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Abstract

This paper considers the technologies needed to support thecreation of adaptively constructed meshes for gen
curved three-dimensional domains and outlines one set of solutions for providing them. A brief review
effective way to integrate mesh generation/adaptation with CAD geometries is given. A set of procedures th
support generalh-adaptive refinement based on a mesh metric field is given. This is followed by examples th
demonstrate the ability of the procedures to adaptively construct anisotropic meshes for flow problems. A pr
for the generation of strongly graded, curved meshes as needed for effectivehp-adaptive simulations is also give
 2004 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Adaptive methods to control the discretization errors associated with the application of finite e
methods in the numerical solution of partial differential equations have been under continuous d
ment since the pioneering work of Babuska and others began in the 1970s. Over the years these
have been refined and for several classes of equations have matured to the point that effective
analysis procedures can be developed and delivered. It is obvious to those involved in the deve
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of these technologies that the applications of adaptive methods can greatly increase the reliability of the
simulations performed in the process of engineering design, thus allowing a greatly increased use of
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simulation to design superior products and lower costs. However, with the exception of a small n
of specific examples, these methods are not being supported by the computer aided engineering
that provide industry with the simulation tools they use.

There are several reasons why adaptive methods are not yet commonly applied in engineering
One reason is that most commercial finite element and finite volume codes employ software str
that are not easily extended for the efficient application of adaptive methods. In addition, these c
not preclude users from “executing variational crimes” such as using point loads or constraints
are in fact common practice, but will yield meaningless results when an adaptive method is app
such problem specifications [3]. Another reason is that the procedures for the a posteriori estim
the discretization errors are based on norms that are not directly related to the quantities of eng
interest. Recent efforts on the development of goal oriented error estimators are beginning to add
need (see, e.g., Ref. [21]). A final reason is a lack of procedures to use the a posteriori error e
to specify what the adaptive discretization should be and to execute the processes to constru
discretizations. This paper focuses on the last of these issues which is the construction of the
discretizations in terms of a properly defined mesh. The procedures reviewed here represent an in
set of tools for general three-dimensional domains that address general anisotropic mesh adapt
properly account for the approximation issues associated with the representation of curved geom

The ability to support the automatic generation and adaptation of general curved geometries
an appropriate definition of the geometric domain. Section 2 reviews the geometry functions ne
support these processes when the domains are defined within CAD systems. Section 3 overvie
of procedures for the construction of adaptively refined anisotropic meshes based on the applic
mesh modifications operations while Section 4 demonstrates the application of these procedure
applications, one employing discontinuous Galerkin discretizations and one employing stabilize
element discretizations. Section 5 then considers procedures for the generation of meshes ap
for hp-adaptive discretizations of elliptic equations over general domains including re-entrant ge
where singularities must be resolved.

2. Geometry information from CAD systems and relationship to meshing

A major bottleneck to the effective application of adaptive discretization control is the lack of re
means to automatically generate and adapt meshes directly from the domain definition informat
creasingly the complete definition of the domain of interest is defined by the solid modeling proc
within commercial computer-aided design systems. A majority of efforts to integrate mesh gen
and adaptation procedures with solid models have employed standard file exchange methods.
proach has been found to have a low reliability for the simple reason that these file structures
maintain information on the geometric tolerances and tolerancing methods used by the solid m
This information is required to support the consistent determination of how the geometric entities
ing the solid model interact. Access to the tolerance information and methods can be obtained by
integrating the meshing procedures with the modeler. This approach is supported by the majorit
solid modeling systems which provide a library of functions supporting a broad range of geome
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Fig. 1. Example of a non-manifold model (left) and a mesh of that model (right).

Fig. 2. Model topological adjacency information and relation to model geometry.

terrogations. These interrogations are keyed via the topological entities of a boundary represen
the solid model.

