ∈ V (�), integrate over � and use the divergence theorem to obtain the
following variational formulation:

(�tu, w)� − (�F(u), ∇w)� + 〈�F(u) · n, w〉�� = (r, w)�, ∀w ∈ V (�) (2)

Finite element methods (FEMs) involve a double discretization. First, the physical domain �
is discretized into a collection of Ne elements

Te =
Ne⋃
e=1

e (3)
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called a mesh. The function space V (�) containing the solution of (2) is approximated on
each element e of the mesh to define a finite-dimensional space Ve(Te). With discontinuous
finite elements, Ve is a ‘broken’ function space that consists in the direct sum of elementary
approximations ue (we use here a polynomial basis Pp(e) of order p):

Ve(Te) = {u|u ∈ L2(�)m, ue ∈ Pp(e)m = Ve(e)} (4)

Because all approximations are disconnected, we can solve the conservation laws on each
element to obtain

(�tue, w)e − (�F(ue), ∇w)e + 〈Fn, w〉�e = (r, w)e, ∀w ∈ Ve(e) (5)

Now, a discontinuous basis implies that the normal trace Fn = �F(u) · n is not defined on
�e. In this situation, a numerical flux Fn(ue, uek

) is usually used on each portion �ek of �e

shared by element e and neighbouring element ek . Here, ue and uek
are the restrictions of

solution u, respectively, to element e and element ek . This numerical flux must be continuous,
so �F ∈ H(div, �)m, and be consistent, so Fn(u, u) = �F(u) · n. With such a numerical flux,
Equation (5) becomes

(�tue, w)e − (�F(ue), ∇w)e +
ne∑

k=1
〈Fn(ue, uek

), w〉�ek
= (r, w)e, ∀w ∈ Ve(e) (6)

where ne is the number of faces of element e. Only the normal traces have to be defined on
�ek and several operators are possible [21, 22]. It is usual to define the trace as the solution
uR of a Riemann problem across �ek . We have then Fn(ue, uek

) = �F(uR) · n. Herein, we
consider problems with strong shocks [22, 23]. An exact Riemann solver is used to compute
the numerical fluxes and a slope limiter [24] is used to produce monotonic solutions when
polynomial degrees p > 0 are used.

The choice of a basis for Ve(e) is an important issue in constructing an efficient method.
Because the field is discontinuous, there is substantial freedom in the selection of the elemental
basis. Here, we chose the L2-orthogonal basis described in Reference [2] as a basis of P(e):

P(e) = {b1, . . . , bk} (7)

where

(bi, bj )e = �i,j

For the time discretization, we use the local time stepping procedure described in
Reference [25] that allows to use overall time steps more than 20 times bigger than the
classical stability limit of explicit schemes.

3. ANISOTROPIC MESH CORRECTION INDICATION

3.1. Approach taken

The goal of the mesh correction indication process is to determine the anisotropic mesh con-
figuration that will most effectively provide the level of accuracy required for the parameters
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of interest. The literature on error estimation techniques (e.g. References [15, 16]) does pro-
vide the mathematical tools and techniques to reliably approach this goal for specific classes
of equations under specific limitations on the relationship of the methods to analyse the dis-
cretization errors and to improve the mesh. However, these procedures do not yet provide all
the ingredients needed for more complex set of equations such as the hyperbolic conservation
equations considered here. In particular, the ability to bound the discretization error estimates
in appropriate norms and to prove optimal anisotropic mesh configurations is not yet available.
On the other hand, it is well recognized that the application of adaptive analysis procedures
for these problems yields far superior results to non-adaptive methods. Therefore, the strategy
adopted in the present paper is to construct the anisotropic mesh correction indicator in terms
of a complete mesh metric field defined over the domain of the analysis and to construct this
mesh metric field using a combination of best available methods.

The most direct definition of an anisotropic mesh metric field is one that defines the mapping
of an ellipsoid into a unit sphere in terms of a diagonal distortion matrix, where the diagonal
terms correspond to the lengths of the principal axes of the ellipsoid, times a rotation matrix
that accounts for the orientation of the ellipsoid. When used for constructing the anisotropic
mesh size field, lengths of the principal axes are interpreted as the desired mesh edge lengths
at that location.

Q(x, y, z) =



1/h1 0 0

0 1/h2 0

0 0 1/h3




︸ ︷︷ ︸
distortion

·



e1

e2

e3




︸ ︷︷ ︸
rotation

(8)

where e1, e2, e3 are orthogonal unit vectors associated with the principal axes of the ellipsoid
at point (x, y, z), and h1, h2, h3 are the desired mesh edge lengths along these three axes.

