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Summary: Realization of the full benefits of variable p-version finite elements 

requires the careful construction of prismatic elements in thin sections. This paper 

presents a procedure to automatically isolate the thin sections using the points on 

an approximate medial surface computed by an octree-based algorithm. Using the 

pairs of triangles associated with medial surface points, in conjunction with adja-

cency, classification and distance information sets of surface triangles that are op-

posite face patches in thin sections are identified. Mesh modifications are then 

executed to match the surface triangulations on the opposite face patches such that 

prismatic elements can be generated without diagonal edges through the thickness 

directions.  

Keywords: thin sections, medial surface, prismatic elements 

1. Introduction 

Historically, the methods used to analyze thin sections involved applying defor-

mation assumptions to the 3-D elasticity equations allowing the problem dimen-

sionality to be reduced [1]. The application of such methods requires a reduced 

dimensional domain model. Application of these methods requires the identifica-

tion of the thin sections and then the application of model dimension reduction on 

those portions [2]. Handing the interconnection between two-dimensional reduced 

elements to fully three-dimensional solid elements is another source of difficulty 

[3]. 

Since the assumptions corresponding to those deformation models are equiva-

lent to allowing only low order deformation modes in the thickness direction, an 

alternative is to apply full three-dimensional model discretized with p-version fi-

nite elements with low polynomial order through the thickness [4, 5]. Tetrahedral 

meshes cannot effectively be used to implement the appropriate low order defor-

mation modes through the thickness due to the presence of the through the thick-

ness diagonals. Therefore a mesh that contains a single element through the thick-

ness without through the thickness diagonals is needed.   

The automatic generation of meshes for general 3-D domains with such ele-

ments (prism of hexahedra) in the thin sections is not a straightforward process, 

particularly in the case where adaptive p-version finite element methods are ap-

plied that will require large curved elements of high polynomial order in the other 

mailto:lyin@scorec.rpi.edu
mailto:xluo@scorec.rpi.edu
mailto:shephard@scorec.rpi.edu


2      Luzhong Yin, Xiaojuan Luo, Mark S. Shephard 

directions. This paper reports on the status of efforts to development mesh genera-

tion procedures aimed at producing the desired p-version curved finite elements 

for models containing thin sections. 

Starting from a general curved solid model with a classified surface triangula-

tion, the thin sections for the model are identified using points on an approximate 

medial surface computed by an octree-based algorithm. The thin sections are then 

meshed by prismatic elements and a general volume mesh generator can be ap-

plied to fill the remaining domains for p-version adaptive analysis. The geometric 

approximation required by the p-version finite elements is achieved by applying a 

curving procedure in [7, 8]. 

Section 2 presents the criteria to identify points on the medial surface for a 

classified surface triangulation of the model and gives an octree-based algorithm 

for their determination. Each of these medial surface points is associated with a 

pair of opposite triangles on the thin sections. Section 3 discusses the procedure 

that given those pairs of triangles determines any missing thin section triangles 

and isolates the thin sections. Section 4 considers the procedures for then meshing 

the thin sections. 

2. Determination of Medial Surface Points and Associated 
Triangle Pairs 

2.1 Criteria to Define Thin Section Triangle Pairs 

The definition of a thin section is closely related to size of and order of the ele-

ments in the mesh. The geometric characteristic for a thin section is the dimension 

through the thickness is far less than the “in-plane” dimensions. We identify the 

thin sections using a surface triangulation of the model. The basic idea is to find 

pairs of triangles on “opposite model faces” that are close to each other relative to 

their size, thus indicating they are within a thin section. 

A point on the medial surface can provide the local thickness [10, 11] by the 

distance to its closest boundary points and ‘opposite’ boundary points by relating 

the closest boundary points. Therefore, the concerned pair of the opposite triangles 

can be defined based on a medial surface point as follows.  