An effective approach to take advantage of the capabilities afforded by solid modelers is to emp
topological entities of the model and their adjacencies to provide the mesh generation and mod
operations with the geometric information they need. Although each of the solid modelers mai
topological representation, there are variations in the implementations that could complicate the
tion with the meshing processes. Since they do provide sufficient information and functions to co
any selected topological entity and adjacency structure, a viable approach is to load and mai
appropriate copy of the topological model within the mesh generation procedures. Since the sol
els needed for simulation processes are often general combinations of solids, surfaces, curves a
(Fig. 1), a complete non-manifold representation in the form of the radial-edge data structure [28]
is used. With this structure it is straightforward to link to the operator libraries provided by the
modeler. This approach (see Refs. [7,25,26]) has been found to be highly reliable to mesh very c
domains such as automobiles with anisotropic meshes as needed for thermal-flow simulations (F

The topological model entities of the geometric model boundary representation also provide a
nient means to describe the additional information, commonly referred to as attribute information,
to define a simulation [20]. The attribute information includes material parameters, boundary con
loadings and initial conditions. When coupled with the domain definition and knowledge of the PD
be solved this provides a complete problem specification that can be used to drive an automated
analysis procedure.
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Fig. 3. Mesh of a complete automobile. (The light gray shows the surface mesh on portion of the automobile while th
gray shows the mesh on the outer limits of the boundary layer mesh.)

Maintaining the relationship between the mesh and geometric model is critical to supporting
adaptation operations. For example, when the edge of a linear element which is on a curved su
the model is split, the new vertex needs to be placed at an appropriate point on that surface. Mai
these relationships is easily supported if the mesh is also defined in terms of a set of topological
and their adjacencies. Under the assumption that each topological mesh entity of dimensiond, Md

i , is
bounded by a set of topological mesh entities of dimensiond − 1, {Md

i {Md−1}}, the full set of mesh
topological entities are:

TM = {{
M

{
M0}},{M{

M1}},{M{
M2}},{M{

M3}}}, (1)

where{M{Md}}, d = 0,1,2,3 are respectively the set of vertices, edges, faces and regions which
the primary topological elements of the mesh domain. With both the mesh and model defined i
of topological entities it is straightforward to maintain the association of the mesh entities to the
entities [8,23,25,26]. This association is referred to as classification in which the mesh topological
are classified with respect to the geometric model topological entities upon which they lie.

Definition (Classification). The unique association of mesh topological entities of dimensiondi , M
di

i to

the topological entity of the geometric model of dimensiondj , G
dj

j wheredi � dj , on which it lies is

termed classification and is denotedM
di

i � G
dj

j where the classification symbol,�, indicates that the lef
hand entity, or set, is classified on the right hand entity.
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Definition (Reverse classification). For each model entity,Gd
j , the set of equal order mesh entities clas-

sified on that model entity defines the reverse classification information for that model entity. Reverse
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j

}
. (2)

Functions to provide the reverse classification are useful in various steps within an adaptive sim
process.

Mesh shape information can be effectively associated with the topological entities defining the
In many cases this is limited to the coordinates of the mesh vertices and, if they exist, highe
nodes associated with mesh edges, faces or regions. In addition, it is possible to associate oth
of geometric information with the mesh entities. For example, associating Bezier curves and
definitions with mesh edges and faces inp-version finite elements can effectively address the approp
geometric approximation of those elements [11]. The mesh classification can be used to obta
needed geometric information such as the coordinates of a new mesh vertex caused by splitting
edge classified on a model face or to support the calculation of the geometric Jacobian informatio
doing an element stiffness integration.

3. Anisotropic mesh adaptation

The anisotropic mesh adaptation procedure employs a set of mesh modification procedures
alter the given mesh to satisfy the anisotropic mesh sizes given by the adaptively defined mes
field.