To date the most common approach to the definition of the mesh metric field for adaptive
mesh construction is to relate it to the Hessian of an appropriate solution variable u [4, 6, 12]:

H(u) =




�2
u

�x2

�2
u

�x�y

�2
u

�x�z

�2
u

�y�x

�2
u

�y2

�2
u

�y�z

�2
u

�z�x

�2
u

�z�y

�2
u

�z2




(9)

and construct Q(x, y, z) by decomposing, scaling H(u) and bounding the maximum desired
mesh edge lengths:

Q(x, y, z) =




√
�′

1 0 0

0
√

�′
2 0

0 0
√

�′
3


 ·




e1

e2

e3


 (10)
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with

�′
i = max

(
�(x, y, z)|�i |, 1

h2
max

)
∀i ∈ (1, 2, 3) (11)

where

– |�i | is the ith absolute eigenvalue of the Hessian matrix H ;
– ei is the ith unit eigenvector of H ;
– �(x, y, z) is a scale factor at point (x, y, z), determined in terms of an error estimate/

indicator (e.g. leading element interpolation error) to equilibrate the distribution of the
error;

– hmax is user defined maximal allowable mesh edge length in the mesh. Since Hessian
H(u) can be singular, it is needed to apply hmax in case �i is zero or close to zero.

A variety of arguments have been given as to the rationale for using the second derivative
information of the Hessian matrix in the construction of the anisotropic mesh metric field. The
most compelling one is to consider basic interpolation theory coupled with an equivalence of
norm argument to show the error in the interpolant is equivalent to a norm of interest for the
finite element methods. In the simplest possible terms, the error in a polynomial interpolant is
proportional to the derivatives of order equal to the first order polynomial interpolant cannot
exactly represent. In the case where piecewise linear finite elements are used, the interpolation
error is proportional to second derivatives. Kunert [8] provides some degree of analysis of
the use of the Hessian matrix anisotropic in adaptive analysis including pointing some of the
critical limitations of its use. The analysis by Rachowicz [11] focuses on the L2 error norm
for interpolation on an anisotropic mesh showing that the error is associated with the p + 1
derivatives for a pth order interpolant. He further relates this error to an H1-seminorm of the
finite element solution for the specific case of parallelogram elements [26] in which case the
dominent error term is associated with error is associated with the p + 1 derivatives when the
solution is of sufficient smoothness.

Since the examples presented in this paper are based on piecewise linear L2 discontinuous
finite elements, the Hessian matrix will be employed as a key ingredient in the construction
of the mesh metric field in the regions where the solution is smooth. Specific care must be
exercized in the definition of this mesh metric field. The most obvious concern is the ability
to calculate values to the second derivatives of a discontinuous field. One approach used
with C0 finite element basis is the construction of a ‘recovered’ Hessian [3] using patchwise
projection procedures in a manner similar to that used to define the popular Zienkiewicz–
Zhu error estimators [27]. Although it may be possible to use a similar approach here, the
discontinuous nature of the DG basis makes it questionable. Therefore, the present work employs
the reconstruction procedure of Section 3.2 to evaluate the Hessian matrix in the portions of
the domains where the exact solution is assumed to be smooth.

Since the procedure will be applied to the adaptive solution of transient flow problems
that contain solution discontinuities (shocks, contact discontinuities and expansion waves), care
must be taken in the construction of the mesh metric field. Clearly, it is inappropriate to
construct and employ the Hessian matrix in the immediate vicinity of the discontinuities,
the locations of which are not known a priori and which move as the transient solution
evolves. Therefore, a two step procedure is used to construct the mesh metric field around
discontinuities. We first determine the location of the elements crossing discontinuities using
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the solution smoothness indicator presented in Section 3.3. Then, we define the mesh metric
field along the discontinuities using the procedure given in Section 3.4.

Mesh metric fields are constructed here using solutions of compressible flows. The structure
of such flows is usually formed of very smooth regions separated by discontinuities (waves).
Hessians based on such solutions will generate metric fields with brutal variations of mesh
sizes. In Section 3.5, we will indicate how the mesh metric fields over the various portions of
the domain are smoothed to produce the final mesh metric field used by the mesh adaptation
procedures. The development of an efficient smoothing procedure of the anisotropic metric was
a crucial step in the whole process of adaptation.