A pair of triangles 2

i
M  and 2

iM ′  is candidate thin section triangle pair if there 

exist a pair of closest boundary points 1P  and 2P  from a medial surface point 0
iE , 

such that 
2

1 iMP ⊂  and 
2

2 iMP ′⊂  (over bar means closure of a triangle), where the 

1P and 2P  have following properties: 

(1) The ratio of thickness (defined as the diameter of the maximum inscribed 

sphere associated with 0
iE ) to the average size of 2

1M  and 2
2M  is smaller than a 

default value, for example 1/2 of the average edge length of the element. 

(2) The angle formed by the outward normal to 2
1M  and 2

2M is close to π . 

The situation of the medial surface point defined by conditions of (1) and (2) is 

shown in Fig. 1. 
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Fig. 1. A thin section triangle pair identified by a medial surface point 0
iE  

A candidate thin section triangle pair is further processed to ensure that all points 

on their closures meet those conditions. The key step to identify the thin section 

triangle pairs is to calculate the points on the medial surface of the classified sur-

face triangulation. We use octree to calculate the medial surface points with the 

goal of identifying most, but not all, triangles in the thin sections. 

2.2 Octree-Based Algorithm to Compute the Medial Surface Points  

The medial surface points are calculated for a classified surface triangulation. The 

classification information of the surface triangulation is used to ignore the medial 

surface branches of the triangulated model that do not exist in the smooth curved 

model. That is, the two closest points of a medial surface point on two adjacent 

triangles that are classified on one C
1
 continuous model face will be ignored in the 

calculations. From the property that a closed geometrical model has a closed set of 

medial surfaces [12], a medial octant tracing algorithm was constructed. In this al-

gorithm, medial octants are defined as octants that intersect medial surface as Fig-

ure 2 (a). The steps of the tracing algorithm are as follows. 

• Construct octree by inserting surface mesh entities into boundary octants. 

• Determine an octant with an edge that intersects the medial surface. 

• Resolve all intersections of that octant edge by a traversal algorithm. 

• Continue the traversal on the other edges until all intersections are resolved. 
• Move to neighboring octants of the intersection points to process their other oc-

tant edge/medial surface intersections. See Fig. 2 (b). 

To control the medial octant size, before calculating intersections, recursively 

subdivide the neighbor medial octants to be no more than one level different. Fur-

ther subdivide the medial octant to the same order of the size of surface triangles 

that are closest to the octant vertices.  Denote an octant as iO , an octant edge as 

1
iO  and its two bounding vertices as 0

jO  and 0
kO .    

The goal of the algorithm is to determine the intersection between an octant 

edge and the medial surface. An octant edge can have multiple intersections. To 

determine those intersections, we employ the relationship among Voronoi regions 

and medial surface [10] for polyhedron. An octant edge with bounding vertices 

closer to two different surfaces (in different Voronoi region) that are not adjacent 

to one re-entrant edge or corners, intersects the medial surface.  To judge the Vo-
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ronoi region a vertex 0
1O is in the closest points of 0

1O  on the boundary are used. 

The current octree is employed to determine the closest point information.  

iO  

      

Known 

medial 

octant O1 0

1E  0

2E  

Next 

medial 

octant O2 

 
Fig. 2. (a) A situation of intersections between octant edges and medial surface (b) 

Move from one resolved medial octant to next neighbor medial octant to calculate 

the other new intersection locations. 

The procedure to resolve the intersections is as follows:  

Assume there is just one intersection on the edge bounded by 0
1O  and 0

2O  

which can be found through solving a scalar t in the interpolation formulation 

( ) 0
2

0
1

0 1 OOE tti +−=  due to the equidistant condition to the boundary entities whose 

associated Voronoi regions 0
1O  and 0

2O  are in, where the bold letters denotes the 

location vectors at the corresponding vertices. After getting the assumed intersec-

tion, we request its closest points on the boundary.  If multiple closest points are 

returned there is a single intersection. If a single closest point is returned there are 

multiple intersections, in which case subdivide the edge at that location and repeat 

until the intersections are resolved.  