3.1. Mesh metric field and use in adaptive mesh modification

The goal of the mesh metric field is to provide a spatially-based description of the anisotropic
sizes and orientations to be applied at that point in time. A convenient means to specify this inform
in terms of a 3×3 mesh metric tensor [9,13]. A convenient definition of the anisotropic mesh metric
is one that defines the mapping of an ellipsoid into a unit sphere in terms of a diagonal distortion
where the diagonal terms correspond to the lengths of the principal axes of the ellipsoid, times a
matrix that accounts for the orientation of the ellipsoid. When used for constructing the anisotropi
size field, lengths of the principal axes are interpreted as the desired mesh edge lengths in the
directions at that location defined as

Q(x, y, z) =
[ �e1

�e2

�e3

][1/h1 0 0
0 1/h2 0
0 0 1/h3

]
, (3)

whereh1, h2 andh3 are lengths of the three axes of an ellipsoid, and�e1, �e2 and�e3 are the orthogonal un
row vectors associated with the principal axes.

In an adaptive analysis process directionally sensitive error indicators are used to construct th
metric over the domain, typically in some piecewise manner such as the specification of nodal me
the current mesh. A commonly applied method to construct the mesh metric field is based on the
matrix of constructed second derivatives of the solution field [15]. Such an approach is appropriat
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piecewise linear finite element approximations are used since from a simple approximation theory per-
spective, the discretization error is related to the second derivatives of the solution. A key area for the
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effective use of anisotropic adaptive refinement needing further development is the correction ind
procedures that can construct appropriate mesh metric tensors that will optimally control the error
desired norms for the given finite element discretization method being used.

Given a mesh metric field defined over the domain of interest, the mesh modification proc
examines the mesh entities to determine if they adequately represent the mesh metric field. If an
does not adequately satisfy the given mesh metric, the mesh metric information is used to d
application of mesh modification operations aimed at producing mesh entities that do acceptably
the mesh metric field. The execution of this process focuses most of its attention on the mesh ed
a specific step included to consider the volume of mesh regions so as to avoid the creation of e
that meet the edge criteria, but have a volume far below that appropriate for the given mesh metr
is necessitated by the well-known fact that it is possible to construct a zero volume mesh regio
mesh edge lengths that do not dramatically vary from the ideal edge length.

The degree of the satisfaction of a mesh edge to the given mesh size field is measured in th
formed space. Considering a mesh edge that runs from vertex A to vertex B, the length of this
the transformed field is [13]

LAB =
B∫

A

√
�eQQT�e T dx, (4)

where�e is a unit row vector along the edge in physical space.
Since it is not possible to ensure all mesh edges are the correct length and still have the mes

compatible, it is necessary to accept edge lengths within an acceptable range. It is also necessar
range of acceptable edge lengths are selected to be large enough that the mesh modification o
do not enter into an infinite loop of refining and coarsening edges. Defining the interval of acce
edge length to be[Llow,Lup] the values must be selected such thatLlow � 0.5Lup and Llow � 1.0 �
Lup. A mesh edge is considered “short” if its transformed length is less than the lower bound,Llow, of
the interval, and a mesh edge is considered “long” if its transformed length is greater than the
bound,Lup.

Sliver tetrahedra (poorly-shaped tetrahedra not bounded by any short mesh edge in transforme
may exist even if the edge length criteria is met, so consideration is needed to determine and e
sliver tetrahedra. One of the standard non-dimensional shape measures, the cubic of mean rati
used in the transformed space for this purpose. LetQ be the associated transformation matrix of
tetrahedron,1 the cubic of mean ratio in transformed space,η is

η = 15552(|Q|V )2(∑6
i=1(

�liQQT�l T
i )

)3 , (5)

where|Q|V is the volume of the tetrahedron in the transformed space (|Q| represents the determina
of the transformation andV is the volume of a tetrahedron in physical space), and�li (i = 1,2, . . . ,6)
are the row direction vectors associated with the six edges of the tetrahedron in physical spacη has

1 When the transformation is not constant over the tetrahedra, the one with the maximum length major axis is used.
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been normalized to interval[0,1] with 0 for flat tetrahedron and 1 for equilateral tetrahedron in trans-
formed space. When the shape measure of a tetrahedron is below a specified limit mesh modifications
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3.2. Mesh modification procedure

Given a geometric domain, a current mesh and a mesh metric field defined in a piecewise man
that mesh, a series of controlled mesh modification steps are executed to convert the given m
one that satisfies the given mesh metric field [17]. These mesh modifications are executed such
resulting mesh properly approximates the geometric model by ensuring the mesh entities class
the model boundary are properly positioned on the boundary [16].