3.2. Calculation of Hessian matrix from discontinuous fields

In this paper, we only consider piecewise linear polynomial approximations. For computing the
Hessian of �(xn, yn, zn) at each vertex n of co-ordinates xn, yn, zn, we proceed in two steps.
We first reconstruct a linear approximation

�(x, y, z) = �n
1 + �n

1(x − xn) + �n
2(y − yn) + �n

3(z − zn)

of � around each vertex n using the average values �i at each centroid (xm, ym, zm) of the Ne

neighbouring elements of vertex i:

�(xi, yi, zi) = �n
1 + �n

2(xi − xn) + �n
3(yi − yn) + �n

4(zi − zn) i = 1, . . . , Ne

This system of Ne equations with four unknowns is solved using normal equations (least
squares). Then, we reconstruct the three derivatives:

��

�x

∣∣∣∣
n

= an
1 + an

2 (x − xn) + an
3 (y − yn) + an

4 (z − zn)

��

�y

∣∣∣∣
n

= bn
1 + bn

2(x − xn) + bn
3(y − yn) + bn

4(z − zn)

��

�z

∣∣∣∣
n

= cn
1 + cn

2(x − xn) + cn
3(y − yn) + cn

4(z − zn)

using the previously reconstructed nodal gradients �j
n. From these results, Hessian computation

is straightforward. We have, for example then

�2�

�x2
= an

2 ,
�2�

�y2
= bn

3

or

�2�

�x�y
= 1

2
(an

3 + bn
2)
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3.3. Isolation of discontinuities using a smoothness indicator

The main challenge of solving hyperbolic problems such as compressible gas dynamics is
that the solutions is able to develop discontinuities in finite time even for smooth initial data.
It has been shown [28] that only schemes that are of first order of accuracy are able to
produce monotonic solutions when discontinuities are present. First order schemes produce too
much numerical dissipation and do not exhibit the required resolution for convection dominated
problems (i.e. problems with small physical dissipation).

The spurious oscillations produced near discontinuities by a higher order method such as
the DGM may amplify in time (especially near shocks) and cause the solution to become
unbounded. It is crucial to be able to control and eliminate the spurious oscillations introduced
by higher order schemes.

Procedures to suppress oscillations near discontinuities are called limiters [29–32]. Limiters
tend to reduce the accuracy of solutions to first order where they are applied. With an adaptive
strategy, discontinuities are captured by reducing element sizes at their vicinity accounting for
alignment with the discontinuity and directional variation differences in local solution informa-
tion. The limiter is only applied in the one or two layers of elements crossing discontinuities.

We introduce here a procedure that allows us to detect discontinuities. Consider element e

of boundary �e. Solving the DGM implies the computation of a numerical flux Fn(ue, uek
) =

�F(uR) · n (cf. Section 2) where uR is the solution of the Riemann problem at the boundary
of the element �e. If uex is the exact solution of (1) and he is the size of element e (e.g.
the radius of the circumsphere of a tetrahedron) it has been proven in Reference [33] that the
following result holds:‡

1

|�e|
∫

�e

(uR − uex) ds = O(h
2p+1
e ) (12)

The super-convergence result (12) implies that the solution uR of the Riemann problem at
element interfaces is, in average, much closer to the exact solution than elementary solution
ue. For linear problems, the solution of the Riemann problem is the upwind value of ue at
boundary �e. On one element e, the downwind values (i.e. the upwind values of the next
element) are the ones which are super-convergent.§

We consider the following elemental quantity:

Ie =
∫

�e

(ue − uR) ds =
∫

�e

(ue − uex) ds +
∫

�e

(uex − uR) ds (13)

Due to the superconvergence result (12), the second integral is O(h2(p+1)) while the first is
O(hp+2). Thus, Ie = O(hp+2) across edges (2D case) or faces (3D case) where the solution is
smooth. If u is discontinuous in the immediate vicinity of �e, then either or both of uex − ue

‡This result was proven in the case of linear problems and was tested successfully on a non-linear Burgers
equation.