The efficiency of the above algorithm is demonstrating using Fig. 3, where 

( )•ip  denotes a closest point for the entity • . Given the octant edge whose bound-

ing vertices are 0
1O  and 0

2O , we obtain an assumed medial surface intersection 

point 0
jE .  The closest point to 0

jE is a single point ( )0jEp , thus indicating the 

point is not on the medial surface. After subdivide the edge at 0
jE  obtain the cor-

rect intersection points, one on each sub-edge bounded by ( )00
1 , jEO   and ( )010 ,OE j .  

It is noted the tracing algorithm can start from a convex model edge whose in-

terior dihedral angle is π<iw , or by a medial surface point calculated on a ray in 

the direction of the normal to the triangle to the interior of model by the above 

edge intersection algorithm. Operations to calculate medial surface points are not 

applied to octant edges external to the model. 

Fig. 4 shows a result of the above algorithm for an example. The medial octants 

are square boxes (Fig.4(b)) and medial surface points are shown in Fig. 4(c) by 

circle dots. 
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Fig. 3. Multiple intersection on the edge bounded by 0

1
O  and 0

2
O  

 

(a)                                                                   (b) 

 

(c) 

Fig. 4. (a) Model; (b) traversed octants; (c) medial surface points 
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3 Defining Thin Sections  

The medial surface point calculations provide a set of an unorganized and incom-

plete thin section triangle pairs. We organize the thin section triangles in the sets 

by their classification information. After that, the missing thin section triangles are 

determined. The procedure has three steps: 

• Collect starting triangle sets using classification information.  

• Complete the triangle sets to define thin section surface patches 

• Construct the loops for each thin section surface patch and match the loops on 

the boundary of opposite thin section patches. 

3.1 Collect Starting Thin Section Triangle Sets  

Given medial surface point 0
iE , introduce  





=
not thin   0

hin         t1

*

0
iE  (1) 

to indicate whether 0
iE  define a thin section triangle pairs, where 1 indicates the 

medial surface point is associated with thin triangle pair and 0 means they are not 

part of a thin section. Denote the triangle pair as 

[ ] { }22

*

0 ,
kki

MME ′= . (2) 

With the above notations, a starting thin section triangle set is defined as 

[ [ ]{ }1 and  and ˆ
*

0

*

022222 =∈= llijiij EEMGMMG  (3) 

Note that each 2ˆ
jG  is uniquely associated with 2

jG . For this unique association, the 

identity tags of “opposite” sets for 2ˆ
j

G  can be recorded during the construction of 

2ˆ
j

G . Generally, 2ˆ
j

G  may have one or more opposite sets denoted as )ˆ( 2

j
Gopp . A 

simple example in Fig. 5 shows { }222
1 ,ˆ

ba MMG = , { }232
1

ˆ)ˆ( GGopp = ; 

{ }2222
2 ,,ˆ

edc MMMG = , { }232
2

ˆ)ˆ( GGopp =  and { }222222
3 ,,,,ˆ

edcba MMMMMG ′′′′′= , 

{ }222
1

2
3

ˆ,ˆ)ˆ( GGGopp = . 

 
2
1G  

2
3G  

2
aM  

2
aM ′  

2
bM ′  

2
cM ′  

2
2G  1

1G  
2
bM  2

cM  2
dM  

2
dM ′  

2
eM  

2
eM ′  

 
Fig. 5. An example to demonstrate the starting triangle sets 

Note sets at this point may have to be later split or merge to represent a thin sec-

tion surface patch. 
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3.2 Determining the Missing Thin Section Triangles  