To ensure the adapted mesh will properly satisfy the required metric field, the mesh modifi
algorithms are carefully constructed and executed in three stages of (i) mesh coarsening to e
short edges, (ii) shape correction to provide better structured mesh for the third stage, and (iii) int
refinement that includes operations for ensuring the proper geometric approximation of the me
proper shape to match the mesh metric field.

The first stage is focused on the elimination of edges in the mesh that are shorter thanLlow through
coarsening operations. The local mesh operations used for this process include edge collapse, c
operators that combine swaps and collapses, and vertex relocation. The algorithm operates by id
all the short edges to be eliminated and then eliminates them, one at a time, trying the possibl
fications in an efficient order. In some cases coarsening operations are not allowed because th
yield an invalid mesh (e.g., collapsing an edge with vertices classified on two different model face
important consideration in this process where a substantial number of edges in a region are to b
ened is being sure those collapsed are well distributed. This is accomplished by being sure to no
the collapse of one edge by collapsing an immediate neighbor. In a small number of cases, non
available operators are successful in eliminating a given short edge, in which case the edge is ma
This occurs only a small percentage of the time and can be accepted since the consequence is
is locally finer than it needs to be.

Since the mesh coarsening step is focused on the creation of elements with edge lengths that s
mesh metric it is possible for poorly shaped elements in the transformed shape (as measured by
to be created. Since these elements have satisfactory edge lengths, they must be sliver elements
the two classic configurations. The determination of the mesh modification operations most likel
successful is a strong function of the specific configuration of the sliver element. By projecting one
of a sliver tetrahedra on the plane defined by the other three (the choice of which vertex is proje
arbitrary) it is possible to identify the mesh entity most appropriate for elimination as well as the
appropriate operations to eliminate that entity, thus leading to the elimination of the sliver element
this shape correction process is applied again at the very end of the mesh adaptation process
strictly necessary to apply it at this time. However, not applying it at this time will give the refine
process a small number of poorly shaped elements that will be refined into elements of equally
worse shape which will have to be dealt with later. Therefore, it is more efficient to apply shape cor
at this time.

The third stage focuses on the refinement of mesh edges longer thatLup. Given the set of mesh edg
that are too long, the first step of this stage is the application of refinement of the edges and mesh
bounded by those edges using a template procedure that does include selection of optimal diag
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Fig. 4. Dealing with long and short edges introduced when refinement vertices are moved to curved boundarie

the transformed space) when there are options with respect to diagonal selection [10]. Unlike coa
it is critical that each required mesh refinement be executed. Since the edge, face and region
operations associated with the application of these refinements is always possible, all refinem
executed.

Since the refinement process can introduce new mesh vertices that are classified on curved b
entities, it is necessary to move those vertices onto an appropriate location on that boundary.
case of curved mesh entities, this process must also consider the split mesh edges and faces cla
curved model boundaries.) In general this process can cause connected elements to become i
those cases a specific process that includes mesh modification and possibly local cavity triangu
applied [16]. Since the process of placing the vertices on the appropriate curved boundaries will
the length of mesh edges, it is important to check the mesh entities connected to any moved ver
edges involved in a local mesh modification operation needed to place the vertex on the bound
satisfaction of the mesh metric. Fig. 4 shows examples where moving a refinement vertex to the b
can make edges that are too long or too short. When mesh edges become too long, additional re
is applied, and when they become too short appropriate collapses are applied (Fig. 4). Although o
consider that the level of geometry approximation of the meshes in Fig. 4 to be extreme and impr
it should be noted that examples of this level of approximation in real 3D meshes are in fact comm
must be dealt with. One alternative is to use curvature based mesh refinement during the initial m
process to ensure adequate geometric approximation. However, if these geometric features hap
located in unimportant portions of the domain, with respect to the current simulation goals, then e
that level of geometric approximation control is wasteful.