§We claim here the following conjecture about this superconvergence result: the convergence of the solution at
downwind is necessary for the DGM to produce convergent result. If this result was not holding, truncation
errors would propagate along characteristics of the flow.
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and uex − uR are O(1); hence,

Ie = C

{
hp+2 if u|�e is smooth

h if u|�e is discontinuous
(14)

We construct a discontinuity detector by normalizing Ie relative to an ‘average’
O(h(p+1)/2) convergence rate and the solution on e to obtain

Ie =
∣∣∫

�e
(u − uR) ds

∣∣
h(p+1)/2|�e|‖u‖ (15)

In examples, we choose he as the radius of the circumscribed circle in element e, and use a
maximum norm based on local solution maxima at integration points in two dimensions and
an element average in one dimension. We have then

Ie = C

{
h(p+1)/2 if u|�e is smooth

h−(p+1)/2 if u|�e is discontinuous
(16)

Consequently, Ie → 0 as either h → 0 or p → ∞ in smooth solution regions, whereas
Ie → ∞ near a discontinuity. Thus, the discontinuity detection scheme is{

if Ie > 1, u is discontinuous

if Ie < 1, u is smooth
(17)

3.4. Anisotropic mesh construction across jump features

In portions of domain across discontinuities, we have shown in Section 3.3 that the dis-
continuities can be detected to provide useful information for an adaptive process. Due to the
discontinuities, the element discretization error cannot be controlled (i.e. bounded) in elements
crossing a discontinuity in the classic sense.

Let us consider the following function:

H(x, �) =
(

1

2
+ tan−1(�x)

�

)
(18)

that models a discontinuous function with a jump of 1 at x = 0. At the limit lim�→∞,
H tends to the Heaviside function. The second order derivative of (18) gives

�2
H(x, �)

�x2
= 2�2x

(1 + (�x)2)2�
(19)

If we take � bounded in (18), we obtain a function that approximates the discontinuity with
the same kind of behaviour as a DGM numerical solution. The second order derivative (19) is
then equal to 0 at x = 0, going from large positive values for x < 0 to large negative values
at x > 0 (see Figure 1).

Numerical Hessians in elements crossing the discontinuity are highly ill conditioned and
cannot be used: across a shock of direction n, �2

u/�n2 = n ·H ·n changes sign (see Figure 1).
Its value is numerically undertermined in terms of sign and amplitude. In elements where
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Figure 1. Illustration of the behaviour of numerical second derivatives through discontinuities.

we have detected a discontinuity, we found it better to use the gradient n = ∇w/|∇w| for
determining the direction of the shock. The gradient of u is high everywhere through the shock
and has a constant sign. It is then much better conditioned. The resulting adaptive strategy can
be described as follows:

• Determine the elements that cross a discontinuity using (17);
• In elements where the solution is smooth, use (10) and (11) to construct an anisotropic

metric field;
• In elements where the solution is discontinuous, use the reconstructed gradients to compute

the normal direction n to the discontinuity. Then, build up a spheroidal metric by selecting
�′

1 = 1/h2
min in the normal direction and �′

2 = �′
3 = 1/h2

nbr in the two tangential directions.
Here, hmin is user defined minimal allowed edge length in the mesh. Since the solution
is continuous in tangential directions of discontinuity, we choose

hnbr = hn+ + hn−

2
(20)

where hn+ and hn− is the mesh size along tangential directions in nearby smooth regions
on both sides of the discontinuity;

• When a metric field has been computed both in smooth and discontinuous regions, smooth
this metric field to reconnect the anisotropic mesh metric field to be used by the mesh
adaptation procedure. The concepts of metric smoothing is outlined in Section 3.5. Details
can be found in Reference [34].

3.5. Smoothing of mesh metric field

In order to smooth a piecewise linearly interpolated mesh metric field respecting existing
anisotropy, let us consider two adjacent points where arbitrary mesh metrics are specified
(Figure 2). We are interested in adjusting the two mesh metrics so that physical anisotropy is
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P

h ep

qh eq

Q

p

Figure 2. Illustration to anisotropy respect factor and directional H-shock. P and Q are two adjacent
points with mesh metric specified (indicated by the two ellipses). ep and eq show an eigenvector for

each metric. hp and hq indicate the desired edge length along ep and eq .

respected with direction and size both change smoothly from P to Q. Two useful definitions,
anisotropy respect factor and directional H-shock, have been used.

Definition
The anisotropy respect factor related to points P and Q is of the value

� = (Rq − 1)Rp

(Rp − 1)Rq

(Rp �Rq) (21)

where Rp, Rq are the aspect ratio of the mesh metric at points P and Q, respectively. The
aspect ratio R of a mesh metric is the ratio of the maximal desired edge length to the minimal
desired length.

The motivation of introducing � is to smooth directional variation between two adjacent
points. Equation (22) gives a method to correct eigenvectors of the less anisotropic mesh
metric based on �, which ensures to respect the mesh metric with strong anisotropy and
respect both in case Rp = Rq .

eq
i |new = (1 − �)ep

j + �eq
i (i, j = 1, 2, 3) (22)

where Rp�Rq , eq
i is an eigenvector of the mesh metric at point Q, eq

i |new is the corrected
one, and ep

j is the eigenvector associated with eq
i at point P .