The majority of thin section triangles are identified by the medial surface points in 

the tracing algorithm but some are missed, see Figure 6 (a), where the dark shaded 

triangle faces are the identified thin section triangles. To determine whether a 

missing triangle 2
eM  on 2

jG  belongs to 2ˆ
j

G , local thickness eh  at 2

e
M  is compared 

with the local thickness ih  at an edge adjacent triangle 2
iM  that is inside 2ˆ

jG .  If  

iie hhh −  is smaller than a default value, place 2
eM  in 2ˆ

jG . The local thickness eh  

at 2
eM  is obtained by searching for the closest point on the triangles classified on 

the model faces that are known to be opposite to 2
jG . The triangle 2

eM ′  that the 

closest point is on is defined as opposite triangle to 2
eM . Also place 2

eM ′  in the set 

that is opposite to 2ˆ
jG  if it is not there already. Note, 2

eM ′  must be in the neighbor-

hood of 2
iM ′  which is opposite to 

2
iM . The search is a local operation. Fig 6 

shows an example before (Fig 6 (a)) and after completing the thin section triangle 

sets (Fig. 6(b)). Note the boundary edges of 2ˆ
jG  can also be identified as those 

used by only one triangle in the set. 

 
Fig. 6. (a) Thin section triangles obtained by medial surface points; (b) The com-

pleted thin section surface patches. 

3.3 Construct the Boundary Loops on Thin Section Surface Patches 

To complete the definition of the thin section surface patches opposite each other, 

the loops on the boundary of surface patches have to be matched. The process can 

lead to the need to split surface patches. Figure 7 (a) shows an example that has 

three thin section surface patches, where 2
3Ĝ  is opposite to 2

1Ĝ  and 2
2Ĝ  with each 

loop on each of the sets. In this case, splitting 2
3Ĝ  to form two loops on 2

3Ĝ  to 

match the loops on 2
1Ĝ  and 2

2Ĝ  is needed as shown in Fig. 7 (b). Note the loops in 

2
1Ĝ  and 2

2Ĝ  cannot be merged to form one loop since the model edge must be 

used in the volume mesh generation. 
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Fig. 7. (a) Loops on thin section surface patches (b) Opposite loops   

The procedure to create opposite loops looks for its opposite edge 21 ˆ
jf GM ′′ ∂∈  us-

ing the opposite triangles and connectivity information. 

4. Meshing Thin Sections 

The thin section information obtained from Section 3 is characterized by a pair of 

opposite thin section surface patches with paired closed opposite loops as bounda-

ries. To generate structured prismatic elements without long diagonal edges 

through the thickness the opposite triangulation sets for thin section surface patch 

must be topologically matched and be geometrically similar.  

4.1 Overall Algorithm  

The overall procedure to mesh each thin section consists of the following steps: 

• Apply local mesh modifications to match the thin section boundaries 

• Delete the surface triangulation of one triangle set 
• Copying the remaining triangulation to its opposite model face 

• Connect the matched triangulations to form prismatic elements 

4.2 Boundary Matching  

The procedure to match the boundaries of the triangle sets for a thin section can be 

divided into two continuous operations. First, apply split or collapse operations to 

modify the mesh topology to ensure the mesh edges in each paired opposite loops 

are one-to-one matched. Second, the desired target locations for the vertices in the 

loops are computed and local mesh modifications as in [10] are applied to incre-

mentally move the vertices towards to the target locations.  

4.2.1 Topological Matching 

For each pair of opposite loops, the process begins to traverse one loop through 

vertex adjacency information from one selected starting mesh edge and vertex to 

match the topological configuration to its opposite loop. Split and/or collapse op-

erations are used to keep a loop iL  one-to-one matching with its opposite loop iL ′ .  

The procedure starts from a vertex with lowest dimensional classification. 
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For each mesh edge 1

i
M  in the closed loop 

iL , retrieve the attached edges 

}{ 1

'
j

M  in the opposite closed loop 
'i
L . Let  





=
unassign

assigned
M

j ,0

,1
|| *1

'
 (4) 

be the operation to determine whether the mesh edge 1

'
j

M  already associates with 

one mesh edge in loop 
iL . If only one mesh edge 1

'
j

M  is attached and 0|| *1

'
=

j
M , 

let 1

'
j

M  associate with 1

i
M  and update 1|| *1

'
=

j
M  and continue to next mesh edge 

1

1+iM . Otherwise, either split or collapse is applied to produce or eliminate mesh 

edges to maintain the one-to-one matching. As examples, Figure 8 shows that a 

split operation is applied on mesh edge 1

'
1

M  to produce one more edge 1

'
2

M  to ob-

tain the matched pair edges ),( 1

'
1

1

1 MM  and ),( 1

'
2

1

2 MM  then update 1|| *1

'
2

=M . Consid-

ering the mesh vertices will be moved in the next step, the split operation applied 

currently does not snap the new introduced vertices to the model boundary.  