The process of applying the mesh refinement templates can introduce new edges that are locall
than required by the mesh metric field thus producing meshes that are finer than needed to the
some cases of providing an inefficient representation of the requested mesh metric field. Therefor
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Fig. 5. Importance of collapsing short edges introduced during refinement.

refinement templates are being applied a list of these short edges is created. The edges in that lis
processed by the coarsening procedure to improve the mesh distribution. The importance of this
is demonstrated in Fig. 5 where an initially uniform mesh, shown on the left of Fig. 5, was refin
anisotropically capture a strong feature along a vertical line in the middle of the domain produc
mesh shown on the top right of Fig. 5. By applying the coarsening procedure to the disproportio
short edges created during refinement, the mesh shown on the bottom right of Fig. 5 was produc
mesh provides a much more effective representation of the requested mesh metric field.

Since the above steps focus attention on mesh edges, they can again introduce a limited nu
sliver elements. Therefore, the last step in this stage it to again apply the shape correction pr
eliminate any sliver elements that have been created.

4. Applications of anisotropic mesh adaptation

4.1. Inviscid flow problems with shocks discretized by discontinuous Galerkin method

Consider the problem of a 2D approximation to the cannon blast in a tube with a 155 mm di
that has a set of perforation holes of 28.6 mm near the exit of the tube. The initial conditions
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s corre-
Fig. 6. Evolution of adaptive mesh (left) and density contours (right) for 2D cannon blast problem.The rows of image
spond to times oft = 0.0, 0.0001, 0.0002, 0.0003, 0.0004 and 0.0005 seconds.
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problem are the one of a shock tube with a shock placed to the left of the perforations. The pressure on
the upstream side of the shock is 565 times the downstream and freestream values. The initial temperature
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of the air inside the tube is 2111.5 degree K and the initial velocity is zero. The initial location
virtual interface is indicated by the jump density contours for the initial condition shown in the top
image of Fig. 6.

A discontinuous Galerkin (DG) finite element approximation using linear basis functions was
to discretize the spatial component of the Euler equations being used to model this problem [24
second order Runge–Kutta time integration scheme was used in the simulation which is run for 5.0×10−4

seconds. The time steps applied during the simulation were adaptively set to maintain a CFL limit
Initial time steps were 5.0 × 10−8 seconds and the final time steps were about 1.5 × 10−8 seconds. The
mesh was adapted every 10−6 seconds giving a total of 501 mesh adaptation steps.

The mesh metric field for this simulation was constructed using a process that explicitly accou
the discontinuities within the solution field. The procedure for adaptively computing the mesh
field employs the following steps [24]:

• Apply a discontinuity isolation procedure to isolate the discontinuities in the solution field
procedure takes advantage of the superconvergence properties of the DG method [1] and m
estimates of the convergence rate over the domain. Element interfaces where the estimate
convergence is below the expected rate are marked as locations of a discontinuity.

• Construct the mesh metric field in the vicinity of the discontinuities using local solution gra
information on each side of the discontinuity to estimate the desired mesh sizes normal and ta
to the discontinuity.

• Calculate the mesh metric field in regions away from the discontinuities using the Hessian m
second derivatives of the solution. Since a DG discretization is being used, specific care is r
to construct second derivatives. A variationally based procedure is used for this process.

• Merge and smooth the full mesh metric field over the computational domain.

Fig. 6 shows the mesh and density contours for every 10−4 seconds. The initial mesh, which w
anisotropically refined based on a given mesh metric field to capture the initial interface discon
has 5,556 degrees of freedom. After the 501 adaptive mesh modification steps there are 778,488
of freedom in the mesh which captures the complex shock interactions caused by the perforation
shows a zoom near the front shock which must be accurately predicted and tracked as it moves
the computational domain. Note the alignment of the anisotropic elements and the front shock.

4.2. Flow problem discretized by stabilized finite element method

The second example considers the flow within a pipe with a symmetric bifurcation (see Fig. 8
velocity profile on inflow boundary on the left side is specified as

u3 = min
(
25(1− r), (1− r)1/7

)
(6)

whereu3 is the velocity inz direction, andr = √
x2 + y2, r � 1. A zero pressure boundary condition

set on the two outflow boundaries, and no slip wall boundary conditions are enforced.
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Fig. 7. Close-up of the mesh and density contours of the front shock att = 0.0005 seconds.