Definition
The directional H-shock related to points P and Q associated with eigenvector pair (ep, eq) is
of the value

max

(
hp

hq

,
hq

hp

)1/L′(PQ)

(23)

with hp, hq be the desired length along direction ep and eq at points P and Q, respectively,
and L′(PQ) be the length of segment PQ with respect to the mesh metric variation over PQ
(refer to (24) in Section 4.1).
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This H-shock measures the direction-related desired edge length variation between two mesh
metrics. In particularly, it represents the progression ratio when fitting the mesh metric variation
over PQ with a sequence of edges in geometric progression.

The anisotropic smoothing procedure modifies a piecewise linear field with mesh metrics
attached to vertices. It repeatedly processes the edges of the mesh to adjust the mesh metrics
at end vertices in terms of Equations (22) and (23) until the directional H-shocks associated
with all edges are bounded by a given value �.

4. ANISOTROPIC MESH ADAPTATION VIA LOCAL MESH MODIFICATION

Given the mesh metric field defined over the domain, local mesh modification is applied to
yield the desired anisotropic mesh. Next to the application of mesh modification is the ability
to use the local mesh and the mesh metric field to quickly determine the appropriate mesh
modification to apply. This section outlines the mesh modification that are used to convert the
given mesh into one that satisfies the given mesh metric field [35, 36].

Mesh modification operators include entity (i) split, (ii) collapse, (iii) swap and (iv) reposition.
For purposes of anisotropic mesh adaptation, mesh modification is used to directionally refine
and coarsen the mesh, and to realign the mesh in order to satisfy the given anisotropic mesh
metric field.

4.1. Mesh modification criteria

Since the anisotropic mesh size field represents the transformation that map an ellipsoid into
a unit sphere, the idea tetrahedron that satisfies the mesh size field should be mapped into a
unit equilateral tetrahedron in the transformed space. Figure 3 demonstrates this concept. The
left figure depicts two desired anisotropic tetrahedra in physical space, while the transformation
associated with the mesh metric field is indicated by the two matrices. As illustrated by the right

1 3/ 0 0

0 1 0

0 0 5

2 1 0

1 2 0

0 0 1

y
z

Two tetrahedra in physical space

Unit equilateral tetrahedron
in transformed space

x

Figure 3. Desired tetrahedra are mapped into unit equilateral tetrahedra by
the transformation mesh metric defines.
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x

A

B

Q x( )

e

Figure 4. Illustration of length computation in transformed space.
Ellipses indicate Q(x) defined over edge AB.

figure, both tetrahedra are transformed into a unit equilateral tetrahedron by their corresponding
transformation matrix.

To make any given mesh satisfying the given mesh size field by mesh modifications, we
take philosophy as follows:

• identify those mesh entities not satisfying the mesh size field;
• perform appropriate mesh modifications so that local mesh will better satisfy the mesh

size field;
• repeat above steps until the mesh size field is satisfied to an acceptable degree.

The degree of the satisfaction of a mesh to a mesh size field can be measured by mesh edge
length in the transformed space. Consider mesh edge AB and the transformation representation
of the mesh size field Q(x) over AB (refer to Figure 4). In general, the length of PQ in
transformed space can be computed by [6, 35, 37]

L′(AB) =
∫ B

A

√
e · Q(x)Q(x)T · eT dx (24)

where e is the unit vector associated with edge AB in the physical space.
Since it is not possible to ensure that all mesh edges exactly match the requested lengths,

the goal of mesh modifications is to make the transformed length of all mesh edges fall into
an interval close to one. Particularly, we choose interval [0.5, 1.4] in the examples given in
Section 5 which is large enough to avoid oscillations [35, 36].

Sliver tetrahedra (poorly shaped tetrahedra not bounded by any short mesh edge in trans-
formed space) may exist even if the edge length criteria is met, so an additional criteria is
needed to determine and eliminate sliver tetrahedra. One of the standard non-dimensional shape
measure, the cubic of mean ratio [38] in the transformed space, is used for this purpose. Let
Q be the associated transformation matrix of the tetrahedron,¶ the cubic of mean ratio in

¶In case the transformation is not constant over the tetrahedron, the one with maximum aspect ratio is considered
as associated transformation.
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transformed space, �′, is

�′ = 15552(|Q|V )2

(
∑6

i=1 li · QQT · li
T)3

(25)

where |Q|V is the volume of the tetrahedron in the transformed space (|Q| represents the
determinant of the transformation, V is the volume of a tetrahedron in physical space), and
li (i = 1..6) are vectors associated with the six edges of the tetrahedron. Note that �′ has
been normalized to interval [0, 1] with 0 for flat tetrahedron and 1 for equilateral tetrahedron
in transformed space. In Section 4.4, all tetrahedra with �′ less than a given threshold are
eliminated through mesh modifications.