 
Fig. 8. Split operation to assign one-to-one match for mesh edge 1

2
M  

4.2.2 Target Location for Vertices in the Opposite Model Face 

To achieve the geometrical similarity between the two triangle sets for a thin 

section, each vertex 0

i
M  in one triangle set need to compute an appropriate loca-

tion for its matched vertex 0

'
i

M  on the opposite model face. The target location for 

0

'
i

M  is obtained by first computing the closest point 0

i
P on the mesh face 2

'
i

M  clas-

sified on the opposite model face to 0

i
M , and then, projecting 0

i
P  to the model 

face by the model parameters of 0

i
P  determined by the interpolation of 0

i
P  on the 

triangle face 2

'
i

M .  

4.2.3 Incrementally Move Vertices on the Thin Section Boundary  

The movement of the mesh vertices on the thin section boundary loop 
'i
L can 

cause the surface mesh to become invalid. Fig 9 shows an example where two tri-
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angle faces marked as shaded in Fig 9(b) become invalid because of moving verti-

ces 0

'
2

M and 0

'
3

M to their target locations. This problem is avoided by applying the 

following procedure [7]: 

• Put all of the vertices with attached target locations into a list 
• Traverse the list and deal with one vertex at each step 
• If the vertex moves to the target location without causing any problem, move it 

and remove it from the list. Otherwise, apply local mesh modifications to cor-

rect the invalid elements. Remove the vertex from the list (See reference [7]).  

 

Fig. 9. (a) Move 0

'
0

M and 0

'
1

M . (b) Move 0

'
2

M , invalid faces marked as shaded. (c) 

Collapse 0

'
5

M to 0

'
2

M . 

4.3 Surface Triangulation Matching 

The surface triangulation matching between the two triangle sets for a thin sec-

tion is achieved through the triangulation deletion of one triangle set and the copy-

ing of the remaining triangle set to the opposite model face. The key technique is 

the location computation of the copied vertices on the opposite model face. This is 

accomplished by the interpolation strategy discussed in Section 4.2  

4.4 Volume Mesh Generation 

With the topologically and geometrically matched surface triangulation for thin 

sections, the volume mesh generation procedure constructs prismatic elements by 

directly connecting each paired triangles classified on the two opposite model 

faces. Because the generalized volume mesh generator requires the exposure mesh 

faces to be triangles, one layer of pyramid elements are added neighboring to the 

interior quadrilateral faces of the structured prismatic elements.         

4.5 Examples 

Two example models with thin sections are given in Figure 10. The first row 

shows the input surface triangulation for the two models. The second row shows 

just the isolated opposite thin section surface patches after loop construction and 

loop matching. As can be seen from the figures the two surface meshes are not yet 

matched. The bottom row shows the final meshes where the thin section meshes 

have been matched, the prismatic thin section elements created, volume mesh 

completed and the mesh properly curved to the domain boundary.  
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Figure 10: Examples meshes for models with thin sections: Surface triangulations 

(top). Thin sections (middle). Curved meshes with prismatic elements (bottom).  
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5. Closing Remarks 

The paper presented a procedure to automatically isolate and mesh thin sections 

of 3-D solid models with prismatic elements for directional p-version finite ele-

ment analysis. Key ingredients of the procedure are: 

• Construction of an octant tracing algorithm to calculate a limited number of 

medial surface points to define the thin section triangle pairs,  

• A strategy to organize the thin section triangle pairs to define thin section face 
patches that are opposite to each other, 

• A procedure to generate prismatic volume mesh by copying one side of surface 

mesh to the other side and connecting the corresponding opposite vertices. 
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