For this problem the flow is modeled using time dependent, incompressible Navier–Stokes eq
and discretized using a stabilized finite element [29]. The adapted mesh size field is constructed
scaled Hessian matrix of the second derivatives of the flow field.

Fig. 9 gives the side view (looking down they-axis as in Fig. 8) of initial mesh and the anisotropica
refined mesh after the fourth application of mesh adaptations. The initial mesh is uniform and iso
It is used to solve the flow problem in solution steps from zero to 50 (0.5 seconds for each solutio
The refined mesh is achieved after the application of four anisotropic mesh adaptations at solut
50, 80, 110, 140 respectively, and it is used to solve the flow problem from step 140 to step 17
number of elements increased from 38,903 to 270,753. Fig. 10 shows the interior mesh faces int
with the plane ofy = 0 and flow speed contours on that plane, including close-up views to the are
the bifurcation point. It can be seen that mesh adaptation has produced small isotropic elemen
bifurcation point which then become anisotropic in the boundary layers downstream of the bifu
point. Fig. 11 shows the refined mesh and its associated flow speed contours on two cross sectio
model (see Fig. 8 for definition of the two sections). The top figures show the surface mesh and t
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Fig. 8. Geometry of pipe bifurcation.

Fig. 9. Side view of the initial and adaptively refined mesh.

speed contour at inlet while the lower meshes show the interior mesh faces and speed contour r
the section B–B within one of the branches (see Fig. 8).

5. Mesh generation for hp-adaptive methods

Theoretical results that show the possibility of exponential rates of convergence of a finite e
solution with the use of high polynomial order elements on properly refined meshes, the so-calhp-
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Fig. 10. The adapted mesh and flow speed contours on a plane through the center of the pipe. (The mesh images sho
faces the intersection plane pass through.)

finite element method, are well known and documented [4,27]. It has also been shown that thro
proper construction of mesh configurations that it is possible to attain these high rates of conv
in the application to problems of interest [2,14,22]. This section overviews progress being made
development of a procedure capable of generating meshes for general curved three-dimensional
that will meet the requirements ofhp-finite element methods.

5.1. Mesh requirements

The meshes required to attain the high rates of convergence and levels of accuracy possi
hp-version finite elements must meet severe requirements on both the gradation of the elemen
mesh and the shape of the individual elements. The discussion given here is focused on the requ
of solving elliptic equations on curved three-dimensional domains with piecewise smooth boun
loadings and boundary conditions.

A basic requirement of any mesh enrichment method is that as the finite element basis is impro
approximation of the mesh to curved geometric domains is represented properly. In the case whe
of linear basis elements is refined, this requirement corresponds to placing all new refinements
classified on curved boundaries on the correct boundary. In the case when higher order finite
basis are used, the geometric approximation of all the mesh entities classified on the boundary
modified must be properly improved to the correct order. In the cases of isoparametric elements
in terms of standard interpolating Lagrange polynomials this requirement is met by being sure
nodes at mesh vertices, on mesh edges and on mesh faces classified on curved boundaries a
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on the appropriate boundary. Since it is common to use different basis functions for the finite e
approximation and element geometries inhp-finite element methods, one has to more carefully cons
how to satisfy the geometric approximation requirements for these elements by the proper impro
of the mesh edge and face shapes.