4.2. Refinement

In three dimensions, edge, face and region split operators can be used to refine the mesh
[39–42]. The set of predefined patterns described in Reference [41] are used here to refine the
mesh since it is efficient (linear complexity), prevents over-refinement and provide possibilities
to maintain or even improve mesh quality [35, 36].

4.3. Coarsening

Edge, face, and region collapse operations can be defined in an analogous way to the split
operations and can be used for mesh coarsening. The edge collapse tends to be the most useful
approach, however the other operations have been found of use in specific cases [35, 36]. In
case a short edge is adjacent to a long edge, repositioning the common vertex of both edges
can also be a useful approach.

The coarsening algorithm first determines a list of vertices that bound short edges, then
eliminates them in the order of topologically every other vertex. Consider a mesh vertex that
bounds at least a short mesh edge, the coarsening process first get its shortest adjacent mesh
edge, and evaluate the removal of this vertex by collapsing it onto the vertex at the other
end of the shortest edge. If this collapsing will create long mesh edges in transformed space,
repositioning this vertex will be evaluated. If edge collapse is geometrically not acceptable,
consideration is given to compound operators to first attempt a swap operation which would
allow the desired collapse to be applied.

To prevent the possible oscillation between refining and collapsing, any of above local mesh
modifications is considered unacceptable if it creates a long mesh edge in transformed space.

4.4. Re-alignment

Local mesh modifications, particularly edge and face swap operators, can be used to improve
the quality of the mesh by replacing poorly shaped elements with higher quality elements
[10, 41, 43].

The re-alignment algorithm aims at eliminating existing sliver tetrahedra in the transformed
space. To support the intelligent determination of local mesh modifications, it is useful to
classify sliver tetrahedra into two types (refer to Figure 5). A tetrahedron is classified as type
I sliver if two opposite edges of the tetrahedron almost intersect; a tetrahedron is classified as
type II if one vertex of the tetrahedron is close to the centroid of its opposite face.
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two key edges

key face

key vertex

type I type II

Figure 5. Sliver tetrahedron types and associated key entities.

Table I. Determination of local mesh modifications.

Priority Mesh modifications for type I Mesh modifications for type II

1 Swap either key mesh edge Swap the key face or relocate the key vertex
2 Split either key edge and relocate the new

vertex, split both edges and collapse the in-
terior edge

Split the face then split/relocate the new
vertex, swap the three edges that bound the
face

3 Relocate vertices of the tetrahedron Relocate the three vertices that bound the
face

Key mesh entities to eliminate the sliver tetrahedron can be identified for these two types:
in case of type I, it is a pair of mesh edges (indicated by circles); In case of type II, it
is a mesh face (indicated by the three squares) and a mesh vertex (indicated by the circle).
Table I lists the promising local mesh modification operation(s) to be evaluated for each type.
To be effective, mesh modifications are evaluated at three priority levels.

5. RESULTS

5.1. Acoustic pulse

The propagation of sound waves in the air is governed by the linearized Euler equations of
fluid dynamics. They can be written, in two dimensions:

�
�t




P

u

v


 + �

�x




�0c
2u + u0P

P/�0 + u0u

u0v


 + �

�y




�0c
2v + v0P

v0y

P/�0 + v0v


 = 0 (26)

where �0 is the unperturbated density of the fluid, u0 and v0 are the two components of
the mean flow v0, c0 is the sound speed, P is a perturbation of the pressure and v is the
perturbation of the velocity of components u and v.

We solve (26) using the DGM with a numerical flux that is the exact solution of an associated
one-dimensional Riemann problem. The Riemann problem consist in finding the self similar
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solution of a hyperbolic problem with discontinuous initial data. We consider an interface of
normal n that separates 2 constant states Pl, vnl, vtl and Pr, vnr , vtr . At t = 0, we impulsively
remove the interface. If we suppose that the mean flow v0 is subsonic everywhere i.e. |v0| < c0
everywhere, the solution of the Riemann problem can be written as a superposition of three
waves, the first one moving at positive speed vn0 + c0, one moving at negative speed vn0 − c0
and the last one moving at speed vn0.

The solution P, v for all times t at −ct < x < ct consists in the superposition of the
characteristic variables:

Pl/(�0c0) + vnl = P/(�0c0) + vn

Pr/(�0c0) − vnr = P/(�0c0) − vn

Solution of the Riemann problem is then

P = pl + pr

2︸ ︷︷ ︸
{P }

+�0c0
vnl − vnr

2︸ ︷︷ ︸
�vn�

vn = vnl + vnr

2︸ ︷︷ ︸
{vn}

+ 1

�0c0

Pl − Pr

2︸ ︷︷ ︸
�P �

vt = vtl + vtr

2︸ ︷︷ ︸
{vt }

+sign(vn0)
vtl − vtr

2︸ ︷︷ ︸
�vt �

Three exact solutions of the linearized Euler equations may be found in Reference [44]. The
first one is the expansion of an initial axisymmetric pressure pulse in a constant mean flow.
The initial pulse is Gaussian:

P(0, x) = 	1e−�1x2

with the Gaussian amplitude 	1 = 0.01, the Gaussian half width h1 = 10 and �1 = log(2)/h2
1.

The domain of computation is a square of dimensions 400 × 400 centred at the origin. We
have performed one computation using an initial unstructured triangular mesh. The mesh was
adapted at t = 0 in order to adapt the steep initial conditions. This example has been chosen
because it has a non-trivial analytical solution, with waves of known speed.

Figure 6 shows meshes and pressure contours for the acoustic pulse problem. Physical
parameters for this run were c0 = 1, �0 = 1.225 and v0 a Mach 0.5 constant field going
from left to right. The mesh was adapted every second and minimal and maximal allowed
mesh sizes were chosen as hmin = 0.5 and hmax = 50. At t = 150, 151 mesh adaptation
were performed, including the one at t = 0. Figure 6 shows that the adaptive procedure is
able to track accurately wave fronts: iso-contours remain axisymmetrical and smooth at all
times. Note that the anisotropic procedure was not able to produce elongated elements at early
times because the radius of curvature of the wave front is small. It is only at later stages that
anisotropic elements were created.
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Figure 6. Meshes (left) and pressure contours (right) for the acoustic
pulse problem at times t = 0,50, 100 and 150.

Neverthless, it is still difficult to assert that the adaptive procedure is able to predict accurately
the right wave speeds. For that, we have plotted the pressure along the x axis and compare it
with the analytical solution (Figure 7).

Figure 6 compares the exact solution with the adaptive DGM computation. Both curves
are so well superimposed that it is difficult to differentiate them. This shows clearly that
the adaptive procedure correctly predicts the wave speeds but it also shows that the nu-
merical diffusion introduced by the numerous adaptations (151 adaptations at t = 150)
is small.

5.2. Cannon blast problem

In this section, we will present the results of some compressible inviscid flow problems involving
the solution of the Euler equations [28] by a DG method. The three-dimensional Euler equations
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Figure 7. Pressure plots along x axis of exact solution and numerical solution at different times.

can be written as

�
�t




�

�u

�v

�w

�E




+ �
�x




�u

�u2 + P

�u v

�u w

(�E + P)u




+ �
�y




�v

�u v

�v2 + P

�v w

(�E + P)v




+ �
�z




�u

�u w

�v w

�w2 + P

(�E + P)w




= 0 (27)

Here � is the fluid density, v the velocity with components u, v and w, E the internal energy,
P the pressure. An equation of state of the form P = P(�, E) is also necessary to close the
system. The DG method and the associated software [2] may be used for any equation of state
which only enters the numerical method through the calculation of the numerical flux. Here,
we have chosen the perfect gas equation of state

P = (
 − 1)�

[
E − ‖v‖2

2

]
(28)

with the gas constant 
 = 1.4.
Consider the problem of a 2D perforated tube of diameter 155 mm (a section of a cannon).

The diameter of the perforated holes inside the barrel (the muzzle break) are d = 28.6 mm.
The initial conditions for the problem are the one of a shock tube. We consider a virtual

interface inside the barrel (see mesh refinement for t = 0 at Figure 8). The initial pressure for
the gas inside of the tube are P = 57, 273, 627.96 Pa i.e. more than 500 times the external
atmospheric pressure of Patm = 101, 300 Pa. The initial temperature of the air inside the tube
is T = 2111.5 K and its initial velocity along x direction is 0.
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Figure 8. Evolution of the adapted meshes for the cannon blast problem.