There is limited theoretical information available on the level of geometric approximation requi
maintain convergence to the correct solution for the given curved domain. A simple analysis ba
the relation of approximation theory to the convergence of the error in the energy norm indicat
the energy norm will converge so long as the geometric approximation of the mesh is within one
of that used in the finite element basis. Information obtained from various numerical studies do
provide a clear picture of exactly how well the geometry must be approximated over a variety o
configurations to provide proper results for norms of interest. However, a simple study of coarse
on test problems does clearly demonstrate the loss of convergence in the energy norm and p
norms of engineering interest when the geometric approximation is not increased as the order of t
element basis is increased [19]. Since, in areas away from singularities, it has been shown that
effective means to improve the solution results is to increase the polynomial order of the eleme
27], one does want very large elements over those portions of the domain. Although additional the
results are desired, numerical results that have examined both energy and local pointwise norms
that properly maintaining the geometric approximation to the same order as that of the finite e
basis leads to convergence of both.
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In portions of the domain where the exact solution is smooth the most effective mesh is one that is as
coarse as possible. However, the vicinity of singularities in the mesh must be refined. In particular, the
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optimal mesh requires a geometrical gradation in the direction normal to the singularity, with a g
factor that is a function of the strength of singularities [5,6,22]. Since in the case of three-dimen
domains the singularities can be along curves or at points, these geometrically graded meshe
required in a “cylindrical shape” around the singular edges and “spherically” around the singular ve

5.2. Generation of meshes for hp-version finite elements

Since the requirements on the meshes forhp-version meshes are more complex thanh-version mesh
generation procedures, the creation of the appropriate meshes needs to influence the initial m
eration process. In the case where the solution over the entire domain is smooth, the appropria
is the coarsest one possible. Since most mesh generation procedures are oriented toward the g
of meshes of lower order elements (linear and, maybe, quadratic) they typically create meshes
finer than desired. This is because they require a completed valid mesh of piecewise linear g
elements and typically employ algorithms where there are usually multiple elements across any
geometric model entity. In the case where the domain includes edge and vertex singularities, th
cedures are not designed to create the appropriate mesh layouts near the singularity. The constr
the needed mesh layouts near the singularity would also be difficult to accomplish by the applica
mesh modification operations.

The approach being developed for the generation of initial meshes appropriate forhp-analysis con-
siders the requirements of coarse curved mesh entity creation during the meshing process and
procedures that construct the geometrically graded meshes from singular edges and vertices. C
ally, the ideal approach to accomplish this mesh generation process is to “carve-out” curved elem
the size and shape desired one at a time. Although such an approach would provide the most fl
in the construction of the meshes, the lack of algorithms to support its operation and high level o
putational effort on a per-element basis that would be required are both currently prohibitive. The
a compromise approach that begins to account for the existence of curved mesh entities and the
of appropriate mesh gradations as early in the process as practical is under development.

The steps in the automatic mesh generation procedure forhp-meshes currently under developme
are:

(1) Isolate all of the edges and vertices in the model that will have singularities.
(2) Generate a coarse linear mesh on the boundary of the model accounting for the isolated feat
(3) Generate coarse linear mesh with appropriate geometric gradation towards the isolated sing

tures.
(4) Generate a coarse linear mesh to fill the remainder of the domain.
(5) Curve the singular feature isolation mesh to ensure a proper curved mesh isolation of the s

feature.
(6) Curve the remaining mesh entities (edges and faces) classified on the curved boundaries to

rently required order of approximation. Apply mesh modifications as required to the surface
connected entities.

(7) Apply mesh modification, included mesh curving and curved mesh splits, collapses and sw
needed to interior mesh entities to ensure a valid mesh of acceptably shaped elements.
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Fig. 12. Example of a geometrically graded mesh isolating a singular edge.

Given a geometry-based problem specification in terms of the geometric model and analysis a
of loads, material properties and boundary conditions, it is possible to preprocess the geometric m
mark all the model edges and vertices at which the solution will be singular. For example, the ge
singularities can be detected by the execution of the appropriate geometric interrogations of
normals which is supported by the solid modeling system the domain is defined within.

Given the isolated singular edges, a linear geometry surface mesh is generated using a gener
meshing procedure in conjunction with a procedure to construct a geometrically graded mesh o
bounded by any singular edges and vertices.

Geometrically graded volume elements are then generated around the isolated edge and vert
larities taking appropriate account of the local surface mesh. The procedures that create the geom
graded surface and volume mesh around the isolated singularities (see Fig. 12) employs the fun
ties of a generalized boundary layer mesh generation procedure [12].

The remainder of the interior is meshed with a coarse linear mesh.
Given this mesh the process of curving the appropriate mesh entities is executed. To maxim

quality of the mesh forhp-analyses, the curving process is carried out working from the most cr
portions of the mesh to the less critical portions. This is done so that in those cases when me
ifications other than curving entities are required, they are applied in the least critical areas wh
control over the local mesh configuration is not critical. The mesh edges and faces used to iso
singular features are curved first. This process directly uses knowledge of the layers of geome
graded elements and begins by curving the mesh edges classified on the curved model edges
curving the mesh edges and faces in the layers isolating the edge in a manner to maintain the g
of the mesh over those mesh entities. The result of this process is shown in Fig. 13 where a re
curved edge has been isolated. The mesh on the left shows the local surface mesh before curvin
mesh on the right shows it after curving. The interior mesh entities isolating the edge are also cu
a similar manner.

The last two steps involve curving the surface mesh entities as needed to properly approxim
curved surfaces and properly interact with the curved surface mesh entities isolating singular ed
vertices that have also been properly curved to the boundary. Mesh modification processes of cu
tity split, collapse and swap may be required during this process since curving can cause connec
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Fig. 13. Mesh around a portion of an isolated singular edges before (left) and after (right) curving.

Fig. 14. The application of a swap to account for curving and edge in the edge isolation region.

entities to become invalid. Fig. 14 demonstrate this possibility for a simple 2D example. The linea
generated in both the singular edge isolation process and meshing the remainder of the domain
on the left side image in Fig. 14. When the mesh entities in the singular edge isolation region are
a connected element just outside that region becomes invalid (shown in the middle image of Fig.
swapping one of the edges, the mesh becomes valid again. Although in this simple example, i
have also been straightforward to regain validity of the mesh by curving one mesh edge, it is com
have situations where this is not possible and combinations of curved mesh modification operatio
be applied. After the surface mesh entities have been curved and a valid surface triangulation o
the final step is performing any required mesh modification to the interior mesh entities to regain
ity of any elements that have become invalid. Fig. 15 shows an example of the procedure appl
mechanical component to produce a mesh appropriate as the initial mesh for an adaptivehp-analysis. In
this case the mesh is constructed to isolate the potential singular features with the remainder of t
being as coarse as possible.

The process of making the coarsest possible mesh for a model with geometric features (e.
lengths) of substantially different sizes will create elongated elements, such as some of those
of the model in Fig. 15, are created. The mesh quality based on a priori geometric mesh entit
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Fig. 15. Examplehp-version mesh.

measures might not be considered good. However, if the mesh generator was required to crea
well shaped, with respect to a regular element shape, the mesh would contain many more elem
would not be as likely to be able to attain the accelerated rates of convergence of anhp-adaptive method
Note that elements with shapes on the order shown here are a far way from causing any nu
conditioning problem, and that if the level ofh-refinement in any direction is not sufficient the adapt
procedure should determine and correct it as part of the adaptive process.

6. Closing remarks

This paper has discussed the automatic generation of adaptively controlled meshes for gener
dimensional domains. The specific procedures presented include a mesh modification based
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capable of producing anisotropic mesh configurations, and a mesh generation procedure to produce
curved meshes suited forhp-adaptive analysis.
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As the adaptive results demonstrate, the anisotropic adaptive mesh modification procedures a
ble of providing highly effective adapted meshes that can account for anisotropy of the solutions
proper representation of curved domains given an adaptively defined anisotropic mesh metric fi
be most effectively applied these procedures need a new generation of error estimators and corre
dicators that can account for the anisotropy of the solution field to construct the appropriate mesh
fields.

Efforts on developing mesh generation tools for properly configured meshes forhp-adaptive meshe
demonstrate the possibility of constructing meshes that can yield exponential rates of converge
analyses over general curved 3D domains. As these procedures begin to mature it will also be imp
develophp-adaptive procedures that optimally indicate the appropriate mesh refinements and poly
orders over the domain.
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