The final time of the computation was tend = 5 × 10−4 s. A second order Runge–Kutta time
integration scheme was used. The time steps were computed adaptively with a CFL limit of
1.0. Starting time steps were about 5×10−8 s and the final time steps were about 1.5×10−8 s.
The mesh was refined every 10−6 s so that the total number of mesh refinements is 501,
including the initial refinement that enables the correct capture of the initial discontinuous
state (see Figure 8). The total number of solution time steps is 45 438. The total number of
degrees of freedom for this problem starts at 5556 which corresponds to 463 triangles. After
the 501 adaptations, the number of degrees of freedom reaches 778 488 which corresponds to
64 874 triangles. Figure 8 show the evolution of the mesh for the cannon blast problem. The
minimum mesh size allowed for this problem was hmin = 1 mm and the smoothing factor was
� = 3. Figure 9 plots the density contours corresponding to the adapted meshes of Figure 8.
One can clearly see that the density contours do not have any pre- and post-shock noise due
to the alignment of anisotropic elements with shock waves, and the simultaneous development
between anisotropic elements and the density contours. Figures 10 and 11 give two close-up
views to further demonstrate the captured solution by aligned anisotropic elements. In Figure
10, the complex shock–shock interactions happening above the perforated holes are captured
by anisotropic elements distributed in the direction and position the density contours indicate.
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Figure 9. Evolution of the density contours in log scale for the cannon blast problem.

Figure 10. Complex shock–shock interaction structure near the muzzle at t = 5.e − 4.

In Figure 11, the zoom near the front shock shows the alignment between the anisotropic
elements and the front shock.

5.3. Three-dimensional backward facing step

This example simulates the shock development when a backward facing step is impulsively
inserted into a Mach 3 gas flow in a straight pipe. Figure 12 shows the analysis domain. Since
axisymmetric, only a small section (15◦) of a cylinder is used. The cylinder is of length 7.62
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Figure 11. Zoom near to the front shock at t = 5.e − 4.

15o

1.52

7.62

0.508

1.524

center line

x

y

z

inflow

outflow

Figure 12. Simulation domain of backward step.

and of radius 1.52, and the step is situated at x = 1.524 and of height 0.508. The initial
condition is a constant Mach 3 flow field in the x-axis, in particular,

p = 1

� = 1

u1 = Ms
√


 = 3
√

1.4 = 3.55

where p denotes pressure, � denotes density, u1 is the velocity in x direction, Ms is Mach
number and 
 is gas parameter. The boundary conditions are as follows:

• At inlet and outlet, the velocity, density and pressure are that of the initial Mach 3 flow;
• At the two cut planes parallel to the centre line of the cylinder, symmetry boundary

condition is applied;
• For all other surfaces, slip wall boundary condition is applied.

Starting from a uniform isotropic initial mesh of size 0.5, a steady flow pattern with shock
is reached in about 4 s. The mesh is updated every 5 × 10−3 s, therefore, a total of 800 mesh
adaptations are performed. The total number of degrees of freedom in the initial mesh is 14 960
which corresponds to 748 tetrahedra. After 800 mesh adaptations, the number of degrees of
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Figure 13. Evolution of mesh and density contour for backward facing step problem.

freedom reaches 96 020 which corresponds to 5081 tetrahedra. Figure 13 shows the evolution
of the mesh and the corresponding density contour surface for the backward step problem. It
can be seen that the mesh aligns to the discontinuity of density with anisotropic tetrahedra
and develops as the discontinuity develops. Figure 14 shows a close-up view of the mesh and
density contour near the top surface where the shock reflects. It can be seen that elements
become needle-like where the shock strikes the top surface.

6. CLOSING REMARKS

A general procedure for the adaptive construction of anisotropic meshes over general two- and
three-dimensional domains has been presented. Its application has been demonstrated on the
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Figure 14. Zoom near the shock reflection at t = 4 s.

transient flow simulations that have complex evolving features. Key features of the procedures
presented include:

• a general approach to the construction of an anisotropic mesh metric field capable of
continued improvement as new error estimation and correction indication procedures are
developed,

• a variationally based procedure to calculate higher derivatives applicable for use with
discontinuous Galerkin methods,

• a procedure to detect solution discontinuities and isolate them for the generation of an
appropriate anisotropic mesh at those locations,

• a set of intelligent mesh modification procedures that can modify a given mesh to match
any given mesh metric field.
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